A Product Yield Study of the Reaction of HO₂ Radicals with Ethyl Peroxy (C₂H₅O₂), Acetyl Peroxy (CH₃C(O)O₂), and Acetonyl Peroxy (CH₃C(O)CH₂O₂) Radicals

Alam S. Hasson,*,[†] Geoffrey S. Tyndall,[‡] and John J. Orlando[‡]

Department of Chemistry, California State University, Fresno, California, and Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado

Received: March 14, 2004; In Final Form: May 8, 2004

The reaction between HO₂ and RO₂ radicals represents an important chemical sink for HO_x radicals in the atmosphere. On the basis of a few product yield studies, these reactions are believed to form hydroperoxides almost exclusively (R8a), although several different reaction channels may be thermodynamically accessible (R8a-d): RO₂ + HO₂ \rightarrow ROOH + O₂ (R8a); RO₂ + HO₂ \rightarrow ROOH + O₂ (R8a); RO₂ + HO₂ \rightarrow ROH + O₃ (R8b); RO₂ + HO₂ \rightarrow RO + O₁ + O₂ (R8c); and RO₂ + HO₂ \rightarrow R'CHO + H₂O + O₂ (R8d). Branching ratios for reaction R8 were measured for three organic peroxy radicals: ethyl peroxy (C₂H₅O₂), acetyl peroxy (CH₃C(O)O₂), and acetonyl peroxy (CH₃C(O)CH₂O₂) radicals. Product yields were measured using a combination of long-path Fourier transform infrared spectroscopy and high-performance liquid chromatography with fluorescence detection. Measured branching ratios for the reaction of the three organic peroxy radicals with HO₂ are as follows: ethyl peroxy, $Y_{8a-ETH} > 0.93 \pm 0.10$, $Y_{8b-ETH} = Y_{8c-ETH} = Y_{8d-ETH} = 0$; acetyl peroxy, $Y_{8a-ACT} = 0.40 \pm 0.16$, $Y_{8b-ACT} = 0.20 \pm 0.08$, $Y_{8c-ACT} = 0.40 \pm 0.16$, and $Y_{8d-ACT} = 0$; acetonyl peroxy, $Y_{8a-ACN} = 0.33 \pm 0.10$, $Y_{8b-ACN} = Y_{8d-ACN} = 0$, and $Y_{8c-ACN} = 0.67 \pm 0.20$. The atmospheric implications of these branching ratios are discussed.

Introduction

In the troposphere, HO_2 and RO_2 radicals are generated in the photochemical oxidation of organic pollutants as shown in the simplified reaction scheme below.¹

Nitrogen dioxide (NO₂) photolyzes (R1) to form oxygen atoms which combine with oxygen molecules to form ozone (O₃, R2). In turn, O₃ photolyzes, producing electronically excited oxygen atoms (R3) that may then react with water to form hydroxy radicals (OH, R4). These radicals then react with organic pollutants present in the atmosphere, initiating a complex sequence of reactions (R5) that leads to the formation of organic peroxy radicals (RO₂) and hydroperoxy radicals (HO₂).² In urban and rural regions, where the concentration of nitrogen oxides (NO_x = NO + NO₂) is high, the majority of these species react with nitric oxide (NO) to regenerate NO₂ and form a combination of alkoxy radicals (RO) and OH (R6). These species may generate additional NO₂ because the products of reaction R6 may reform RO₂ and HO₂ via reactions R5 and R7. Thus, the sequence of reactions R1–R7 leads to a buildup of ozone because the yield of NO₂ from this cycle is greater than unity.

The reaction between HO₂ and RO₂ (R8) represents an important sink for radicals in the troposphere. The products of this reaction depend on the chemical identity of the R-group, but on the basis of a limited number of studies of small alkyl peroxy radicals, the major product is thought to be an organic hydroperoxide (R8a)³⁻⁸

$$RO_2 + HO_2 \rightarrow ROOH + O_2$$
 (R8a)

Since organic hydroperoxides have lifetimes of 1 day or more,⁹ the reaction is a sink for HO_x radicals and thus serves to moderate the oxidizing capacity of the troposphere. The hydroperoxides formed are often soluble in water¹⁰ and may be taken up into cloud and fog droplets, as well as aqueous aerosols. Here, they may play a role in S(IV) to S(VI) conversion,⁹ as well as the toxicity of submicron aerosol particles.^{11,12}

For more complex organic peroxy radicals, additional product channels for the reaction between RO₂ and HO₂ may exist. Acetyl peroxy radicals (R = CH₃C(O)-) are formed in the initial stages of the oxidation of a variety of important atmospheric pollutants including acetaldehyde, acetone, and several internal alkenes. They may also be formed in the troposphere from the oxidation products of many primary organic pollutants, such as isoprene and propene. These peroxy radicals react with HO₂ radicals to form peracetic acid (PAA) via R8a-ACT, as well as acetic acid and ozone (R8b-ACT).¹³⁻¹⁷

 $CH_3C(O)O_2 + HO_2 \rightarrow CH_3C(O)OOH + O_2$ (R8a-ACT)

$$CH_3C(O)O_2 + HO_2 \rightarrow CH_3C(O)OH + O_3$$
 (R8b-ACT)

^{*} Address correspondence to this author. E-mail: ahasson@csufresno.edu.

[†] California State University.

[‡] National Center for Atmospheric Research.

This reaction represents one of the few known sources of acetic acid in the atmosphere. There have been five previous studies of the branching ratios in this reaction. Niki et al.,¹³ Moortgat et al.,¹⁴ Tomas et al.,¹⁷ and Horie and Moortgat¹⁵ all report ratios of R8a-ACT:R8b-ACT of about 0.75:0.25. Moortgat et al. and Tomas et al. both obtained their branching ratios by fitting a kinetic model to experimentally measured concentrations of peroxy radicals in a flash photolysis experiment. Horie and Moortgat determined the branching ratios using yields of ozone and peracetic acid obtained in a Fourier transform infrared (FTIR)/matrix isolation study. In the work by Niki et al., product yields from the Cl-atom-initiated oxidation of CH₃CHO/HCHO/O₂ mixtures were measured by FTIR. In these experiments, acetyl peroxy radicals were generated in the reaction between Cl atoms and acetaldehyde (R10):

$$Cl_2 + h\nu \rightarrow 2Cl$$
 (R9)

$$Cl + CH_3CHO (+O_2) \rightarrow CH_3C(O)O_2 + HCl (R10)$$

 HO_2 radicals were formed in the corresponding reaction between Cl atoms and formaldehyde (R11a):

$$Cl + CH_2O (+ O_2) \rightarrow HO_2 + CO + HCl$$
 (R11a)

In the presence of large quantities of formaldehyde, essentially all of the acetyl peroxy radicals react with HO₂, and thus the observed product distribution can be used to infer branching ratios in reaction R8. However, in the study by Niki et al. under conditions where acetyl peroxy radicals should react almost exclusively with HO₂, the products from reactions R8a and R8b only account for about 50% of the total carbon balance. More recently, Crawford and co-workers¹⁶ remeasured these branching ratios using a similar technique, using methanol (via reaction R11b) as the HO₂ source

$$Cl + CH_3OH (+ O_2) \rightarrow HO_2 + CH_2O + HCl (R11b)$$

and obtained $Y_{R8a-ACT}$: $Y_{R8b-ACT} = 0.9:0.1$. In their study, they report that the products from R8a and R8b account for 100% of the reaction products. However, recent work by Orlando and co-workers¹⁸ has shown that the infrared absorption cross section used by Crawford et al. for peracetic acid was too low by a factor of 3. Using the corrected cross section gives branching ratios for R8a-ACT and R8b-ACT that are essentially identical to those obtained by Niki and co-workers.¹³ The available literature data thus indicate that there is at least one "missing" product channel for the reaction between CH₃C(O)O₂ and HO₂ that accounts for about half of the reaction products. On the basis of its thermochemistry,¹⁹ it is possible that this channel might result in the formation of acetoxy radicals and OH:

$$CH_3C(O)O_2 + HO_2 \rightarrow CH_3C(O)O + OH + O_2$$
 (R8c-ACT)

The formation of OH and an alkoxy radical in the $RO_2 + HO_2$ reaction has recently been observed by Wallington and coworkers²⁰ in their study of the atmospheric oxidation of C_2F_5 -CHO. In this work, the authors report branching ratios for the $C_2F_5C(O)O_2 + HO_2$ reaction to be 0.24 and 0.76 for reaction channels R8b and R8c, respectively.

