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Hyperspherical harmonics as functions of hyperspherical coordinates appropriate for describing the weak
interaction region of nuclear configuration space of tetraatomic systems are derived. They constitute an efficient
basis set for calculating the corresponding local hyperspherical surface functions that avoid overcompleteness
problems. Together with the hyperspherical harmonics for the strong interaction region of that space obtained
previously, they should permit efficient benchmark-quality calculations of state-to-state differential and integral
cross sections for those systems.

1. Introduction

We have been developing a method for performing accurate
calculations of state-to-state cross sections of tetraatomic
chemical reactions by solving the time-independent Schro¨dinger
equation using hyperspherical coordinates. Progress in the
calculation of reaction cross sections using time-independent
as well as time-dependent methods has been given in a recent
review,1 where a large number of references can be found. In
the approach considered in the present paper, nuclear config-
uration space is divided into two regions: (a) a strong interaction
region, in which the system’s four atoms are close to each other
and in which bonds are broken and made and (b) a weak
interaction region, comprising sub-regions in which the system
has separated into pairs of molecules, either two diatoms or an
atom and a triatom, which interact weakly, and in which the
breaking and making of bonds does not take place. In the strong
interaction region, row-orthonormal hyperspherical coordinates,
consisting of a hyperadius and eight hyperangles, are used.2,3

These coordinates treat “democratically” all four atoms and
describe the system equivalently, regardless of which molecular
pairs emerge from that region. In the weak interaction region,
Delves hyperspherical coordinates, still comprising a hyperadius
and eight hyperangles, are used.2,4 The hyperangles include
appropriately chosen geometrical angles between Jacobi vectors.
These coordinates are not “democratic”, and different ones are
appropriate for and used in different sub-regions, in which
different pairs of molecules have become separated. In both the
strong and weak interaction regions, local hyperspherical surface
functions (LHSF) are defined to be eigenfunctions of the
system’s Hamiltonian at a frozen hyperradius and of a set of
other operators that commute with it. The overall scattering
calculation methodology consists of expanding the scattering
wave function in those local hyperspherical surface functions
and propagating the resulting coupled ordinary differential
equations in the hyperadiusF from very small values of this
variable, at which the strong repulsive forces between the atoms
cause the wave function to be negligible, to large values, at
which the system has separated into noninteracting pairs of
molecules.4,5 This approach or related ones have previously been
used for triatomic systems.6-18

The calculation of the LHSF can be performed by expanding
them in hyperspherical harmonics, which are eigenfunctions of
the system’s grand-canonical angular momentum operator3 and
of other appropriate operators.5,19 These harmonics behave
regularly at the angular poles of the kinetic energy operator.
They have been determined analytically for tetraatomic systems
for the strong interaction region5,19 and form a complete set of
basis functions for this region that span “democratically” the
entire range of all eight hyperangles. Since a single set of
such functions is used, this avoids supercompleteness prob-
lems, which result and must be overcome when a union of
several overlapping complete sets of basis functions (which
are therefore not linearly independent of one another) are
used.20-22

It is possible to utilize these hyperspherical coordinates and
harmonics in the weak interaction region also. Such use would
be, however, prohibitively inefficient, since the energetically
accessible regions of configuration space constitute a small
fraction of that space in the weak interaction region. As the
row-orthonormal coordinate hyperspherical harmonics span
rather uniformly that entire space, employing them for expanding
the highly localized weak interaction region LHSF would require
an inordinately large number of basis functions to achieve
convergence, making this approach inadequate. An alternative
is to use, for each sub-region of the weak interaction region, a
different set of Delves hyperspherical coordinates, better suited
for describing the geometry of the pair of weakly interacting
molecules for that sub-region. This should lead to rapidly
converging expansions when appropriate basis set contractions
are also introduced. The resulting weak interaction LHSF
associated with different sub-regions have a negligible overlap,
again avoiding overcompleteness problems.

In the present paper we derive analytical expressions for the
hyperspherical harmonics in the weak interaction sub-regions
of configuration space, desirable for expanding the correspond-
ing LHSF. Together with the strong interaction region surface
functions they are appropriate for reactive scattering calculations
of tetraatomic systems. In Section 2 we define the different
frames and weak interaction region hyperspherical coordinates
used, derive the change of the latter under inversion of the
system through its center of mass, and obtain the volume
element in these coordinates. In Section 3 we give expressions
for the kinetic energy and grand-canonical angular momentum
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operators. In Section 4 we define and derive explicit analytical
expressions for the corresponding hyperspherical harmonics, and
in Section 5 we describe the relation between the weak and
strong interaction region hyperspherical coordinates. Finally, in
Section 6 we give a summary and conclusions.

2. Frames and Coordinates

2.1. Definitions.Let us consider a tetraatomic system whose
nuclei and corresponding masses arePi andMi (i ) 1, 2, 3, 4).
Let λ denote a clustering scheme of these nuclei that defines
the associated Jacobi vectorsr′λ(j) (j ) 1, 2, 3).2-4 Two such
schemes, denotedλ ) R andλ ) â, are depicted in Figure 1.
The first is appropriate for describing the atom-triatom weak
interaction sub-region of configuration space where the triatomic
nuclear systemP1P2P3 is far from the fourth nucleusP4, whereas
the second is well-suited for the diatom-diatom weak interac-
tion sub-regionP1P2 + P3P4. Denoting byr λ

(i) the correspond-
ing mass-scaled vectors, we define the associated space-fixed
Jacobi matrix by

wherexλ
(j), yλ

(j), andzλ
(j) are the components of ther λ

(j) in either of
the two space-fixed Cartesian framesOxsfysfzsf or Gxsfysfzsf (the
latter denoted simply by sf) whereO is the space-fixed origin
andG is the center of mass of the system. The axes ofGxsfysfzsf

are parallel to and have the same senses as the corresponding
Oxsfysfzsf axes. Let the polar coordinates of ther λ

(j) in either of
these frames be (r λ

(j),θ λ
(j),φ λ

(j)). In terms of these coordinates, the
Jacobi matrixFλ

sf can be rewritten as

whererλ is the diagonal matrix whose diagonal elements are
r λ

(1), r λ
(2), andr λ

(3), respectively.
For the purposes of the present paper, it is convenient to

define threeλ-arrangement-channel body-fixed frames, labeled
G xλ

bfi yλ
bfi zλ

bfi (i ) 1, 2, 3), or simply bfi, by the Euler angle
rotations defined in eq 2.3. The angles appearing in this diagram
are a subset of the polar angles of ther λ

(j) given in Table 1. All
of the polar angles in the bfi frames can be expressed in terms

of the θ λ
(j), φ λ

(j) (j ) 1, 2, 3) with the help of the rotations
defined by eq 2.3. For example, the four anglesγ λ

(j,3),ψ λ
(j,3) (j )

1, 2) are derived from the transformation of Cartesian coordi-
nates (expressed in terms of polar coordinates) resulting from
the sffbf1 axes rotation:23

In this expression,R(a,b,c) is the rotation matrix associated with
Euler anglesa,b,c.

