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A general tensorial expansion for the interaction potential between two atoms in arbitrary angular momentum
states is derived and the relations between the expansion coefficients and the Born-Oppenheimer potentials
of the diatomic molecule are obtained. It is demonstrated that a complete expansion of the interaction potential
must employ tensors that are invariant under the inversion of the coordinate system, and the expansion in
terms of conventional spherical harmonics is not adequate for the case of two atoms in states with nonzero
electronic orbital angular momenta. The concept of the interaction anisotropy between two open-shell atoms
is introduced. The correctness of the formalism is demonstrated by the example of two atoms inP states.

I. Introduction

Quantum chemistry calculations give an electronic interaction
potential between two atoms in the molecule-fixed coordinate
system. Collisions of atoms are described in the laboratory-
fixed coordinate system and atomic collision theories are based
on transformation relations between the molecule-fixed and
space-fixed wave functions. The complexity of the wave
function transformations often conceals the role of the electronic
interaction potential in determining the dynamics of inelastic
atomic collisions. It is desirable, therefore, to have a space-
fixed representation of the electronic interaction potential which
would allow for an analysis of collision mechanisms. Such
potential forms would reflect the anisotropy of atom-atom
interaction and provide simple techniques for the evaluation of
the interaction potential matrix in a space-fixed basis of wave
functions.

Callaway and Bauer1 suggested that the interaction between
an atom in aP state and a closed-shell atom can be represented
by an effective potential of the form

whereR is the vector joining the centers of mass of the atoms,
r denotes collectively the position vectors of the electrons in
theP-state atom andPk is the Legendre polynomial ofkth order.2

Reid and Dalgarno3,4 used expansion 1 to formulate a theory
for fine-structure transitions in collisions ofP-state atoms with
helium. It follows from their expressions that collisional transfer
of angular momentum is driven by the termVk)2(R) and the

collision problem is equivalent to that of a diatomic molecule
interacting with an inert gas atom. The part of the interaction
with k ) 2 represents the anisotropy of the electronic interaction
between an atom in aP state and a closed-shell atom. Aquilanti
and Grossi5 derived the relations between the Legendre expan-
sion termsVk and the Born-Oppenheimer potentials of the
diatomic molecule and generalized expression 1 to describe
interactions between closed-shell atoms and atoms with higher
electronic orbital angular momentum. The Legendre polynomials
can be expanded in spherical harmonics

whereR̂ and r̂ are the unit vectors with the direction ofR and
r defined in the laboratory coordinate system.6,7 The results of
Aquilanti and Grossi thus provided a direct representation of
the interaction potential operator in the space-fixed coordinate
frame. This proved to be useful for the analysis of atomic
collisions in external fields and collisional reorientation of
angular momentum at low energies.8-10

Dubernet and Hutson11 presented a discussion of atom-
molecule van der Waals complexes containing open-shell atoms
and Σ-state molecules. The discussion was based on the
assumption that the atom-molecule interaction potential can
be represented by expansions commonly used in closed-shell
diatom-diatom systems. Both space-fixed
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and body-fixed expansions were introduced and expressions for
matrix elements in different coupling cases were derived.12 The
vectorrm describes the rotation of the diatomic molecule, and
〈k1q1k2q2|kq〉 is a Clebsch-Gordan coefficient. Zeimen et al.13

obtained the same equation for the F(2P) + H2 interaction
potential using a spherical tensor expansion invariant under
inversion and rotation of the coordinate system.

The work of Aquilanti and Grossi, Dubernet and Hutson, and
Zeimen et al. suggested that an open-shell atom behaves effec-
tively as a homonuclear diatomic molecule upon interaction with
a closed-shell atom or molecule. In the present work, we extend
the tensor formalism used by Zeimen et al. to derive an effective
operator form for interaction between two atoms in arbitrary
angular momentum states. We show that an adequate expansion
of the interaction potential between two open-shell atoms must
employ spherical tensors invariant under inversion of the coor-
dinate system and eq 3 is incomplete for the case of two atoms
with nonzero electronic orbital angular momenta. We derive
relations between the angular expansion terms and the Born-
Oppenheimer potentials of the diatomic molecule and introduce
the concept of interaction anisotropy in two open-shell atoms.
On the basis of the expansions obtained, we formulate a theory
of atom-atom collisions in external fields. Santra and Greene14

have recently presented a tensorial analysis of long-range inter-
action potentials between two atoms inP states. The equations
obtained in this work can be mapped on their expansions, thus
providing the relationship between the Born-Oppenheimer
states and the long-range terms of the interaction potential. The
formalism presented here can be used for the analysis of Zeeman
relaxation transitions whose occurrence may limit experiments
on evaporative cooling and the magnetic trapping of atoms.
Trapped atoms are usually in the Zeeman state with the highest
energy and the Zeeman relaxation leads to trap loss.

Table 1 defines the notation for the atomic and molecular
quantum numbers used in this article.