Reaction R8c is endothermic for R=alkyl, but in the acetyl peroxy radicals, formation of the acetoxy radical + OH + O₂ is almost thermoneutral²¹ ($\Delta H = +2$ kcal/mol). The resultant alkoxy radical may then decompose to form carbon dioxide and a methyl radical in a strongly exothermic reaction:

$$CH_3C(O)O \rightarrow CH_3 + CO_2$$
 (R12)

In the presence of excess HO₂, the methyl radicals generated in R12 would form methyl hydroperoxide (MHP, R13).

$$CH_3 + O_2 \rightarrow CH_3O_2$$
 (R13)

$$CH_3O_2 + HO_2 \rightarrow CH_3OOH + O_2$$
 (R14)

Thermochemical considerations indicate that reaction R8c may also occur for acetonyl peroxy radicals $(CH_3C(O)CH_2O_2)$.¹⁹

$$CH_3C(O)CH_2O_2 + HO_2 \rightarrow CH_3C(O)CH_2O + OH + O_2$$

(R8c-ACN)

The acetonoxy radicals formed in reaction R8c-ACN will then decompose to form acetyl radicals and formaldehyde (R15).

$$CH_3C(O)CH_2O \rightarrow CH_3C(O) + CH_2O$$
 (R15)

In the atmosphere, the resultant acetyl radicals would react with O_2 to form $CH_3C(O)O_2$.

While both R8c-ACN and R15 are endothermic, the combination of these two reactions results in an increase in the number of molecules and therefore makes this process entropically favorable and results in $\Delta G_{R8c-ACT} < 0$. In contrast, ΔG_{R8c} for most alkyl peroxy radicals is positive; thus, R8c is thermodynamically allowed for acetonyl peroxy radicals but is not expected to occur for alkyl peroxy radicals. Branching ratios for these reactions, however, have not been measured previously.

An additional reaction channel for the $RO_2 + HO_2$ reactions studied here may also exist. Wallington et al.^{22–24} have carried out a series of studies on the branching ratios of $X-CH_2O_2 +$ HO_2 reactions (where X = Cl, F, and CH_3O) in which they report the formation of a carbonyl compound and water as a major product channel (R8d):

$$X-CH_2O_2 + HO_2 \rightarrow X-CHO + H_2O + O_2$$
 (R8d)

The authors measured branching ratios for R8d ranging from 0.40 (X = CH₃O) to 0.73 (X = Cl). Elrod and co-workers⁸ have also measured nonnegligible product yields from R8d for the CH₃O₂ + HO₂ reaction. The branching ratio increased from 0.11 at 298 K to 0.30 at 218 K, although their room-temperature product yields are somewhat different from other literature values.¹⁹

If reaction R8c does occur, it may have a significant impact on the chemistry of the troposphere because it leads to less HO_x radical loss and may result in higher predictions of ozone concentrations in tropospheric photochemical simulations. In this work, branching ratios for reactions R8a-c have been measured for ethyl peroxy (CH₃CH₂O₂), acetyl peroxy (CH₃C-(O)O₂), and acetonyl peroxy (CH₃C(O)CH₂O₂) radicals. A combination of FTIR and high-performance liquid chromatography (HPLC) was used to obtain product yields for the hydroperoxides formed. Evidence is provided for the existence of reaction channel R8c for both acetyl peroxy and acetonyl peroxy radicals, and implications for the chemistry of the lower atmosphere are considered.

Experimental Section

Branching ratios for reaction R8 were determined by photolyzing mixtures of synthetic air, an organic peroxy radical precursor (ORP), methanol, and Cl_2 in a smog chamber. Cl atoms were generated by exposing the gas mixture to ultraviolet light (R9). These radicals then reacted with the ORP to generate the peroxy radical of interest. The ORPs for ethyl peroxy, acetyl peroxy, and acetonyl peroxy radicals were ethane, acetaldehyde, and acetone, respectively. The concentration of HO₂ in the experiments was adjusted by adding different concentrations of methanol to the initial reaction mixture. The methanol present reacts with the Cl atoms to form HO₂ in reaction R11b. Initial concentrations of ORPs were in the range $(0.7-1.4) \times 10^{15}$ molecules cm⁻³, and the ratio of [CH₃OH]₀:[ORP]₀ was varied between 0 and 5. Some experiments were also carried out using ¹³CH₃OH to produce HO₂. All experiments were performed at a total pressure of 800 Torr, 298 K, and with [Cl₂]₀ = 3×10^{15} molecules cm⁻³.

Chemical reactions were initiated using radiation in the wavelength range 235-400 nm, which was generated by filtering light from a xenon arc lamp. Changes in the concentrations of reactants and products were monitored by FTIR spectroscopy and HPLC with fluorescence detection (HPLC–fluorescence), as described in detail previously.^{25–27} All experiments were performed in a 47 L stainless steel chamber coupled to a Bomem DA3.01 FTIR spectrometer via Hanst type optics, providing a path length of 32.6 m. IR spectra were collected at a resolution of 1 cm⁻¹ by averaging 200 scans in the wavelength range 800-3900 cm⁻¹.

Gas-phase hydroperoxides formed within the chamber were extracted into the aqueous phase for analysis by HPLCfluorescence using a helical coil collector.²⁸ The coil collector was connected to a sampling port on the chamber via approximately 5 m of 1/8 in. Teflon tubing. Samples were removed at a flow rate of 250 mL min⁻¹ and were diluted in a 2 L min⁻¹ flow of zero grade N₂ before introduction into the coil. Flow rates were determined using both Dri-Cal flowmeters and by monitoring pressure changes within the chamber. The volume of each sample removed from the cell constituted less than 1% of its total volume. Water-soluble compounds present in the sample were extracted into a stripping solution consisting of 1×10^{-3} M sulfuric acid and 1×10^{-4} M Na₂EDTA within the stripping coil. The stripping solution was passed through the coil at 0.6 mL min⁻¹ using a peristaltic pump. At the end of the coil, the stripping solution containing the dissolved hydroperoxides was collected for analysis by HPLC. Hydroperoxides are first separated using a reversed-phase C-18 HPLC column. At the end of the column, a "fluorescence reagent" containing the reagents horseradish peroxidase and parahydroxyphenyl acetic acid (POHPAA) are added. The horseradish peroxidase enzyme catalyses the stoichiometric reaction between hydroperoxides and POHPAA resulting in the formation of one POHPAA dimer for every hydroperoxide molecule present. This dimer is detected by fluorescence, with excitation and emission wavelengths of 320 and 400 nm, respectively. The hydroperoxides are identified by comparison of their retention times with those of hydroperoxide samples synthesized in the laboratory. The concentrations of hydroperoxides are determined by comparison of the integrated fluorescence peak areas with those of standardized hydrogen peroxide solutions.

