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A general tensorial expansion for the interaction potential between two atoms in arbitrary angular momentum
states is derived and the relations between the expansion coefficients and theOppenheimer potentials

of the diatomic molecule are obtained. It is demonstrated that a complete expansion of the interaction potential
must employ tensors that are invariant under the inversion of the coordinate system, and the expansion in
terms of conventional spherical harmonics is not adequate for the case of two atoms in states with nonzero
electronic orbital angular momenta. The concept of the interaction anisotropy between two open-shell atoms
is introduced. The correctness of the formalism is demonstrated by the example of two atBratatas.

I. Introduction collision problem is equivalent to that of a diatomic molecule
interacting with an inert gas atom. The part of the interaction
with k = 2 represents the anisotropy of the electronic interaction
between an atom inR state and a closed-shell atom. Aquilanti
and Gross$iderived the relations between the Legendre expan-
sion termsVy and the Bora-Oppenheimer potentials of the
diatomic molecule and generalized expression 1 to describe
interactions between closed-shell atoms and atoms with higher
electronic orbital angular momentum. The Legendre polynomials
can be expanded in spherical harmonics

Quantum chemistry calculations give an electronic interaction
potential between two atoms in the molecule-fixed coordinate
system. Collisions of atoms are described in the laboratory-
fixed coordinate system and atomic collision theories are based
on transformation relations between the molecule-fixed and
space-fixed wave functions. The complexity of the wave
function transformations often conceals the role of the electronic
interaction potential in determining the dynamics of inelastic
atomic collisions. It is desirable, therefore, to have a space-
fixed representation of the electronic interaction potential which 4
would allow for an analysis of collision mechanisms. Such P (f.ﬁ) — T z(—l)qY (IA?)Y () )
potential forms would reflect the anisotropy of atemtom K k+ 14 k=a kq
interaction and provide simple techniques for the evaluation of
the interaction potential matrix in a space-fixed basis of wave \hereR andf are the unit vectors with the direction Bfand
functions. r defined in the laboratory coordinate systéfiThe results of

Callaway and Bauérsuggested that the interaction between aquilanti and Grossi thus provided a direct representation of
an atom in & state and a closed-shell atom can be representedthe interaction potential operator in the space-fixed coordinate

by an effective potential of the form frame. This proved to be useful for the analysis of atomic
o A collisions in external fields and collisional reorientation of
V(R,F) = kZZVk(R)Pk(r'R) 1) angular momentum at low energf&g?

Dubernet and Hutsdh presented a discussion of atem
whereR is the vector joining the centers of mass of the atoms, molecule van der Waals Complexes containing open-shell atoms
r denotes collectively the position vectors of the electrons in @nd =-state molecules. The discussion was based on the

the P-state atom ang is the Legendre polynomial éth order? assumption that the atoamolecule interaction potential can
Reid and Dalgarrie* used expansion 1 to formulate a theory be represented by expansions commonly used in closed-shell

for fine-structure transitions in collisions Btstate atoms with ~ diatom—diatom systems. Both space-fixed
helium. It follows from their expressions that collisional transfer o
of angular momentum is driven by the tevp»(R) and the ~ V(R T, F) =

egoldR Y Vil RIK; kGl KoY, o (Pr) Vi () (3)
01,02,9
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TABLE 1: Definition of Atomic and Molecular Quantum
Numbers Used in This Article

Krems et al.

Il. Effective Potential for Two Open-Shell Atoms
Consider two interacting atoms A and B in the states with

