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Hyperspherical Harmonics for Tetraatomic Systems. 2. The Weak Interaction Regioh
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Hyperspherical harmonics as functions of hyperspherical coordinates appropriate for describing the weak
interaction region of nuclear configuration space of tetraatomic systems are derived. They constitute an efficient
basis set for calculating the corresponding local hyperspherical surface functions that avoid overcompleteness
problems. Together with the hyperspherical harmonics for the strong interaction region of that space obtained
previously, they should permit efficient benchmark-quality calculations of state-to-state differential and integral
cross sections for those systems.

1. Introduction The calculation of the LHSF can be performed by expanding
them in hyperspherical harmonics, which are eigenfunctions of
the system’s grand-canonical angular momentum opéraiat

of other appropriate operatotd? These harmonics behave

We have been developing a method for performing accurate
calculations of state-to-state cross sections of tetraatomic

chemical reactions by solving the time-independent Sihger regularly at the angular poles of the kinetic energy operator.

equation using hyperspherical coordinates. Progress in the . . .
q g nypersp g They have been determined analytically for tetraatomic systems

calculation of reaction cross sections using time-independent . . £ 19
as well as time-dependent methods has been given in a recenLOr the strong interaction regi6A®and form a complete set of
asis functions for this region that span “democratically” the

review! where a large number of references can be found. In ! . . .

the approach considered in the present paper, nuclear (:onfig-entlre range of_aII eight h_yperangles. Since a single set of

uration space is divided into two regions: (a) a strong interaction such fungtlons is used, this avoids supercompleteness_ prob-

region, in which the system’s four atoms are close to each otherlems' which resglt and must be overcome When'a unlon.of
several overlapping complete sets of basis functions (which

and in which bonds are broken and made and (b) a weak theref t i v ind dent of h
interaction region, comprising sub-regions in which the system are therefore not linearly independent of one another) are
used?®-22

has separated into pairs of molecules, either two diatoms or an It ible to utilize th h herical dinat d
atom and a triatom, which interact weakly, and in which the h IS possi teh o utl Ili? i eset. ypersp enlca cSoorhlna es anld
breaking and making of bonds does not take place. In the strongb"’wﬂor"CS Inthe Vr\:%at ml ef_acf'f‘."? retglo_n a S?H uc use;_wo”u
interaction region, row-orthonormal hyperspherical coordinates, agéesc;\/i\é)?t\a/errégi:)%sl clnlvgo%fligirgtliirr]l ’S;';‘gg coisetliqtﬁtrgealcsm)gll
consisting of a hyperadius and eight hyperangles, are 4fsed. A . . . .

g P gt yp gies, fraction of that space in the weak interaction region. As the

These coordinates treat “democratically” all four atoms and h | dinate h herical h ;
describe the system equivalently, regardless of which molecularMOW-Orthonormal coorcinate hyperspherical harmonics span
pairs emerge from that region. In the weak interaction region, rathe.r unlformly that entire space, emplqymg them for expandllng
Delves hyperspherical coordinates, still comprising a hyperadiusthe .h'ng localized weak interaction region LHS.F would require
an inordinately large number of basis functions to achieve

and eight hyperangles, are usédThe hyperangles include King thi h inad te. An alt i

appropriately chosen geometrical angles between Jacobi vectorsCOMVErgence, making this approach inadgequate. An afternative
These coordinates are not “democratic”, and different ones are'S {0 US&: for each sub-region of the weak Interaction region, a
appropriate for and used in different éub-regions in which different set of Delves hyperspherical coordinates, better suited

different pairs of molecules have become separated. In both thefor describing the geometry of the pair of weakly interacting

strong and weak interaction regions, local hyperspherical surfacemc’lecu'(.as for that_ sub-region. Th|s_should_lead to rapld_ly
functions (LHSF) are defined to be eigenfunctions of the converging expansions when appropriate basis set contractions

system’s Hamiltonian at a frozen hyperradius and of a set of are aI_so mtr_oduged. The resul_tlng weak Interaction LHSF
other operators that commute with it. The overall scattering assgmatec_i W'th different sub-regions have a negligible overlap,
calculation methodology consists of expanding the scattering aglalrtlhaVOIdlng ?vercomple(;en_ess prcl)btl_emls. . for th
wave function in those local hyperspherical surface functions n the present paper we derive anaiytical expressions for the
and propagating the resulting coupled ordinary differential hypers_pherlc_al harmonics in the weak mter_actlon sub-regions
equations in the hyperadiysfrom very small values of this of configuration space, desirable for expanding the correspond-

variable, at which the strong repulsive forces between the atoms!Ng LHSF. Together with t.he strong interaction region surfa_lce
cause the wave function to be negligible, to large values, at functions they are appropriate for reactive scattering calculations

which the system has separated into noninteracting pairs ofOf tetraatomic systems. I_n Sect_lon 2 we defln_e the dlff_erent
molecules:® This approach or related ones have previously been frames an_d weak interaction region hypersphe_ncal c_oordlnates
used for triatomic systenfs18 used, derive the change of the latter under inversion of the

system through its center of mass, and obtain the volume
T Part of the “Gert D. Biling Memorial Issue”. element_in these coordinates. In Sectio_n 3 we give expressions
* E-mail address: aron@caltech.edu. for the kinetic energy and grand-canonical angular momentum

10.1021/jp0488741 CCC: $27.50 © 2004 American Chemical Society
Published on Web 09/09/2004



Hyperspherical Harmonics for Tetraatomic Systems

Py Py
Py Py

o/ )

s

Py

Scheme a
BPP;+ Py

Scheme B
PP+ P3Py

Figure 1. Two clustering schemes for a tetraatomic system corre- Of the 99), (/)ﬁ"’ (=
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TABLE 1: Relation between the Cartesian Frames

polar angles
frame r r? r
Gxelysiz! 0D p® 0P p® 09 p®
G)g;flybflzbfl (1 3)’w (1.3) (2 3)’1/} (23) 0,0
Gngzylbfzabfz (1 3)‘ g(l 3) (2 3)’0 0,0
Gng:‘ylbfsz)_bfs y 511,2)’11} g},Z) 0,0 y 512,3)’ 7T

1, 2, 3) with the help of the rotations

sponding to two weak interaction sub-regions of configuration space. defined by eq 2.3. For example, the four angtés),y 02 (j =

. ) . .. . 0.4
operators. In Section 4 we define and derive explicit analytical Gx*y* J—L i yof o J—AL e

expressions for the corresponding hyperspherical harmonics, and

in Section 5 we describe the relation between the weak and
strong interaction region hyperspherical coordinates. Finally, in

Section 6 we give a summary and conclusions.