It should be noted that that rotation placesGzλ
bf1 along the

r λ
(3) vector, and thereforeγ λ

(1,3) and γ λ
(2,3) are respectively the

angle betweenr λ
(1) or r λ

(2) and r λ
(3), in the 0 to π range.

Similarly, the rotation of bf1 to bf3 by Euler angles (ψ λ
(2,3),

γ λ
(2,3), 0) places theGzλ

bf3 axis alongr λ
(2) and thereforeγ λ

(1,2) is
the angle betweenr λ

(1) and r λ
(2), also in that range. The polar

anglespλ
(3) andqλ

(3) of r λ
(3) in bf3 are easily derived from

which results in

as given in Table 1.
It should also be noted that the anglesφ λ

(3), θ λ
(3), ψ λ

(2,3) of eq
2.3 and Table 1 are Euler angles that rotate sf to bf2. In
particular,ψ λ

(2,3) is the angle between the (r λ
(3),Gzsf) and (r λ

(3),
r λ

2) half-planes, havingr λ
(3) as a common edge, with the first

containing the positivezsf half of theGzsf axis. This angle, in
the 0 to 2π range, is measured counter clockwise, as viewed
from the tip of r λ

(3), from the first to the second of these half-
planes, and therefore describes the tumbling of the system
around r λ

(3). As a result, these Euler angles are external
coordinates that orient bf2 with respect to sf. The potential

Figure 1. Two clustering schemes for a tetraatomic system corre-
sponding to two weak interaction sub-regions of configuration space.

Gλ
sf ≡ (r λ

(1) r λ
(2) r λ

(3)) ) (xλ
(1) xλ

(2) xλ
(3)

yλ
(1) yλ

(2) yλ
(2)

zλ
(1) zλ

(2) zλ
(3) ) (2.1)

Gλ
sf ) (sin θλ

(1) cosφλ
(1) sin θλ

(2) cosφλ
(2) sin θλ

(3) cosφλ
(3)

sin θλ
(1) sinφλ

(1) sin θλ
(2) sinφλ

(2) sin θλ
(3) sinφλ

(3)

cosθλ
(1) cosθλ

(2) cosθλ
(3) ) rλ

(2.2)

TABLE 1: Relation between the Cartesian Frames

polar angles

frame r λ
(1) r λ

(2) r λ
(3)

Gxsfysfzsf θ λ
(1),φ λ

(1) θ λ
(2),φ λ

(2) θ λ
(3),φ λ

(3)

Gxλ
bf1ybf1zbf1 γ λ

(1,3),ψ λ
(1,3) γ λ

(2,3),ψ λ
(2,3) 0,0

Gxλ
bf2yλ

bf2zλ
bf2 γ λ

(1,3),êλ
(1,3) γ λ

(2,3),0 0,0

Gxλ
bf3yλ

bf3zλ
bf3 γ λ

(1,2),ψ λ
(1,2) 0,0 γ λ

(2,3), π

(r λ
(j) sin γλ

(j,3) cosψλ
(j,3)

r λ
(j) sin γλ

(j,3) sin ψλ
(j,3)

r λ
(j) cosγλ

(j,3) ) )

R (φλ
(3),θλ

(3),0) (r λ
(j) sin θλ

(j) cosφλ
(j)

r λ
(j) sin θλ

(j) sinφλ
(j)

r λ
(j) cosθλ

(j) ) (2.4)

(sinpλ
(3) cosqλ

(3)

sinpλ
(3) cosqλ

(3)

cospλ
(3) ) ) R (ψλ

(2,3), γλ
(2,3), 0) (001) (2.5)

pλ
(3) ) γλ

(2,3) qλ
(3) ) π (2.6)
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energy function V, which is a function of internal coordinates
only, does not depend on those angles. Such internal coordinates
could be chosen to be the six internuclear distances between
the four nuclei. However, to obtain simple expressions for the
hyperspherical harmonics appropriate for the weak interaction
region (as shown in section 4), it is better to use instead the
lengths r λ

(1), r λ
(2), and r λ

(3) of the three mass-scaled Jacobi
vectors plus the three internal anglesγ λ

(1,2), ψ λ
(1,2), andγ λ

(2,3), in
terms of which of those internuclear distances can be expressed.
The choice of these angles is justified not only by the simplicity
just mentioned but also by how the potential functionV depends
on them in the weak interaction sub-regions of configuration
space. Indeed, let us consider first the sub-regions in which an
atom is far away from a triatom. Letr λ

(1) andr λ
(2) be the mass-

scaled Jacobi vectors of the triatom, andr λ
(3) the mass-scaled

position vector of the atom with respect to the center of mass
of the triatom, as depicted in schemeR of Figure 1 for the non-
mass-scaled versions of these vectors. Then, asr λ

(3) ∼ ∞, V
becomes independent of bothψ λ

(1,2) (the tumbling angle of the
triatom aroundr λ

(2)) and γ λ
(2,3) while still depending strongly

on γ λ
(1,2). If we consider next the asymptotic sub-regions in

which two diatoms are far from each other, we use the Jacobi
vectors depicted in schemeâ of Figure 1, and notice that as
r λ

(3) ∼ ∞, V becomes independent not only ofψ λ
(1,2) andγ λ

(2,3)

but also ofγ λ
(1,2). In either case, the asymptotic independence

of V on ψ λ
(1,2) and γ λ

(2,3) is a very useful property of this
function, which justifies the choice of these two angles. The
selection ofγ λ

(1,2) as the third angle is justified by its impor-
tance in describing the potential function of isolated tri-
atoms.

It is also desirable to replace the three lengthsr λ
(1), r λ

(2), and
r λ

(3) by a single length, the hyperradiusF, and two hyperangles
η λ

(1) andη λ
(1), defined by2,4

and

The hyperradiusF, together with the set of eight anglesΦλ
defined by

will hereafter be called the “λ weak interaction region hyper-
spherical coordinates”, orλ hyperspherical coordinates simply,
and we will express the corresponding hyperspherical harmonics
in terms of Φλ. These coordinates are very appropriate for
describing the geometry of the pairs of molecules in thisλ
region. It should be noticed that (θ λ

(3), φ λ
(3)), (γ λ

(2,3), ψ λ
(2,3)), and

(γ λ
(1,2), ψ λ

(1,2)) are the polar coordinates ofr λ
(1), r λ

(2), and r λ
(3) in

the sf, bf1, and bf3 frames, respectively.
With the help of eqs 2.3, 2.7 through 2.9, and Table 1, we

can express the Jacobi matrixGλ
sf defined by eq 2.1 in terms of

the body-fixed Jacobi matricesFλ
bfi (i ) 1, 2, 3) by

and

where

Equations 2.11 through 2.17 are useful not only to interrelate
the variables that appear in them but also to determine how
they transform under different operations. One such example
is given in section 2.2 below.

