Renormalized Coupled-Cluster Calculations of Reactive Potential Energy Surfaces: The BeFH System ${ }^{\dagger}$

Michael J. McGuire, ${ }^{\ddagger}$ Piotr Piecuch, ${ }^{*}, \downarrow, \S, \|$ Karol Kowalski, ${ }^{\ddagger}$ Stanisław A. Kucharski, ${ }^{\ddagger, \perp}$ and Monika Musiał ${ }^{\perp}$
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, and Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland

Received: March 12, 2004; In Final Form: May 28, 2004

Abstract

The completely renormalized (CR) CCSD (T) method has been used to calculate the entire ground-state potential energy surface (PES) for the $\mathrm{Be}+\mathrm{HF}$ reaction on a grid of nuclear geometries consisting of ~ 3000 points. The cc-pVTZ and cc-pVQZ basis sets have been employed. In addition to the case of the Be atom approaching the HF molecule from the fluorine side and the case of the Be atom approaching HF from the hydrogen side, several values of the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle and the insertion of the Be atom between the H and F atoms of HF have been examined. The CR-CCSD (T) results have been compared with the results of $\operatorname{CCSD}(\mathrm{T})$ and multireference configuration interaction (MRCI) calculations. It has been demonstrated that the ground-state PES of the BeFH system obtained from the single-reference "black-box" CR-CCSD (T) calculations is in excellent agreement with the PES obtained from the expensive MRCI calculations, whereas the PES resulting from the standard $\operatorname{CCSD}(\mathrm{T})$ calculations is qualitatively incorrect and characterized by large errors relative to MRCI on the order of several electronvolts.

Introduction

The Be + HF reaction has been the subject of several theoretical studies, including calculations of the ground-state potential energy surfaces (PES) for the BeFH system with diatomics-in-molecules, ${ }^{1}$ density functional theory, ${ }^{2}$ and the configuration interaction (CI) approach, ${ }^{2-4}$ as well as fitting the PES to different functional forms ${ }^{3-7}$ and calculations of reaction dynamics. ${ }^{3,6}$ Being the lightest member of an important family of exchange reactions involving alkaline earth metals and halides, ${ }^{8-19}$ the $\mathrm{Be}+\mathrm{HF}$ reaction serves as an excellent test case for new theoretical methods, particularly new electronic structure methods that are aimed at describing PESs involving breaking and making of chemical bonds.

A new class of "black-box" ab initio methods, based on the coupled-cluster (CC) wave function ansatz ${ }^{20-24}$ and employing the method of moments of coupled-cluster equations (MMCC), ${ }^{25-32}$ termed the renormalized CC approaches, ${ }^{25-28,30-33}$ has recently been developed with the intention of removing the pervasive failing of the standard single-reference CC approximations, such as CCSD^{34} and $\operatorname{CCSD}(\mathrm{T}),{ }^{35}$ in the region of large internuclear separations. It has been demonstrated that the renormalized CC methods using the spin- and symmetryadapted restricted Hartree-Fock (RHF) or restricted open-shell Hartree-Fock (ROHF) references, including, among others, the completely renormalized $\operatorname{CCSD}(\mathrm{T}) \quad(\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$) approach, ${ }^{25-28,30-33}$ are capable of describing unimolecular dissociations, ${ }^{25-28,30-33,36,37}$ diradicals, ${ }^{38}$ and highly excited vibrational states near the dissociation threshold. ${ }^{28,30,32,36,37}$

[^0]McGuire et al. ${ }^{39}$ have shown that the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ approach may also be capable of removing the failing of the standard RHF-based single-reference CC methods in calculations of multidimensional PESs describing exchange chemical reactions of the $\mathrm{A}+\mathrm{BC} \rightarrow \mathrm{AB}+\mathrm{C}$ type. They used the CR-CCSD(T) method to calculate the PES for the collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}$ +H reaction and compared the results with the exact PES obtained in the full CI calculations and the PES obtained in the $\operatorname{CCSD}(\mathrm{T})$ calculations ${ }^{39}$ (see also refs 30-32). Because of the use of the full CI approach, the calculations reported in ref 39 were performed with a very small MIDI basis set, ${ }^{40}$ and the PES scan was limited to the collinear arrangement of the Be , F , and H atoms, with Be approaching HF from the fluorine side. It has been demonstrated that the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ approach provides remarkable improvements in the poor description of the PES of the BeFH system by the $\operatorname{CCSD}(\mathrm{T})$ approach, but several questions remain open. First, the use of a small basis set may cause the small errors in the results of the CR$\operatorname{CCSD}(\mathrm{T})$ calculations relative to full CI to be artificially low because of the unsatisfactory description of the relevant dynamic correlation effects by a small number of virtual orbitals in the basis set. Second, it is important to know if the small errors observed in the CR-CCSD(T) calculations for the collinear Be $+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ reaction, reported in ref 39 , remain equally small if we examine other reaction channels, including the insertion of Be into the $\mathrm{H}-\mathrm{F}$ bond (see, for example, refs 2, 4, and 7), the case of the Be atom approaching HF from the hydrogen side, and other angles of approach of the HF molecule by Be.
The above questions are examined in this article. We extend the earlier and rather limited small basis set study ${ }^{39}$ by considering the entire three-dimensional PES of the BeFH system, including the Be atom approaching the HF molecule from both the fluorine and hydrogen sides, several values of the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle, and the insertion of Be between the H and

F atoms. The $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ calculations are performed with the realistic cc-pVTZ and cc-pVQZ basis sets. ${ }^{41}$ The CR-CCSD(T) results are compared with the standard CCSD and $\operatorname{CCSD}(\mathrm{T})$ results on one hand and the highly accurate results of the multireference CI (MRCI) calculations on the other hand. By comparing the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ results with the results of applying the sophisticated MRCI approach, which is often used to obtain highly accurate PESs for studies of small molecule reaction dynamics, we can learn if the single-reference CR-CCSD(T) approach, which preserves the ease-of-use and the relatively low computer cost of the $\operatorname{CCSD}(\mathrm{T})$ approximation, can compete with the MRCI method in applications involving multidimensional PESs. By comparing the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ results with those obtained with the standard CCSD and $\operatorname{CCSD}(\mathrm{T})$ approaches, we can learn about the level of improvement of the poor CCSD and $\operatorname{CCSD}(\mathrm{T})$ results in the region of larger internuclear separations offered by the CR-CCSD(T) approach. Finally, by comparing the results obtained with the cc-pVTZ and cc-pVQZ basis sets, and by comparing the results obtained in this work with the results obtained earlier ${ }^{39}$ with the small MIDI basis set, we can examine the effect of the basis on the relative performance of the $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T})$, and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ methods in calculations of reactive PESs.

Theory and Computational Details

The Renormalized and Completely Renormalized CCSD(T) Approaches. The renormalized CC methods, including CR-CCSD(T), are derived by considering the noniterative corrections to standard CC energies that define the MMCC formalism. ${ }^{25-32}$ These corrections are expressed in terms of the generalized moments of CC equations defining a given CC approximation, i.e., the CC equations projected on the excited configurations that are not included in the standard CC calculations. In the specific case of the CR-CCSD(T) approach, we consider the projections of the CCSD equations on triply excited configurations to construct the relevant MMCC energy correction to the CCSD energy.