II. Effective Potential for Two Open-Shell Atoms

Consider two interacting atoms A and B in the states with
electronic orbital (LA and LB) and spin (SA and SB) angular
momenta. The molecular states|LΛ〉|SΣ〉 are defined in the limit
of large interatomic distanceRby the Clebsch-Gordan theorem

and the analogous equation for|SΣ〉. The products|LΛ〉|SΣ〉
are related to molecular Born-Oppenheimer functions|cΛSΣ〉
as follows:

The quantum numberc is used to distinguish between molecular
states corresponding to the same values ofΛ andS. Transfor-
mation 5 is valid at large interatomic separation where the
atomic wave functions do not overlap and the exchange
interaction is absent. The transformation coefficientsUL,c

Λ are,
therefore, independent of spinS. We propose to use transforma-
tion 5 at arbitrary values ofR which leads to an effective
representation of the electronic potential appropriate for the
description of slow atom-atom collisions and the dissociation
of diatomic molecules. This approach is consistent with previous
studies of atomic collisions and molecular dissociation15-18

which used a close coupling expansion in terms of atomic wave
functions corresponding to states with given angular momenta
LA and LB. It neglects the nonadiabatic couplings to other
electronic states, which may be significant if states exist with
adiabatic potentials that are close in energy.

The matrix elements of the electronic Hamiltonian

are the nonrelativistic Born-Oppenheimer potentials of the
molecule AB. The operatorV̂ in eq 6 can be expanded as

which can be rewritten in the effective potential form

where

and

The transformationUL,c
Λ is an identity matrix when one of the

interacting atoms is in an S state or when the quantum number
L can be assigned to each stateVcΛS (see sections IV and V).
Otherwise, it can be determined by numerical diagonalization
of the leading term in the interaction potential multipole
expansion at long range as was done, for example, for the
O-(2P)-O(3P) system in ref 19.

The summation overL andL′ in eq 9 runs from|LA - LB| to
LA + LB andS takes the values from|SA - SB| to SA + SB. SA,
SB, LA, andLB are kept fixed. This corresponds to the model of

TABLE 1: Definition of Atomic and Molecular Quantum
Numbers Used in This Article

LA electronic orbital angular momentum of atom A
SA electronic spin angular momentum of atom A
jA total electronic angular momentum of atom A:jA ) LA + SA

LB electronic orbital angular momentum of atom B
SB electronic spin angular momentum of atom B
jB total electronic angular momentum of atom B:jB ) LB + SB

L total electronic orbital angular momentum of
the diatomic system:L ) LA + LB

S total spin angular momentum of the diatomic system:
S ) SA + SB

j total electronic angular momentum of the diatomic system:
j ) jA + jB

l rotational angular momentum of the nuclei
J total angular momentum of the system:J ) j + l
ΛA projection ofLA on the interatomic axis

(body-fixed projection)
MLA projection ofLA on the space-fixed quantization axis
mjA projection ofjA on the space-fixed quantization axis
ΛB projection ofLB on the interatomic axis

(body-fixed projection)
MLB projection ofLB on the space-fixed quantization axis
mjB projection ofjB on the space-fixed quantization axis
MS projection ofS on the space-fixed quantization axis
mj projection ofj on the space-fixed quantization axis
ml projection ofl on the space-fixed quantization axis
Λ projection ofL on the interatomic axis

(body-fixed projection)
Σ projection ofS on the interatomic axis

(body-fixed projection)
Ω projection ofJ andj on the interatomic axis:Ω ) Λ + Σ
M projection ofJ on the space-fixed quantization axis

|LΛ(LALB)〉 )∑
ΛA

∑
ΛB

|LAΛA〉|LBΛB〉〈LAΛALBΛB|LΛ〉 (4)

|cΛSΣ〉 )∑
L

|LΛ(LALB)〉|SΣ(SASB)〉UL,c
Λ (5)

〈cΛSΣ|V̂|cΛSΣ〉 ) VcΛS(R) (6)

V̂ ) ∑
cΛSΣ

|cΛSΣ〉VcΛS(R)〈cΛSΣ| (7)

V̂ ) ∑
S
∑

Σ

|SΣ〉〈SΣ|V̂S (8)

V̂S ) ∑
L
∑
L′

∑
Λ

|LΛ(LALB)〉〈L′Λ(LALB)|VLΛ;L′Λ
S (R) (9)

VLΛ;L′Λ
S (R) )∑

c

UL,c
Λ,/VcΛS(R)UL′,c

Λ (10)
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Callaway and Bauer1 and Dubernet and Hutson,11 who integrated
over the electronic distance coordinates and defined the effective
potential for atom-atom and atom-molecule interactions as a
function of electronic angular coordinates. Using the definition
of the spherical tensor operators20

and the orthogonality of 3j symbols, we rewrite eq 9 as a series
over T̂Q

k (L, L′)

The symbols in parentheses are 3j symbols and (k)1/2 is a
shorthand notation for (2k + 1)1/2.