2.2. Effect of the Inversion Operator on the λ Hyper-
spherical Coordinates.Let Î be the operator that inverts the
system through its center of mass. Its effect on ther λ

(j) (j ) 1,
2, 3) is to transform them to-r λ

(j), and therefore its effect on
the Gλ

sf of eq 2.1 is

With the help of this expression we can use eqs 2.2 and 2.11
through 2.17 in a straightforward manner to get the effect ofÎ
on all the coordinates defined so far. The result is

and

Gλ
bf1 )

F(sin γλ
(1,3) cosψλ

(1,3) sin γλ
(2,3) cosψλ

(2,3) 0

sin γλ
(1,3) sin ψλ

(1,3) sin γλ
(2,3) sin ψλ

(2,3) 0

cosγλ
(1,3) cosγλ

(2,3) 1
) n(ηλ

(1),ηλ
(2))

(2.12)

Gλ
sf ) R̃(φλ

(3),θλ
(3),ψλ

(2,3)) Gλ
bf2 (2.13)

Gλ
bf2 ) F(sin γλ

(1,3) cosêλ
(1,3) sin γλ

(2,3) 0

sin γλ
(1,3) sin êλ

(1,3) 0 0

cosγλ
(1,3) cosγλ

(2,3) 1
) n(ηλ

(1),ηλ
(2))

(2.14)

Gλ
sf ) R̃(φλ

(3),θλ
(3),0) R̃(ψλ

(2,3),γλ
(2,3),0) Gλ

bf3 (2.15)

Gλ
bf3 ) F(sin γλ

(1,2) cosψλ
(1,2) 0 0

sin γλ
(1,2) sin ψλ

(1,2) 0 -sin γλ
(2,3)

cosγλ
(1,2) 1 cosγλ

(2,3) ) n(ηλ
(1),ηλ

(2))

(2.16)

n(ηλ
(1),ηλ

(2)) ) (sin ηλ
(2) sin ηλ

(1) 0 0

0 sin ηλ
(2) cosηλ

(1) 0

0 0 cosηλ
(2))

(2.17)

ÎGλ
sf ) -Gλ

sf (2.18)

Î(r λ
(1),r λ

(2),r λ
(3),F,ηλ

(1),ηλ
(2)) ) (r λ

(1),r λ
(2),r λ

(3),F,ηλ
(1),ηλ

(2)) (2.19)

Î(θλ
(1),θλ

(2),θλ
(3),γλ

(1,2),γλ
(1,3),γλ

(2,3)) )

(θλ
(1),θλ

(2),θλ
(3),γλ

(1,2),γλ
(1,3),γλ

(2,3)) (2.20)

Î(φλ
(1),φλ

(2),φλ
(3)) ) ((π + φλ

(1))mod 2π,

(π + φλ
(2))mod 2π,π + φλ

(3) mod 2π) (2.21)

Î(ψλ
(1,2),ψλ

(1,3),ψλ
(2,3)) ) (2π - ψλ

(1,2),(π - ψλ
(1,3))mod 2π,

(π - ψλ
(2,3))mod 2π) (2.22)

Îêλ
(1,3) ) 2π - êλ

(1,3) (2.23)

r λ
(1) ) F sin ηλ

(2) sin ηλ
(1) (2.7)

r λ
(2) ) F sin ηλ

(2) cosηλ
(1) (2.8)

r λ
(3) ) F cosηλ

(2) (2.9)

Φλ ≡ {ηλ
(1), ηλ

(2), θλ
(3), φλ

(3), ψλ
(2,3), γλ

(2,3), ψλ
(1,2), γλ

(1,2)} (2.10)

Gλ
sf ) R̃(φλ

(3),θλ
(3),0)Gλ

bf1 (2.11)
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The effect ofÎ on the hyperspherical coordinates for the weak
interaction region is therefore:

2.3. Volume Element.The volume element dV associated
with the coordinatesF,Φλ can be derived by starting with the
polar coordinates (r λ

(j),θ λ
(j),φ λ

(j)) (j ) 1, 2, 3) in terms of which it
is given by

We first introduce the transformation defined by eqs 2.7
through 2.9 which results in

The transformation fromθ λ
(2),φ λ

(2) to γ λ
(2,3),ψ λ

(2,3) is achieved, as
indicated in eq 2.3 and Table 1, through the rotation of sf to
bf1 by Euler angles (φ λ

(3),θ λ
(3),0). Sinceθ λ

(2),φ λ
(2) are indepen-

dent ofθ λ
(3),φ λ

(3), this is a rigid rotation that does not change the
form of the corresponding angular volume element:

Similarly,

Finally, theγ λ
(1,3),ψ λ

(1,3) to γ λ
(1,2),γ λ

(1,2) transformation is achieved
by rotating bf1 to bf3 by Euler angles (ψ λ

(2,3),γ λ
(2,3),0). Since

γ λ
(1,3),ψ λ

(1,3) are independent of those angles, the corresponding
volume element is also unchanged:

Substitution of eqs 2.7 through 2.9 as well as eqs 2.26 through
2.29 into eq 2.25 gives the desired result:

As a result, the appropriate volume elements for theη λ
(1) and

η λ
(2) hyperangles are

and

3. Kinetic Energy and Grand Canonical Angular
Momentum Operators

Let us now obtain the kinetic energy operatorT̂ in terms of
the weak interaction region hyperspherical coordinatesF,Φλ.
We start with the expression for this operator in the mass-scaled
Jacobi vectorsr λ

(j) (j ) 1, 2, 3),

whereµ is the reduced mass of the tetraatomic system given
by

and ĵ λ
( j)2

is the square of the angular momentum operatorĵ λ
( j) of

vector r λ
( j) in sf.

The change fromr λ
(1),r λ

(2),r λ
(3) to F,η λ

(1),η λ
(2) is straightforward,

because of the orthogonal nature of the transformation defined
by eqs 2.7 through 2.9 and results in4

whereΛ̂2 is the grand canonical angular momentum operator
given by

andL̂ λ
(1)2 andL̂ λ

(2)2 are the hyperangular momentum operators
associated with the hyperanglesη λ

(1) and η λ
(2) and are defined

by

and

Although the ĵ λ
( j)2

are space-fixed operators, they can be
expressed in terms of the angles in eq 2.10. We will choose
(γ λ

(1,2),ψ λ
(1,2)),(γ λ

(2,3),ψ λ
(2,3)), and (θ λ

(3),φ λ
(3)) to expressĵ λ

(1)2, ĵ λ
(2)2,

and ĵ λ
(3)2, respectively. These are the polar angles of ther λ

(1),
r λ

(2), and r λ
(3) in bf3, bf1, and sf respectively, as indicated in

Table 1. The results are

Î(F,Φλ) ) (F,ηλ
(1),ηλ

(2),π - θλ
(3),(π + φλ

(3))mod 2π,

(π - ψλ
(2,3))mod 2π, γλ

(1,2),2π - ψλ
(1,2), γλ

(2,3)) (2.24)

dV ) r λ
(1)2 dr λ

(1)r λ
(2)2 dr λ

(2)r λ
(3)2 dr λ

(3) sin θλ
(1) dθλ

(1) dφλ
(1) ×

sin θλ
(2) dθλ

(2) dφλ
(2) sin θλ

(3) dθλ
(3) dφλ

(3) (2.25)