The CR-CCSD(T) energy can be given the following compact forms: ${ }^{25-28,30-33,37}$

$$
\begin{equation*}
E^{\mathrm{CR}-\mathrm{CCSD}(\mathrm{~T})}=E^{\mathrm{CCSD}}+N^{\mathrm{CR}(\mathrm{~T})} / D^{(\mathrm{T})} \tag{1}
\end{equation*}
$$

where E^{CCSD} is the CCSD energy,

$$
\begin{equation*}
N^{\mathrm{CR}(\mathrm{~T})}=\langle\Phi|\left(T_{3}^{[2]}+Z_{3}\right)^{\dagger} M_{3}(2)|\Phi\rangle \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
& D^{(\mathrm{T})}=1+\langle\Phi| T_{1}^{\dagger} T_{1}|\Phi\rangle+\langle\Phi| T_{2}^{\dagger}\left(T_{2}+\frac{1}{2} T_{1}^{2}\right)|\Phi\rangle+ \\
&\langle\Phi|\left(T_{3}^{[2]}+Z_{3}\right)^{\dagger}\left(T_{1} T_{2}+\frac{1}{6} T_{1}^{3}\right)|\Phi\rangle \tag{3}
\end{align*}
$$

with T_{1} and T_{2} representing the singly and doubly excited clusters obtained in the CCSD calculations employing $|\Phi\rangle$ as a reference configuration (throughout the present article, we assume that $|\Phi\rangle$ is a ground-state RHF determinant). The quantity $M_{3}(2)|\Phi\rangle$, entering eq 2 , is defined as

$$
\begin{equation*}
M_{3}(2)|\Phi\rangle=\sum_{\substack{a<b<c \\ i<j<k}} \mathscr{N}_{a b c}^{i j k}(2)\left|\Phi_{i j k}^{a b c}\right\rangle \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathscr{M}_{a b c}^{i j k}(2)=\left\langle\Phi_{i j k}^{a b c}\right|\left[H_{\mathrm{N}} \exp \left(T_{1}+T_{2}\right)\right]_{\mathrm{C}}|\Phi\rangle \tag{5}
\end{equation*}
$$

are the triply excited moments of the CCSD equations or the CCSD equations projected on the triply excited determinants $\left|\Phi_{i j k}^{a b c}\right\rangle$ relative to reference $|\Phi\rangle, H_{\mathrm{N}}=H-\langle\Phi| H|\Phi\rangle$ is the electronic Hamiltonian in the normal product form, and C designates the connected part of a given operator expression (as usual, the letters $i, j, k(a, b, c)$ label the spin-orbitals that are occupied (unoccupied) in the reference determinant $|\Phi\rangle$). The $T_{3}{ }^{2}|\Phi\rangle=R_{0}{ }^{(3)}\left(V_{\mathrm{N}} T_{2}\right)_{\mathrm{C}}|\Phi\rangle$ and $Z_{3}|\Phi\rangle=R_{0}{ }^{(3)} V_{\mathrm{N}} T_{1}|\Phi\rangle$ terms, entering eqs 2 and 3 , where $R_{0}{ }^{(3)}$ is the three-body part of the many-body perturbation theory (MBPT) reduced resolvent and V_{N} is the two-body part of H_{N}, are the connected and disconnected wave function contributions due to triple excitations defining the standard $\operatorname{CCSD}(\mathrm{T})$ theory. ${ }^{35}$

The CR-CCSD(T) method reduces to the standard $\operatorname{CCSD}(T)$ approach if the denominator $D^{(\mathrm{T})}$, eq 3 , is replaced by 1 and if the numerator $N^{\mathrm{CR}(\mathrm{T})}$, eq 2 , is replaced by the leading term

$$
\begin{equation*}
N^{(\mathrm{T})}=\langle\Phi|\left(T_{3}^{[2]}+Z_{3}\right)^{\dagger}\left(V_{\mathrm{N}} T_{2}\right)_{\mathrm{C}}|\Phi\rangle \tag{6}
\end{equation*}
$$

The approximation of $D^{(\mathrm{T})}$ by 1 is justifiable, provided that the T_{1} and T_{2} cluster amplitudes are small, which is usually the case for the nondegenerate electronic states (e.g., molecules near their equilibrium geometries), for which the MBPT series rapidly converges. In fact, one can easily show ${ }^{25,26,32}$ that $D^{(\mathrm{T})}$ equals 1 plus terms that are at least of the second order in the perturbation V_{N} (see eq 3). The situation changes when the configurational quasi-degeneracy or nondynamic correlation effects become sizable and the MBPT series no longer converges, as is usually the case for stretched nuclear geometries. In this case, the T_{1} and T_{2} clusters become large and $D^{(\mathrm{T})}$ becomes substantially larger than $1 .{ }^{25,26}$ This increase in the values of $D^{(\mathrm{T})}$ at larger internuclear distances is one of the main reasons for the excellent performance of the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ approach in the bond-breaking region, since large $D^{(\mathrm{T})}$ denominators damp the excessively large negative values of the noniterative triples corrections $N^{(T)}$, eq 6 , resulting from the standard $\operatorname{CCSD}(\mathrm{T})$ calculations at stretched nuclear geometries, which cause the poor description of bond breaking by the $\operatorname{CCSD}(\mathrm{T})$ method (see, for example, refs 25 and 26 for further discussion). The presence of the $D^{(\mathrm{T})}$ denominator in the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ energy formula, eq 1 , causes the CR-CCSD(T) approach to not be strictly size extensive, but it has been demonstrated that the departure from strict size extensivity that these denominators produce does not exceed $\sim 0.5 \%$ of the total correlation energy. This is a small price to pay considering the significant improvements that the renormalized CC methods offer in the bond-breaking region compared to the rigorously size-extensive and failing $\operatorname{CCSD}(\mathrm{T})$ approach (see refs 30 and 39 for further discussion). It is also worth mentioning that the use of the simplified numerator $N^{(\mathrm{T})}$, eq 6, instead of the full numerator $N^{\text {CR(T) }}$, eq 2 , in eq 1 leads to the renormalized $\operatorname{CCSD}(\mathrm{T})$ method, abbreviated as R-CCSD(T). ${ }^{25-28,30-33,37}$ Although in this article we focus on the performance of the more complete CR-CCSD(T) approach, the ground-state energies of the BeFH system obtained with the R-CCSD(T) method are provided too (see the Supporting Information). The R-CCSD(T) method offers considerable improvements in the $\operatorname{CCSD}(\mathrm{T})$ results for stretched nuclear geometries, but in general the $\mathrm{R}-\operatorname{CCSD}(\mathrm{T})$ approach is not as robust as the CR-CCSD(T) method when larger internuclear separations are considered. ${ }^{25-28,30,33,37}$