2. Frames and Coordinates

2.1. Definitions.Let us consider a tetraatomic system whose

nuclei and corresponding masses BrandM; (i = 1, 2, 3, 4).

Let 1 denote a clustering scheme of these nuclei that defines

the associated Jacobi vectatd) (j = 1, 2, 3)2* Two such
schemes, denoted= a and1 = fj, are depicted in Figure 1.
The first is appropriate for describing the atetniatom weak

interaction sub-region of configuration space where the triatomic

nuclear systerR;P,P; is far from the fourth nucleuB,, whereas
the second is well-suited for the diaterdiatom weak interac-

tion sub-regiorPyP, + P3P, Denoting byr! the correspond-

ing mass-scaled vectors, we define the associated space-fixed

Jacobi matrix by
Xﬁl) XﬁZ) XEI3)

1) .2 .Gy — 2 2
= (0 r@ @) = [yd (2
1 2 3

7 20 7Y

2.1)

wherex!), y¥, andZ? are the components of thé in either of
the two space- flxed Cartesian fran@ssys'zf or Gxéfyszf (the
latter denoted simply by sf) wheK@ is the space-fixed origin
andG is the center of mass of the system. The axeSxfysz5f

are parallel to and have the same senses as the corresponding

Oxys'#" axes. Let the polar coordinates of tHB in either of
these frames be {,09,¢%). In terms of these coordinates, the
Jacobi ma’triXpif can be rewritten as

sinfM cosgP sin6?@ cosg? sinH® cosep®
o' =|sin6P sing® sindPsing?@ sindPsing® |r,
coso M

coshP cosf

2.2)

( (2. %)’y(xz %)’0) (O,yg2’3),0) 23)

bel"&ybl ?Zbl“z

1, 2) are derived from the transformation of Cartesian coordi-
nates (expressed in terms of polar coordinates) resulting from
the sf~bfl axes rotatiord®

r¥ siny 03 cosy I
rﬁ‘) siny ¥ siny ¥ | =
r% cosy I3
r¥sin6Y cosp?
R (¢513),9(3),O) rg) sin 69) sin ¢f{)
r¥ cosg¥
In this expressiork(a,b,c) is the rotation matrix associated with
Euler anglesa,b,c.
It should be noted that that rotation pIa<ﬁ§’fl along the
r'® vector, and thereforg " and y *® are respectively the
angle betweenr™ or r® and r), in the 0 tox range.
Similarly, the rotation of bfl to bf3 by Euler angleg £,
y@30) places theﬁi’f3 axis alongr'? and thereforey {9 is
the angle between| andr(z) also in that range. The polar
anglesp!® and g¥ of r'® in bf3 are easily derived from

(2.4)

sinp!¥ cosg?

0
sinp® cosq® [=R ¥ y?3 0)|0]| (2.5)
cosp{? 1
which results in
P=rE P o)

as given in Table 1.
It should also be noted that the angtﬁ%), 0%, 1/)32’3) of eq
2.3 and Table 1 are Euler angles that rotate sf to bf2. In

wherer,l is the diagonal matrix whose diagonal elements are particular y@is the angle between the'?,G#" and ¢,

rd r@ andr®, respectively.

r?) half-planes, having!® as a common edge, with the first

For the purposes of the present paper, it is convenient to containing the positive’ half of the GZ' axis. This angle, in
define threel-arrangement-channel body-fixed frames, labeled the 0 to 2r range, is measured counter clockwise, as viewed
G X" 21 (i = 1, 2, 3), or simply bif by the Euler angle  from the tip ofr{®, from the first to the second of these half-
rotations defined in eq 2.3. The angles appearing in this diagramplanes, and therefore describes the tumbling of the system
are a subset of the polar angles of ttﬁlégiven in Table 1. All around rf’). As a result, these Euler angles are external
of the polar angles in the bframes can be expressed in terms coordinates that orient bf2 with respect to sf. The potential
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energy function V, which is a function of internal coordinates ,0fl —
. ; 7
only, does not depend on those angles. Such internal coordinates L.3) 13) 23)
could be chosen to be the six internuclear distances between 3'”7 cosy; " siny;"Y cosy;
the four nuclei. However, to obtain simple expressions for the  pfsiny *®siny ™ siny@Isiny @3 0| nnPyP)

(2,3) 0

hyperspherical harmonics appropriate for the weak interaction 1.3) 2.3) 1
region (as shown in section 4), it is better to use instead the cosyi cosy;
lengths rY, r®, and rl? of the three mass-scaled Jacobi (2.12)
vectors plus the three internal angle$?, v 2, andy ??, in = RGO 9D, 23 2 (2.13)
terms of which of those internuclear distances can be expressed. 2 Pi )
The choice of these angles is justified not only by the simplicity 13) 13) 23)
just mentioned but also by how the potential functibdepends siny; 7 cos&; siny;™ 0
on them in the weak interaction sub-regions of configuration P22 = plsin y3sing™d 0 0] n(®n?)
space. Indeed, let us consider first the sub-regions in which an 1,3) 23)