Because the functions|LΛ(LALB)〉 are referred to the molec-
ular axis, eq 11 defines the tensorT̂Q

k (L, L′) in the body-fixed
frame. It can be expressed in terms of the tensorT̂q

k(L, L′)
defined in the space-fixed frame as follows:

The V̂ operator does not couple states with different values
of Λ so thatQ ) 0 and the Wigner rotation matrix elements
Dq,Q)0

k are proportional to spherical harmonicsYkq
/ (R̂) that

depend on the polar angles of the vectorR̂.
The tensorT̂q

k(L, L′) is related to the tensorial product of
tensorsT̂q1

k1(LA) andT̂q2

k2(LB) describing the rotation of electrons
in atoms A and B, respectively20

where the symbol in curly brackets is a 9j symbol and

The tensorsT̂q1

k1(LA) and T̂q2

k2(LB) are defined as

and

whereMA andMA′ andMB andMB′ are the projections ofLA

andLB on the space-fixed quantization axis.
Using eqs 12-14, we can write the effective potentialV̂S as

a tensorial expansion in the space-fixed coordinate frame

with the expansion coefficients

Equation 18 is the space-fixed representation of the effective
electronic potential for interaction between two atoms in
arbitrary states, and eq 19 provides the relation between the
expansion coefficientsVk1,k2,k

S and the matrix elementsVLΛ,L′Λ
S

which can be obtained from quantum chemistry calculations
using eq 10.

Since the operator of the total interaction potential is diagonal
also in the|SMS〉 representation, eq 8 can be rewritten as

thus providing the space-fixed effective representation of the
total interaction potential.

Expansion 26 is different from eq 3 appropriate for two
closed-shell diatomic molecules. A general relationship between
the spherical harmonics and the spherical tensorsT̂q

k(l, l′) is
given in Appendix A. In the case considered here, the angular
momentaLA and LB are good quantum numbers and the
relationships between the tensorsT̂q1

k1(LA) and T̂q2

k2(LB) and the
corresponding spherical harmonics are reduced to

and

with the coefficientsck1(LA) andck2(LB) defined by

and the analogous expression forck2(LB). The vectorsr̂A andr̂B

specify the orientation of the electronic orbitals of atoms A and
B. It follows from eqs 21 and 22 that the coefficients of our
tensorial expansion 18 are related to the coefficients of the
spherical harmonics expansion 3 by

Because the products of the 3j symbols

T̂Q
k (L, L′) )

∑
Λ

∑
Λ′

|LΛ(LALB)〉〈L′Λ′(LALB)|(-1)L-Λ ( L k L′
-Λ Q Λ′ )(k)1/2

(11)

V̂S )

∑
L
∑
L′

∑
k
∑
Q

(k)1/2T̂Q
k (L, L′)∑

Λ

(-1)L-Λ ( L k L′
-Λ Q Λ )VLΛ;L′Λ

S

(12)

T̂Q
k (L, L′) ) ∑

q

T̂q
k(L, L′)DqQ

k (R̂) (13)

T̂q
k(L, L′) ) ∑

k1

∑
k2

{LA LA k1

LB LB k2

L L′ k
}

[(k1)(k2)(L)(L′)]1/2[T̂k1(LA)XT̂k2(LB)]q
(k) (14)

[T̂k1(LA)XT̂k2(LB)]q
(k) ) ∑

q1

∑
q2

〈k1q1k2q2|kq〉T̂q1

k1(LA)T̂q2

k2(LB)

(15)

T̂q1

k1(LA) )

∑
MA

∑
M ′A

|LAMA〉〈LAM′A|(-1)LA-MA ( LA k1 LA

-MA q1 M′A )(k1)
1/2 (16)

T̂q2

k2(LB) )

∑
MB

∑
M ′B

|LBMB〉〈LBM′B|(-1)LB-MB ( LB k2 LB

-MB q2 M′B )(k2)
1/2 (17)

V̂S )

(4π)1/2∑
k1

∑
k2

∑
k

Vk1,k2,k
S (R)∑

q1

∑
q2

∑
q

(-1)k1-k2 (k1 k2 k
q1 q2 q)

T̂q1

k1(LA)T̂q2

k2(LB)Ykq(R̂) (18)

Vk1,k2,k
S (R) ) ∑

L
∑
L′

∑
Λ

VLΛ;L′Λ
S (R)(-1)L-Λ ( L k L′

-Λ 0 Λ )
[(k1)(k2)(k)(L)(L′)]1/2 {LA LA k1

LB LB k2

L L′ k
} (19)

V̂ )∑
S
∑
MS

|SMS〉〈SMS|V̂S (20)

Yk1q1
(r̂A) ) T̂q1

k1(LA)ck1
(LA) (21)

Yk2q2
(r̂B) ) T̂q2

k2(LB)ck2
(LB) (22)

ck1
(LA) ) (-1)LA

(LA)

x4π
(LA k1 LA

0 0 0 ) (23)

Vk1,k2,k
) Vk1,k2,k

/ck1
(LA)ck2

(LB) (24)

(LA k1 LA

0 0 0 ) and(LB k2 LB

0 0 0 )

Electronic Interaction Anisotropy between Atoms J. Phys. Chem. A, Vol. 108, No. 41, 20048943



vanish whenk1 or k2 is odd, relation 24 does not exist for odd
values ofk1 or k2. Expansion 18 may thus include terms that
cannot occur in the spherical harmonics expansion 3. The
nonequivalence of expansions 18 and 3 arises from the different
behavior of the tensorsT̂q1

k1(LA) and T̂q2

k2(LB) and the spherical
harmonics under inversion of the coordinate system. As follows
from definitions 16 and 17, the tensorsT̂q1

k1(LA) andT̂q2

k2(LB) are
invariant under the inversion, whereas the spherical harmonics
Yk1q1 andYk2q2 acquire the factors (-1)k1 and (-1)k2. It will be
shown in the following sections that the invariance of the tensors
T̂q1

k1(LA) andT̂q2

k2(LB) under inversion is critical for the complete
representation of the potential (18).