The apparently simple relationships between the renormalized and completely renormalized $\operatorname{CCSD}(\mathrm{T})$ methods and their standard $\operatorname{CCSD}(\mathrm{T})$ counterpart immediately imply that the computer costs of the R-CCSD(T) and CR-CCSD(T) calcula-
tions are essentially identical to the costs of the standard $\operatorname{CCSD}(\mathrm{T})$ calculations. Thus, in analogy to the standard $\operatorname{CCSD}(\mathrm{T})$ method, the $\mathrm{R}-\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ approaches are $n_{\mathrm{o}}^{3} n_{\mathrm{u}}^{4}$ procedures in the noniterative steps involving triples and $n_{\mathrm{o}}^{2} n_{\mathrm{u}}^{4}$ procedures in the iterative CCSD steps (n_{o} and n_{u} are the numbers of occupied and unoccupied orbitals, respectively, employed in the correlated calculations). The CR$\operatorname{CCSD}(\mathrm{T})$ approach is twice as expensive as the standard $\operatorname{CCSD}(\mathrm{T})$ approach in the steps involving noniterative triples corrections, whereas the cost of the $\mathrm{R}-\operatorname{CCSD}(\mathrm{T})$ calculation is the same as the cost of the $\operatorname{CCSD}(\mathrm{T})$ calculation. ${ }^{37}$ The memory and disk storage requirements characterizing the $\mathrm{R}-\mathrm{CCSD}(\mathrm{T})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ methods are essentially identical to those characterizing the standard $\operatorname{CCSD}(\mathrm{T})$ approach. Apart from the relatively low computer cost of the $\mathrm{R}-\operatorname{CCSD}(\mathrm{T})$ and CR-CCSD(T) approaches, the main practical advantage of these methods is the fact that they are as easy to use as the standard "black-box" approaches of the $\operatorname{CCSD}(\mathrm{T})$ type, while allowing us to considerably improve the description of the bond-breaking region without the need to define active orbitals or using other elements of multireference theory.

The Remaining Computational Details. All CC calculations for the BeFH system reported in this article, including the $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T}), \mathrm{R}-\operatorname{CCSD}(\mathrm{T})$, and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ calculations, were performed using the suite of RHF-based CC programs described in ref 37 . These programs are an integral part of the GAMESS package. ${ }^{42}$ The MRCI calculations were carried out using the internally contracted $\mathrm{MRCI}(\mathrm{Q})$ approach including the quasi-degenerate Davidson corrections and employing the complete active space self-consistent field (CASSCF) reference, developed by Werner and Knowles ${ }^{43,44}$ and implemented in the MOLPRO package. ${ }^{55}$ The active space used in the MRCI(Q) calculations consisted of eight active orbitals with eight active electrons that correlate with the 2 s and 2 p shells of Be , the 2 p shell of F , and the 1 s orbital of the H atom. The core orbital correlating with the 1 s shell of the fluorine atom was kept frozen in all of the above calculations.

The $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T}), \mathrm{R}-\operatorname{CCSD}(\mathrm{T}), \operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ calculations for BeFH were performed using the ccpVTZ and cc-pVQZ basis sets. ${ }^{41}$ The cc-pVTZ basis set was used to calculate the entire three-dimensional PES of the BeFH system. Because of the large costs of the $\operatorname{MRCI}(\mathrm{Q})$ calculations and the large number of geometries included in our calculations, the cc-pVQZ basis set was only used to examine the collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ reaction.

The three-dimensional PESs for the BeFH system were determined by performing the $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T}), \mathrm{R}-\mathrm{CCSD}(\mathrm{T})$, $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ calculations on a grid of 2852 nuclear geometries defined as follows. For the six values of the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle θ ranging from 45° to $180^{\circ}\left(\theta=45^{\circ}, 70^{\circ}\right.$, $80^{\circ}, 90^{\circ}, 135^{\circ}$, and $180^{\circ} ; \theta=180^{\circ}$ represents a collinear arrangement of the Be, F, and H atoms, with F located between Be and H), we used the following values of the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ distances, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively: $R_{\mathrm{Be}-\mathrm{F}}=1.8,1.9,2.0$, $2.2,2.4,2.5,2.5719,2.6,2.7,2.9,3.1,3.3,3.5,3.7,3.9,4.1$, $4.5,4.7,5.0,5.2,5.5,6.0$, and 8.0 bohr, and $R_{\mathrm{H}-\mathrm{F}}=1.2,1.4$, $1.6,1.7325,1.8,2.0,2.25,2.5,2.75,3.0,3.5,4.0,5.0,6.0$, and 8.0 bohr. For the value of $\theta=0^{\circ}$ corresponding to the beryllium atom approaching the hydrogen atom of the HF molecule, the $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T}), \mathrm{R}-\operatorname{CCSD}(\mathrm{T}), \mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$, and $\mathrm{MRCI}(\mathrm{Q})$ energies were calculated for the $\mathrm{Be}-\mathrm{H}$ distances $R_{\mathrm{Be}-\mathrm{H}}=1.8$, 1.9, 2.0, 2.2, 2.4, 2.5, 2.52, 2.6, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, $4.1,4.5,4.7,5.0,5.2,5.5,6.0$, and 8.0 bohr, and the $\mathrm{H}-\mathrm{F}$ distances $R_{\mathrm{H}-\mathrm{F}}=1.2,1.4,1.6,1.7325,1.8,2.0,2.25,2.5,2.75$,
3.0, 3.5, and 4.0 bohr. Finally, for the value of $\theta=0^{\circ}$ corresponding to the beryllium atom inserted between the hydrogen and fluorine atoms, the bond distances were chosen as $R_{\mathrm{Be}-\mathrm{F}}=1.8,1.9,2.0,2.2,2.4,2.5,2.5719,2.6,2.7,2.9,3.1$, $3.3,3.5,3.7,3.9,4.1,4.5,4.7,5.0,5.2,5.5$, and 6.0 bohr, and $R_{\mathrm{Be}-\mathrm{H}}=1.8,1.9,2.0,2.2,2.4,2.5,2.52,2.6,2.7,2.9,3.1,3.3$, $3.5,3.7,3.9,4.1,4.5,4.7,5.0,5.2,5.5,6.0$, and 8.0 bohr. Notice the presence of the approximate equilibrium bond lengths of the BeF, HF, and BeH molecules (2.5719, 1.7325, and 2.52 bohr, respectively ${ }^{46}$) among the values of $R_{\mathrm{Be}-\mathrm{F}}, R_{\mathrm{H}-\mathrm{F}}$, and $R_{\mathrm{Be}-\mathrm{H}}$ defining our basic grid. In the PES regions of special importance, for example, in the saddle point region, many additional points were considered.

All values of $\theta, R_{\mathrm{Be}-\mathrm{F}}, R_{\mathrm{Be}-\mathrm{H}}$, and $R_{\mathrm{H}-\mathrm{F}}$, and the corresponding CCSD, $\operatorname{CCSD}(\mathrm{T}), \mathrm{R}-\operatorname{CCSD}(\mathrm{T}), \operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ energies obtained with the $c c-p V T Z$ and $c c-p V Q Z$ basis sets can be found in the Supporting Information.