. : 1) @ cosy cosy;" 1
atom is far away from a triatom. Let” andr® be the mass- (2.14)
scaled Jacobi vectors of the triatom, arja the mass-scaled '
position vector of the atom with respect to the center of mass (3) (3) (2.3).(2.3) bf3
of the triatom, as depicted in schemef Figure 1 for the non- R(¢ :0) R(w ’“ :0) ¢ (2.15)
mass-scaled versions of these vectors. Ther'r,(fésv 00, V and
becomes independent of bog*? (the tumbling angle of the o .
triatom aroundr®?) and y % while still depending strongly siny{?cosy? 0 0
on y?. If we consider next the asymptotic sub-regions in P = p|sin yﬁl 2 sin ¢§12) 0 —siny(2'3) n(n My @)
which two diatoms are far from each other, we use the Jacobi cosy @2 1 cosy@d
vectors depicted in schenmeof Figure 1, and notice that as Vi Vi 216
r'® ~ «, V becomes independent not only f? andy %% (2.16)
but also ofygul’z). In either case, the asymptotic independence where
of V on y»{*? and y*® is a very useful property of this e u
function, which justifies the choice of these two angles. The sin nﬁ)SIn 773) 0 0
selection ofy {? as the third angle is justified by its impor-  n(;®5®) =0 siny® cosy® 0
tance in describing the potential function of isolated tri- 0 0 o)
atoms. cosmn;

It is also desirable to replace the three lengts r'?, and (2.17)
r' by a single length, the hyperradipsand two hyperangles Equations 2.11 through 2.17 are useful not only to interrelate
nﬁl) andzn'?, defined by the variables that appear in them but also to determine how

they transform under different operations. One such example
r511) =0 Simyf) Sinngl) 2.7) is given in section 2.2 beloyv.
2.2. Effect of the Inversion Operator on the 1 Hyper-
@ cin, @ o spherical Coordinates.Let | be the operator that inverts the
Fi7= p SN, =cosn; (2.8) system through its center of mass. Its effect onrifiej = 1,
2, 3) |s to transform them t&r(” and therefore its effect on
and
thep ofeq2.lis
r'®=pcosp? (2.9) ipsf=—pS (2.18)
The hyperradiup, together with the set of eight angles; With the help_ of this (_expression we can use egs 2.2 and 2.11
defined by through 2.17 in a straightforward manner to get the effedt of
on all the coordinates defined so far. The result is
1 2 3 3 2,3 2,3 1,2
©, = {0202, 02 62, 9Dy vIA v @100 (00O P n®) = (PrPr®pnPan®)  (2.19)
will hereafter be called thei“weak interaction region hyper-  j(9{",6?,9®) (12,19, @3) =
spherical coordinates”, arhyperspherical coordinates simply, 0 W (@ 9(3) (12,49, ¢ 3)) (2.20)
and we will express the corresponding hyperspherical harmonics Vi Vi
in terms of ®;. These coordinates are very appropriate for 0 (1) (2)
describing the geometry of the pairs of molecules in this (¢ = (7 + ¢)mod 2z,
region. It should be noticed that'f, ¢'¥), (y%?, 4?3, and (7 + ¢P)mod 21,7 + ¢ mod 27) (2.21)
v+, ) are the polar coordinates of", rﬁz), andr(3 in
the s_f, bfl, and bf3 frames, respectively. 1 &2 &3 @3 = (277 — p @2 (7 — T mod 27,
With the help of egs 2.3, 2.7 through 2.9, and Table 1, we
Ll - (7 — »®F)mod 27) (2.22)
can express the Jacobi matp}Z defined by eq 2.1 in terms of 2 :

the body-fixed Jacobi matrices' (i = 1, 2, 3) by and

P =R(4.69.0)p" (2.11) igf¥=2m —&ft? (2.23)
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The effect ofi on the hyperspherical coordinates for the weak 2\ 3 2\ 3

T2
interaction region is therefore: T Vi

) ¥ 2 9
- ZVrgJZ - Z—,2+—.—.+ -
2,u = Zl,t = arSIJ) rf{J) arﬁJ) 2,1,“'51])
(3

(0. @) = (o PP — 69, + ¢P)mod 2,

(@ —p&Imod 27,y M2 27 — 2, y @) (2.24)
whereu is the reduced mass of the tetraatomic system given
2.3. Volume Element.The volume element\d associated by
with the coordinates»,(pi can be derived by starting with the s
polar coordinatesrf,0%,¢%) (j = 1, 2, 3) in terms of which it # = [MMMsM,/[(M; + M, + M3 + M,)] (3.2)
is given by .
andj ; i9%is the square of the angular momentum operjafbof
dv = r® drOr @ ar@r® dar® sino® do® dgp® x vectorr(‘) in sf.
. The change from " r?r® to @ s straightforward,
sin 0512) d0512) d¢512) sin 6513) daf) dd)f) (2.25) because of '?he orthggolnal natufenof t’he transfo?mation defined

We first introduce the transformation defined by eqgs 2.7 by egs 2.7 through 2.9 and results in

through 2.9 which results in - hz 5 p8 5 LA A2 53
drPdrPdr® = p?sinyP do dyp PP (2.26) 210t 0" 90 2002 '

—>

whereAZ? is the grand canonical angular momentum operator

i () 4@ (2.3)
The transformation fron@;”,¢; tOy,1 1/) is achieved, as given by

indicated in eq 2.3 and Table 1, through the rotation of sf to

bfl by Euler angles¢((3) ©0). sinced?,p? are indepen- Sy Sy
dent ofef)@ , thisis a r|g|d rotation that does not change the A% = S />512)2 4
form of the corresponding angular volume element: Slr'l2 17(2) sin? 7](1) sin? 7]512)
TP TP
sin 0(2) d9(2) dqb(z) =sin y(z 3d (2 3 dy; @3 (2.27) :S @ I 2 (3.4)
cog n{sit n?  cos n
Similarly,

and 7™ and 7@ are the hyperangular momentum operators
in0® 40D dp® = sin D3 gy, @3 gy 3 v A A .
sin@;” do7” dp;” = siny ;= dy ;" dy i~ (2.28) associated with the hyperanglg$” and,‘? and are defined