III. Interaction Anisotropy in Two Open-Shell Atoms

The states of the separated atoms A and B are characterized
by the total electronic angular momentajA and jB and their
projectionsmjA and mjB on the space-fixed quantization axis.
Collisions between A and B may induce transitions between
the angular momentum states. The angular momentum transfer
or reorientation occurs due to the anisotropy of the atom-atom
interaction. We distinguish between the internal anisotropy and
the external anisotropy. The internal anisotropy drives transitions
|jAmjA〉 f |j ′A, mjA + ∆mjA〉 that are accompanied by the
transitions|jBmjB〉 f |j ′B, mjB - ∆mjA〉 and in which there is no
change in the total electronic angular momentumj and projection
mj. The internal anisotropy does not couple the electronic motion
with the orbital motion of the nuclei, so it cannot induce angular
momentum transfer in atoms with maximal or minimal projec-
tions of the electronic angular momentum (maximally or
minimally stretched atoms). The external anisotropy drives
transitions|jAmjA〉 f |j ′Am′jA〉 that occur through the coupling
of the total electronic angular momentumj with the rotational
momentum of the nucleil. The external anisotropy is critical
for Zeeman relaxation in maximally stretched (trapped) atoms.
We show later in this section that the internal and external
interaction anisotropies may be defined in terms of the expansion
coefficientsVk1,k2,k

S of eq 18.

The internal interaction anisotropy includes the anisotropy
arising from rotation of the atomic orbitals of atom A with
respect to the atomic orbitals of atom B and the spin anisotropy
due to the different exchange interactions of electrons in the
molecular states with different total spinS. We postpone the
discussion of the spin anisotropy until section VI and assume
for this section that the electronic spin in atom B is zero. Thus,
the molecular states all have spinS ) SA.

Using the relation between the tensorT̂q1

k1(jA, j ′A) that oper-
ates in the space of the functions|jAmjA〉 and the T̂q1

k1(LA)
tensor20

where the symbol in braces is a 6j symbol, we may express the
matrix elements of interaction potential 18 in the basis of direct
products|jAmjA〉|jBmjB〉|lml〉. They have the form

We note thatjB ) LB, mjB ) MLB, andm′jB ) M′LB.
Equation 26 establishes that the termVk1)0,k2)0,k)0 contributes

only to the diagonal elements of the matrix so that theV000 part
of interaction 18 is purely isotropic. The terms withk1 ) k2 >
0 andk ) 0 may couple the states with different values of (jA,
mjA) and (jB, mjB) but they do not couple the states with different
values ofl, j, ml, or mj ) mjA + mjB. These terms represent the
internal anisotropy. The terms withk > 0 couple differentl
and j states. They correspond to the external anisotropy.

IV. Matrix Elements in the Scattering Basis

The state of the diatomic molecule AB is described by the
total angular momentumJ, the projection ofL onto theABaxis
Λ and the value of the total spinS. Singer et al.15 showed that
the molecular states|JMcΛSΣ〉 are related in the limit of large
interatomic distancesR to space-fixed atomic states in the fully
coupled representation|JMjljAjB〉 as follows:

where 〈ΛAΛB|Λ〉 is the transformation related to the matrix
UL,c

Λ in eq 10 through the equation

The functions|JMjljAjB〉 are defined as

Relationship 27 was used by several authors as a basis for atomic
collision theories16-18,22-25 and diatomic molecule dissociation
studies.26-41

The basis|JMjljAjB〉 is the most convenient representation of
the wave function for studies of collisions in the absence of
external fields. The total angular momentumJ is a good quantum
number and the matrix elements of the Hamiltonian are
independent ofM. The matrix elements of the operator (20) in
the basis|JMjljAjB〉 can be evaluated analytically. To do that,
we express the wave functions|JMjljAjB〉 in terms of the
uncoupled space-fixed basis functions as follows:

T̂q1

k1(LA) )

∑
jA

∑
j ′A

T̂q1

k1(jA, j′A)(-1)LA+SA+j′A+k1[(jA)(j′A)]1/2{LA jA SA

j′A LA k1
}

(25)

〈jAmjA
|〈jBmjB

|〈lml|V̂|j′Am′jA〉|j′Bm′jB〉|l′ml′〉 )

∑
k1

∑
k2

∑
k

Vk1,k2,k
(R) [(k1)(k2)(k)(l )(l′)(jA)(j′A)]1/2

(-1)LA+SA+jA+j′A+jB+k2-mjA-mjB-ml ∑
q1

∑
q2

∑
q

(k1 k2 k
q1 q2 q)

( jA k1 j′A
-mjA q1 m′jA )( jB k2 j′B

-mjB q2 m′jB )( l k l′
-ml q m′l )(l k l′

0 0 0)
{LA jA SA

j′A LA k1 } (26)

|JMjljAjB〉 ) ∑
c
∑
Λ

∑
S
∑

Σ

|JMcΛSΣ〉(-1)l-J-Ω〈j - ΩJΩ|l0〉

[(S)(jA)(jB)]1/2 ∑
L

(L)1/2∑
ΛA

∑
ΛB

〈LAΛALBΛB|LΛ〉〈LΛSΣ|jΩ〉

{LA SA jA
LB SB jB
L S j

}〈ΛAΛB|cΛ〉 (27)