Preliminary work indicated that both photolysis and wall loss of the ORP and products were negligible on the time scale of the experiments. In the initial stages of the study, an intercomparison of the HPLC and FTIR techniques for hydroperoxide analysis was performed. Peracetic acid was introduced into the chamber in the concentration range $(0.5-4.5) \times 10^{14}$ molecules cm⁻³ by injecting known volumes of a calibrated peracetic acid solution into the evacuated chamber. Nitrogen was then introduced into the chamber to make up the total pressure to 800 Torr. Concentrations measured using the two techniques

Figure 1. Comparison of PAA concentrations measured by HPLC and FTIR.

 TABLE 1: Product Yields from the Photooxidation of Methanol/Ethane/Cl2 Mixtures

		yield/%					
	HPLC	FTIR					
$[CH_{3}OH]_{0}/[C_{2}H_{6}]_{0}$	EHP	EHP	CH ₃ CHO				
0	35	35	47				
1	88	106	0				
2	94	83	0				
3	95	95	9				
5	93	84	12				

were then compared to the actual concentrations present, as shown in Figure 1. The experiments demonstrate that the two techniques measure concentrations that are indistinguishable from each other and that they are within the experimental uncertainties of the true concentration. The FTIR concentrations were obtained using the peracetic acid absorption cross section of 5.3×10^{-19} cm² molecule⁻¹ at 1295 cm⁻¹ reported by Orlando and co-workers.¹⁸ The excellent agreement with the HPLC technique justifies the use of this value for the absorption cross section rather than the much lower cross section reported by Crawford et al.¹⁶

Results and Discussion

(i) Ethyl Peroxy + HO₂. Measured product yields (defined as Δ [product]/ $-\Delta$ [reactant]) in the photooxidation of C₂H₆/ CH₃OH/Cl₂/O₂ mixtures are shown in Table 1 and Figure 2. In the absence of methanol, yields of acetaldehyde and ethyl hydroperoxide were 47% and 35%, respectively. These data are in good agreement with previous measurements.^{29,30} In the presence of equal concentrations of ethane and methanol, the acetaldehyde yield drops to zero, and the EHP yield rises to 93%. Within the experimental uncertainties, the yields of these products remain constant as the initial concentration of methanol increases from this value. In all of the experiments where methanol was present, the product yield plots for acetaldehyde (not shown) are curved upward indicating that this compound is not a primary product.

As described above, ethyl peroxy radicals are generated in the reaction of ethane with Cl atoms followed by O_2 addition:

$$C_2H_6 + Cl (+ O_2) \rightarrow CH_3CH_2O_2 + HCl \qquad (R16)$$

These peroxy radicals then undergo self-reaction to form ethoxy radicals (R17a), which react with O_2 to form acetaldehyde and HO₂, or molecular products (R17b).

Figure 2. Product yields from the chlorine-atom-initiated oxidation of ethane/methanol mixtures.

$$2CH_3CH_2O_2 \rightarrow 2CH_3CH_2O + O_2$$
 (R17a)

$$\rightarrow$$
 CH₃CHO + CH₃CH₂OH + O₂ (R17b)

$$CH_3CH_2O + O_2 \rightarrow CH_3CHO + HO_2$$
 (R18)

The HO_2 radicals generated here may also react with ethyl peroxy radicals resulting in the formation of EHP.

$$CH_3CH_2O_2 + HO_2 \rightarrow CH_3CH_2OOH + O_2$$
 (R8a-ETH)
→ other products (R8b-ETH)

The competition between reactions R17 and R8-ETH accounts for the observed product distribution in experiments performed in the absence of methanol (e.g., refs 29 and 30).

In the presence of methanol, HO₂ radicals are also generated in reaction R11, and the rate of reaction R8-ETH increases relative to R17. Because k_{16} is ~100 times smaller than k_{8} -ETH,³¹ reaction R8-ETH accounts for essentially 100% of the reaction products in experiments where [CH₃OH]₀:[C₂H₆]₀ > 1, and the product distribution is independent of the initial concentrations of reactants. Under these conditions, the average yield of ethyl hydroperoxide is 0.93, indicating that R8a-ETH is the dominant product channel for the reaction between ethyl peroxy radicals and HO₂. This result is consistent with previous studies of reaction R8-ETH, as shown in Table 2. The small concentrations of acetaldehyde in these experiments can be accounted for by the reaction of EHP with Cl atoms

$$CH_3CH_2OOH + Cl \rightarrow CH_3CHOOH + HCl$$
 (R19)

$$CH_3CHOOH \rightarrow CH_3CHO + OH$$
 (R20)

(ii) Acetyl Peroxy + HO₂. This reaction was studied using the photolysis of CH₃CHO/CH₃OH/Cl₂/O₂ mixtures. Typical changes in the concentrations of acetaldehyde and the reaction products during an experiment are shown in Figure 3. Product yields of methyl hydroperoxide (MHP), peracetic acid (PAA), acetic acid, and CO₂ observed for various [CH₃OH]/[CH₃CHO] ratios (determined from the slope of product yield plots such as the one shown in Figure 3) are shown in Table 3 and Figure 4. As the [CH₃OH]₀:[CH₃CHO]₀ ratio increases, the yields of MHP, PAA, and acetic acid rise from 17%, 12%, and 6%, respectively, at a [CH₃OH]₀:[CH₃CHO]₀ ratio of 0, to 42%, 30%, and 13%, respectively, at a ratio of 5. In contrast, the

	bra			
reaction	$Y_{\rm R8a}$	$Y_{ m R8b}$	Y _{R8c}	ref
$C_2H_5O_2 + HO_2$	$>0.93\pm0.10$	0	0	this work
	1.02	0	0	4^a
	1.04	0	0	7^a
$CH_3C(O)O_2 +$	0.4 ± 0.16	0.2 ± 0.08	0.4 ± 0.16	this work
HO_2	0.34	0.1		13 ^a
	0.3	0.1		$16^{a,b}$
$CH_3C(O)CH_2O_2 +$	0.33 ± 0.10	0	0.67 ± 0.20	this work
HO_2	1	0	0	33 ^c

^{*a*} Determined from smog chamber product yield experiments using high HO₂ precursor. ^{*b*} Branching ratios modified using IR absorption cross section for PAA from ref 18. See text for details. ^{*c*} Determined flash-photolysis experiments.

 TABLE 3: Product Yields from the Photooxidation of Methanol/Acetaldehyde/Cl2 Mixtures

		product yield/%							
[CH ₃ OH] ₀ /	HPLC		FTIR						
[CH ₃ CHO] ₀	MHP	PAA	MHP	PAA	acetic acid	$\rm CO_2$			
0	14	9	19	15	6	89			
1	26	15	30	23	9	83			
1.5	n.m. ^a	n.m.	34	27	10	79			
2	42	25	41	37	15	75			
3	40	25	36	35	14	90			
4	41	25	46	37	12	70			
5	n.m.	n.m.	44	32	14	51			

^{*a*} n.m = not measured.

yield of CO_2 falls from 89% to 51% over the same range. The trend in the data indicate that these yields have not leveled off at the highest [CH₃OH]₀:[CH₃CHO]₀ ratio investigated and that the yields of these products will be somewhat different at even higher ratios. Because of interference from saturated methanol bands in the IR spectra, however, higher ratios of CH₃OH:CH₃-CHO could not be investigated.

As described above, Cl atoms react with acetaldehyde in the presence of O_2 to form acetyl peroxy radicals (R10). The observed PAA and acetic acid are formed almost exclusively in the reaction of acetyl peroxy radicals with HO₂ (R8a-ACT and R8b-ACT, respectively). In the absence of methanol, the concentration of HO₂ is comparatively low and thus yields of these products are also low. Under these conditions, the principal fate of the acetyl peroxy radicals is reaction with itself or with methyl peroxy radicals to form acetoxy radicals.

$$CH_3C(O)O_2 + RO_2 \rightarrow CH_3C(O)O + RO + O_2$$
 (R21)

These radicals then decompose to form CO_2 and methyl radicals via reaction R12, resulting in the high CO_2 yield observed in these experiments. The methyl radicals formed in R12 may then generate MHP in reaction R13.