e cectroric orbial (s andLy) and spin 6. and ) angular
in total electronic angular momentum of atom = La + S momenta. The mo_lecylar statie\[[SECare defined in the limit
Ls electronic orbital angular momentum of atom B of large interatomic distande by the Clebsch-Gordan theorem
S electronic spin angular momentum of atom B
js  total electronic angular momentum of atom B:= Ls + Ss |LA(LALB)D=ZZ|LAAA[]]LBABDI|]_AAALBAB|LAD 4)
L total electronic orbital angular momentum of .
the diatomic systemL = La + Lg
S totgl spén ing:lar momentum of the diatomic system: and the analogous equation f(&0 The product§LAJSE0
j total eleétronic angular momentum of the diatomic system: are related to molecular BoffOppenheimer functionsASX[
i =ia+is as follows:
| rotational angular momentum of the nuclei
J total angular momentum of the systed=j + | |CASZD=Z|LA(LALB)IZIJSZ(SASB)|]]J/|_\,C (5)
Aa  projection ofLa on the interatomic axis
(body-fixed projection)
My, projection ofL, on the space-fixed quantization axis The quantum numbaeris used to distinguish between molecular
m,  projection ofj on the space-fixed quantization axis states corresponding to the same valuea @indS. Transfor-
As prczfgée?iglasp?gjgé%g:)eratomlc axis mation 5 is valid at large interatomic separation where the
My,  projection ofLg on the space-fixed quantization axis fatom|c _Wa\_/e functions do not over_lap and. t_he exchange
m,  projection ofjg on the space-fixed quantization axis interaction is absent. The transformation coefflmeidf§ are,
Ms  projection ofS on the space-fixed quantization axis therefore, independent of spB We propose to use transforma-
m  projection O]‘:JI on tﬂe SPaCE'I!Xeg quantization axis tion 5 at arbitrary values oR which leads to an effective
?\1 B:g}gg::gﬂ gﬂ_c’(:‘nttﬁesiﬁ?gﬁa'téﬁicg‘)‘(%m'zat'on axis representation of the electronic potential appropriate for the
(body-fixed projection) desprlpthn of slow atomgtom coII|S|o.ns and. the d|s§OC|at|qn
> projection ofS on the interatomic axis of diatomic molecules. This approach is consistent with previous
(body-fixed projection) studies of atomic collisions and molecular dissocidfiotf
Q  projection ofJ andj on the interatomic axisQ = A + 3 which used a close coupling expansion in terms of atomic wave
M projection ofJ on the space-fixed quantization axis functions corresponding to states with given angular momenta

La and Lg. It neglects the nonadiabatic couplings to other

and body-fixed expansions were introduced and expressions forg|ectronic states, which may be significant if states exist with
matrix elements n dlﬁerent C0up|lng cases were deri\?éﬁhe adiabatic poten“als that are close in energy_

vectorry describes the rotation of the diatomic molecule, and  The matrix elements of the electronic Hamiltonian
[ uko0p|kqdis a Clebsch-Gordan coefficient. Zeimen efl.
obtained the same equation for the?f(+ H, interaction
potential using a spherical tensor expansion invariant under
inversion and rotation of the coordinate system. are the nonrelativistic BornOppenheimer potentials of the
The work of Aquilanti and Grossi, Dubernet and Hutson, and Molecule AB. The operatdv in eq 6 can be expanded as

Zeimen et al. suggested that an open-shell atom behaves effec- N
V= ;mASZWC,\S(R)E:ASZl (7)
C.

BASS|VICASEC= V. (R) (6)

tively as a homonuclear diatomic molecule upon interaction with
a closed-shell atom or molecule. In the present work, we extend
the tensor formalism used by Zeimen et al. to derive an effective
operator form for interaction between two atoms in arbitrary
angular momentum states. We show that an adequate expansion

of the interaction potential between two open-shell atoms must
employ spherical tensors invariant under inversion of the coor-

dinate system and eq 3 is incomplete for the case of two atomswhere

with nonzero electronic orbital angular momenta. We derive s
Vo= ZZZ|LA(LALB)D]]]-'A(LALB)lva;L’A(R) 9

which can be rewritten in the effective potential form

V= ZZ|SZDE|\75 (8)

relations between the angular expansion terms and the-Born
Oppenheimer potentials of the diatomic molecule and introduce
the concept of interaction anisotropy in two open-shell atoms.
On the basis of the expansions obtained, we formulate a theoryand
of atom—atom collisions in external fields. Santra and Grééne S _ A A
have recently presented a tensorial analysis of long-range inter- Viaea(®) _ZU'- VerdRUL e
action potentials between two atomsHrstates. The equations
obtained in this work can be mapped on their expansions, thusThe transformatiofJ.*, is an identity matrix when one of the
providing the relationship between the Ber@ppenheimer interacting atoms is in an S state or when the quantum number
states and the long-range terms of the interaction potential. The can be assigned to each statgs (see sections IV and V).
formalism presented here can be used for the analysis of Zeemamtherwise, it can be determined by numerical diagonalization
relaxation transitions whose occurrence may limit experiments of the leading term in the interaction potential multipole
on evaporative cooling and the magnetic trapping of atoms. expansion at long range as was done, for example, for the
Trapped atoms are usually in the Zeeman state with the highesto-(2P)—-0@P) system in ref 19.
energy and the Zeeman relaxation leads to trap loss. The summation ovelr andL’ in eq 9 runs fromLa — Lg| to
Table 1 defines the notation for the atomic and molecular La + Lg andStakes the values fronss — Sg| t0 Sy + Ss. S,
guantum numbers used in this article. S, La, andLg are kept fixed. This corresponds to the model of