Results and Discussion

We divide the discussion of the results into a few subsections corresponding to different types of arrangements of the Be, F, and H atoms (collinear, bent, etc., as defined by different values of the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle θ). We also have a separate subsection discussing the θ dependence of the saddle point energies and a subsection comparing the results obtained in this study using the cc-pVTZ and cc-pVQZ basis sets with the results obtained earlier ${ }^{39}$ with the small, MIDI, ${ }^{40}$ basis set. The main focus of our discussion is the performance of the CCSD and $\operatorname{CCSD}(\mathrm{T})$ vs $\operatorname{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ vs $\mathrm{MRCI}(\mathrm{Q})$ methods.

The PES for the Collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ Reaction $\left(\boldsymbol{\theta}=18 \mathbf{0}^{\circ}\right)$ Obtained with the cc-pVTZ Basis Set. The groundstate PESs of the BeFH system, as described by the cc-pVTZ basis set, obtained in the $\operatorname{CCSD}(\mathrm{T}), \operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ calculations for $\theta=180^{\circ}$, are shown in Figure 1. The maximum values of the absolute errors, relative to $\operatorname{MRCI}(\mathrm{Q})$, characterizing the $\mathrm{CCSD}, \operatorname{CCSD}(\mathrm{T})$, and CR $\operatorname{CCSD}(\mathrm{T}) \mathrm{PESs}$ of the BeFH system when the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle θ is fixed at 180°, resulting from the calculations with the ccpVTZ basis set, can be found in Table 1.

As shown in Figure 1 and Table 1, the CCSD and $\operatorname{CCSD}(\mathrm{T})$ PESs differ greatly from the $\operatorname{MRCI}(\mathrm{Q})$ PES, while the CR$\operatorname{CCSD}(\mathrm{T})$ PES is almost identical to the $\operatorname{MRCI}(\mathrm{Q})$ PES. The CCSD and $\operatorname{CCSD}(\mathrm{T})$ PESs show very large differences with the $\operatorname{MRCI}(\mathrm{Q}) \mathrm{PES}$, especially in the region where both the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bonds are stretched. For the value of $\theta=180^{\circ}$ discussed here, the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ energies are greater (in absolute value) than 1 eV in the entire $R_{\mathrm{Be}-\mathrm{F}} \geq 5.5$ bohr and $R_{\mathrm{H}-\mathrm{F}} \geq 6.0$ bohr region. They are greater than 0.5 eV in the entire $R_{\mathrm{Be}-\mathrm{F}} \geq 5.0 \mathrm{bohr}$ and $R_{\mathrm{H}-\mathrm{F}}$ ≥ 5.0 bohr region, and they exceed 0.2 eV for almost all nuclear geometries from the $R_{\mathrm{Be}-\mathrm{F}}<2.5 \mathrm{bohr}$ and $R_{\mathrm{H}-\mathrm{F}} \geq 2.5$ bohr region, for the majority of geometries from the $R_{\mathrm{Be}-\mathrm{F}} \geq 3.5$ bohr and $R_{\mathrm{H}-\mathrm{F}} \geq 3.5$ bohr region, and for many geometries from the 2.5 bohr $\leq R_{\mathrm{Be}-\mathrm{F}}<3.5 \mathrm{bohr}$ and $R_{\mathrm{H}-\mathrm{F}} \approx 3.0 \mathrm{bohr}$ region. The maximum difference between the $\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ energies of the collinear BeFH system, as described by the cc-pVTZ basis set, is 3.269 eV (cf. Table 1 and Figure 1d), which clearly shows how serious the breakdown of the RHF-based CCSD(T) approximation can be in studies of chemical reactions. Similar remarks apply to the CCSD calculations. For example, the differences between the CCSD and $\operatorname{MRCI}(\mathrm{Q})$ energies are greater than 0.5 eV in the entire $R_{\mathrm{Be}-\mathrm{F}}$ ≥ 3.9 bohr and $R_{\mathrm{H}-\mathrm{F}} \geq 4.0$ bohr region and for almost all geometries from the $R_{\mathrm{Be}-\mathrm{F}}<3.9$ bohr and 2.5 bohr $\leq R_{\mathrm{H}-\mathrm{F}}<$

Figure 1. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, at $\theta=180^{\circ}$, calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})(\mathrm{c})$ methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ (e) energies for $\theta=180^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 1.3 eV , shown in (a-c), separates the region where the contour spacing is 0.3 eV from the region where the contour spacing is 0.5 eV . An extra contour line corresponding to 0.12 eV has been added to (a) to better describe the product channel. The error energy scales on the right side of (d) and (e) are in electronvolts.

TABLE 1: Maximum Absolute Errors (in Electronvolts), Relative to MRCI(Q) (the cc-pVTZ and cc-pVQZ basis sets) and Full CI (the MIDI basis set), in the CCSD, CCSD(T), and CR-CCSD(T) Energies for the Ground-State PES of the BeFH System at a $\mathbf{B e}-\mathrm{F}-\mathrm{H}$ Angle θ of $\mathbf{1 8 0}^{\circ}{ }^{\circ}$

			maximum absolute error					
basis set	method	all geometries	$R_{\mathrm{Be}-\mathrm{F}} \leq 3.1$	$3.1<R_{\mathrm{Be}-\mathrm{F}} \leq 5.0$	$5.0<R_{\mathrm{Be}-\mathrm{F}}$	$R_{\mathrm{H}-\mathrm{F}} \leq 3.0$	$3.0<R_{\mathrm{H}-\mathrm{F}} \leq 5.0$	$5.0<R_{\mathrm{H}-\mathrm{F}}$
cc-pVTZ b	CCSD	1.137	0.641	0.767	1.137	0.641	0.844	
	CCSD(T)	3.269	0.467	0.629	3.269	0.442	0.794	
	CR-CCSD(T)	0.180	0.173	0.180	0.149	0.173	0.158	3.269
cc-pVQZ b	CCSD	1.250	0.689	0.838	1.250	0.689	0.907	0.180
	CCSD(T)	4.077	0.530	0.638	4.077	0.443	0.812	4.250
	CR-CCSD(T)	0.198	0.181	0.198	0.169	0.181	0.174	
MIDI c	CCSD	0.443	0.277	0.443	0.356	0.199	0.358	
	CCSD(T)	0.778	0.236	0.759	0.778	0.204	0.198	
	CR-CCSD(T)	0.085	0.045	0.085	0.066	0.036	0.264	0.081

${ }^{a}$ The $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$ values are in bohr. ${ }^{b}$ This work. ${ }^{c}$ Taken from ref 39 .
4.0 bohr region. As shown in Table 1, the maximum difference between the CCSD and $\operatorname{MRCI}(\mathrm{Q})$ results is 1.137 eV . Thus,
the standard CCSD and $\operatorname{CCSD}(\mathrm{T})$ methods lead to huge errors relative to $\mathrm{MRCI}(\mathrm{Q})$ when the ground-state PES of BeFH is

Figure 2. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, at $\theta=135^{\circ}$ calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})(\mathrm{c})$ methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCS}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ (e) energies for $\theta=135^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 1.2 eV , shown in ($\mathrm{a}-\mathrm{c}$), separates the region where the contour spacing is 0.3 eV from the region where the contour spacing is 0.5 eV . An extra contour line corresponding to 0.12 eV has been added to (a) to better describe the product channel. The error energy scales on the right side of (d) and (e) are in electronvolts.
examined. The only essential difference between the CCSD and $\operatorname{CCSD}(\mathrm{T})$ results is the fact that the PES obtained in the CCSD calculations is located above the $\operatorname{MRCI}(\mathrm{Q}) \mathrm{PES}$, whereas the $\operatorname{CCSD}(\mathrm{T})$ PES is located below the $\mathrm{MRCI}(\mathrm{Q})$ PES.