As the concentration of methanol (and thus HO₂) rises, acetyl peroxy radicals increasingly react with HO₂. In the currently accepted reaction scheme, R8-ACT only proceeds via two pathways (R8a-ACT and R8b-ACT) leading to an increase in the yields of PAA and acetic acid. As the yields of these compounds rise, the yield of acetoxy radicals via R21 decreases, and thus the CO₂ yield (via R12) falls. The trend in the MHP yield is expected to be more complex. As the methanol concentration increases, the yield of methyl radicals decreases, but a greater fraction of these methyl radicals react via R13 to form MHP. At high CH₃OH:CH₃CHO ratios, however, the MHP yield is expected to decrease.

Figure 3. Typical product yield plots from the chlorine-atom-initiated oxidation of an acetaldehyde/methanol mixture ($[CH_3OH]_0/[CH_3CHO]_0 = 4$) Open symbols represent FTIR measurements; filled symbols represent HPLC measurements. Dashed lines are least-squares fits to FTIR data points; solid lines are least-squares fits to HPLC data points.

Inspection of the product yields in Figure 4 reveals two important features at high methanol concentrations. First, the yields of the established product channels from the reaction of acetyl peroxy radicals with HO2 (R8a-ACT and R8b-ACT) only account for about 50% of the reaction products. Under these conditions, numerical simulations indicate that the combined product yields should be 65% (see below). Second, the yields of CO₂ and MHP decrease far more slowly than expected at these high methanol concentrations. These observations are consistent with a third significant product channel from the reaction of acetyl peroxy radicals with HO₂ that results in the formation of acetoxy radicals. These radicals subsequently react via R12 and R13 to form the observed CO2 and MHP products, which are observed in excess of levels expected on the basis of the occurrence of R8a-ACT and R8b-ACT alone. These observations thus provide indirect evidence for the occurrence of reaction R8c-ACT in which acetyl peroxy radicals react with HO₂ to form acetoxy radicals and OH radicals.

To better understand the observed product distributions, kinetic modeling was carried out using the Acuchem program.³² The reaction scheme used in these simulations is shown in Table 4. In this scheme, the overall rate coefficient for the reaction between acetyl peroxy radicals and HO₂ (k_{8-ACT}) and the branching ratios (Y_{8a-ACT} , Y_{8b-ACT} , and Y_{8c-ACT}) were treated as adjustable parameters. A comparison between measured product yields and results obtained in these simulations is shown in Figure 4. Initially, the branching ratio for R8c-ACT (Y_{8c-ACT}) was set to zero and k_{8-ACT} was set to the recommended literature

value (1.4 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹). Y_{8a-ACT} and Y_{8b-ACT} were set to 0.7, and 0.3, respectively, reflecting the relative yields of the products of these reactions (peracetic acid and acetic acid, respectively). This simulation (simulation 1) fails to capture two of the important experimental observations. First, the model predicts that the MHP yield will decrease slightly as the CH₃OH:CH₃CHO ratio increases from 1 to 5, whereas the MHP yield is actually observed to increase under these conditions. Second, this model predicts that the CO₂ yield will fall from 80% to 40% as the CH₃OH:CH₃CHO ratio increases from 1 to 5. The experimental yields decrease much less dramatically and are 15-20% higher than the predicted yields at any given [CH₃OH]₀:[CH₃CHO]₀ ratio. The branching ratios used in simulation 1 are slightly different from the literature recommendation for these reactions,¹⁹ but this small difference cannot account for the difference between the predicted and experimental product yields.

In a second set of simulations, the impact of Y_{8c-ACT} on the product yields was investigated. The best fit to the experimental data was obtained for values of Y_{8a-ACT} , Y_{8b-ACT} , and Y_{8c-ACT} of 0.5, 0.2, and 0.3, as shown in Figure 4. Because of the fairly large uncertainties in the experimental product yields, we estimate the uncertainties in the branching ratios to be about 40%. Nonetheless, the simulations demonstrate that by including reaction channel R8c-ACT in the reaction scheme, the discrepancies between the measured and simulated yields of MHP and CO₂ disappear. The data previously obtained by Niki and coworkers,¹³ and by Crawford et al.¹⁶ (corrected using Orlando

Figure 4. Comparison of experimental and model product yields from the chlorine-atom-initiated oxidation of acetaldehyde/methanol mixtures (see text for details). Open symbols represent FTIR measurements; filled symbols represent HPLC measurements.

et al.'s PAA absorption cross section¹⁸), are also modeled well by these simulations.

In a recent study,¹⁶ the rate constant k_{8-ACT} was reported to be about 3 times higher than the accepted literature value. To investigate the potential impact of the uncertainty in this rate coefficient on the product distribution, a third set of simulations was carried out in which the sum of $k_{8a-ACT} + k_{8b-ACT}$ was fixed at 1.4×10^{-11} cm³ molecule⁻¹ s⁻¹, while the branching ratios of reaction R8-ACT and the overall rate coefficient (k_{8a-ACT}) were allowed to vary. The best agreement with experimental data (shown in Figure 4, simulation 3) was obtained with $Y_{8a-ACT} = 0.4$, $Y_{8b-ACT} = 0.2$, and $Y_{8c-ACT} =$ 0.4, corresponding to an overall rate constant for R8-ACT of 2.2×10^{-11} cm³ molecule s⁻¹. It is clear from Figure 4 that the optimized results from simulations 2 and 3 are experimentally indistinguishable, and thus these experiments cannot be used to resolve the discrepancy in k_{8-ACT} . Further, it can be seen that any uncertainty in k_{8-ACT} translates into uncertainties in the branching ratios of R8-ACT. Nonetheless, it is apparent that regardless of the true value for k_8 -ACT, a large branching ratio is required for R8c-ACT to obtain a good fit to the experimental data. The results from simulation 3 fit the experimental data slightly better than simulation 2; hence, the recommended branching ratios for the reaction are $Y_{8a-ACT} = 0.40 \pm 0.16$, $Y_{8b-ACT} = 0.20 \pm 0.08$, and $Y_{8c-ACT} = 0.40 \pm 0.16$. The large errors reported here reflect the uncertainty in k_8 -ACT.

It is well established¹⁷ that HO₂ radicals react with carbonyl compounds to form a hydroxy peroxy radical that may then subsequently react to form some of the observed products.

It is apparent from these simulations, however, that under all experimental conditions investigated the equilibrium in R22 lies well to the left and that this chemistry cannot account for the discrepancies between the expected and observed product distributions.

As described in the Introduction section, previous studies of reaction R8-ACT did not consider reaction R8c-ACT in the determination of the branching ratios. Nonetheless, the three previous product yield studies of this reaction^{13,15,16} are consistent with the corresponding branching ratios reported here because a significant fraction of the total carbon balance was not accounted for by R8a-ACT and R8b-ACT. Branching ratios for these previous studies are given in Table 2. Studies in which absolute yields of organic acids were not reported^{14,15} are not included in this table. The yield of PAA in the Crawford et al. study¹⁶ has been corrected using the IR absorption cross section of Orlando et al.,¹⁸ as discussed above. Studies which measured O_3 fit our yields better than previous determinations of the acetic acid yield.