(10)
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whereMa andMa' andMg andMg' are the projections df A

over the electronic distance coordinates and defined the effectiveandLg on the space-fixed quantization axis.

potential for ator-atom and atomrmolecule interactions as a
function of electronic angular coordinates. Using the definition
of the spherical tensor operatéts

ToL, L) =

> Y AL A (L) - (4 & M w
(11)

and the orthogonality ofjymbols, we rewrite eq 9 as a series
over Tg(L, L)

A

Vo=
ZZZZ(W &L, Li( - (

The symbols in parentheses arg symbols and )2 is a
shorthand notation for @+ 1)'2.

Because the function& A(LaLg)Care referred to the molec-
ular axis, eq 11 defines the tensfg(L L") in the body-fixed
frame. It can be expressed in terms of the tenﬁgﬁt L")
defined in the space-fixed frame as follows:

< Mo
(12)

oL L) = ZT"(L L)DE(R) (13)

The V operator does not couple states with different values
of A so thatQ = 0 and the Wigner rotation matrix elements
Df oo are proportional to spherical harmonid§(R) that
depend on the polar angles of the ved®r

The tensoer(L L") is related to the tensorial product of
tensorsT’ 1(LA) andiz(LB) describing the rotation of electrons
in atoms ‘A and B, respectlve’ﬂ”}/

La La Kk
TH(L, L)_ZZt :: k

[(kl)(kz)(LXL')]1’2[?k1(LA)®?k2(LB)]g” (14)
where the symbol in curly brackets is agymbol and

[TLISTLIY = 5 S Realtlka T (L) (L)
q1 G2
(15)

The tensorsTi(La) and T¢(Ls) are defined as

ﬂ(ﬁ(LA) =

ky I\I;IA'A )(kl)lIZ (16)

La

Vi a\La—M
> S (G

and
Te(le) =

- Lg kL
2 > ILgMglgMg|(— 1) (_@B o M?B)(kz)” (7)

Using eqs 1214, we can write the effective potentid? as
a tensorial expansion in the space-fixed coordinate frame

2k)
0: g

Tzi(LA)ng(LB)qu(ﬁ) (18)

=

(M)l/zzzzvzkz k(R)ZZZ( 1y (ql

qr G2

with the expansion coefficients

Vsl,kz,k(R) = ZZZVEA;L'A(R)(_DL_A (_LA l(() /L\’)

|-A |-A kl
[(k) (L)L Ls Ls ko
L L' k
Equation 18 is the space-fixed representation of the effective
electronic potential for interaction between two atoms in
arbitrary states, and eq 19 provides the relation between the
expansion coefﬂmentvklk « and the matrix element\xi!LALA
which can be obtained from guantum chemistry calculations
using eq 10.
Since the operator of the total interaction potential is diagonal
also in the|SMs[representation, eq 8 can be rewritten as

V=Zé|swgm$wg|\75

(19)

(20)

thus providing the space-fixed effective representation of the
total interaction potential.

Expansion 26 is different from eq 3 appropriate for two
closed-shell diatomic molecules. A general relationship between
the spherical harmonics and the spherical tenﬁﬁﬂs 1) is
given in Appendix A. In the case considered here, the angular
momentalL, and Lg are good quantum numbers and the
relationships between the tensdi$(La) and T¢(Ls) and the
corresponding spherical harmonics are reduced to

Vi, (Fa) = TE(LA)G (La) (21)
and
Vi (Fe) = Te(Lg)e (Ls) (22)
with the coefficientsc,,(La) andc,(Lg) defined by
(L) [La K, La

and the analogous expression é(Lg). The vectors, andfg
specify the orientation of the electronic orbitals of atoms A and
B. It follows from eqs 21 and 22 that the coefficients of our
tensorial expansion 18 are related to the coefficients of the
spherical harmonics expansion 3 by

= Vi G (La) S (Lg) (24)