Finally, they &y ¥ tg y (12, (12 transformation is achieved

by rotating bfl to bf3 by Euler anglesy{*®,y#?,0). Since P 0 = — 42 1 9 (sin 272 —9
y 89419 are independent of those angles, the corresponding (sin 27 )2 a(25 (M) a2y (1))
volume element is also unchanged: (3.5)

siny ¥ dy 83 dy ¥ = siny F2dy 2 dy 2 (2.29)  and

Substitution of egs 2.7 through 2.9 as well as eqs 2.26 through/}f’ﬁz)z(ngz)) =

2.29 into eq 2.25 gives the desired result: 5 1 ) )
- @5 @2 (2)( sinn ?)cosn 7% @
dv = p® do sir? y Peo 5 dp (Y sin® Pcod @ dy? x (sinn;”)° (cosn;”)" an; an;
3.6
sin6® do® dp® siny &) dy @3 dy @3 x (3.6)
siny 2 dy 2 dy 2 (2.30) Although thej (" are space-fixed operators, they can be
expressed in terms of the angles |n eq 2.10. We WI|| choose
As a result, the appropriate volume elements for jif and s (1 2)) &I E?), and 02.69) to expresg (¥, |
@ hyperangles are and | j . respectively. These are the polar angles of rtflé
r?, andrf’) in bf3, bfl, and sf respectively, as indicated in
V) = =sin’ " cog M dyp M (2.31)  Table 1. The results are
Ty —
and ii
1 9 12) 0 1 &
_ @ @ gy @ —h? siny} +
dv, o= sin® % cog ;¢ (2.32) (Sinyﬁl’z) ay & 2SNYi ay L2 i y (12 oyt 2P
L . 3.7
3. Kinetic Energy and Grand Canonical Angular 3.7)
Momentum Operators J‘ 52)2 —
Let us now obtain the kinetic energy operaioin terms of 5 1 3 23 1 P
the weak interaction region hyperspherical coordinatds;. - NN 3) ny; 23 > 23 @
We start with the expression for this operator in the mass-scaled siny ;" ay;” ay P sinfy oy

Jacobi vectors? (j = 1, 2, 3), (3.8)
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and JF ;) = MIF P (@) (4.5)
. 2 fo b
jOF= L Oogng® 2y L O APFP(®)) = n(n + TIF (@) (4.6)
sing® 99 30 sin 0 ¢ ®
T (1)2 . .
(3.9) PEN(@) =G0 DREP @) (47)
Equation 3.9 is the standard expression f¥ in the space- | PEP(@,) = PP + DRF (D)) (4.8)

fixed coordinatest?,¢!?. Equation 3.8 results from the fact
that the space-fixed polara?n%)al)eéz),wz)-of r@ are indepen- [02PEr @) =121 1RFP D) (4.9)
dent of the Euler angles;bé ,657, 0) which, according to eq
. . N 2 ~

2.3, define the sfbfl transformation. As a resul @ PP @) = OGP + DRFP(P,)  (4.10)
changes as a scalar operator under a rigid rotation, the only
difference being that in its explicit expressio®,,¢'?) are and
replaced by the polar angles of? in bfl, namely ¢%?), A
»?3). The same is true for{?”, which can, in analogy to eq OF (@) = (— 1)'FX(®)) (4.11)
3.8, be expressed in terms af t®.y ). Finally, the polar o
angles {2y "?) of r'M in the bf3 frame are independent of  Those for the operators related ¥¢”" and 7" are chosen by
the Euler angles*®,y % 0) which define the bft-bf3 the requirement that the dependenceFdf(®;) on (" and
transformation, permittingi 511)2 to be written as in eq 3.7. It 77512) be multiplicative functions of each of these two variables
should be noticed that the partial derivatives in (3.7) through and will be given in section 4.2. All of the quantum numbers
(3.9) are defined with respect to the set of independent variablesincluded in section 4.3 are integers, and their ranges are also
0P ,pR)y @@ (12,23 o for each partial deriva- ~ discussed in that section. These hyperspherical harméfics
tive the remainihg variables in this set remain constant. are required to be regular at all of the poles of these equations.

As a result of egs 3:33.9, we have been able to express the Their usefulness lies in the fact that they constitute, for each
kinetic energy operatofi and the grand canonical angular weak interaction sub-region, a complete regular basis 3Bt in
momentum operatah? in terms of thel-arrangement-channel in terms of which the local hyperspherical surface functions of
hyperspherical coordinates, as desired. It should be noticed thathat sub-region can be expanded. These surface functions are
these two operators are independeni.df.e., are kinematic-  defined as the regular eigenfunctions of the operator
rotation-invariantf even though they contain individual terms, Az(q) )
such as the”’"” and (", that do depend on the chosen A(D.5) = Y\ ® @, 02 02 @23 (410
arrangement channal (P;:p) 52 @ PPy P2y ) (4.12)

which are, in addition, eigenfunctions afl,f]zsf and éf. They

4. Hyperspherical Harmonics in the Weak Interaction . ) . ; .
yperspherical Harmonics e vvea eractio are used, in turn, for expanding, in the weak interaction sub-

Region . X .
regions, the scattering wave function for the system.

4.1. Definition of the Hyperspherical Harmonics. In 4.2. Determination of the Hyperspherical Harmonics We
addition to the operators considered in section 3, let us define start out by determining the simultaneous eigenfunctions of
the angular momentum operatgr$® andJ by j @ a2 TGP 52 and 3, first in the space-fixed polar

T, angles ofr{"r?, andr{®, then change the sf polar angles of
1=t (4.1) r™ andr? to their bfl counterparts, and finally change the bfl
and polar angles offll) to their bf2 counterparts. We then add the

condition that these eigenfunctions also be eigenfunctions of

the operators related to”{"" and 7'? (see egs 4.47 and
4.48) and of A2 We finally require that they also be eigen-
al functions ofOp. This will result in explicit expressions for the
where the system’s total angular momentdris independent  pyperspherical harmonic?(®;) defined in the previous

of A. In addition, let]s' be the component afalong the space-  gaction.