Crawford et al.¹⁶ followed the temporal evolution of peroxy radical concentrations from the acetyl peroxy + HO₂ reaction by flash photolysis. By using a reaction mechanism incorporating channels R8a-ACT and R8b-ACT, numerical simulations underestimate the CH₃O₂ concentration by roughly a factor of 2 (figure 4 in ref 16). To test whether channel R8c can explain this discrepancy, numerical simulations were conducted under the appropriate experimental conditions. Incorporation of channel R8c-ACT into the mechanism leads to much better agreement of the model with the experimental data, providing further indirect evidence for this reaction pathway. It is possible that flash photolysis experiments were "blind" to the OH-producing

TABLE 4:	Reaction	Scheme	Used in	Kinetic	Modeling	of	Acetaldehyde an	d Acetone	Chemistry

reaction ^a	rate coefficient/s ⁻¹ or cm ³ molecule ⁻¹ s ⁻¹ b
$C_{12} = C_{1} + C_{1} (R9)$	1 × 10 ⁻⁴
$\mathbf{Cl} + \mathbf{CH}_{3}\mathbf{C}(\mathbf{O})\mathbf{CH}_{3} = \mathbf{CH}_{3}\mathbf{C}(\mathbf{O})\mathbf{CH}_{2} + \mathbf{HCl}(\mathbf{R23})$	2.1×10^{-12}
$CH_{3}C(O)CH_{2} + O_{2} = CH_{3}C(O)CH_{2}O_{2} (R23)$	5×10^{-12}
$2CH_3C(0)CH_2O_2 = 2CH_3C(0)CH_2O + O_2$	6×10^{-12}
$2 \cup \Pi_3 \cup (\bigcup) \cup \Pi_2 \cup_2 = \bigcup \Pi_3 \cup (\bigcup) \cup \Pi \cup + \bigcup \Pi_3 \cup (\bigcup) \cup \Pi_2 \cup \Pi_2 \cup (\bigcup) \cup \Pi_2 \cup_2 \cup (\bigcup) \cup \Pi_2 \cup (\bigcup) \cup $	2×10^{-12} 6 × 10 ⁷
$CH_3C(0)CH_2O = CH_3C(0)O_2 + CH_2O(RT3)$ $CH_3C(0)CH_2O + O_2 = HO_2 + CH_3C(0)CHO$	1×10^{-14}
$CH_3C(O)CH_2O_2 + CH_3C(O)O_2 = CH_3C(O)CH_2O + CH_3CO_2 + O_2$	1×10^{-11}
$CH_3C(0)CH_2O_2 + CH_3C(0)O_2 = CH_3C(0)CHO + CH_3C(0)OH + O_2$	1×10^{-12}
$CH_3C(0)CH_2O_2 + CH_3O_2 = CH_3C(0)CH_2O + CH_3O + O_2$ $CH_2C(0)CH_2O_2 + CH_2O_2 - CH_2C(0)CHO + CH_2O_2 + O_2$	1.1×10^{-12} 1.4×10^{-12}
$CH_{3}C(0)CH_{2}O_{2} + CH_{3}O_{2} = CH_{3}C(0)CH_{0} + CH_{3}O_{1} + O_{2}$ $CH_{3}C(0)CH_{2}O_{2} + CH_{3}O_{2} = CH_{3}C(0)CH_{0}OH + CH_{2}O + O_{2}$	1.4×10^{-12}
$CH_3C(O)CH_2O_2 + HO_2 = CH_3C(O)CH_2OOH (R8a-ACN)$	variable, see text for details
$CH_3C(O)CH_2O_2 + HO_2 = CH_3C(O)CH_2O + OH (R8c-ACN)$	variable, see text for details
$CH_3C(0)O_2 + CH_3C(0)O_2 = CH_3CO_2 + CH_3CO_2 + O_2$ $CH_3C(0)O_2 + CH_3O_2 = CH_3CO_2 + CH_3O_2 + O_3$	1.4×10^{-11} 1 1 × 10 ⁻¹¹
$CH_3C(0)O_2 + OH_3O_2 - CH_3CO_2 + CH_3O + O_2$ $CH_3C(0)O_2 + HO_2 = CH_3C(0)OOH (R8a-ACT)$	variable, see text for details
$CH_3C(O)O_2 + HO_2 = CH_3C(O)OH + O_3 (R8b-ACT)$	variable, see text for details
$CH_3C(O)O_2 + HO_2 = CH_3CO_2 + OH (R8c-ACT)$	variable, see text for details 2.2×10^{-13}
$C_{H_3}O_2 + C_{H_3}O_2 = C_{H_3}O_H + C_{H_2}O_U + O_2$ $C_{H_2}O_2 + C_{H_3}O_2 = C_{H_2}O_U + C_{H_3}O_U + O_2$	2.2×10^{-13} 1 3 × 10 ⁻¹³
$CH_{3}O_{2} + HO_{2} = CH_{3}OOH + O_{2} (R13)$	5.2×10^{-12}
$HO_2 + HO_2 = H_2O_2 + O_2$	3×10^{-12}
$CH_3O + O_2 = HO_2 + CH_2O$	2×10^{-15}
$CI + CH_2U = HCU + HCI$ $HCO + O_2 = HO_2 + CO$	7.3×10^{-11} 5.5 × 10 ⁻¹²
$Cl + CH_3CHO = CH_3C(O)O_2 + HCl (R10)$	8×10^{-11}
$\mathbf{CH}_{3}\mathbf{CO}_{2} + \mathbf{O}_{2} = \mathbf{CH}_{3}\mathbf{O}_{2} + \mathbf{CO}_{2} (\mathbf{R12})$	1×10^8
$CH_2O + HO_2 = CH_2(OH)O_2$	1×10^{-13}
$CH_2(OH)O_2 = CH_2O + HO_2$ $CH_2(OH)O_2 = HCOOH$	50 7
$Cl + CH_3O_2 = CH_3O + ClO$	1×10^{-10}
$Cl + CH_3O_2 = CH_2O_2 + ClO$	1×10^{-10}
$Cl + HO_2 = HCl + O_2$	3.2×10^{-11}
$C_1 + HO_2 = C_1O + OH$ $C_1 + CH_2C(O)O_2 = CH_2C(O)O + C_1O$	9×10^{-12} 1×10^{-10}
$ClO + HO_2 = HOCl + O_2$	5×10^{-12}
$ClO + CH_3O_2 = Cl + CH_3O + O_2$	1.6×10^{-12}
$CIO + CH_3C(O)O_2 = CI + CH_3C(O)O + O_2$ $OH + CH_3CHO + O_2 = H_2O + CH_3C(O)O_2$	3×10^{-12} 1.3 × 10^{-11}
$OH + CH_3CHO + O_2 - H_2O + CH_3C(O)O_2$ $OH + CH_2O = HCO + H_2O$	1.5×10^{-11} 1×10^{-11}
$OH + CH_3OH = CH_2OH + H_2O$	9×10^{-13}
$OH + HO_2 = + H_2O + O_2$	1.1×10^{-10}
$C1 + CH_3OH = CH_2OH + HCI (K11)$ $CH_2OH + O_2 = HO_2 + CH_2O$	6×10^{-11} 9.1 × 10^{-12}
$Cl + O_2 = ClOO$	5.4×10^{-14}
$ClOO = Cl + O_2$	2×10^{6}
$CI + CIOO = CI_2 + O_2$	3×10^{-10}
$C_1 + HCOOH (+O_2) = HC_1 + CO_2 + HO_2$	1.2×10^{-13}
$Cl + CH_3OOH = HCl + OH + CH_2O$	6×10^{-11}
$Cl + H_2O_2 = HCl + HO_2$	4×10^{-13}
$C1 + CH_3C(O)OH = CH_3C(O)O_2$ $C1 + CH_3C(O)OH = CH_3C(O)O_2$	5×10^{-15} 2.5 × 10^{-14}
$C_1 + C_{13}C_{(0)}O_1 - C_{13}O_2 + CO_2$ $C_1 + O_3 = C_1O_1 + O_2$	1×10^{-11}
$HO_2 + O_3 = OH + O_2$	2×10^{-15}
$OH + O_3 = HO_2 + O_2$	7×10^{-14}
$OH + CO (+ O_2) = CO_2 + HO_2$ $OH + CH_2C(O)OH (+O_2) = H_2O + CH_2O_2 + CO_2$	2×10^{-13} 8 × 10^{-13}
$OH + CH_3C(0)OH (+O_2) = H_2O + CH_3O_2 + CO_2$ $OH + CH_3C(0)OH = H_2O + CH_3C(0)O_2$	8×10^{-13}
$OH + CH_3OOH = H_2O + CH_3O_2$	7×10^{-12}
$OH + H_2O_2 = H_2O + HO_2$	1.7×10^{-12}
$C_{13}O_2 + C_{10} = C_{13}O_1 + O_2$ $C_{10} + C_{10} = C_{12} + O_2$	5×10^{-15}
$ClO + ClO = Cl + Cl + O_2$	8×10^{-15}
$Cl + CH_3C(O)CHO (+O_2) = HCl + CH_3C(O)O_2 + CO$	4.5×10^{-11}
CI + CO = CICO $CICO = CI + CO$	2.6×10^{-14} 5 × 10 ³
$OH + CH_3C(O)CH_3 = H_2O + CH_3C(O)CH_2$	1.4×10^{-13}
$Cl + CH_3C(O)CH_2O_2 = CH_3C(O)CH_2O + ClO$	1×10^{-10}
$CH_3C(0)CH_2O_2 + CIO = CH_3C(0)CH_2O + CI + O_2$	1.5×10^{-12}
$CH_3C(0)CH_2O_2 + CIO = CH_3C(0)CH_2OCI + O_2$ $OH + CH_3C(0)CHO (+ O_2) = H_2O + CH_3C(0)O_2 + CO$	5×10^{-13} 1.6 × 10^{-11}
$C1 + CH_3C(O)CH_2OOH = HC1 + OH + CH_3C(O)CHO$	1.0×10^{-10} 1×10^{-10}
$OH + HCl = H_2O + Cl$	8×10^{-13}
$Cl + CH_3C(O)CH_2OH (+ O_2) = HCl + CH_3C(O)CHO + HO_2$	6×10^{-11}
$OH + CH_3C(O)CH_2OH = H_2O + CH_3C(O)CHO + HO_2$ $OH + CH_3C(O)CH_3OOH = H_3O + OH + CH_3C(O)CHO$	1.2×10^{-12} 5 x 10 ⁻¹²
$OH + CH_3C(0)CH_2OOH = H_2O + CH_3C(0)CH_2O_2$	5×10^{-12}