Uk, ko k

Because the products of th¢ $/mbols

LA kl LA) (LB k2 LB)
(0 0 0/™o 0 o
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vanish wherk; or k; is odd, relation 24 does not exist for odd  [,m |(pm ||Zl}n,|\A/|j,gn'[ Tigm) OI'my'C=
values ofk; or k,. Expansion 18 may thus include terms that . ° hoE

cannot occur in the spherical harmonics expansion 3. The ZZZVkl,kz,k(R) [(kp) (k) (K)(I )(V)(JA)(J'A)]U2
nonequivalence of expansions 18 and 3 arises from the different r

behavior of the tensor¥:(La) and Tg(Ls) and the spherical (—1)bat Setiatitia e m, ~mg-m Zzz(kl K> k)
harmonics under inversion of the coordinate system. As follows e a %4 q

from definitions 16 and 17, the tensof§(La) and T¢(Ls) are ok i Mie ks 1 ok Mok
invariant under the inversion, whereas the spherical harmonics (_m q M )(_rq QM )(_ml fT‘()(O 0 O)
Yiaq: @nd Yiq, acquire the factors<1)k and 1)<. It will be a LA g 2 e q /

shown in the following sections that the invariance of the tensors !—A In S (26)
Te(La) and T¢(Ls) under inversion is critical for the complete ia La Kk

representation of the potential (18). We note thafs = Ls, m, = My, andmj, = M;
- =B e T B B B

Equation 26 establishes that the tevig, k,_, k=0 contributes
Il Interaction Anisotropy in Two Open-Shell Atoms only to the diagonal elements of the matrix so that\he part
of interaction 18 is purely isotropic. The terms wkh= k, >
§ andk = 0 may couple the states with different values jaf (
m,,) and (g, m;) but they do not couple the states with different
values ofl, j, m, orm = mj, + mj,. These terms represent the

The states of the separated atoms A and B are characterize
by the total electronic angular momernjta and jg and their

projectionsm, andm, on the space fixed guantization axis. internal anisotropy. The terms witk > O couple different
Collisions between A and B may induce transitions between . .

andj states. They correspond to the external anisotropy.
the angular momentum states. The angular momentum transfer

or reorientation occurs due to the anisotropy of the atatom IV. Matrix Elements in the Scattering Basis
interaction. We distinguish between the internal anisotropy and
the external anisotropy. The internal anisotropy drives transitions
jam,O0— lja, m, + Am,Othat are accompanied by the
transitions|jsm,— |j &, m; — Am,0and in which there is no
change in the total electronic angular momenjwand projection

m. The internal anisotropy does not couple the electronic motion
with the orbital motion of the nuclei, so it cannot induce angular
momentum transfer in atoms with maximal or minimal projec- L —]-0
tions of the electronic angular momentum (maximally or IMiljalsl= Z;ZZUMCASZE@_]-) = QJQjlo0
minimally stretched atoms). The external anisotropy drives ¢

transitions|jam,0— |jam},Othat occur through the coupling (9G] Z(L)l/ZZZD]-AAALBABlLAD]]]-ASZ“QD
of the total electronic angular momentyrwith the rotational A A8

The state of the diatomic molecule AB is described by the
total angular momentumd, the projection of. onto theAB axis
A and the value of the total sp@® Singer et al> showed that
the molecular stategMcASECare related in the limit of large
interatomic distanceR to space-fixed atomic states in the fully
coupled representatigdMjljajsCas follows:

momentum of the nucldi The external anisotropy is critical La Sa J:A
for Zeeman relaxation in maximally stretched (trapped) atoms. Le S g (MaAgICADT(27)
We show later in this section that the internal and external L S j

interaction anisotropies may be defined in terms of the expansion

. S where [AaAg|Alis the transformation related to the matrix
coefficientsVy ,  of eq 18.

Uﬁc in eq 10 through the equation
The internal interaction anisotropy includes the anisotropy
arising from rotation of the atomic orbitals of atom A with U/L\cz ZZU\AABWAMAAALBABWAD (28)
respect to the atomic orbitals of atom B and the spin anisotropy ' ~ %
due to the different exchange interactions of electrons in the
molecular states with different total spfh We postpone the  The functions|JMjljajgCare defined as
discussion of the spin anisotropy until section VI and assume

for this section that the electronic spin in atom B is zero. Thus, |jMmili .i.[= L.M M. O
the molecular states all have sfB= Sa. Ml AJe %%\%%ZZZZ LML, IS M,