. . ; _ _ _ _
fixed aX'SGZS'f_ o ‘i _ - 4.2.1. Angular Momentum Eigenfunctions in Space-Fixed
We. now de me_ t F?Jn‘j’}’l?jg)ju,';‘fgrac“"” SUb'reg yper- Polar Angles.The simultaneous eigenfunctions pﬁ”z,
spherical harmonic§,,", "4 "7 '4" (d;) as the simultaneous  @.2p andi @2 are given b
. . J Aoy A 2 I (1)2 i (2)2 - (1'2)2 I (3)2 J A 1 j },ZSf g
eigenfunctions of the operatod®, J=,A2j 5", 7 i5 7,05,
Or and two operators related {6 and 7'?* (see eqs 4.47 Vsl EZ)(d)(l) oD 9@ 5@ =
and 4.48), wheré€); is the function operator associated with mia2 A TA T T
Let us denote by, the set of quantum numbers

I=iP+iP P10 @)

(22
i

C(j 511) i 512) j 31,2); mjs;fl) mfgfa m?{mQ x
sf sf s A
P = (LIMyn, iP5 0259)  (a3)
i@
Y, 0P M) Y

M)
A

i? n@ L@
The eigenfunction-eigenvalue equations for the first eight n%fgz)(ei ¢ (4.13)

operators are

5 2e 2e s where the C are Clebsch-Gordan coefficiéhgnd theY!  are
JFHP,) =IJ + DAFH D)) (4.4) ordinary spherical harmoni@8. Similarly, the simultaneous
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eigenfunctions of ", ] @ 427 1©” 32 andJsare,inthesf  can be expressed, with the help of the Clebsch-Gordan Series
polar angles of thef)(J =1,2 3): as
1Dj@j12i@)
YJJ [P b b (9511), ¢(1)' 9(2), ¢(2)' 6(3), (pf)) = J(S) o (¢(3) 0(3) 0) D](B) (¢(3) 3) 0):
(1.2);(3)3. f m(“’m ¢ a ° ,
) CaUi15 1(1,2) M M;) x a1 o
m»<1,2>m><3) i
(112) o (12) . Z ci 2)J 3 1(12) m; (3)MJ) X
Vi (00000000 91N e (07.0) (4.04) 7P
j/l
D, 050,00 C (11212 i mit omit) (4.20)
with
—-J=M;=1 (4.15) With the help of the last two equations, eq 4.18 can be rewritten
as

4.2.2. Angular Momentum Eigenfunctions in sf Polar Angles
of r® and bfl Polar Angles of ", r{?. In view of the rela-

JWj@ja2i@ . (1,3) 1 (1,3),,(23),,(23) n3) 4 BN —
tion between the bfl and sf frames given in eq 2.3 and the Yy’ '+ 4 (¥] 9y 23y 2000 ¢ =

definition of the polar angles of? (j = 1, 2, 3) in those 2@ 4 12
frames given in Table 1, we can re-express the left-hand side c(j§ 1.2) ](3) mst M )
of eq 4.13, given in sf angles, in terms of the corresponding ., 4 . 4 '(1’2) T
bfl angles bsf Imja.2mimm;a.z)
1,2 3 1,2): (3 bfl bfl
YJ(12)](1)J(2)(9(1)¢(1)0(2)¢(2)) (¢ O) C(]( )JSI) m](lZ)m](3)MJ) C(J( )J( )10 1(12) m () >
m<12 ’ Z mS{lz)mb{}Z) D000 iBOIP 13) . (13),,(23),,(23 3) @
m;(1.2) Y"q]b&z? (r5 ( )w( )’VEI ) ( )) DMJm (12) ( )0( )O)
A
e (1,3 23),, (23
Yo, 02w Oy %) (4.16) (4.21)
A
ja2j )@ We can use the orthogonality of the Clebsch-Gordan coef-

whereD is a Wigner rotation function and * et o is related ficients with respect td, namely®

oY ﬂbfl andy’ ﬂbfz by an expression analagous to (4.13) with
1,2
all the sf quantmes replaced by corresponding bfl quantities: z C(l( )Ji J; mJ a2 m](3)MJ)

(12 @] @) " (lz)m (3)
YIEADIP, 03 ), (13),,23) ), (23) )
”ﬂ}@ G = (&P m 1(12) m](3)MJ) 057 (4.22)

S(1): (@) ; (1,2). aabfl,bfl _ bfl
CG;iir m](l)mj(z)mJ(IZ) X

b bfl
mHm;e) to perform the sum overmffllz), beal) andJ':

J” 13),, (L3) vi? 2,3) (23
Vi (y( Wi ))Y (V( Wi (@17) (ORI (13) (1.3, 2.3) ., 23) @) 4B —
Y s a0 e) =

Replacement of eq 4.16 into eq 4.14 gives the eigenfunctions 2 513) + 1)|¥2 3 ot o
Yam’(z)‘m)‘ * in the desired angles: T Z C(iMjP3; m (12)0m (12)) X
J(l) (2 (1,2); (3) i mj (12
i, (13) 1 (1,3) 1 (2,3) 1 (2.3) n(3) 1 (B)y —
YM’1 LA ( 1/) YY) 101 ,¢1 ) = J(12)J (1)(2) @3) . 3) (2 3) (23 (3) @
’ Y iy ’ )) Dy, b ,057,0)
(125 4 sf M;m; & 2)
Caiiz 1(1,2)mj§13)MJ) X
miLamitamilla) (4.23)