dr λ
(1) dr λ

(2) dr λ
(3) ) F2 sin ηλ

(2) dF dηλ
(2)ηλ

(1) (2.26)

sin θλ
(2) dθλ

(2) dφλ
(2) ) sin γλ

(2,3) dγλ
(2,3) dψλ

(2,3) (2.27)

sin θλ
(1) dθλ

(1) dφλ
(1) ) sin γλ

(1,3) dγλ
(1,3) dψλ

(1,3) (2.28)

sin γλ
(1,3) dγλ

(1,3) dψλ
(1,3) ) sin γλ

(1,2) dγλ
(1,2) dψλ

(1,2) (2.29)

dV ) F8 dF sin2 ηλ
(1)cos2 ηλ

(1) dηλ
(1) sin5 ηλ

(2)cos2 ηλ
(2) dηλ

(2) ×
sin θλ

(3) dθλ
(3) dφλ

(3) sin γλ
(2,3) dγλ

(2,3) dψλ
(2,3) ×

sin γλ
(1,2) dγλ

(1,2) dψλ
(1,2) (2.30)

dVη
λ
(1) ) sin2 ηλ

(1) cos2 ηλ
(1) dηλ

(1) (2.31)

dVη
λ
(2) ) sin5 ηλ

(2) cos2 ηλ
(2) dηλ

(2) (2.32)

T̂ ) (-
p2

2µ) ∑
j)1

3

∇r
λ
(j)

2 ) (-
p2

2µ) ∑
j)1

3 [ ∂
2

∂r λ
( j)2

+
2

r λ
( j)

∂

∂r λ
( j)

+
ĵ λ

( j)2

2µr λ
( j)2]

(3.1)

µ ) [M1M2M3M4/(M1 + M2 + M3 + M4)]
1/3 (3.2)

T̂ ) - p2

2µF8

∂

∂F
F8 ∂

∂F
+ Λ̂2

2µF2
(3.3)

Λ̂2 )
L̂ λ

(1)2

sin2 ηλ
(2)

+ L̂ λ
(2)2 +

ĵ λ
(1)2

sin2 ηλ
(1) sin2 ηλ

(2)
+

ĵ λ
(2)2

cos2 ηλ
(1) sin2 ηλ

(2)
+

ĵ λ
(3)2

cos2 ηλ
(2)

(3.4)

L̂ λ
(1)2(ηλ

(1)) ) - 4p2 1

(sin 2ηλ
(1))2

∂

∂(2ηλ
(1))

(sin 2ηλ
(1))2 ∂

∂(2ηλ
(1))

(3.5)

L̂ λ
(2)2(ηλ

(2)) )

- p2 1

(sin ηλ
(2))5 (cosηλ

(2))2

∂

∂ηλ
(2)

(sin ηλ
(2))5(cosηλ

(2))2 ∂

∂ηλ
(2)

(3.6)

ĵ λ
(1)2 )

-p2( 1

sin γλ
(1,2)

∂

∂γλ
(1,2)

sin γλ
(1,2) ∂

∂γλ
(1,2)

+ 1

sin2 γλ
(1,2)

∂
2

∂ψλ
(1,2)2)
(3.7)

ĵ λ
(2)2 )

- p2( 1

sin γλ
(2,3)

∂

∂γλ
(2,3)

sin γλ
(2,3) ∂

∂γλ
(2,3)

+ 1

sin2 γλ
(2,3)

∂
2

∂ψλ
(2,3)2)
(3.8)
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and

Equation 3.9 is the standard expression forĵ λ
(3)2 in the space-

fixed coordinatesθ λ
(3),φ λ

(3). Equation 3.8 results from the fact
that the space-fixed polar anglesθ λ

(2),φ λ
(2) of r λ

(2) are indepen-
dent of the Euler angles (φ λ

(3),θ λ
(3), 0) which, according to eq

2.3, define the sffbf1 transformation. As a result,ĵ λ
(2)2

changes as a scalar operator under a rigid rotation, the only
difference being that in its explicit expression, (θ λ

(2),φ λ
(2)) are

replaced by the polar angles ofr λ
(2) in bf1, namely (γ λ

(2,3),
ψ λ

(2,3)). The same is true forĵ λ
(1)2, which can, in analogy to eq

3.8, be expressed in terms of (γ λ
(1,3),ψ λ

(1,3)). Finally, the polar
angles (γ λ

(1,2),ψ λ
(1,2)) of r λ

(1) in the bf3 frame are independent of
the Euler angles (ψ λ

(2,3),γ λ
(2,3),0) which define the bf1fbf3

transformation, permittingĵ λ
(1)2 to be written as in eq 3.7. It

should be noticed that the partial derivatives in (3.7) through
(3.9) are defined with respect to the set of independent variables
(θ λ

(3),φ λ
(3),γ λ

(2,3),ψ λ
(2,3), γ λ

(1,2),ψ λ
(2,3)), i.e., for each partial deriva-

tive the remaining variables in this set remain constant.
As a result of eqs 3.3-3.9, we have been able to express the

kinetic energy operatorT̂ and the grand canonical angular
momentum operatorΛ̂2 in terms of theλ-arrangement-channel
hyperspherical coordinates, as desired. It should be noticed that
these two operators are independent ofλ (i.e., are kinematic-
rotation-invariant),2 even though they contain individual terms,
such as theL̂ λ

(i)2
and ĵ λ

( j)2
, that do depend on the chosen

arrangement channelλ.

4. Hyperspherical Harmonics in the Weak Interaction
Region

4.1. Definition of the Hyperspherical Harmonics. In
addition to the operators considered in section 3, let us define
the angular momentum operatorsĵ λ

(1,2) and Ĵ by

and

where the system’s total angular momentumĴ is independent
of λ. In addition, letĴzsf be the component ofĴ along the space-
fixed axisGzsf.

We now define the weak interaction sub-regionλ hyper-

spherical harmonicsFMJ v
ΠJnj

λ
(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

(Φλ) as the simultaneous
eigenfunctions of the operatorsĴ 2, Ĵzsf,Λ2, ĵ λ

(1)2, ĵ λ
(2)2, ĵ λ

(1,2)2, ĵ λ
(3)2,

ÔÎ and two operators related toL̂ λ
(1)2 and L̂ λ

(2)2 (see eqs 4.47
and 4.48), whereÔÎ is the function operator associated withÎ.
Let us denote bypλ the set of quantum numbers

The eigenfunction-eigenvalue equations for the first eight
operators are

and

Those for the operators related toL̂ λ
(1)2 andL̂ λ

(2)2 are chosen by
the requirement that the dependence ofF pλ (Φλ) on η λ

(1) and
η λ

(2) be multiplicative functions of each of these two variables
and will be given in section 4.2. All of the quantum numbers
included in section 4.3 are integers, and their ranges are also
discussed in that section. These hyperspherical harmonicsF pλ

are required to be regular at all of the poles of these equations.
Their usefulness lies in the fact that they constitute, for each
weak interaction sub-region, a complete regular basis set inΦλ
in terms of which the local hyperspherical surface functions of
that sub-region can be expanded. These surface functions are
defined as the regular eigenfunctions of the operator

which are, in addition, eigenfunctions ofĴ 2,Ĵzsf and ÔÎ. They
are used, in turn, for expanding, in the weak interaction sub-
regions, the scattering wave function for the system.5