M Mg M M
Using the relation between the tensiff(ja, j) thza}koper- LgM, OSsMg DImCILAM, S\Mg |jamy O
1 i X 1 . . .
?etﬁzol??) the space of the functiongm,Cand thequ(LA) D]-BMLBSBMSBUB”}BDEA”}AJB”}BUmijnj'mHJMD (29)
Relationship 27 was used by several authors as a basis for atomic
'i'gl(LA) = collision theorie¥518.22-25 and diatomic molecule dissociation
' L i, S studies?6-41
zzTgll.(jA,jllA)(_l)LA+SA+lA+k1[(jA)(jA)]1/ j’A LA kA} The baSIS'JM!|jAJB|:iS the most convenient representation of
e & A At the wave function for studies of collisions in the absence of
(25) external fields. The total angular momentdns a good quantum

number and the matrix elements of the Hamiltonian are

independent oM. The matrix elements of the operator (20) in
where the symbol in braces is pgymbol, we may express the  the basisJMjljajsdcan be evaluated analytically. To do that,
matrix elements of interaction potential 18 in the basis of direct we express the wave functiongMijljajgdin terms of the
products|jam,dism,0imC They have the form uncoupled space-fixed basis functions as follows:
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Ml = Z; ;;Z ILM, LM, [ISMLI will be illustrated in the example of two atoms istates in
I alg S%Z ~ % My, HLeM, HSM the next section.

(1 Cmylmy [ IMOL M, LgM_[fmyTEmSMjm; 0 V. Interaction of Two P-State Atoms
Ly S ia It was noteq bbeygeIman and co%vork@rkghat the Iong-I
SN VL ; range interaction between two atomd$Aistates does not couple
[(S)Ga)Ge)] ]IC_B :B J.B (30) differentL states of the molecule (see also ref 42). The Born
] Oppenheimer potentials of the molecule, therefore, may be
The integrals labeled by the quantum numbér that becomes the total

A , ) L electronic orbital angular momentum of AB in the linfit=
LaM, |IgM, [ESM|Omy VILAM;, (LM TS MJI"m{T= .16 The transformatiorUﬁc in eq 10 is an identity matrix.
OOy 1 [LaM, LM |D}n|VS|L M LM 0I'm'0(31 Zygelman and co-workets presented a table identifying the
sOwgngLaMy, [HLgMy (M VALAMY, M Ty H (31) Born—Oppenheimer potentials with thex(L, S) = V. a
terms for the case of two oxygen atoms in fiestate (see
Table 1 of their paper). Similar correlations can be made for
any homonuclear molecule composed of two atoni gtates.
ForLa =Lg =1, eq 19 gives the following relations between
(kl K, k)(| K |') the expansion coefficienté; , , and the Borr-Oppenheimer

can be evaluated using the Wigner-Eckart theorem. They are

EIJ.AM,_A|[IJ.BMLBlD}n||VS|LAMLA|]]LBMLBD]|,m,D=

Z Z ZVZ"‘?"(R) Sy e

£ L L o 9 q/l0 0 0 potentialsVa(L, S
YYD (KT Y2 (—1)-aMuatle—Mig—m La ki La 1 _ _ _
(DI k) (kK] (—1) ~M,, q M, Vooo =3[Va(L = 0) + V5(L = 1) + VoL = 2) +
Lg k, Lg | kI 2Vh(L =1) + 2VL(L = 2) + 2V, (L = 2)]
moaw (32)
Lg 0, Lg m q r‘r( 1 \/§ 1
Vio=—=Vs(L=0)+ ?VE(L =1)——=Vs(L=2)+
Combining eqs 30 and 32 and using repeatedly eq 26 of section V3 23
8.7.4 in the book of Varshalovich et dlwe obtain, after some V3 1 1
angular momentum algebra, the matrix elements of the interac- ?VH(L =1)- 73Vn(|- =2)— EVA(L =2)
tion potential
o e, . 1 _ 1 B
DIMjlj ajg I VIIM} 1] A O= ZZ%ZVZ*Z*(R)Z Z Vip=—"3%V:(L=1)~ %VZ(L =2)+ %Vn(L =1)-
1 2
I G L , , —V(L=2)+—=V,(L=2
[(2)(a)G8)0) 0GOS (k) (RO NG n( ) NG al )
00O
La S a|[La Sada'|[La La K 1 1 1
_ : e Voo =—=V(L=1)———=V(L=2)— ——=Vy(L=1) -
(_1)f+k+J Stlg S Js{ls S Js' J{Lls Ls k 202 3V?2 x ) 3v/?2 o ) 3V?2 ml )
f s jJI\if S i f f k 1 2
R o, —Vy(L=2)+—=V,(L=2)
i kLT KL g 3v2 " 3v2 "
mrJJjiffs
. . . . Vo22= Vaoz
Equation 33 can also be derived with graphical methods of
angular momentum algebra as shown in Appendix B. 5