(12) a2jwj@
DI ey (¢(3) (S)O)YJ jDj ¢ P (13)w(13),y323)w512,3))x

mii2m; (2 m( 12 We note that the summation inden})flla is not only the

quantum number for the bfzcomponent Oh 2 put also that

of J. This is due to eq 4.2 and the fact that singd lies

along Gz -, the bfl z component ijl) vanishes. Let us

Since? henceforth replace that index b§;. Using the symmetry
relatiory®

Vi, 0900) (4.18)
A

©® ¢(3))_(L1)1/2DJ( (@P69,0) (4.19)
AP 4 ' : C(j*j®ro0Q)=

o, [ 23+ 1
(-1 Q(ZJTH) CEIFP Q. - 2,0
* (4.24)

J()

m? (1 2)

we see that eq 4.18 contains the product of two Wigner rotation
functions of the same Euler angle&fﬁ@,@f’,O). This product
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eq 4.23 becomes YJJ(DJ(Z)](“)I <3>( @, 2)¢(1 2)“2 3)¢(2 3) (3)¢(3))
0 @) (L2 12[ 5 (2 12
YAPIIEL 09,49 ) 23, 23 O 4O = 23+ 1|72 P+1
X
2J + 1\v2 aa- 4z A
( ) Z( eGP @, —9,,0) x Z( )2 gj42] 9 0, ~0, 0) x
A YAl yil
YIEARIP, M3 ,08) @8, C. 3>)DJ ¢(3) 6%).0)
% ’ 4.25) Die @200 5 CUPIRIT %k u0ke) x
ki®
4.2.3. Angular Momentum Eigenfunctions in sf Polar Angles j2 @23 ,(1) 12) (12
of r®, bfl Polar Angles of?, and bf3 Polar Angles of{". dg <1>(7/ ))Yk](l) ) (4.30)

We now wish to convert the eigenfunctions of eq 4. 25 from

(1.3) (@) i . . i @j12]@) . .
tqufol(?g)a}ng;?;/f 1/;] of rj Ir(;.bfl to '(;S. porl;’:lr angles A This is the expression onJl D111 in the desired polar
vi O ;7 in bf2, for the reasons discussed in the paragraph oo (12, @2y o r® in bf3 223) , @) of 1@ in bf1
preceding eq 2.7. This can be accomplished with the help of gles g Wi ) ! % |
the relation between the bfl and bf3 frames given in eq 2.3.
The corresponding spherical harmonics associatedr\ﬁ?thre

and 09,¢?) of r in sf. It should be noted that the ranges of
the summation indice®2, andk,» are implied in the corre-
sponding ClebschGordan coefficients:

related by®
_ _ 2 i (12)
Y“u( (9),,0.9) _ J=Q,; =< 1;77=Q;, <7 (4.31)
m; e
and
jo (2,3) . (2.3) ll 12) (1,2
2 Dm0 5750 Yoy ) (4.26)
) -1 ke =if i$7=ke=if? (432)
We now replace this into eq 4.17: In addition, the ranges Gf? andj{? are determined by the
triangle inequalities
J(lz)J D@, (13)  (13),,(273) (2,3)) _
m< s RV B M) <02 <0 4
1 2 1,2 bfl _ bfl __ bfl “ |Sjl' SJA +Jl (433)
C(J( ! )J( , m](1>mj(z)mj(12)) X
mhmpmef and
@) @ ) ) )
D]mb? mbfl (y; (29 ‘)/(2 ) ,0) YJ (j/ (2.3) 1/)(2 3)) X [J—] g1'2)| <] 5.3) <J+] 511’2) (4.34)
'() (y 12 2 (4.27) 4.2.4. Eigenfunctions oA2 Let us now determine simulta-

neous solutions7 of egs 4.4 through 4.10. Because of eqs 4.4,
4.5, and 4.74.10, they must have the form

We can use expressions analogous to egs 4.19 and 4.20 to get
T;) = {0 POy e

@ @
bel bf3(1’0(23)7)/5123) O)YJ (y(zs) (23 _

m (1)m (¢ (1 2) (1 2)’,}/512 3) ¢ (23) 9(3)'(]5513)) (4.35)
7 gz Lq\v2 oo _ o _
Z c(j¢ (1) (2) ,(1 2). m]b(fll)mjb(le)m]b(fllz)) Replacement into eq 4.6 with? given by eq 3.4 results in
47 (1.2=]7 W—i
] |l 13 |
. 1 .
1(1) 23) (23 1); @1 (1,2). --bf3 - bf3 /(l)—}-/’(z) f+
mbfé)mbﬁ)(w( Ly #3000 G ¢, » M) om <1)) sify®
(4.28) ) (1)(J @4 1) (2)(J @ 4 1) (3)(J G 1)
o . . @ @ (1) 2 2
Substitution into eq 2.47 and the use of an orthogonality relation si’ psin’ n? oy sinf cos 7§
between the Cleb?f;ekGordan coefficients similar to eq 4.22 = n(n + 7)h%f (,“ ,,h)) (4.36)

results in, aftemy’;., is replaced by2; and mjbff’) by K

This is a second-order partial differential equation in the two

2i @ 1/2 2)
AP 27 +1 independent variableg? and 77( . Let us seek separable
12)j M@ A
YJQ" I = ZC(Jﬁl)ng Jﬁl 2 k,mOk,m) X solutions of the type
g 4z 3
) fir P n®) = u@mP)on? 4.37
szm(l)(w(zs),Vﬁzs)o)YL m(),(lz) (42) (4.29) (7i7m;7) = u(n; )o(n;”) (4.37)

Substitution into eq 4.33 yields the two ordinary differential
Finally, replacement of eq 4.29 into eq 4.25 yields equations
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WGP +1) jOO+ 1)

}7(1)2u(77 (1)) + h2 u(y (1)) =

P sinf cos 5P

v(v + AR u(n) (4.38)
and
(3) (3)

. + 4) (J;’+1)
ey (@) + LD (@) =

g g sinf @ cos ¥

n(n+ 7}i*v(n?) (4.39)

wherev(v + 4) is a separation constant. It is put in this form
because it turns out that, for regular solutiong a nonnegative
integer that can be considered to be the quantum number for
7Y since /@ is related to the eight independent angular
momentum operatorg””, A2, 32, |, J&, [ @ J&¥ and

j @, with corresponding independent quantum numbers,

<

J. Phys. Chem. A, Vol. 108, No. 41, 2008901

n—v—j®>0andeven (4.45)
as a result of which we have
n—(P+j?+j® > 0andeven (4.46)

We conclude that has the same parity #§” + ] @, n — v the
same parity a$'”, andn the same parity ag” + j @ + j .