4.2. Determination of the Hyperspherical Harmonics.We
start out by determining the simultaneous eigenfunctions of
ĵ λ

(1)2, ĵ λ
(2)2, ĵ λ

(1,2)2, ĵ λ
(3)2, Ĵ 2 and Ĵzsf, first in the space-fixed polar

angles ofr λ
(1),r λ

(2), and r λ
(3), then change the sf polar angles of

r λ
(1) andr λ

(2) to their bf1 counterparts, and finally change the bf1
polar angles ofr λ

(1) to their bf2 counterparts. We then add the
condition that these eigenfunctions also be eigenfunctions of
the operators related toL̂ λ

(1)2 and L̂ λ
(2)2 (see eqs 4.47 and

4.48) and ofΛ̂2. We finally require that they also be eigen-
functions ofÔÎ. This will result in explicit expressions for the
hyperspherical harmonicsFpλ(Φλ) defined in the previous
section.

4.2.1. Angular Momentum Eigenfunctions in Space-Fixed
Polar Angles.The simultaneous eigenfunctions ofĵ λ

(1)2, ĵ λ
(2)2,

ĵ λ
(1,2)2, and ĵ λz

sf
(1,2) are given by24

where the C are Clebsch-Gordan coefficients24 and theYm
j are

ordinary spherical harmonics.25 Similarly, the simultaneous

ĵ λ
(3)2 ) - p2( 1

sin θλ
(3)

∂

∂θλ
(3)

sin θλ
(3) ∂

∂θλ
(3)

+ 1

sin2 θλ
(3)

∂
2

∂φλ
(3)2)
(3.9)

ĵ λ
(1,2) ) ĵ λ

(1) + ĵ λ
(2) (4.1)

Ĵ ) ĵ λ
(1) + ĵ λ

(2) + ĵ λ
(3) ) ĵ λ

(1,2) + ĵ λ
(3) (4.2)

pλ ≡ (Π,J,MJ,n,ν, j λ
(1), j λ

(2), j λ
(1,2), j λ

(3)) (4.3)

Ĵ2F pλ(Φλ) ) J(J + 1)p2F pλ(Φλ) (4.4)

ĴzF
pλ(Φλ) ) MJpF pλ(Φλ) (4.5)

Λ̂2F pλ(Φλ) ) n(n + 7)p2F pλ(Φλ) (4.6)

ĵ λ
(1)2F pλ(Φλ) ) j λ

(1)( j λ
(1) + 1)p2F pλ(Φλ) (4.7)

ĵ λ
(2)2F pλ(Φλ) ) j λ

(2)( j λ
(2) + 1)p2F pλ(Φλ) (4.8)

ĵ λ
(1,2)2F pλ(Φλ) ) j λ

(1,2)( j λ
(1,2) + 1)p2F pλ(Φλ) (4.9)

ĵ λ
(3)2F pλ(Φλ) ) j λ

(3)( j λ
(3) + 1)p2F pλ(Φλ) (4.10)

ÔÎF
pλ(Φλ) ) (- 1)ΠF pλ(Φλ) (4.11)

ĥ(Φλ;Fj) )
Λ̂2(Φλ)

2µFj2
+ V(Fj,ηλ

(1),ηλ
(2),γλ

(1,2),ψλ
(1,2),γλ

(2,3)) (4.12)

Y
m

j
λ
(1,2)

sf
j

λ
(1,2)j

λ
(1) j

λ
(2)

(φλ
(1), φλ

(1), θλ
(2), φλ

(2)) )

∑
mj

λ
(1)

sf
mj

λ
(2)

sf

C( j λ
(1) j λ

(2) j λ
(1,2); mj

λ
(1)

sf mj
λ
(2)

sf mj
λ
(1,2)

sf ) ×

Ym
j
λ
(1)

sf
j

λ
(1)

(θλ
(1),φλ

(1)) Ym
j
λ
(2)

sf
j

λ
(2)

(θλ
(2),φλ

(2)) (4.13)
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eigenfunctions ofĵ λ
(1)2, ĵ λ

(2)2, ĵ λ
(1,2)2, ĵ λ

(3)2, Ĵ 2, andĴzsf are, in the sf
polar angles of ther λ

(1) (j ) 1, 2, 3):

with

4.2.2. Angular Momentum Eigenfunctions in sf Polar Angles
of r λ

(3) and bf1 Polar Angles ofr λ
(1), r λ

(2). In view of the rela-
tion between the bf1 and sf frames given in eq 2.3 and the
definition of the polar angles ofr λ

(j) (j ) 1, 2, 3) in those
frames given in Table 1, we can re-express the left-hand side
of eq 4.13, given in sf angles, in terms of the corresponding
bf1 angles by26

whereD is a Wigner rotation function andY
m

j
λ
(1,2)

bf1
j

λ
(1,2)j

λ
(1) j

λ
(2)

is related

to Y
m

j
λ
(1)

bf1
j

λ
(1)

andY
m

j
λ
(2)

bf2
j

λ
(2)

by an expression analagous to (4.13) with

all the sf quantities replaced by corresponding bf1 quantities:

Replacement of eq 4.16 into eq 4.14 gives the eigenfunctions
Y

MJ

Jj
λ
(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

in the desired angles:

Since27

we see that eq 4.18 contains the product of two Wigner rotation
functions of the same Euler angles, (φ λ

(3),θ λ
(3),0). This product

can be expressed, with the help of the Clebsch-Gordan series28

as

With the help of the last two equations, eq 4.18 can be rewritten
as

We can use the orthogonality of the Clebsch-Gordan coef-
ficients with respect toJ, namely29

to perform the sum overmj
λ
(1,2)

sf1 , mj
λ
(3)

bf1, andJ′:

We note that the summation indexmj
λ
(1,2)

bf1 is not only the

quantum number for the bf1z component ofĵ λ
(1,2) but also that

of J. This is due to eq 4.2 and the fact that sincer λ
(3) lies

along Gzλ
bf1, the bf1 z component of ĵ λ

(3) vanishes. Let us
henceforth replace that index byΩλ. Using the symmetry
relation30

YMJ

J j
λ
(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

(θλ
(1), φλ

(1), θλ
(2), φλ

(2), θλ
(3), φλ

(3)) )

∑
mj

λ
(1,2)

sf
mj

λ
(3)

sf

C( j λ
(1,2) j λ

(3)J; mj
λ
(1,2)

sf mj
λ
(3)

sf MJ) ×

Y
m

j
λ
(1,2)

sf
j

λ
(1,2)j

λ
(1) j

λ
(2)

(θλ
(1), φλ

(1), θλ
(2), φλ

(2))Y
m

j
λ
(3)

sf
j

λ
(3)

(θλ
(3),φλ

(3)) (4.14)

-J e MJ e J (4.15)

Y
m

j
λ
(1,2)

sf
j

λ
(1,2)j

λ
(1) j

λ
(2)