The poor performance of the CCSD and $\operatorname{CCSD}(\mathrm{T})$ methods should be contrasted with the excellent performance of the CR$\operatorname{CCSD}(\mathrm{T})$ approach for which the errors relative to $\operatorname{MRCI}(\mathrm{Q})$ are less than 0.2 eV when $\theta=180^{\circ}$ (see Figure 1e and Table 1). Typically, the differences between the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ energies for the collinear $\left(\theta=180^{\circ}\right) \mathrm{BeFH}$ system, as described by the cc-pVTZ basis set, are on the order of $0.01-$ 0.1 eV . In other words, the CR-CCSD(T) and $\operatorname{MRCI}(\mathrm{Q})$ PESs are virtually parallel and lie very close to each other (see Figure 1e; see also Figures 1a,c and Table 1). The CR-CCSD(T) PES is located slightly above the $\operatorname{MRCI}(\mathrm{Q})$ PES, so that the CR$\operatorname{CCSD}(\mathrm{T})$ approach eliminates the nonvariational collapse of the standard $\operatorname{CCSD}(\mathrm{T})$ method at larger internuclear separations.

The excellent performance of the CR-CCSD(T) approach and the parallelity of the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ PESs are in sharp contrast with a highly nonuniform distribution of differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ energies and large errors in the $\operatorname{CCSD}(\mathrm{T})$ results relative to $\operatorname{MRCI}(\mathrm{Q})$ shown in Figure 1d. The only region where the CCSD and $\operatorname{CCSD}(\mathrm{T})$ methods give relatively small errors is the region of smaller $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ distances, but even there the overall performance of the CR-CCSD(T) approach is superior. For example, the CR-CCSD(T) method reduces the relatively large $0.4-0.6$ eV maximum errors in the CCSD and $\operatorname{CCSD}(\mathrm{T})$ results in the $R_{\mathrm{Be}-\mathrm{F}} \leq 3.1$ bohr and $R_{\mathrm{H}-\mathrm{F}} \leq 3.0$ bohr region to less than 0.2 eV (often, $0.01-0.1 \mathrm{eV}$). It is quite remarkable to observe that the differences between the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ energies remain consistently small for all values of $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$.

A close inspection of the saddle point region of the $\operatorname{CCSD}(\mathrm{T})$ PES for $\theta=180^{\circ}$ shows that this part of the $\operatorname{CCSD}(\mathrm{T})$ PES is

Figure 3. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, at $\theta=90^{\circ}$, calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR-CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ (e) energies for $\theta=90^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 0.8 eV , shown in $(\mathrm{a}-\mathrm{c})$, separates the region where the contour spacing is 0.2 eV from the region where the contour spacing is 0.5 eV . Extra contour lines corresponding to $0.09,3$, and 0.23 eV have been added to (a), (b), and (c), respectively, to better characterize important PES regions. The error energy scales on the right side of (d) and (e) are in electronvolts.
located below the corresponding part of the $\operatorname{MRCI}(\mathrm{Q})$ PES. This can be seen by comparing the thick contour lines corresponding to an energy of 1.3 eV in Figure 1a,b. The $\operatorname{CCSD}(\mathrm{T})$ PES allows for the formation of the $\mathrm{BeF}+\mathrm{H}$ products at lower energies than the MRCI(Q) PES. This should be contrasted with the fact that the saddle point region on the CR-CCSD(T) PES is located slightly above the saddle point region on the $\mathrm{MRCI}(\mathrm{Q})$ PES. We will return to the discussion of the saddle point energies obtained in the $\operatorname{CCSD}(\mathrm{T}), \operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ calculations in the last subsection of this section.

In general, the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ approach eliminates the undesirable unphysical features on the PES produced by the $\operatorname{CCSD}(\mathrm{T})$ method at intermediate and large stretches of the $\mathrm{H}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{F}$ bonds. For example, the $\operatorname{CCSD}(\mathrm{T})$ PES creates a false impression of the existence of a well-pronounced barrier leading to the formation of the $\mathrm{Be}+\mathrm{F}+\mathrm{H}$ atomic products, which is an artifact of the $\operatorname{CCSD}(\mathrm{T})$ calculations. The CR-CCSD(T) PES
does not have this problem (cf. the $R_{\mathrm{H}-\mathrm{F}}>4.0$ bohr and $R_{\mathrm{Be}-\mathrm{F}}$ >5.0 bohr region on the $\operatorname{MRCI}(\mathrm{Q}), \operatorname{CCSD}(\mathrm{T})$, and CR $\operatorname{CCSD}(\mathrm{T})$ PESs shown in Figure 1a-c, respectively). Also, the shallow van der Waals well in the product $(\mathrm{BeF}+\mathrm{H})$ valley is located on the $\operatorname{CCSD}(\mathrm{T})$ PES below the $\mathrm{Be}+\mathrm{HF}$ reactants, which is wrong (cf. the $\operatorname{CCSD}(\mathrm{T})$ PES in Figure 1b with the $\operatorname{MRCI}(\mathrm{Q})$ PES in Figure 1a). As shown in Figure 1c, the CR$\operatorname{CCSD}(\mathrm{T})$ method eliminates this problem too. Clearly, the overall description of the product channel by the $\operatorname{CCSD}(\mathrm{T})$ method is not correct. For example, the endothermicity of the $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ reaction of -0.009 eV , obtained with the $\operatorname{CCSD}(\mathrm{T})$ method, has the wrong sign when compared to the $\operatorname{MRCI}(\mathrm{Q})$ endothermicity of 0.140 eV or the MRCI value reported by Aguado et al. ${ }^{2}$ of 0.26 eV . The CR-CCSD(T) endothermicity value of 0.284 eV , although somewhat above the $\operatorname{MRCI}(\mathrm{Q})$ value, retains the correct sign and is in excellent agreement with the MRCI result reported in ref 2 . The CR-