As a result, all the factorials in eqs 4.42 and 4.43 are of non-
negative integers and all the gamma functions are of half odd
positive integers which makes them easy to evaluate.

The i1 (%) and v (P) are eigenfunctions of the
operators that appear in the left hand side of eqs 4.38 and 4.39,
namely,

T WP ()N
QI N (7751))_

(1)(J @4 1) (2)(J @4 1)

o2, (1) 2
J, My, | (1), 1512), jﬁl’z), andjf), eq 4.39 does not involve a new L3 ) TR sin 77(1) 005277(1) (4.47)
independent quantum number. Equations 4.38 and 4.39 are of 4 A
the form of eq 22.6.4 of Abramowitz and Stegtirand their and
regular solutions can be expressed as
2 (2)v) @F _
Ul 19y @y = T 0P =
(3) (O
wj @ @ @ (j O+1/2,] D+1/2) P v(v +4) ;" +1)
NLTE sinn ) cosn )P g, G o) (cos 1Y) U VR e (4.48)
(4.40) sin® ;¢ cos ?
and and have eigenvaluegy + 4)h? andn(n + 7)h? respectively.
These are the”"- and " -related operators alluded to in
e (3)( (2)) the beginning of sections 4.1 and 4.2. The simultaneous regular
solutions of egs 4.4 through 4.10 can, as a result, be written as
N J ®) @\ @) Pp (+1/2,] 9+112) (2) ’ !
+(sinn7) (cosn ;) Pllz(“ v '(3)) (cos 1) M @) 1.2 @) e €
(4_41) C//,T;':/I“l,1 N b ((I)) — ul i (7](1)) B (,7(2)

In these expressions, the, @ are Jacobi polynomials of

degreey, of > —1 are real numbers, and tﬁéj 212 and

J<1J(2>(12)(3) 1,2 1,2) . (23 2,3) n(3) (3
YJ B (( )w( ) ( )w( )0()’(]551)) (4_49)

N;‘f coefficients are normahzatlon constants determined by the 4.2.5 Eigenfunctions of {OTo complete the determination

D@
condition that theuJ 1 andy ¥ are orthonormal when usin
n

the volume elementgV b and dv, ., of egqs 2.31 and 2.32,
respectively. They are g|ven by °

NI —

(2v+4)[ (=i =iP)!

1/2
S FiPFiP+2)!

(v+1<1>—1(2>+3)]r

1 . .
E(V -] 511) + J ELZ) + 3)]
(4.42)

and

e _
n

N

s B =9 v 1957

’ (n+v+J(3)+4)]'F[ (n+v+j(3)+3)]
(4.43)

The quantum numbers and v are non-negative integers
satisfying the conditions

v— (" +j? > 0andeven (4.44)

and

of the hyperspherical harmonics defined in section 4.1, we now
require that they satisfy eq 4.11. Let us apphyto eq 4.49 and
use the fact that~! = | as well as eq 2.24 to get

@)

+(n; +(n
(3/511’2),271 _ U)ELZ) (2, B)n_ w(Z ,3)
71— 09 x4+ ¢ (4.50)

@ 0.2 @

A 7-Ini Y] i M Ly, v
O s U/ ) v,

(P) =

(D @) (1,2); (3
YJJE)]&)J; )J;)
MJ

(3))

We now use the relatiof%

DYy.o,09.0%.p %) = "0}, (pP)e Y (a.51)
and
dﬂ"JQA(n B 0513)) = (_1)J_MJd§AJ,7gl(¢513)) (4.52)
to obtain

(3)

o,(t 9P — 007 — P9 =

(_1)J+QlDJ o, (¢(3) (3) (2 3)) (4 53)

In addition, from the definition of spherical harmonféswe
have
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(1)

k,(l)

()

(f22m =y %) = (CLS V00 E?) (@4.59)

Use of eqgs 4.30, 4.53, and 4.54 results in

i (D) (2 (1.2); @3
YIS

(V(l 2on 1/)(1,2) (2,3)77: _ 1/)(12)” _ 053),ﬂ + ¢£3)) _
2341 12 2] @ 4 q\v2

Ar 4
Z(_l)‘]+] (1, Z)YJ (3(1])-) (')/ 1, 2) (l 2)) C(\]] (1, 2)1 f{l)lgl'_gbo) %

X

(2); 1.2

Dﬂnfszl(‘b(@ 9(3) ’/)(2 3))ZC(J (1)J @ kJu)O kJ (1)) x
k,(l)
j (12 (&)
i E CUING 0 ) (4.55)

The appearance of-Q; and kjm in the subscripts of

D,J\,I g, andY,k] o suggests that we change summation indices ¢
from Q, and kj(l) to —€2; and —k 4, respectively. To that
A

effect, the relatiorié
C(‘J] (L2 (3)1 QAIQAIO) =

(— 1)1(12) J(3)C(J](12) ®).

i —Q,,Q,,0) (4.56)

C(J() (2) (12) _k,u)vo k;(n)—

(—)!PIECG PP K 0.0, K o) (4.57)

and 34

ja2

d”’ Q; k](l)(y(zs _( :I-)kj(l)QdQ,1 (1)(7/(23 (458)

will be employed. Proceeding as indicated, we obtain
Y"z/jlgl)j ELZ)J. S.LZ)j 53) «
J
2,3 12).,(23 2,3 3 3y _
(79,21 =y 2y P9 — 29— 00— 9f) =
(_1)1 W+ @1 (B)YJJ Wj @) 1.2 @)

(12

2y ,yf Dy9609,60) (4.59)

Kuppermann

whereu, v, andY are given, respectively, by egs 4.40, 4.4, and
4.30, withM; being an integer in the usual range given by eq
4.15 and the remaining quantum numbers being non-negative
integers subject to the constraints of eqs 4.33, 4.34, 4.44, and
4.45.