UL,c
Λ ) ∑

ΛA

∑
ΛB

〈ΛAΛB|cΛ〉〈LAΛALBΛB|LΛ〉 (28)

|JMjljAjB〉 ) ∑
MLA

∑
MSA

∑
MLB

∑
MSB

∑
mjA

∑
mjB

∑
mj

∑
ml

|LAMLA
〉|SAMSA

〉

|LBMLB
〉|SBMSB

〉|lml〉 〈LAMLA
SAMSA

|jAmjA
〉

〈LBMLB
SBMSB

|jBmjB
〉〈jAmjA

jBmjB
|jmj〉〈jmjlml|JM〉 (29)
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The integrals

can be evaluated using the Wigner-Eckart theorem. They are

Combining eqs 30 and 32 and using repeatedly eq 26 of section
8.7.4 in the book of Varshalovich et al.,6 we obtain, after some
angular momentum algebra, the matrix elements of the interac-
tion potential

Equation 33 can also be derived with graphical methods of
angular momentum algebra as shown in Appendix B.

The total parity of the system given by (-1)LA+LB+l is
conserved and the interaction potential operator 18 cannot couple
the states withl - l′ odd when bothLA andLB are conserved.
The indexk, therefore, takes only even values. There is no
restriction on the values ofk1 andk2 which vary from 0 to 2LA

and 2LB, respectively.
Equation 33 emphasizes that a general space-fixed expansion

of the atom-atom interaction potential must be of the form (18)
rather than the spherical harmonics expansion 3. If we had used
spherical harmonics instead of the tensorsT̂q1

k1(LA) and T̂q2

k2(LB)
in expansion 18, eq 33 would contain the products of three 3j
symbols

and only the terms with evenk1 andk2 would contribute to the
matrix elements. Although this is sufficient for the case when
one of the atoms is in the electronicS state, the terms with
even values ofk1 andk2 do not form a complete representation
of the interaction potential between two atoms in arbitrary states.
The lack of completeness of the spherical harmonics expansion

will be illustrated in the example of two atoms inP states in
the next section.

V. Interaction of Two P-State Atoms
It was noted by Zygelman and co-workers16,17 that the long-

range interaction between two atoms inP states does not couple
differentL states of the molecule (see also ref 42). The Born-
Oppenheimer potentials of the molecule, therefore, may be
labeled by the quantum numberL that becomes the total
electronic orbital angular momentum of AB in the limitR )
∞.16 The transformationUL,c

Λ in eq 10 is an identity matrix.
Zygelman and co-workers16 presented a table identifying the
Born-Oppenheimer potentials with theVΛ(L, S) ) VLΛ;LΛ

S

terms for the case of two oxygen atoms in the3P state (see
Table 1 of their paper). Similar correlations can be made for
any homonuclear molecule composed of two atoms inP states.

ForLA ) LB ) 1, eq 19 gives the following relations between
the expansion coefficientsVk1,k2,k

S and the Born-Oppenheimer
potentialsVΛ(L, S)

The matrix of transformation 35 has rank 6 so that it can be
inverted and the Born-Oppenheimer potentials can be written
in terms of theVk1,k2,k coefficients.

There are eight coefficientsVk1,k2,k in eq 35. The termsV022

andV202 are equal due to the symmetry of eq 19 with respect
to the interchange ofk1 andk2. The remaining six coefficients
are linearly dependent because, following the model of Zygel-

|JMjljAjB〉 ) ∑
S
∑
MS

∑
mj

∑
ml

∑
MLA

∑
MLB

∑
f
∑
mf

|LAMLA
〉|LBMLB

〉|SMS〉

|lml〉 〈jmjlml|JM〉〈LAMLA
LBMLB

|fmf〉〈fmfSMS|jmj〉

[(S)(f )(jA)(jB)]1/2{LA SA jA
LB SB jB
f S j

} (30)

〈LAMLA
|〈LBMLB

|〈SMS|〈lml|V̂|LAM′LA
〉|LBM′LB

〉|S′M′S〉|l′m′l〉 )

δSS′δMSMS′〈LAMLA
|〈LBMLB

|〈lml|V̂S|LAM′LA
〉|LBM′LB

〉|l′ml′〉 (31)

〈LAMLA
|〈LBMLB

|〈lml|V̂S|LAM′LA
〉|LBM′LB

〉|l′ml′〉 )

∑
k1

∑
k2

∑
k

Vk1,k2,k
S (R) ∑

q1

∑
q2

∑
q

(-1)k1-k2 (k1 k2 k
q1 q2 q)(l k l′

0 0 0)
[(l )(l′)(k1)(k2)(k)]1/2 (-1)LA-MLA+LB-MLB-ml ( LA k1 LA

-MLA
q1 M′LA

)
( LB k2 LB

-MLB
q2 M′LB

)( l k l′
-ml q m′l ) (32)