Figure 4. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, at $\theta=80^{\circ}$, calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ (e) energies for $\theta=80^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 0.6 eV , shown in ($\mathrm{a}-\mathrm{c}$), separates the region where the contour spacing is 0.3 eV from the region where the contour spacing is 0.5 eV . An extra contour line corresponding to 0.1 eV has been added to (c) to better describe the product channel. The error energy scales on the right side of (d) and (e) are in electronvolts.
$\operatorname{CCSD}(\mathrm{T})$ result for the endothermicity of the $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}$ +H reaction is also in very good agreement with the experimentally derived value of 0.193 eV , obtained using the experimental data for the binding energies of HF^{47} and $\mathrm{BeF} .{ }^{48}$ The product $(\mathrm{BeF}+\mathrm{H})$ valley and the $\mathrm{Be}+\mathrm{F}+\mathrm{H}$ asymptotic region of the CR-CCSD(T) PES obtained with the cc-pVTZ basis set are shaped in almost exactly the same way as the product valley and the $\mathrm{Be}+\mathrm{F}+\mathrm{H}$ region of the $\operatorname{MRCI}(\mathrm{Q})$ PES. This can be best seen by comparing the thick contour lines corresponding to 1.3 eV and thin contour lines corresponding to 5.3 and 5.8 eV in Figure 1a,c. These contour lines have incorrect shapes when the $\operatorname{CCSD}(\mathrm{T}) \mathrm{PES}$ is examined (see Figure 1b). Unlike in the $\operatorname{MRCI}(\mathrm{Q})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ cases, the contour line corresponding to 5.3 eV on the $\operatorname{CCSD}(\mathrm{T})$ PES is located only in the narrow region of large $\mathrm{Be}-\mathrm{F}$ and intermediate $\mathrm{H}-\mathrm{F}$ distances. The energy value of 5.8 eV above the reactants is never reached in the $\operatorname{CCSD}(\mathrm{T})$ calculations (the maximum $\operatorname{CCSD}(\mathrm{T})$ energy relative to the $\mathrm{Be}+\mathrm{HF}$ reactants
in Figure 1 b is ca. 5.4 eV). This should be contrasted with the fact that the contour line at 5.8 eV is clearly seen on the $\operatorname{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ PESs shown in Figure 1a,c, respectively.

The Ground-State PES of the BeFH System for $\theta=135^{\circ}$, $90^{\circ}, 80^{\circ}, 70^{\circ}$, and 45° Obtained with the cc-pVTZ Basis Set. The results of the $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T}), \mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ calculations for the ground-state PES of the BeFH system in which the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle θ is fixed at $135^{\circ}, 90^{\circ}$, $80^{\circ}, 70^{\circ}$, and 45° are summarized in Figures $2-6$ and Table 2. For each of these angles, the PESs calculated using the CCSD and $\operatorname{CCSD}(\mathrm{T})$ approaches show large deviations from the PES calculated with the $\operatorname{MRCI}(\mathrm{Q})$ method. As in the case of $\theta=$ 180°, the largest errors are observed in the region of stretched $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bonds. In the case of the CCSD method, the maximum error, relative to $\mathrm{MRCI}(\mathrm{Q})$, for θ ranging between 45° and 180°, is 1.284 eV , although there seems to be little dependence of the differences between the CCSD and MRCI(Q)

Figure 5. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, at $\theta=70^{\circ}$, calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR-CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ (e) energies for $\theta=70^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 0.6 eV , shown in $(\mathrm{a}-\mathrm{c})$, separates the region where the contour spacing is 0.3 eV from the region where the contour spacing is 0.5 eV . The error energy scales on the right side of (d) and (e) are in electronvolts.
energies on θ (see Tables 1 and 2). The $\operatorname{CCSD}(\mathrm{T})$ approach behaves in a completely different manner. For $\operatorname{CCSD}(\mathrm{T})$, the maximum absolute errors, relative to $\mathrm{MRCI}(\mathrm{Q})$, dramatically increase as θ decreases, reaching the huge value of 10.988 eV when $R_{\mathrm{Be}-\mathrm{F}}=8.0 \mathrm{bohr}, R_{\mathrm{H}-\mathrm{F}}=8.0 \mathrm{bohr}$, and $\theta=45^{\circ}$ (see Table 2 and Figure 6d). It can be seen from Figures 1-6 and Tables 1 and 2 that for the $\operatorname{CCSD}(\mathrm{T})$ method the errors in the region of larger $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bond distances monotonically increase as the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle decreases. Another difference between the behavior of the CCSD and $\operatorname{CCSD}(\mathrm{T})$ methods for $\theta=45^{\circ}-180^{\circ}$ is the fact that the CCSD PES is located above the $\operatorname{MRCI}(\mathrm{Q})$ PES, whereas the $\operatorname{CCSD}(\mathrm{T})$ PES is usually below the $\operatorname{MRCI}(\mathrm{Q})$ PES (see, for example, Figures 1d, 2d, 3d, 4d, 5 d , and 6 d). One should also notice that for significantly bent geometries $\left(\theta \leq 90^{\circ}\right)$, stretching the $\mathrm{Be}-\mathrm{F}$ bond has a larger effect on the results of the standard $\operatorname{CCSD}(\mathrm{T})$ calculations than stretching the $\mathrm{H}-\mathrm{F}$ bond. This behavior is best illustrated by the results for $\theta=70^{\circ}$, which show that when the $\mathrm{Be}-\mathrm{F}$ bond
is stretched to $3.1-5.0$ bohr and all $\mathrm{H}-\mathrm{F}$ distances are considered, the maximum absolute error in the $\operatorname{CCSD}(\mathrm{T})$ results is 0.294 eV , whereas when the $\mathrm{H}-\mathrm{F}$ bond is stretched to $3.0-$ 5.0 bohr and all $\mathrm{Be}-\mathrm{F}$ distances are considered, the maximum unsigned error in the $\operatorname{CCSD}(\mathrm{T})$ energies is 2.581 eV (see Table 2). The above failures of the CCSD and $\operatorname{CCSD}(\mathrm{T})$ methods to produce high quality PESs for the BeFH system and the highly nonuniform distribution of errors when the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ distances and the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle vary, observed in the $\operatorname{CCSD}(\mathrm{T})$ calculations, are in sharp contrast with the results of the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ calculations for which the errors relative to $\operatorname{MRCI}(\mathrm{Q})$ remain small for all bond distances and angles. It is remarkable to observe a small increase in the maximum unsigned error characterizing the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ calculations with the decreasing values of θ, from 0.180 eV for $\theta=180^{\circ}$ to 0.407 eV for $\theta=45^{\circ}$ (see Tables 1 and 2). If we limited ourselves to the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angles from the $\theta=70^{\circ}-180^{\circ}$ region, the maximum absolute errors in the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ results would

Figure 6. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, at $\theta=45^{\circ}$, calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR-CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ (e) energies for $\theta=45^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 1.3 eV , shown in a-c, separates the region where the contour spacing is 0.4 eV from the region where the contour spacing is 0.5 eV . The error energy scales on the right side of (d) and (e) are in electronvolts.
be very small and virtually independent of θ (they would fluctuate around 0.2 eV). Another useful characteristic of the CR-CCSD(T) approach is its quasi-variational character. As in the case of $\theta=180^{\circ}$, the CR-CCSD(T) PES is located slightly above the $\mathrm{MRCI}(\mathrm{Q})$ PES when $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$ vary from 1.8 and 1.2 bohr, respectively, to 8.0 bohr and when θ ranges between 45° and 180° (see, for example, Figures 1e, 2e, 3e, 4e, 5 e , and 6 e).