(θλ
(1),φλ

(1),θλ
(2),φλ

(2)) ) ∑
mj

λ
(1,2)

bf1

D
m

j
λ
(1,2)

sf m
j
λ
(1,2)

bf1
j

λ
(1,2)

(φλ
(3),θλ

(3),0)×

Y
m

j
λ
(1,2)

bf1
j

λ
(1,2)j

λ
(1) j

λ
(2)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3)) (4.16)

Y
m

j
λ
(1,2)

bf1
j

λ
(1,2)j

λ
(1) j

λ
(2)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3)) )

∑
mj

λ
(1)

bf1
mj

λ
(2)

bf1

C(j λ
(1) j λ

(2) j λ
(1,2); mj

λ
(1)

bf1mj
λ
(2)

bf1mj
λ
(1,2)

bf1 ) ×

Y
m

j
λ
(1)

bf1
j

λ
(1)

(γλ
(1,3),ψλ

(1,3)) Y
m

j
λ
(2)

bf1
j

λ
(2)

(γλ
(2,3),ψλ

(2,3)) (4.17)

Y
MJ

Jj
λ
(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3),θλ
(3),φλ

(3)) )

∑
mj

λ
(1,2)

sf mj
λ
(3)

sf mj
λ
(1,2)

bf1

C( j λ
(1,2) j λ

(3) J;mj
λ
(1,2)

sf mj
λ
(3)

sf MJ) ×

D
m

j
λ
(1,2)

bf1 m
j
λ
(1,2)

bf1
j

λ
(1,2)

(φλ
(3),θλ

(3),0) Y
m

j
λ
(1,2)

bf1
j

λ
(1,2)j

λ
(1) j

λ
(2)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3)) ×

Y
m

j
λ
(3)

sf
j

λ
(3)

(θλ
(3),φλ

(3)) (4.18)

Y
m

j
λ
(1,2)

sf
j

λ
(3)

(θλ
(3),φλ

(3)) ) (2j λ
(3) + 1

4π )1/2

D
m

j
λ
(3)

sf 0

j
λ
(3)

(φλ
(3),θλ

(3),0) (4.19)

D
m

j
λ
(1,2)

sf m
j
λ
(1,2)

bf1
j

λ
(1,2)

(φλ
(3),θλ

(3),0) Dm
j
λ
(3)

sf 0
j

λ
(3)

(φλ
(3),θλ

(3),0) )

∑
J′ ) |j

λ
(1,2) - j

λ
(3)|

j
λ
(1,2) + j

λ
(3)

C( j λ
(1,2) j λ

(3) J′; mj
λ
(1,2)

sf mj
λ
(3)

sf MJ) ×

D MJm
j
λ
(1,2)

bf1
J′ (φλ

(3),θλ
(3),0) C( j λ

(1,2) j λ
(3) J′;mj

λ
(1,2)

bf1 0mj
λ
(1,2)

bf1 ) (4.20)

YMJ

Jj
λ
(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3),θλ
(3),φλ

(3)) )

∑
J′mj

λ
(1,2)

sf
mj

λ
(3)

sf
mj

λ
(1,2)

bf1
(2j λ

(3) + 1

4π )1/2

C( j λ
(1,2) j λ

(3)J; mj
λ
(1,2)

sf mj
λ
(3)

sf MJ) ×

C( j λ
(1,2) j λ

(3)J′; mj
λ
(1,2)

sf mj
λ
(3)

sf MJ) C(j λ
(1,2) j λ

(3)J′; mj
λ
(1,2)

bf1 0mjλ(1,2)
bf1 ) ×

Y
m

j
λ
(1,2)

bf1
j

λ
(1,2)j

λ
(1) j

λ
(2)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3)) D MJm
j
λ
(1,2)

bf1
J′ (φλ

(3),θλ
(3),0)

(4.21)

∑
mj

λ
(1,2)

sf
mj

λ
(3)

sf

C( j λ
(1,2) j λ

(3)J; mj
λ
(1,2)

sf mj
λ
(3)

sf MJ)

C( j λ
(1,2) j λ

(3)J′; mj
λ
(1,2)

sf mj
λ
(3)

sf MJ) ) δJJ′ (4.22)

YMJ

J j
λ
(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3),θλ
(3),φλ

(3)) )

(2j λ
(3) + 1

4π )1/2

∑
mj

λ
(1,2)

bf1

C( j λ
(1,2) j λ

(3)J; mj
λ
(1,2)

bf1
0mj

λ
(1,2)

bf1
) ×

Y
m

j
λ
(1,2)

bf1
j

λ
(1,2)j

λ
(1)

λ
(2)

(γλ
(1,3),ψλ

(1,3),γλ
(2,3),ψλ

(2,3)) D MJm
J

λ
(1,2)

bf1
J (φλ

(3),θλ
(3),0)

(4.23)

C( j λ
(1,2) j λ

(3)J; Ωλ0 Ωλ) )

(-1) j
λ
(1,2)-Ωλ ( 2J + 1

2j λ
(3) + 1)1/2

C(Jj λ
(1,2) j λ

(3); Ωλ, - Ωλ,0)

(4.24)
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eq 4.23 becomes

4.2.3. Angular Momentum Eigenfunctions in sf Polar Angles
of r λ

(3), bf1 Polar Angles ofr λ
(2), and bf3 Polar Angles ofr λ

(1).
We now wish to convert the eigenfunctions of eq 4.25 from
the polar anglesγ λ

(1,3),ψ λ
(1,3) of r λ

(1) in bf1 to its polar angles
γ λ

(1,2),ψ λ
(1,2) in bf2, for the reasons discussed in the paragraph

preceding eq 2.7. This can be accomplished with the help of
the relation between the bf1 and bf3 frames given in eq 2.3.
The corresponding spherical harmonics associated withr λ

(1) are
related by26

We now replace this into eq 4.17:

We can use expressions analogous to eqs 4.19 and 4.20 to get

Substitution into eq 2.47 and the use of an orthogonality relation
between the Clebsch-Gordan coefficients similar to eq 4.22
results in, aftermj

λ
(1,2)

bf1 is replaced byΩλ andmj
λ
(1)

bf3 by kj
λ
(1),

Finally, replacement of eq 4.29 into eq 4.25 yields

This is the expression forY
MJ

Jj
λ
(1) j

λ
(2) j

λ
(1,2) j

λ
(3)

in the desired polar

angles (γ λ
(1,2),ψ λ

(1,2)) of r λ
(1) in bf3, (γ λ

(2,3),ψ λ
(2,3)) of r λ

(2) in bf1
and (θ λ

(3),φ λ
(3)) of r λ

(3) in sf. It should be noted that the ranges of
the summation indicesΩλ and kjλ

(1) are implied in the corre-
sponding Clebsch-Gordan coefficients:

and

In addition, the ranges ofj λ
(1,2) and j λ

(3) are determined by the
triangle inequalities

and

4.2.4. Eigenfunctions ofΛ2. Let us now determine simulta-
neous solutionsF of eqs 4.4 through 4.10. Because of eqs 4.4,
4.5, and 4.7-4.10, they must have the form