_ oy Y5, — 1y —
The total parity of the system given by-{)a*ttet! is Va2 = VE(L_O)_?SVE(L_ D+ ——=Vsll=2)-

conserved and the interaction potential operator 18 cannot couple 35 6v5

the states with — I odd when botH_, andLg are conserved. £5V (L=1)+ LV (L=2)+ LV (L=2)
The indexk, therefore, takes only even values. There is no 31 3v5 1 3/5 A
restriction on the values & andk, which vary from 0 to 2,

and 2g, respectively. Vo= — LVZ(L =1)+ LVZ(L =2)+
Equation 33 emphasizes that a general space-fixed expansion 3V14 3V14
of the atom-atom interaction potential must be of the form (18) 14 _ 1 —oy_ 2 _
rather than the spherical harmonics expansion 3. If we had used 6mVH(L b+ 3@VH(L 2) 3@VA(L 2)
spherical harmonics instead of the tensgfigLa) and T¢:(Ls) B
in expansion 18, eq 33 would contain the products of thjee 3 Vao2s=
symbols \/T B \/E B 2 B
3§\/2(L =2 2[5Vl =2+ Vil =2) (39)

I k I"\[La ki La\[Ls Kk Lg
000/lo 0 0oflo 0o (34)
The matrix of transformation 35 has rank 6 so that it can be

and only the terms with eveiq andk, would contribute to the inverted and the BornOppenheimer potentials can be written
matrix elements. Although this is sufficient for the case when in terms of theVi, .« coefficients.

one of the atoms is in the electron®state, the terms with There are eight coefficientg, .k in eq 35. The term¥pz2
even values ok; andk; do not form a complete representation andVyo, are equal due to the symmetry of eq 19 with respect
of the interaction potential between two atoms in arbitrary states. to the interchange df; andk,. The remaining six coefficients
The lack of completeness of the spherical harmonics expansionare linearly dependent because, following the model of Zygel-
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man et al16.17we have omitted the couplird = 0, A = O[V|L
= 2, A = 0Cand labeled the BornOppenheimer potential with
theL quantum number. The matrix elemefis= 0, A = O|V|L
= 2, A = OOmay be introduced as shown by van Vroonhoven
and Groenenboom in their study of oxygenphotodissociéﬁon.
Relation 19 between the terrfis= 0, A = 0|V|L = 2, A = 00
andVi, k,k removes the linear dependence of the six coefficients
Vi ko k-

Relation 35 can also be obtained by applying transformation
27 to matrix 33. Using the orthogonality property of the 9
symbols® we can write

VAL, § = JZJZZZ[(L)Z(J')(J")U )11 — Qie|ion
Vfl,kz,k[( kp)(ky)

ki,
Lk__,
N
Lk||J
jl

j
LLS

We have confirmed by numerical calculations that eq 36 gives
the same relations between the Bof@ppenheimer potentials
and theVy, «,k terms as eq 19 independently of the valued,of
S S\, S5, andX. Equation 36 again emphasizes that a complete

I — QIQII'ILASS|jQMLASS|j'QD

La
(k)]1/2( k I)( 1)L+J StI+I"+ L
00O L

(36)

representation of the interaction potential operator (18) must

employ the tensor§'k1(LA) and T"Z(LB) rather than conven-

tional spherical harmonlcs The use of spherical harmonics | — —

would exclude the terms witk; = k, = 1 from relation 35,

and the system of six equations with six independent variables

would be reduced to a system of six equations with five
independent variables.

Krems et al.

where

¢; = |S\Mg, (LM, [ISMq OLgM, im0 (40)
andW is the total wave function of the systeft?' The matrices
of Vi, andV/, are diagonal in the basis 40, and the matrices of
the spin-orbit interactions can be obtained with the standard
angular momentum algebt&#3 The matrix of the magnetic
dipolar interactionVyqy can be evaluated as described, for
example, in ref 10. The role of this interaction is negligible
compared to the spinorbit interaction and the electronic
interaction anisotropy, when one or both of the colliding atoms
are in states with nonzero electronic orbital angular momentum.
The numerical diagonalization of the matibs = V3° + V5°
+ Vf + VfB yields the energies of the scattering channels and
the diagonalizing transformation matrx

The uncoupled space-fixed basis 40 is related to the total spin
representation

IS\Mg, (LM, TIS;Mg (LM, = g ISMIL,M, (LM, O
S
[SMS,Mg S;M 0(41)

Using egs 41 and 32, it is straightforward to obtain the matrix
elements of the interaction potential (20) in the uncoupled basis.