Essentially all of the remarks that we have made about the relative performance of the CCSD, $\operatorname{CCSD}(\mathrm{T}), \mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ methods for $\theta=180^{\circ}$ apply to other values of θ. The CR-CCSD(T) approach eliminates the unphysical features (humps, artificial minima and maxima, etc.) on the $\operatorname{CCSD}(\mathrm{T})$ PES for all values of θ (see Figures 2-6). The PES of the BeFH system for $\theta=90^{\circ}$ is a good illustration of how the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ approach can give results that mirror those of the $\operatorname{MRCI}(\mathrm{Q})$ method, even though the standard $\operatorname{CCSD}(\mathrm{T})$ approach gives results that are qualitatively incorrect (see Figure

3 and Table 2). The $\operatorname{CCSD}(\mathrm{T})$ method not only shows large errors at stretched $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bond distances (up to 4.142 eV ; cf. Table 2 and Figure 3d), but it also produces an artificial, $\sim 2.5 \mathrm{eV}$ deep, well near $R_{\mathrm{Be}-\mathrm{F}}=6.0$ bohr and $R_{\mathrm{H}-\mathrm{F}}=6.0$ bohr, which can be clearly seen by examining the thin contour line at 3 eV in this region of the $\operatorname{CCSD}(\mathrm{T})$ PES in Figure 3b. This well does not appear on either the $\operatorname{MRCI}(\mathrm{Q})$ or CR$\operatorname{CCSD}(\mathrm{T})$ PESs. Furthermore, the PESs resulting from the $\operatorname{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ calculations for $\theta=90^{\circ}$ show the formation of a well in the product valley, as is clearly shown by the thin contour lines at 0.09 and 0.23 eV in Figure 3a,c, respectively. This well is due to the beryllium atom beginning to insert between the hydrogen and fluorine atoms, and it does not appear on the $\operatorname{CCSD}(\mathrm{T}) \mathrm{PES}$ at $\theta=90^{\circ}$. At $\theta=90^{\circ}$, the $\operatorname{CCSD}(\mathrm{T})$ PES shows a continuous decrease in energy in the $\mathrm{BeF}+\mathrm{H}$ product valley as the $\mathrm{H}-\mathrm{F}$ distance increases, as can be seen in Figure 3b, until the energy of the $\mathrm{BeF}+\mathrm{H}$ products drops below that of the reactants. Only when the angle θ drops

TABLE 2: Maximum Absolute Errors (in Electronvolts), Relative to MRCI(Q), in the CCSD, CCSD(T), and CR-CCSD(T) Energies for the Ground-State PES of the BeFH System at Be-F-H Angles $\boldsymbol{\theta}$ of $\mathbf{1 3 5}^{\circ}, \mathbf{9 0}^{\circ}, \mathbf{8 0}^{\circ}, \mathbf{7 0}$, and $\mathbf{4 5}^{\circ}$, Calculated with the cc-pVTZ Basis Set ${ }^{a}$

			maximum absolute error					
θ	method	all geometries	$R_{\text {Be-F }} \leq 3.1$	$3.1<R_{\text {Be-F }} \leq 5.0$	$5.0<R_{\text {Be-F }}$	$R_{\text {H-F }} \leq 3.0$	$3.0<R_{\mathrm{H}-\mathrm{F}} \leq 5.0$	$5.0<R_{\mathrm{H}-\mathrm{F}}$
135°	CCSD	1.152	0.599	0.804	1.152	0.636	0.868	1.152
	$\operatorname{CCSD}(\mathrm{T})$	3.435	0.401	0.641	3.435	0.260	0.913	3.435
	CR-CCSD(T)	0.184	0.160	0.184	0.150	0.150	0.164	0.184
90°	CCSD	1.199	0.510	0.835	1.199	0.587	0.984	1.199
	$\operatorname{CCSD}(\mathrm{T})$	4.142	0.312	0.599	4.142	0.111	1.653	4.142
	CR-CCSD(T)	0.222	0.160	0.222	0.212	0.144	0.222	0.212
80°	CCSD	1.218	0.469	0.776	1.218	0.554	1.026	1.218
	$\operatorname{CCSD}(\mathrm{T})$	4.519	0.279	0.404	4.519	0.100	2.083	4.519
	CR-CCSD(T)	0.239	0.159	0.214	0.239	0.131	0.214	0.239
70°	CCSD	1.284	0.436	0.707	1.284	0.530	0.987	1.284
	CCSD (T)	5.168	0.236	0.294	5.168	0.098	2.581	5.168
	CR-CCSD(T)	0.286	0.156	0.216	0.286	0.117	0.214	0.286
45°	CCSD	1.184	0.404	0.569	1.184	0.526	1.034	1.184
	CCSD(T)	10.988	0.115	0.108	10.988	0.097	1.676	10.988
	CR-CCSD(T)	0.407	0.132	0.178	0.407	0.110	0.107	0.407

${ }^{a}$ The $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$ values are in bohr.
below 90° do we begin to observe the proper formation of the deep minimum corresponding to the insertion of the Be atom into the $\mathrm{H}-\mathrm{F}$ bond that leads to the appearance of the HBeF molecule in the $R_{\mathrm{H}-\mathrm{F}} \approx 4.0-5.0 \mathrm{bohr}$ and $R_{\mathrm{Be}-\mathrm{F}} \approx 2.5 \mathrm{bohr}$ region of the $\operatorname{CCSD}(\mathrm{T})$ PES (see Figures $4 \mathrm{~b}, 5 \mathrm{~b}$, and 6 b). But then, the region of larger $\mathrm{H}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{F}$ distances is no longer correctly described by the $\operatorname{CCSD}(\mathrm{T})$ approach, as shown, for example, in Figure 6 b for $\theta=45^{\circ}$. At $\theta=45^{\circ}$, the $\operatorname{CCSD}(\mathrm{T})$ energies in the $R_{\mathrm{H}-\mathrm{F}} \geq 5.0$ bohr and $R_{\mathrm{Be}-\mathrm{F}} \geq 6.0$ bohr region rapidly decrease below the energy of the $\mathrm{Be}+\mathrm{HF}$ reactants as the $\mathrm{H}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{F}$ distances increase (cf. the vicinity of the thick contour line at 1.3 eV in the top right corner of Figure $6 \mathrm{~b})$. This behavior is not seen in the $\mathrm{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ calculations. In analogy to other θ angles, the $\operatorname{MRCI}(\mathrm{Q})$ and $\operatorname{CR}-\operatorname{CSD}(\mathrm{T})$ energies for $\theta=45^{\circ}$ increase with the simultaneous increase of $R_{\mathrm{H}-\mathrm{F}}$ and $R_{\mathrm{Be}-\mathrm{F}}$ and the $\mathrm{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-$ $\operatorname{CCSD}(\mathrm{T})$ PESs stabilize at $\sim 5.8 \mathrm{eV}$ above the $\mathrm{Be}+\mathrm{HF}$ reactants in the region of large $\mathrm{H}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{F}$ distances corresponding to the noninteracting $\mathrm{Be}+\mathrm{F}+\mathrm{H}$ atom limit (see Figure 6a,c). Thus, the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ approaches are capable of correctly describing the formation of the deep minimum in the $R_{\mathrm{H}-\mathrm{F}} \approx 5.0 \mathrm{bohr}$ and $R_{\mathrm{Be}-\mathrm{F}} \approx 2.5$ bohr region that corresponds to the HBeF product molecule, as θ approaches 0° and Be inserts itself into the $\mathrm{H}-\mathrm{F}$ bond, while providing a correct description of other regions of the PES of BeFH . The $\operatorname{CCSD}(\mathrm{T})$ approach can capture only some elements of the above insertion process, while producing a completely erratic description of the BeFH PES topology in other regions.