^a Some of the key reactions referred to in the text are highlighted in bold. ^b Rate coefficients are taken from refs 18 and 19.

Figure 5. Typical product yield plots from the chlorine-atom-initiated oxidation of an acetone/methanol mixture ($[CH_3OH]_0/[CH_3C(O)CH_3]_0 = 0.5$) Open symbols represent FTIR measurements; filled symbols represent HPLC measurements. Dashed lines are least-squares fits to FTIR data points; solid lines are least-squares fits to HPLC data points.

TABLE 5:	Product	Yields from	the	Photooxidation of
Methanol/A	cetone/C	l ₂ Mixtures		

		product yields/%						
[CH ₃ OH] ₀ /	HPLC			FTIR				
[CH ₃ CHO] ₀	MHP	PAA	AHP	PAA	$\rm CO_2$	CO^a	CH_2O^a	
0	16	16	13	15	58	n.m. ^b	n.m.	
0.125	31	23	27	18	43	n.m.	n.m.	
0.25	32	29	30	13	33	40	35	
0.5	30	25	28	19	39	n.m.	n.m.	

 a Yields measured in separate experiment using $^{13}\mathrm{CH_3OH}.$ b n.m. = not measured.

channel, since it regenerates radicals. In this case, our branching ratio allows for an overall rate coefficient as high as 2.3×10^{-11} cm³ molecule⁻¹ s⁻¹. However, careful reanalysis of the original data from refs 16 and 17 would be required to confirm this.

(iii) Acetonyl Peroxy + HO₂. Typical changes in the concentrations of acetone and the reaction products following the photolysis of Cl₂/acetone/CH₃OH mixtures in air are shown in Figure 5. As can be seen in this figure, some of the product yield plots are curved because of the reaction of these products with Cl atoms. In such cases, the product yields were determined by fitting a polynomial to the data points and evaluating the slope of the curve at the origin. Product yields of acetonyl hydroperoxide (AHP), PAA, MHP, and CO₂ obtained during the photolysis of CH₃COCH₃/CH₃OH/Cl₂/O₂ mixtures are shown in Table 5 and Figure 6. Because of the slow reaction between acetone and Cl atoms,³¹ much lower [CH₃OH]₀: [acetone]₀ ratios are needed to generate an excess of HO₂

radicals, thus the highest ratio used in this work was 0.5. In the absence of methanol, experimental yields of AHP, PAA, and MHP are 13%, 16%, and 16%, respectively. As the concentration of methanol increases, the yields of these hydroperoxides rise to 28%, 21%, and 31%, respectively. In contrast, the yield of CO_2 decreases from 58% to 38% as the [CH₃OH]₀:[acetone]₀ ratio increases from 0 to 0.5.

In the absence of methanol, Cl atoms react with acetone to form acetonyl peroxy radicals (R23), which then predominantly react with other peroxy radicals present to form acetonoxy radicals (R24a).

$$CH_{3}C(O)CH_{3} + Cl (+ O_{2}) \rightarrow CH_{3}C(O)CH_{2}O_{2} + HCl$$
(R23)
$$CH_{3}C(O)CH_{2}O_{2} + RO_{2} \rightarrow CH_{3}C(O)CH_{2}O + RO + O_{2}$$
(R24a)
$$\rightarrow CH_{3}C(O)CHO + ROH + O_{2}$$
(R24b)
$$\rightarrow CH_{3}C(O)CH_{2}OH +$$
R'CHO + O₂ (R24b')

These radicals then form formaldehyde and acetyl radicals in reaction R15, which can subsequently produce PAA and MHP as described for the oxidation of acetaldehyde above. A significant amount of HO_2 is formed in secondary chemistry, which may also react with acetonyl peroxy radicals to generate the observed AHP.

Figure 6. Comparison of experimental and model product yields from the chlorine-atom-initiated oxidation of acetone/methanol mixtures (see text for details). Open symbols represent FTIR measurements; filled symbols represent HPLC measurements

$CH_{3}C(O)CH_{2}OO + HO_{2} \rightarrow CH_{3}C(O)CH_{2}OOH + O_{2}$ (R8a-ACN)

If reaction R8a-ACN were the only product channel for the acetonyl peroxy + HO₂ reaction, the yield of AHP would rise to unity and the yields of MHP, PAA, and CO₂ would fall to zero as the methanol (and thus the HO₂ concentration) increases. It is clear from Figure 6 that this does not occur and implies that as with the acetyl peroxy + HO₂ reaction, a significant radical channel leading to acetonoxy radicals and OH is occurring with the acetonyl peroxy + HO₂ reaction (R8c-ACN).

To investigate this channel further, simulations were performed using an Acuchem model which incorporated the reactions shown in Table 4. Results of these simulations are shown in Figure 6. The computer model demonstrates that with a branching ratio for R8a-ACN and R8c-ACN of 1 and 0, respectively, model predictions of AHP yields are much higher than experimental results in the high [CH₃OH]₀:[acetone]₀ ratio experiments. Predicted PAA, MHP, and CO2 yields are much lower than the corresponding experimental values. Incorporation of reaction R8c-ACN into the model with a yield of 0.67 leads to good agreement between the model and experiments. Because of the better agreement between product yields measured by HPLC and FTIR (compared to the product yields measured from the $CH_3C(O)O_2 + HO_2$ reaction), uncertainties associated with the measured branching ratios for R8-ACN are estimated to be about 30%, lower than the uncertainties associated with the branching ratios for R8-ACT. As with R8-ACT, because of the additional radical reaction channel, the overall rate coefficient may be higher than the previously reported value.