The solution of the close coupled equations at a fixed total
energyE

@ I(+1)

+ 2UE|F i (R) =

drR
2“ Z [CTUC]alm|;a’l’m|’Fa'I'rq'(R) (42)
al'm’

We have verified that eqs 35 and 36 give the correct relations subject to the boundary conditions

by computing the matrix elements (33) for the case of two
oxygen atoms in théP state. The results we obtained are iden-
tical to the matrix elements given by eq 76 of Zygelman éfal.

VI. Atom —Atom Collisions in External Fields

Expansion 18 is particularly convenient for the analysis of
atomic collisions in external magnetic or electric fieted.The
total Hamiltonian of the atoms A and B can be written in atomic
units as

=L Fp, P (37)
2uR yR? 2//tR2
where
O=V50+V5O+ Vi + Vi, + YV + V (38)

w is the reduced mass of the colliding atoru8C is the spin-
orbit interaction in atom A or Bv' describes the interaction of
the atoms with external fields/qq is the magnetic dipolar
interaction, andV is the interatomic interaction potential (18).

Fomm(R—0)—0

Feitm (R 00) ~ 050y Oy @XPIi(K,R — l/2)] —

( % ) 1/280(

gives theS matrix or the probability amplitudes for transitions
between the eigenstates of tBéH L matrix labeled by the
indexes, |, andm. The notatiork, is used for the wavenumber
corresponding to channel.

The projections of the total angular momejt@ndjg remain
good quantum numbers in external magnetic or electric fields.
The transformatio© does not mix states with different values
of m, or m;; and the indexx. corresponds to channgts;, [im, L]

The transitions between they,[m,Ostates may be induced
by the anisotropy of interaction 18 and the spin anisotropy. The
spin anisotropy arises from the difference of the exchange
interaction in molecular states with different total si@rand
manifests itself in the splitting of the states with the safne
and L. The spin anisotropy induces the reorientation of spin

oy, €XP[ik, R — 7'12)] (43)

When the splitting of the degenerate atomic levels due to Mg, in atom A at the expense of the spin projectisis, of
interaction with external fields is comparable to or larger than atom B, hence the name. The spin anisotropy conserves the sum
the strength of the spirorbit interaction, the collision theory Mg = Mg, + Ms,. The internal anisotropy of operator 18 is
is best formulated in the uncoupled space-fixed representationequivalent to the spin anisotropy in that it changes the projection
of the wave function M., at the expense d¥l,, and conserves the sukh. = M, +
Mg

The recent success of experiments on magnetic trapping and
evaporative cooling of atoms has stimulated the study of Zeeman

¥ =R"YF(R (39)
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relaxation in atomic collisions. The trapped atoms are in their we can write for the spherical harmoni¥g,

maximally stretched state in which the electronic spin and orbital

angular momenta have the maximal projections. The internal Yiq = ZZIlmﬂHn.IquZZIl’m'EﬂUm'I (46)
interaction anisotropy cannot induce the relaxation in collision m m

of maximally stretched atoms and the Zeeman transitions are
induced only by the term¥y, i,k with k > 0. Relation 19
provides a measure of the interaction anisotropy. If the Born (1)) ()] 2 | kT
Oppenheimer potentials for interactions between two atoms are(lm|Y,[I'm'C= [—] =™ (_ m’)

known, eq 18 may be used for a comparative analysis of the 4 M am

Zeeman relaxation and collisional transfer of angular momentum (' k |') (47)
in different systems, and the magnitudes of the Zeeman 000
relaxation rate constants may be estimated using the distorted, that eq 46 can be rewritten as

wave approximation.
Yiq= ZzTg(l, 1Ne (0, 1), (48)

The integral over three spherical harmonics is

VII. Summary

We have derived a general tensorial expansion for the
interaction potential between two atoms in arbitrary angular
momentum states and related the expansion coefficients to the OANY2 1 kI