Replacement into eq 4.6 withΛ̂2 given by eq 3.4 results in

This is a second-order partial differential equation in the two
independent variablesη λ

(1) and η λ
(2). Let us seek separable

solutions of the type

Substitution into eq 4.33 yields the two ordinary differential
equations
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∑
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and

whereν(ν + 4) is a separation constant. It is put in this form
because it turns out that, for regular solutions,ν is a nonnegative
integer that can be considered to be the quantum number for
L̂ λ

(1)2. SinceL̂ λ
(2)2 is related to the eight independent angular

momentum operatorsL̂ λ
(1)2, Λ̂2, Ĵ2, ĵ zsf, ĵ λ

(1)2, ĵ λ
(2)2, ĵ λ

(1,2)2 and
ĵ λ

(3)2, with corresponding independent quantum numbersν, n,
J, MJ, j λ

(1), j λ
(2), j λ

(1,2), and j λ
(3), eq 4.39 does not involve a new

independent quantum number. Equations 4.38 and 4.39 are of
the form of eq 22.6.4 of Abramowitz and Stegun,31 and their
regular solutions can be expressed as

and

In these expressions, thePγ
(R,â) are Jacobi polynomials of

degreeγ, R,â > -1 are real numbers, and theN ν
j

λ
(1) j

λ
(2)

and

Nn
νj

λ
(3)

coefficients are normalization constants determined by the

condition that theu ν
j

λ
(1) j

λ
(2)

andV n
νj

λ
(3)

are orthonormal when using
the volume elementsdVη

λ
(1) and dVη

λ
(2) of eqs 2.31 and 2.32,

respectively. They are given by

and

The quantum numbersn and ν are non-negative integers
satisfying the conditions

and

as a result of which we have

We conclude thatν has the same parity asj λ
(1) + j λ

(2), n - ν the
same parity asj λ

(3), andn the same parity asj λ
(1) + j λ

(2) + j λ
(3).

As a result, all the factorials in eqs 4.42 and 4.43 are of non-
negative integers and all the gamma functions are of half odd
positive integers, which makes them easy to evaluate.

The u ν
j

λ
(1) j λ

(2)

(η λ
(1)) and υn

νj
λ
(3)

(η λ
(2)) are eigenfunctions of the

operators that appear in the left hand side of eqs 4.38 and 4.39,
namely,

and

and have eigenvaluesν(ν + 4)p2 andn(n + 7)p2 respectively.
These are theL̂ λ

(1)2- and L̂ λ
(2)2-related operators alluded to in

the beginning of sections 4.1 and 4.2. The simultaneous regular
solutions of eqs 4.4 through 4.10 can, as a result, be written as

4.2.5 Eigenfunctions of Oˆ Î. To complete the determination
of the hyperspherical harmonics defined in section 4.1, we now
require that they satisfy eq 4.11. Let us applyÔÎ to eq 4.49 and
use the fact thatÎ -1 ) Î as well as eq 2.24 to get

We now use the relations32

and

to obtain

In addition, from the definition of spherical harmonics,25 we
have

n - ν - j λ
(3) g 0 and even (4.45)

n - ( j λ
(1) + j λ

(2) + j λ
(3)) g 0 and even (4.46)

L̂ λ
(1) j

λ
(1) j

λ
(2)2

(ηλ
(1)) )

L̂ λ
(1)2(ηλ

(1)) + p2[ j λ
(1)( j λ

(1) + 1)

sin2 ηλ
(1)

+
j λ

(2)( j λ
(2) + 1)

cos2 ηλ
(1) ] (4.47)

L̂ λ
(2)νj

λ
(3)2

(ηλ
(2)) )

L̂ λ
(2)2(ηλ

(2)) + p2 [ν(ν + 4)

sin2 ηλ
(2)

+
j λ

(3)( j λ
(3) + 1)

cos2 ηλ
(2) ] (4.48)

F MJν
Jn j

λ
(1) j
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(2) j
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(1,2)j
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(3)

(Φλ) ) uν
j

λ
(1) j

λ
(2)

(ηλ
(1)) υn
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λ
(3)

(ηλ
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YMJ

Jj
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(1) j

λ
(2) j

λ
(1,2)j

λ
(3)

(γλ
(1,2),ψλ

(1,2),γλ
(2,3),ψλ

(2,3),θλ
(3),φλ

(3)) (4.49)

ÔÎF MJν
Jnj
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(1) j

λ
(2) j
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(3)

(Φλ) ) uν
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(1) j
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Jj
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(1) j

λ
(2) j

λ
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λ
(3)

(γλ
(1,2),2π - ψλ

(1,2),γλ
(2,3),π - ψλ

(2,3),

π - θλ
(3),π + φλ

(3)) (4.50)

DMJΩλ

J (φλ
(3),θλ

(3),ψλ
(2,3)) ) eiMJφ

λ
(3)

dMJγλ

J (φλ
(3))eiΩλ ψ

λ
(2,3)

(4.51)

dMJΩλ

J (π - θλ
(3)) ) (-1)J-MJdMJ,-Ωλ

J (φλ
(3)) (4.52)

DMJΩλ

J (π + φλ
(3),π - θλ

(3),π - ψλ
(2,3)) )

(-1)J+ΩλDMJ ,-Ωλ

J (φλ
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(2,3)) (4.53)
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ν(ν + 4)p2 u(ηλ
(1)) (4.38)
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(2)2υ(ηλ
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sin2 ηλ
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+
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cos2 ηλ
(2) ] υ(ηλ

(2)) )

n(n + 7)p2υ(ηλ
(2)) (4.39)
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(2)
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Nν
j
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(sin ηλ
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(1)
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λ
(1)- j

λ
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( j
λ
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λ
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V n
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(ηλ
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Nn
ν j

λ
(3)

(sin ηλ
(2))ν(cosηλ

(2)) j
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P1/2(n-ν- j
λ
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(ν+1/2, j
λ
(3)+1/2)(cos 2ηλ
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(4.41)

Nν
j

λ
(1) j

λ
(2)

)

{(2ν + 4) [12(n - j λ
(1) - j λ

(2))] ! [12(ν + j λ
(1) + j λ

(2) + 2)] !

Γ [12(ν + j λ
(1) - j λ

(2) + 3)] Γ [12(ν - j λ
(1) + j λ

(2) + 3)] }1/2

(4.42)

Nn
ν j

λ
(3)

)

{(2n + 7) [12(n - ν - j λ
(3))] ! Γ [12(n + ν + j λ

(3) + 7)]
[12(n + ν + j λ

(3) + 4)] ! Γ [12(n + ν + j λ
(3) + 3)] }1/2

(4.43)

ν - ( j λ
(1) + j λ

(2)) g 0 and even (4.44)

Hyperspherical Harmonics for Tetraatomic Systems J. Phys. Chem. A, Vol. 108, No. 41, 20048901



Use of eqs 4.30, 4.53, and 4.54 results in

The appearance of-Ωλ and -kj
λ
(1) in the subscripts of

DMJ,-Ωλ

J andY-kj
λ
(1)

J
λ
(1)

suggests that we change summation indices

from Ωλ and kj
λ
(1) to -Ωλ and -kj

λ
(1), respectively. To that

effect, the relations33

and34

will be employed. Proceeding as indicated, we obtain

We now replace eq 4.59 into eq 4.50 and make use of the fact
that j λ

(1) + j λ
(2) + j λ

(3) has the same parity asn, as remarked after
eq 4.46, to get

For a givenΠ, in order for eq 4.11 to be satisfied, it suffices
to maken have the same parity asΠ:

We will designate such ann by nΠ. As a result, the regular
simultaneous solutions of eqs 4.4 through 4.11 are

whereu, υ, andY are given, respectively, by eqs 4.40, 4.4, and
4.30, withMJ being an integer in the usual range given by eq
4.15 and the remaining quantum numbers being non-negative
integers subject to the constraints of eqs 4.33, 4.34, 4.44, and
4.45.