In experiments with both methanol and acetone present, a complete carbon balance cannot be obtained for acetone oxidation because two of the expected products (formaldehyde and carbon monoxide) are also present because of the added methanol and its oxidation products. To further test our understanding of the reaction mechanism, an experiment was carried out in which ¹³C labeled methanol was used to generate HO₂. Product yields from these experiments are given in Table 5. The carbon balance for the identified products is 91%. The remaining products, which account for 9% of the converted acetone, are expected to be hydroxyacetone and methyl glyoxal. In Acuchem simulations carried out under the appropriate experimental conditions, the predicted yields of hydroxyacetone and methyl glyoxal are 3% and 8%, respectively, which are both below the detection limits in the experiments, and which are in excellent agreement with the missing carbon balance.

Bridier et al.³³ reported data that are consistent with a branching ratio for R8a-ACN of unity (see Table 2) on the basis of kinetic simulations of flash photolysis experiments in which the concentrations of peroxy radicals were monitored by UV absorption spectroscopy. The origin of the discrepancy between this work and the results of Bridier et al. is unclear but it could indicate a problem with the UV cross sections used in that study.

A possible alternative explanation for the observed product distribution in our study is that reaction channel R8d-ACN rather than R8c-ACN is an important pathway

$$CH_3C(O)CH_2OO + HO_2 \rightarrow$$

 $CH_2C(O)CHO + H_2O + O_2$ (R8d-ACN)

The resultant methylglyoxal may then react with Cl atoms to produce acetyl peroxy radicals which would then generate PAA, MHP, and CO_2 as discussed above

$$CH_3C(O)CHO + Cl (+ O_2) \rightarrow$$

 $CH_3C(O)O_2 + CO + HCl (R25)$

To investigate this possibility, simulations were carried out in which branching ratios for R8a and R8d were set to 0.33 and 0.67, respectively (not shown). In these calculations the yields of both MHP and PAA remained constant at about 0.08 as the [CH₃OH]₀:[acetone]₀ ratio was varied from 0 to 0.5. Because the concentrations of methanol and acetone are high compared to methylglyoxal during these experiments, Cl atoms predominantly react with methanol and acetone rather than methylglyoxal. Reaction R25 is thus too slow to generate the quantities of MHP and PAA observed in the high [CH₃OH]₀ experiments, and reaction R8d cannot account for the observed product distributions. A significant branching ratio for R8c therefore appears to be the best available explanation for the experimental observations, although we cannot rule out a contribution from R8d-ACN.

(iv) OH Radical Formation in the RO₂ + HO₂ Reactions. From the discussion above, it is clear that the experimental data are consistent with high yields of OH radicals in the reaction between HO₂ and acetyl peroxy radicals and in the reaction between HO_2 and acetonyl peroxy radicals. Given that the relative rate constants for the reaction of acetone/methanol and acetaldehyde/methanol are significantly different for OH- and Cl-initiated reactions,³¹ the possibility was considered that relative rate plots could be used as additional evidence for the importance of reaction R8c in the high [CH₃OH]₀ experiments. As the methanol concentration increases, the OH radical concentration is also expected to increase, and thus a higher fraction of methanol and the carbonyls will react with OH rather than Cl in these experiments. The slope of the relative rate plots would thus be expected to systematically change as the methanol concentration is varied (see Figure 8 in ref 16). Experimental relative rate plots do show a dependence on the methanol: acetaldehyde ratio, but it is difficult to quantitatively assign this to the occurrence of reaction 8c. This apparent discrepancy can be explained by examining the Acuchem simulations described above. In these simulations, it is apparent that OH formation from the Cl-atom-initiated oxidation of hydroperoxides (e.g., reactions R19 and 20) is a larger OH source than reaction R8c, and relative rate plots thus cannot easily be used as indirect evidence for reaction channel R8c in these experiments. For acetone, the product yields do not vary between [CH₃OH]₀/ $[acetone]_0$ values of 0.1 and 0.5, indicating that even in the low [CH₃OH]₀ experiments, acetonyl peroxy radicals reacted predominantly with HO₂. The change in the slope of the relative rate plots as the methanol concentration increases is thus expected to be minimal, and the analysis could not be performed. Furthermore, the large difference in relative rates for acetone and methanol precludes an accurate measurement of this ratio.

Atmospheric Implications

As described in the Introduction, $RO_2 + HO_2$ reactions are important chain termination processes that moderate the concentrations of radical species and ozone in the lower atmosphere. In this work, evidence has been presented indicating that organic peroxy radicals containing a carbonyl group at the α -position (CH₃C(O)O₂) or β -position (CH₃C(O)CH₂O₂) do not exclusively react with HO₂ to form a hydroperoxide (R8a) and that a significant fraction of radicals are recycled in these reactions (R8c). This may lead to higher concentrations of pollutants such as OH radicals and ozone than is currently predicted by air pollution models.

To investigate the potential impact of these reactions on tropospheric ozone and OH concentrations, several simple box model simulations were carried out using the OZIPR computer program.³⁴ In the first set of simulations, conditions typical of a North American city during summer were chosen, and concentrations of OH and ozone were monitored as the branching ratios for reactions R8a and R8c were varied between 0 and 1. In these simulations, the branching ratios had a negligible impact on the concentrations of these secondary pollutants (typically less than 1%). In a second set of simulations, the calculations were repeated but the NO_x emission rates were reduced by a factor of 10. With all of the $RO_2 + HO_2$ reactions set to $Y_{R8c} = 1$, the peak OH radical concentration increased from 3.3 \times 10^{6} molecules cm^{-3} to 4.7 \times 10^{6} molecules cm^{-3} , while the change in the peak ozone concentration was small (<5%). Incorporating only the branching ratios measured for acetyl and acetonyl peroxy radicals into the model (and with all other $RO_2 + HO_2$ branching ratios set to $Y_{R8a} =$ 1) had a much smaller impact on both ozone (<1%) and OH (<5%). This result is not surprising since oxygenated organics make up only a small fraction of total VOC emissions in these simulations.

From the simulations described here, it appears that chain propagation in $RO_2 + HO_2$ reactions (R8c) may have a small impact on tropospheric chemistry under low NO_x conditions. The impact of these reactions on OH radical concentrations will be greater for aged air, which typically contains higher concentrations of oxygenated organics and lower levels of NO_x . To predict the extent of this impact, a more detailed database of $RO_2 + HO_2$ branching ratios is needed. Finally, reaction 8 will not provide as strong an atmospheric source of acetic acid as previously thought. Further investigations of the product yields from these reactions as a function of temperature are clearly required.

Acknowledgment. The authors thank Tim Wallington and Mike Hurley for supplying spectra of peroxides. A.S.H. thanks NCAR's Atmospheric Chemistry Division for the award of a Visiting Fellowship that enabled this work to be performed. A.S.H. also thanks the donors of the Petroleum Research Fund (American Chemical Society #37996-GB6) for financial support. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research, under the sponsorship of the National Science Foundation. This work was supported in part by a grant from the NASA Upper Atmosphere Research Program.

References and Notes

(1) Finlayson-Pitts, B. J.; Pitts, J. N. *Chemistry of the Upper and Lower Atmosphere*; Academic Press: San Diego, CA, 2000.

(2) Atkinson, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. J. Phys. Chem. Ref. Data **1997**, 26(2), 215.

(3) Wallington, T. J.; Japar, S. M. Reaction of CH₃O₂ + HO₂ in Air at 295 K: A Product Study. *Chem. Phys. Lett.* **1990**, *167*, 513–518.