" — |
c(,IN=(-1) [?] ( )

where

Born—Oppenheimer potentials of the diatomic molecule. The 000 (49)
representation of the interaction potential is given in the
laboratory coordinate system. The relations obtained define theThe matrix elements of the spherical harmonics are, therefore,
electronic interaction anisotropy. The collision problem of two proportional to the matrix elements of the ten§'§(1, 1"
atoms in arbitrary states can be reformulated with the use of .
our expansion. Our expansion is particularly convenient for the Y o'my = ¢, I')EﬂmTle'm'D (50)
analysis of scattering in the presence of external magnetic or
electric fields. We have demonstrated that a complete expansionEquations 48 and 50 show that spherical harmonics can always
of the interaction potential must employ tensors that are invariant be replaced with spherical tenSdT?{L I'), but not vice versa.
under the inversion of the coordinate system, and the expansion
in terms of conventional spherical harmonics is not adequate APPendix B. Matrix Elements in the Scattering Basis:
for the case of two atoms in states with nonzero electronic orbital Graphical Derivation
angular momenta. The correctness of our procedure has been The matrix elements of the interaction potential operator (20)
demonstrated by the example of two atomsPirstates. The  \yritten in the form
anisotropy of the electronic interaction drives the Zeeman
predissociatiort; collisionally induced Zeeman relaxation, /= (4x)"2 Vsl,kz,k(R)(_l)kl_kzg|SNED]$NE|

S

spin—orbit transitions, and spirorbit predissociation. Given kfoks

the relations between the Boer®ppenheimer potentials and L K ks " R

the tensorial expansion coefficients we obtained, it is possible ch(l, 1) z (q q )Tgll(LA, La) T (Le, LB')T:;(I, ")
to analyze qualitatively the efficiency of these processes in ! giga vt 2 d

different systems simply by comparing the interaction anisotro- (51)

pies. This is useful for planning cold atom experiments which
may be severely limited by the occurrence of collisional angular

can be readily evaluated in the coupled space fixed basis (29)
momentum transfer. as
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Appendix A. Relation between Spherical Harmonics and
Spherical Tensors 02,6 M0 My Mg Mgy My 1Y M. M, Mg Mg Y g, M
The tensoﬁ'g(l, I') can be defined as a function b&ndl’ as (— 1)~ Meathe MMy () (K)] llzm'AMLASAMSA“AmAD
follows:2° _ . )
MM, SMg, lismy, amy, jgmy_ljmy Dy im, | IMO
T, =3 3 Immmy|(-1) ™" (—Imu k r'd)(k)”2 MAM?, S\Mg [T, [LgM; S5Ms g, Tk, Jan, 1"
& & q Ly k L\ Ly k L
(44) [ﬂnTlerT|J'M' A 1 'A B 2 I]?)
—M,, o M, \=M, g, M
Since '
I kK I" [k Kk Kk
(E\M Mg ISMO
(—m q nT)(ql 6, g PMsBMsISM

Z;um.tﬂﬂm =1 (45) [$,Ms S M5, [SM1(53)
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Figure 1. Graphical representation of (eq 54).

We prime all of the quantum numbers in the ket in order to
label the lines in the following diagram unambiguously. The

factor Xg i i can be written as

Xedoir = (1)) () ()0 () D@ k) (k) (R ASX
(54)

where X is represented by the diagram in Figure 1. The
summation in eq 53 can be evaluated using graphical methods.

First, we “cut” the diagram across tldeandJ' lines. This yields

omm03r(J)t and a closed diagram. Cutting the resulting

diagram across thg k, andj’ lines leads to a product of aj6-
symbol and an 18-symbol

lex,kz,k,z,u = 5M,M'5J,J'("1)LA+L3‘_SA_SAHAH:‘_J"_I_IC_J
[(54) (72) (7B) (i) () (4") (k) (K2) (K)] % (S)
ke Lia  Sa Sy Lk
JJk
L j i L 55
. o Ja I B (55)
J is Sp

The 183 symbol corresponds to case)(in Appendix 4 of ref
45, It is given by

n(_ 1yttt et St —s—iati+ ] 1T K
Z(f)(f)( 1) {f, ¢ S}

La La K] [Ss La J:A g L jé
Lg Lg KaptSs L Jep{Sh La Jap (56)
ff k)ls f jlls t

After substitution of eqs 55 and 56 into eq 52, reordering the
9-j symbol and combining all the phase factors, we obtain eq

33.
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