5. Relation between Weak and Strong Interaction Region
Coordinates

The coordinates used in the strong interaction of region of
configuration space are the row-orthonormal hyperspherical
coordinates developed previousland in terms of which
hyperspherical harmonics have been obtained analytiE4lity.
performing scattering calculations for tetraatomic systems using
those coordinates in that region and the present gneB,j in
the weak region, it is necessary to obtain the relation between
those two sets of coordinates. This can be obtained from the
expressions of the Jacobi matr;zii(f of eq 2.1 in terms of such
coordinates. To that effect we initially choose the bf2 coordinates
together with eqgs 2.13 and 2.14 to relpﬁéto p 77511),7“ ¢>

3) 429,23 £33 The relation of p5' to the row-
orthonormal hyperspherrcal coordinatag,b;.c;,x.0.0,6,05,
09,0 is3

py = (—1) R (@}b},c;) p N (0,0) R (08,062,609 (5.1)

where y is a chirality coordinate, &;,b;,c;) are the Euler
angles which rotate the space-fixed frame to the principal axes
of intertia frameGx,y;,z/, p is the same hyperradius as in the
weak interaction regionf(¢) are principal axes of inertia hyper-
angles, §",0,0%) are internal hyperangles, and &) is

the matrix

sinf cos¢p O 0
N(¢,¢) = |0 sinf sing 0 (5.2)
0 0 cosf

The relation between these two sets of coordinates can be
obtained by identifying the right hand side of eqs 5.1 and 2.13
and performing some lengthy but straightforward algebra, as
described previousl§.To finally obtain the relation between
the row-orthonormal hyperspherical coordinates and the present
weak interaction oneso(®;), it suffices to expresg(lﬁ),yﬁm)
in terms of thed®, angles of eq 2.10. This is easily accomplished
using the bf2-bf3 coordinate transformation obtained from eq

We now replace eq 4.59 into eq 4.50 and make use of the fact2-8 and Table 1:

thatj " + j @ + j ¥ has the same parity @ as remarked after
eq 4.46, to get

@j @2
A A

A. 7 i
O,7MJ; A

2] Elvz)j 53)

(@) = (1" 735 T (@)

(4.60)

For a givenll, in order for eq 4.11 to be satisfied, it suffices
to maken have the same parity d3:

(-1)"= (1"

We will designate such an by np. As a result, the regular
simultaneous solutions of eqs 4.4 through 4.11 are

(4.61)

®, @ j®, (2
Fpl((l)/‘t) — 1/J (77( )) nj § (77( )) x
Jj Wj <Z) 12;@), (1,2 1,2 23 2,3) ,(3) . (3
Yrvllj'J“A i5 (( )1/)( ) ( 5 ) () ()) (4.62)

rMsiny ¥ cosg? 1P siny®¥ 0
rPsinytsingd 0o 0 |=

rM cosy ) r@cosy?d @
rPsinytcosyt? 0 —r®siny@d

R0y %20)[r¥siny?sinyt? 0
(1,2)

0

(@ 1O cosy @9

(5.3)

r'® cosy

From this expression we obtain

cosy +9 =

—siny @3 siny 2 cosy M2 + cosy ?? cosy 2 (5.4)
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siny(l's) cos§(1'3)= irreducible representation;®f three identical objects. These
2 i ; . ) : _
23) i (12) 102 1 o (@23 2 irreducible representation harmonics, both in the weak and
cosy;“siny; cosy; 7+ siny ;7 cosy ;" (5.5) strong interaction regions, are useful for decreasing the size of
the matrices that must be handled in numerical calculations.
and Using the row-orthonormal hyperspherical coordinates (which
differ from those employed in the weak interaction sub-
siny ¥sin g = siny P singy 42 (5.6) regions)?—* we had previously developed explicit expressions

for tetraatomic system hyperspherical harmonics in the strong
interaction region of configuration spaeé& in which all four
atoms are relatively close to each other. These harmonics form
uniquely determiné®3in the 0 to 2 range, also in terms of a complete set in the corresponding hyperangles, and since a
. Sz . single such set is used, they do not lead to supercompleteness
those angles. This completes the derivation of the relation - on 9o :
between the strong and weak interaction region hypers herical.pmblen.]S elthe_?. L relathn betwee_n the strong a_nd weak
g g ypersp
. interaction region hyperspherical coordinates, which is needed
coordinates. . h S
to use the corresponding hyperspherical harmonics in a scat-
tering calculation, was also described.
Since the hyperspherical harmonics, both in the strong and
We have derived in this paper explicit analytical expressions weak interaction regions, incorporate all of the angular mo-
for the hyperspherical harmonics of tetraatomic systems in the mentum couplings, including the Coriolis couplings, the cor-
weak interaction region of configuration space, comprised of responding local hyperspherical surface functions as well as the
sub-regions in which either an atom and a triatom or two diatoms associated scattering equations involve purely potential cou-
are sufficiently far away from each other for the exchange of plings51°even though body-fixed frames are used. This simpli-
atoms between them to be negligible. The nine hypersphericalfies the scattering equation formali#end the related computer
coordinates chosen are such that in these sub-regions thgyrograms. The approach described in this paper should permit
potential energy function, which depends in general on six of efficient benchmark-quality calculations of state-to-state differ-
these coordinates, depends strongly on only two (for the two- ential and integral cross sections for some tetraatomic systems,
diatom sub-regions) or three (for the atetniatom sub-regions)  uysing presently available parallel high performance computers.
of these coordinates. Each of these sub-region hyperspherical
harmonics forms a complete set of functions in the space Acknowledgment. Gert D. Billing was a colleague with
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6. Summary and Conclusions
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