(4) Wallington, T. J.; Japar, S. M. FTIR Product Study of the Reaction of $C_2H5O_2 + HO_2$ in Air at 295 K. *Chem. Phys. Lett.* **1990**, *166*, 495–499.

(5) Lightfoot, P. D.; Roussel, P.; Caralp, F.; Lesclaux, R. Flash Photolysis Study of the $CH_3O_2 + CH_3O_2$ and $CH_3O_2 + HO_2$ Reactions between 600 and 719 K: Unimolecular Decomposition of Methylhydroperoxide. *J. Chem. Soc., Faraday Trans.* **1991**, *87*, 3213–3220.

(6) Wallington, T. J. Fourier Transform Infrared Product Study of the Reaction of $CH_3O_2 + HO_2$ over the Pressure Range 15–700 Torr at 295 K. J. Chem. Soc., Faraday Trans. **1991**, 87, 2379–2382.

(7) Spittler, M.; Barnes, I.; Becker, K. H.; Wallington, T. J. Product Study of the $C_2H_5O_2 + HO_2$ Reaction in 760 Torr of Air at 284–312 K. *Chem. Phys. Lett.* **2000**, *321*, 57–61.

(8) Elrod, M. J.; Ranschaert, D. L.; Schneider, N. J. Direct Kinetics Study of the Temperature Dependence of the CH₂O Branching Channel for the CH₃O₂ + HO₂ Reaction. *Int. J. Chem. Kinet.* **2001**, *33*(6), 363–376.

(9) Jackson, A. V.; Hewitt, C. N. Atmospheric hydrogen peroxide and organic hydroperoxides: a review. *Crit. Rev. Env. Sci. Tech.* **1999**, *29*, 175–228.

(10) Sander, R. Compilation of Henry's Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, Version 3. http://www.mpch-mainz.mpg.de/~sander/res/henry.html (accessed 1999).

(11) Friedlander, S. K.; Yeh, E. K. The Submicron Atmospheric Aerosol as a Carrier of Reactive Chemical Species: Case of Peroxides. *Appl. Occup. Environ. Hyg.* **1998**, *13*(6), 416.

(12) Hasson, A. S.; Paulson, S. E. An Investigation of the Relationship between Gas-phase and Aerosol-borne Hydroperoxides in Urban Air. *J. Aerosol Sci.* **2003**, *34*, 459–468.

(13) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. FTIR Study of the Kinetics and Mechanism for Cl-Atom-Initiated Reactions of Acetaldehyde. J. Phys. Chem. **1985**, 89, 588–591.

(14) Moortgat, G. K.; Veyret, B.; Lesclaux, R. Kinetics of the Reaction of HO₂ with CH₃C(O)O₂ in the Temperature Range 253-368 K. *Chem. Phys. Lett.* **1989**, *160*, 443-447.

(15) Horie, O.; Moortgat, G. K. Reactions of $CH_3C(O)O_2$ Radicals with CH_3O_2 and HO_2 between 263 and 333 K. J. Chem. Soc., Faraday Trans. **1992**, 88, 3305–3312.

(16) Crawford, M. A.; Wallington, T. J.; Szente, J. J.; Maricq, M. M.; Francisco, J. S. Kinetics and Mechanism of the Acetylperoxy + HO₂ Reaction. *J. Phys. Chem. A* **1999**, *103*, 365–378.

(17) Tomas, A.; Villenave, E.; Lesclaux, R. Reactions of the HO₂ Radical with CH₃CHO and CH₃C(O)O₂ in the Gas Phase. *J. Phys. Chem. A* **2001**, *105*, 3505–3514.

(18) Orlando, J. J.; Tyndall, G. S.; Vereecken, L.; Peeters, J. The Atmospheric Chemistry of the Acetonoxy Radical. J. Phys. Chem. A 2000, 104, 11578–11588.

(19) Tyndall, G. S.; Cox, R. A.; Granier, C.; Lesclaux, R.; Moortgat, G. K.; Pilling, M. J.; Ravishankara, A. R.; Wallington, T. J. Atmospheric Chemistry of Small Peroxy Radicals. *J. Geophys. Res. D* **2001**, *106*, 12157–12182.

(20) Sulbaek-Anderson, M. P.; Hurley, M. D.; Wallington, T. J.; Ball, J. C.; Martin, J. W.; Ellis, D. A.; Mabury, S. A. Atmospheric Chemistry of

C₂F₅CHO: Mechanism of the C₂F₅C(O)O₂ + HO₂ Reaction. *Chem. Phys.* Lett. **2003**, 381, 14–21.

(21) Miller, C. E.; Lynton, J. I.; Keevil, D. M.; Francisco, J. S. Dissociation Pathways of Peroxyacetyl Nitrate (PAN). *J. Phys. Chem. A* **1999**, *103*, 11451–11459.

(22) Wallington, T. J.; Hurley, M. D.; Ball, J. C. FTIR Product Study of the Reaction of $CH_3OCH_2O_2 + HO_2$. *Chem. Phys. Lett.* **1993**, 211, 41–47.

(23) Wallington, T. J.; Hurley, M. D.; Schneider, N. J.; Sehested, J.; Nielson, O. J. Mechanistic Study of the Gas-Phase Reaction of CH₂FO₂ Radicals with HO₂. *Chem. Phys. Lett.* **1994**, *218*, 34–42.

(24) Wallington, T. J.; Hurley, M. D.; Schneider, N. J. Atmospheric Chemistry of CH₃Cl: Mechanistic Study of the Reaction of CH₂ClO₂ Radicals with HO₂. *Chem. Phys. Lett.* **1996**, *251*, 164–173.

(25) Shetter, R. E.; Davidson, J. A.; Cantrell, C. A.; Calvert, J. G. Rev. Sci. Instrum. 1987, 58, 1427.

(26) Hasson, A. S.; Orzechowska, G. E.; Paulson, S. E. Production of Stabilized Criegee Intermediates and Peroxides in the Gas-Phase Ozonolysis of Alkenes: 1. Ethene, *Trans*-2-Butene and 2,3-Dimethyl-2-Butene. *J. Geophs. Res.* **2001**, *106*(D24), 34131–34142.

(27) Hasson, A. S.; Ho, A.; Kuwata, K. T.; Paulson, S. E. Production of Stabilized Criegee Intermediates and Peroxides in the Gas-Phase Ozonolysis of Alkenes: 2. Asymmetric and Biogenic Alkenes. *J. Geophys. Res.* **2001**, *106* (D24), 34143.

(28) Hartkamp, H.; P. Bachhausen. A Method for the Determination of Hydrogen Peroxide in Air. *Atmos. Environ.* **1987**, *21*(10), 2207–2213.

(29) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Fourier Transform Infrared Studies of the Self-Reaction of $C_2H_5O_2$ Radicals. J. Phys. Chem. **1982**, 86, 3825–3829.

(30) Wallington, T. J.; Gierczak, C. A.; Ball, J. C.; Japar, S. M. Fourier Transform Infrared Study of the Self-Reaction of $C_2H_5O_2$ Radicals in Air at 295 K. *Int. J. Chem. Kinet.* **1989**, *21*, 1077–1089.

(31) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. Chemical Kinetics and Photochemical Data for use in Stratospheric Modeling: Evaluation No. 11, Jet Propulsion Laboratory Publication 97-4, 1997.

(32) Braun, W.; Herron, J. T.; Kahaner, D. K. Int. J. Chem. Kinet. 1988, 20, 51.

(33) Bridier, I.; Veyret, B.; Lesclaux, R.; Jenkin, M. E. Flash Photolysis Study of the UV Spectrum and Kinetics of Reactions of the Acetonylperoxy Radical. J. Chem. Soc., Faraday Trans. **1993**, 89, 2993–2997.

(34) Ozone Isopleth Plotting Program Research Version; Environmental Protection Agency.