5. Relation between Weak and Strong Interaction Region
Coordinates

The coordinates used in the strong interaction of region of
configuration space are the row-orthonormal hyperspherical
coordinates developed previously3 and in terms of which
hyperspherical harmonics have been obtained analytically.19 In
performing scattering calculations for tetraatomic systems using
those coordinates in that region and the present ones (F, Φλ) in
the weak region, it is necessary to obtain the relation between
those two sets of coordinates. This can be obtained from the
expressions of the Jacobi matrixGλ

sf of eq 2.1 in terms of such
coordinates. To that effect we initially choose the bf2 coordinates
together with eqs 2.13 and 2.14 to relateGλ

sf to F,η λ
(1),η λ

(2),φ λ
(3),

θ λ
(3),ψ λ

(2,3),γ λ
(2,3),ê λ

(1,3),γ λ
(1,3). The relation of Gλ

sf to the row-
orthonormal hyperspherical coordinatesaλ

I,bλ
I,cλ

I,ø,F,θ,φ,δλ
(1),

δλ
(2),δλ

(3) is3

where ø is a chirality coordinate, (aλ
I,bλ

I,cλ
I) are the Euler

angles which rotate the space-fixed frame to the principal axes
of intertia frameGxλ

I,yλ
I,zλ

I, F is the same hyperradius as in the
weak interaction region, (θ,φ) are principal axes of inertia hyper-
angles, (δλ

(1),δλ
(2),δλ

(3)) are internal hyperangles, and N(θ,φ) is
the matrix

The relation between these two sets of coordinates can be
obtained by identifying the right hand side of eqs 5.1 and 2.13
and performing some lengthy but straightforward algebra, as
described previously.4 To finally obtain the relation between
the row-orthonormal hyperspherical coordinates and the present
weak interaction ones (F,Φλ), it suffices to expressê(1,3),γ λ

(1,3)

in terms of theΦλ angles of eq 2.10. This is easily accomplished
using the bf2fbf3 coordinate transformation obtained from eq
2.8 and Table 1:

From this expression we obtain
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and

Sinceγ λ
(1,3) is in the 0 toπ range, eq 5.3 uniquely furnishes this

angle in terms ofγ λ
(1,2), ψ λ

(1,2), andγ λ
(2,3), and eqs 5.4 and 5.5

uniquely determineê(1,3) in the 0 to 2π range, also in terms of
those angles. This completes the derivation of the relation
between the strong and weak interaction region hyperspherical
coordinates.

6. Summary and Conclusions

We have derived in this paper explicit analytical expressions
for the hyperspherical harmonics of tetraatomic systems in the
weak interaction region of configuration space, comprised of
sub-regions in which either an atom and a triatom or two diatoms
are sufficiently far away from each other for the exchange of
atoms between them to be negligible. The nine hyperspherical
coordinates chosen are such that in these sub-regions the
potential energy function, which depends in general on six of
these coordinates, depends strongly on only two (for the two-
diatom sub-regions) or three (for the atom-triatom sub-regions)
of these coordinates. Each of these sub-region hyperspherical
harmonics forms a complete set of functions in the space
spanned by the eight hyperangles involved, and behaves
regularly at the angular poles of the kinetic energy operator.
They constitute an excellent basis set for expanding and, with
the help of appropriate contractions, calculating the sub-region
local hyperspherical surface functions. Such surface functions
are to be used subsequently for expanding and calculating the
scattering wave functions for tetraatomic systems.5 These weak
interaction sub-region hyperspherical harmonics involve eight
quantum numbers, associated with the eight angular degrees of
freedom of the system and are nondegenerate. In addition, they
contain a parity quantum number associated with the inversion
of the system through its center of mass.

Since the overlap between the different weak interaction sub-
regions of configuration space (corresponding to different pairs
of weakly interacting molecules) is negligible, supercomplete-
ness problems do not occur in those sub-regions using these
surface functions.20-22 If some of the atoms of the system are
identical, the sub-region hyperspherical harmonics can be made
to transform according to the associated irreducible representa-
tions. For example, for the H3O system, we consider the two
weak interaction sub-regions H2 + OH and H+ H2O. In the
first, by using the equivalence of the two atoms in the H2

molecule and appropriate projection operators, we can generate
hyperspherical harmonics that belong to the irreducible repre-
sentations of the permutation group P2 of two identical objects.35

In the second sub-region, due to the indistinguishability of the
two atoms in the H2O molecule, the same procedure can be
followed. In neither sub-region do we need to use the equiva-
lence of the three H atoms, since in the H2 + OH sub-region
we cannot exchange an H atom from H2 with the H atom from
OH, and in the H+ H2O sub-region we cannot exchange the
isolated H atom with either of the two H atoms of H2O. In the
strong interaction region, however, it is useful to consider the
indistinguishability of the three H atoms since they can all be
permuted with each other, and the hyperspherical harmonics
generated for that region can be made to belong to the

irreducible representation P3 of three identical objects. These
irreducible representation harmonics, both in the weak and
strong interaction regions, are useful for decreasing the size of
the matrices that must be handled in numerical calculations.

Using the row-orthonormal hyperspherical coordinates (which
differ from those employed in the weak interaction sub-
regions),2-4 we had previously developed explicit expressions
for tetraatomic system hyperspherical harmonics in the strong
interaction region of configuration space,5,19 in which all four
atoms are relatively close to each other. These harmonics form
a complete set in the corresponding hyperangles, and since a
single such set is used, they do not lead to supercompleteness
problems either.20-22 The relation between the strong and weak
interaction region hyperspherical coordinates, which is needed
to use the corresponding hyperspherical harmonics in a scat-
tering calculation, was also described.

Since the hyperspherical harmonics, both in the strong and
weak interaction regions, incorporate all of the angular mo-
mentum couplings, including the Coriolis couplings, the cor-
responding local hyperspherical surface functions as well as the
associated scattering equations involve purely potential cou-
plings,5,19even though body-fixed frames are used. This simpli-
fies the scattering equation formalism5 and the related computer
programs. The approach described in this paper should permit
efficient benchmark-quality calculations of state-to-state differ-
ential and integral cross sections for some tetraatomic systems,
using presently available parallel high performance computers.
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