〈JMjljAjB|V̂|JMj′l′jA′jB′〉 ) ∑
S
∑
k1

∑
k2

∑
k

Vk1,k2,k
S (R)∑

f
∑

f′

(l k l′
0 0 0)[(jA)(jA′)(jB)(jB′)(j)(j′)(l)(l′)(S)2(k1)(k2)(k)(f)2(f′)2]1/2

(-1)f+k+J-S {LA SA jA
LB SB jB
f S j

}{LA SA jA′
LB SB jB′
f′ S j′ }{LA LA k1

LB LB k2

f f′ k
}

{j j ′ k
l′ l J }{j j ′ k

f′ f S} (33)

(l k l′
0 0 0)(LA k1 LA

0 0 0 )(LB k2 LB

0 0 0 ) (34)

V000 )1
3
[VΣ(L ) 0) + VΣ(L ) 1) + VΣ(L ) 2) +

2VΠ(L ) 1) + 2VΠ(L ) 2) + 2V∆(L ) 2)]

V110 ) 1

x3
VΣ(L ) 0) +

x3
6

VΣ(L ) 1) - 1

2x3
VΣ(L ) 2) +

x3
3

VΠ(L ) 1) - 1

x3
VΠ(L ) 2) - 1

x3
V∆(L ) 2)

V112 ) -
x6
6

VΣ(L ) 1) - 1

x6
VΣ(L ) 2) + 1

x6
VΠ(L ) 1) -

1

x6
VΠ(L ) 2) + 2

x6
V∆(L ) 2)

V202 ) 1

3x2
VΣ(L ) 1) - 1

3x2
VΣ(L ) 2) - 1

3x2
VΠ(L ) 1) -

1

3x2
VΠ(L ) 2) + 2

3x2
V∆(L ) 2)

V022 ) V202

V220 ) 5

3x5
VΣ(L ) 0) -

x5
6

VΣ(L ) 1) + 1

6x5
VΣ(L ) 2) -

x5
3

VΠ(L ) 1) + 1

3x5
VΠ(L ) 2) + 1

3x5
V∆(L ) 2)

V222 ) - 7

3x14
VΣ(L ) 1) + 1

3x14
VΣ(L ) 2) +

14

6x14
VΠ(L ) 1) + 1

3x14
VΠ(L ) 2) - 2

3x14
V∆(L ) 2)

V224 )

x18
35

VΣ(L ) 2) - 2x 8
35

VΠ(L ) 2) + 2

x70
V∆(L ) 2) (35)
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man et al.,16,17we have omitted the coupling〈L ) 0, Λ ) 0|V̂|L
) 2, Λ ) 0〉 and labeled the Born-Oppenheimer potential with
theL quantum number. The matrix elements〈L ) 0, Λ ) 0|V̂|L
) 2, Λ ) 0〉 may be introduced as shown by van Vroonhoven
and Groenenboom in their study of oxygen photodissociation.42

Relation 19 between the terms〈L ) 0, Λ ) 0|V̂|L ) 2, Λ ) 0〉
andVk1,k2,k removes the linear dependence of the six coefficients
Vk1,k2,k.

Relation 35 can also be obtained by applying transformation
27 to matrix 33. Using the orthogonality property of the 9j-
symbols,6 we can write

We have confirmed by numerical calculations that eq 36 gives
the same relations between the Born-Oppenheimer potentials
and theVk1,k2,k terms as eq 19 independently of the values ofJ,
S, SA, SB, andΣ. Equation 36 again emphasizes that a complete
representation of the interaction potential operator (18) must
employ the tensorsT̂q1

k1(LA) and T̂q2

k2(LB) rather than conven-
tional spherical harmonics. The use of spherical harmonics
would exclude the terms withk1 ) k2 ) 1 from relation 35,
and the system of six equations with six independent variables
would be reduced to a system of six equations with five
independent variables.

We have verified that eqs 35 and 36 give the correct relations
by computing the matrix elements (33) for the case of two
oxygen atoms in the3P state. The results we obtained are iden-
tical to the matrix elements given by eq 76 of Zygelman et al.16

VI. Atom -Atom Collisions in External Fields

Expansion 18 is particularly convenient for the analysis of
atomic collisions in external magnetic or electric fields.9,21 The
total Hamiltonian of the atoms A and B can be written in atomic
units as

where

µ is the reduced mass of the colliding atoms,V̂SO is the spin-
orbit interaction in atom A or B,V̂f describes the interaction of
the atoms with external fields,V̂dd is the magnetic dipolar
interaction, andV̂ is the interatomic interaction potential (18).
When the splitting of the degenerate atomic levels due to
interaction with external fields is comparable to or larger than
the strength of the spin-orbit interaction, the collision theory
is best formulated in the uncoupled space-fixed representation
of the wave function

where

andΨ is the total wave function of the system.10,21The matrices
of V̂A

f andV̂B
f are diagonal in the basis 40, and the matrices of

the spin-orbit interactions can be obtained with the standard
angular momentum algebra.10,43 The matrix of the magnetic
dipolar interactionV̂dd can be evaluated as described, for
example, in ref 10. The role of this interaction is negligible
compared to the spin-orbit interaction and the electronic
interaction anisotropy, when one or both of the colliding atoms
are in states with nonzero electronic orbital angular momentum.
The numerical diagonalization of the matrixHas ) VA

SO + VB
SO

+ VA
f + VB

f yields the energies of the scattering channels and
the diagonalizing transformation matrixC.

The uncoupled space-fixed basis 40 is related to the total spin
representation

Using eqs 41 and 32, it is straightforward to obtain the matrix
elements of the interaction potential (20) in the uncoupled basis.

The solution of the close coupled equations at a fixed total
energyE

subject to the boundary conditions

gives theSmatrix or the probability amplitudes for transitions
between the eigenstates of theCTHasC matrix labeled by the
indexesR, l, andml. The notationkR is used for the wavenumber
corresponding to channelR.

The projections of the total angular momentajA andjB remain
good quantum numbers in external magnetic or electric fields.
The transformationC does not mix states with different values
of mjA or mjB and the indexR corresponds to channels|mjA〉|mjB〉.
The transitions between the|mjA〉|mjB〉 states may be induced
by the anisotropy of interaction 18 and the spin anisotropy. The
spin anisotropy arises from the difference of the exchange
interaction in molecular states with different total spinS and
manifests itself in the splitting of the states with the sameΛ
and L. The spin anisotropy induces the reorientation of spin
MSA in atom A at the expense of the spin projectionMSB of
atom B, hence the name. The spin anisotropy conserves the sum
MS ) MSA + MSB. The internal anisotropy of operator 18 is
equivalent to the spin anisotropy in that it changes the projection
MLA at the expense ofMLB and conserves the sumML ) MLA +
MLB.

The recent success of experiments on magnetic trapping and
evaporative cooling of atoms has stimulated the study of Zeeman

φi ) |SAMSA
〉|LAMLA

〉|SBMSB
〉|LBMLB

〉|lml〉 (40)

|SAMSA
〉|LAMLA

〉|SBMSB
〉|LBMLB

〉 ) ∑
S,MS

|SMS〉|LAMLA
〉|LBMLB

〉

〈SMS|SAMSA
SBMSB

〉 (41)

[ d2

dR2
-

l(l + 1)

R2
+ 2µE]FRlml

(R) )

2µ ∑
R′l′ml′

[CTUC]Rlml;R′l′ml′
FR′l′ml′

(R) (42)

FR′l′ml′
Rlml (R f 0) f 0

FR′l′ml′
Rlml (R f ∞) ∼ δRR′δll ′δmlml′

exp[-i(kRR - πl/2)] -

(kR

kR′
)1/2

SR′l′ml′;Rlml
exp[i(kR′R - πl′/2)] (43)

VΛ(L, S) ) ∑
j
∑

j′
∑

l
∑

l′
[(L)2(j)(j′)(l )(l′)]1/2〈j - ΩJΩ|l0〉

〈j′ - ΩJΩ|l′0〉〈LΛSΣ|jΩ〉〈LΛSΣ|j′Ω〉 ∑
k1,k2,k

Vk1,k2,k
S [(k1)(k2)

(k)]1/2(l k l′
0 0 0)(-1)L+J-S+l+l′+k{LA LA k1

LB LB k2

L L k
}{j j ′ k

l′ l J }
{j j ′ k

L L S} (36)

Ĥ ) - 1
2µR

∂
2

∂R2
R + l2

2µR2
+ Û (37)

Û ) V̂A
SO + V̂B

SO + V̂A
f + V̂B

f + V̂dd + V̂ (38)

Ψ ) R-1∑
i

Fi(R)φi (39)
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relaxation in atomic collisions. The trapped atoms are in their
maximally stretched state in which the electronic spin and orbital
angular momenta have the maximal projections. The internal
interaction anisotropy cannot induce the relaxation in collision
of maximally stretched atoms and the Zeeman transitions are
induced only by the termsVk1,k2,k with k > 0. Relation 19
provides a measure of the interaction anisotropy. If the Born-
Oppenheimer potentials for interactions between two atoms are
known, eq 18 may be used for a comparative analysis of the
Zeeman relaxation and collisional transfer of angular momentum
in different systems, and the magnitudes of the Zeeman
relaxation rate constants may be estimated using the distorted-
wave approximation.

VII. Summary

We have derived a general tensorial expansion for the
interaction potential between two atoms in arbitrary angular
momentum states and related the expansion coefficients to the
Born-Oppenheimer potentials of the diatomic molecule. The
representation of the interaction potential is given in the
laboratory coordinate system. The relations obtained define the
electronic interaction anisotropy. The collision problem of two
atoms in arbitrary states can be reformulated with the use of
our expansion. Our expansion is particularly convenient for the
analysis of scattering in the presence of external magnetic or
electric fields. We have demonstrated that a complete expansion
of the interaction potential must employ tensors that are invariant
under the inversion of the coordinate system, and the expansion
in terms of conventional spherical harmonics is not adequate
for the case of two atoms in states with nonzero electronic orbital
angular momenta. The correctness of our procedure has been
demonstrated by the example of two atoms inP states. The
anisotropy of the electronic interaction drives the Zeeman
predissociation,44 collisionally induced Zeeman relaxation,
spin-orbit transitions, and spin-orbit predissociation. Given
the relations between the Born-Oppenheimer potentials and
the tensorial expansion coefficients we obtained, it is possible
to analyze qualitatively the efficiency of these processes in
different systems simply by comparing the interaction anisotro-
pies. This is useful for planning cold atom experiments which
may be severely limited by the occurrence of collisional angular
momentum transfer.
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Appendix A. Relation between Spherical Harmonics and
Spherical Tensors

The tensorT̂q
k(l, l′) can be defined as a function ofl andl′ as

follows:20

Since

we can write for the spherical harmonicsYkq

The integral over three spherical harmonics is

so that eq 46 can be rewritten as

where

The matrix elements of the spherical harmonics are, therefore,
proportional to the matrix elements of the tensorT̂q

k(l, l′)

Equations 48 and 50 show that spherical harmonics can always
be replaced with spherical tensorsT̂q

k(l, l′), but not vice versa.

Appendix B. Matrix Elements in the Scattering Basis:
Graphical Derivation

The matrix elements of the interaction potential operator (20)
written in the form

can be readily evaluated in the coupled space fixed basis (29)
as

where

T̂q
k(l, l′) )∑

ml

∑
ml′

|lml〉〈l′ml′|(-1)l-ml ( l k l′
-ml q m′l )(k)1/2

(44)

∑
l
∑
ml

|lml〉〈lml| ) 1 (45)

Ykq ) ∑
l
∑
ml

|lml〉〈lml|Ykq∑
l′
∑
ml′

|l′ml′〉〈l′ml′| (46)

〈lml|Ykq|l′ml′〉 ) [(l )(l′)(k)
4π ]1/2

(-1)-ml ( l k l′
-ml q m′l )

(l k l′
0 0 0) (47)

Ykq ) ∑
l
∑

l′
T̂q

k(l, l′)ck(l, l′), (48)

ck(l, l′) ) (-1)l[(l )(l′)
4π ]1/2 (l k l′

0 0 0). (49)

〈lml|Ykq|l′ml′〉 ) ck(l, l′)〈lml|T̂q
k|l′ml′〉. (50)

V̂ ) (4π)1/2 ∑
k1,k2,k,S

Vk1,k2,k
S (R)(-1)k1-k2∑

MS

|SMS〉〈SMS|

∑
l,l′

ck(l, l′) ∑
q1,q2,q

(k1 k2 k
q1 q2 q)T̂q1

k1(LA, LA′)T̂q2

k2(LB, LB′)T̂q
k(l, l′)

(51)

〈JMjljAjB|V̂|J′M′j′l′j′Aj′B〉 ) (4π)1/2 ∑
k1,k2,k,S

Vk1,k2,k
S (R)

(-1)k1-k2∑
l,l′

ck(l, l′)Xk1,k2,k,l,l′
S (52)

Xk1,k2,k,l,l′
S )

∑
q1,q2,q,MLA,MSA,MLB,MSB,mjA,mjB,mj,ml,M′LA,M′SA,M′LB,M′SB,m′jA,m′jB,m′j,m′l,MS

(-1)LA-MLA+LB-MLB+l-m[(k1)(k2)(k)]1/2〈LAMLA
SAMSA

|jAmjA
〉

〈LBMLB
SBMSB

|jBmjB
〉〈jAmjA

jBmjB
|jmj〉〈jmjlml|JM〉

〈L′AM′LA
S′AM′S′A

|j′Am′jA〉〈L′BM′LB
S′BM′SB

|j′Bm′j′B〉〈j′Am′jAj′Bm′jB|j′m′j〉

〈j′m′jl′m′l|J′M′〉( LA k1 L′A
-MLA

q1 M′LA
)( LB k2 L′B

-MLB
q2 M′LB

)
(l k l′
-ml q m′l )(k1 k2 k

q1 q2 q)〈SAMSA
SBMSB

|SMS〉

〈S′AM′SA
S′BM′SB

|SMS〉 (53)
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We prime all of the quantum numbers in the ket in order to
label the lines in the following diagram unambiguously. The
factor Xk1,k2,k,l,l′

S can be written as

where X is represented by the diagram in Figure 1. The
summation in eq 53 can be evaluated using graphical methods.7

First, we “cut” the diagram across theJ andJ′ lines. This yields
δM,M′δJ,J′(J)-1 and a closed diagram. Cutting the resulting
diagram across thej, k, and j′ lines leads to a product of a 6-j
symbol and an 18-j symbol

The 18-j symbol corresponds to case (P) in Appendix 4 of ref
45. It is given by

After substitution of eqs 55 and 56 into eq 52, reordering the
9-j symbol and combining all the phase factors, we obtain eq
33.
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Figure 1. Graphical representation ofX (eq 54).

Xk1,k2,k,l,l′
S ) [(jA)(j′A)(jB)(j′B)(j)(j′)(J)(J′)(k1)(k2)(k)]1/2(S)X

(54)

∑
f,f′

(f )(f′)(-1)k1+k2+L′A+LB+SB+S′A-jB-j′A+j+j′{j j ′ k
f′ f S}

{LA L′A k1

LB L′B k2

f f′ k
}{SA LA jA

SB LB jB
S f j

}{S′B L′B j′B
S′A L′A j′A
S f′ j′ } (56)
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