The Results of the CCSD, CCSD(T), CR-CCSD(T), and MRCI(Q) Calculations with the cc-pVTZ Basis Set for $\theta=$ $\mathbf{0}^{\circ}$. The $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle of 0° includes both the beryllium atom inserted between the hydrogen and fluorine atoms (Figure 7 and Table 3) and the beryllium atom approaching the hydrogen atom of the HF molecule to form $\mathrm{BeH}+\mathrm{F}$ (Figure 8 and Table 4). Let us first discuss the case of the insertion of Be into the H-F bond.

Once again, the PES calculated with the standard $\operatorname{CCSD}(\mathrm{T})$ approach is qualitatively incorrect when the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{H}$ distances are stretched, as can be seen from Table 3 and Figure 7d. The unsigned errors for the $\operatorname{CCSD}(\mathrm{T})$ method, relative to $\operatorname{MRCI}(\mathrm{Q})$, grow to 1.321 eV , when $R_{\mathrm{Be}-\mathrm{F}}=6.0 \mathrm{bohr}$ and $R_{\mathrm{Be}-\mathrm{H}}$ $=8.0$ bohr. This should be contrasted with the behavior of the CR-CCSD(T) approach, for which the errors relative to
$\operatorname{MRCI}(\mathrm{Q})$ do not exceed 0.4 eV when all geometries are examined (cf. Table 3 and Figure 7e). For the majority of the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{H}$ distances included in our calculations for the $\theta=0^{\circ}$ case corresponding to the insertion of Be into the $\mathrm{H}-\mathrm{F}$ bond, the differences between the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ energies do not exceed $0.1-0.2 \mathrm{eV}$ (cf. Table 3) and they are often on the order of $0.01-0.1 \mathrm{eV}$.

In the region of the deep insertion minimum, corresponding to the formation of the HBeF linear molecule, the PESs calculated with the $\operatorname{MRCI}(\mathrm{Q}), \operatorname{CCSD}(\mathrm{T})$, and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ methods are all very similar (see Figure 7a-c). The MRCI(Q) energy at the HBeF minimum ($R_{\mathrm{Be}-\mathrm{F}}=2.59$ bohr and $R_{\mathrm{Be}-\mathrm{H}}$ $=2.49$ bohr), relative to the $\mathrm{Be}+\mathrm{HF}$ reactants, is -3.98 eV . The CR-CCSD (T) and $\operatorname{CCSD}(\mathrm{T})$ energies at the corresponding HBeF minima ($R_{\mathrm{Be}-\mathrm{F}}=2.58$ bohr and $R_{\mathrm{Be}-\mathrm{H}}=2.49$ bohr for $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ and $R_{\mathrm{Be}-\mathrm{F}}=2.59 \mathrm{bohr}$ and $R_{\mathrm{Be}-\mathrm{H}}=2.49 \mathrm{bohr}$ for $\operatorname{CCSD}(\mathrm{T})$) are -3.93 and -3.92 eV , respectively. Although the $\operatorname{CCSD}(\mathrm{T})$ energy at the HBeF minimum differs from that of $\operatorname{MRCI}(\mathrm{Q})$ by only 0.06 eV , the overall topology of the CCSD(T) PES shown in Figure 7b is incorrect. The CCSD(T) PES lies above the $\mathrm{MRCI}(\mathrm{Q})$ PES near the HBeF minimum and drops below the $\operatorname{MRCI}(\mathrm{Q}) \mathrm{PES}$ as the $\mathrm{Be}-\mathrm{H}$ bond is stretched (see, for example, Figure 7d). This is not the case for the CR-CCSD(T) PES, which lies above and is nearly parallel to the $\operatorname{MRCI}(\mathrm{Q})$ PES (cf. Figure 7a,c,e).

The second $\theta=0^{\circ}$ case of the Be atom reacting with the HF molecule by approaching it from the hydrogen side is another example, much like the cases of $\theta=45^{\circ}-180^{\circ}$, of how the $\operatorname{CR}-\operatorname{CSD}(\mathrm{T})$ method can give correct results where the $\operatorname{CCSD}(\mathrm{T})$ approach gives an unphysical description (see Figure 8 and Table 4). The CCSD(T) PES shows an artificially low and artificially well pronounced barrier for the formation of the $\mathrm{BeH}+\mathrm{F}$ products of $\sim 3 \mathrm{eV}$ in the region of $R_{\mathrm{Be}-\mathrm{H}}=2.5$ bohr and $R_{\mathrm{H}-\mathrm{F}}=3.5$ bohr (see Figure 8 b). At $\theta=0^{\circ}$, this barrier is much higher in energy and almost completely flat in the $\operatorname{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ cases (cf. Figure 8a, c).

As shown in Table 4 and Figure 8d, the unsigned errors in the $\operatorname{CCSD}(\mathrm{T})$ results, relative to $\mathrm{MRCI}(\mathrm{Q})$, become considerably larger as the $\mathrm{H}-\mathrm{F}$ bond distance is increased and the $\mathrm{Be}-\mathrm{H}$ bond distance is decreased. These errors increase to 2.773 eV , obtained for $R_{\mathrm{Be}-\mathrm{H}}=1.8$ bohr and $R_{\mathrm{H}-\mathrm{F}}=4.0$ bohr. As in other cases, the CCSD approach displays a smaller variation of errors, although again the largest error in the CCSD results relative to $\mathrm{MRCI}(\mathrm{Q})$ of 0.980 eV is observed in the region of

Figure 7. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, for the $\theta=0^{\circ}$ case corresponding to the Be atom located between H and F , calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ (e) energies for the $\theta=0^{\circ}$ case, where Be is between H and F , on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{Be}-\mathrm{H}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{Be}-\mathrm{H}}$, respectively. All energies are reported in electronvolts relative to the Be + HF reactants $\left(\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0\right.$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr $)$. A contour spacing of 0.4 eV is used throughout the plots. The error energy scales on the right side of (d) and (e) are in electronvolts.

TABLE 3: Maximum Absolute Errors (in Electronvolts), Relative to MRCI(Q), in the CCSD, CCSD(T), and CR-CCSD(T) Energies for the Ground-State PES of the BeFH System at a Be-F-H Angle $\boldsymbol{\theta}$ of $\boldsymbol{0}^{\circ}$ (Be Inserted between F and H), Calculated with the cc-pVTZ Basis Set ${ }^{a}$

		maximum absolute error					
method	all geometries	$R_{\text {Be-F }} \leq 3.1$	$3.1<R_{\text {Be-F }} \leq 5.0$	$5.0<R_{\text {Be-F }}$	$R_{\text {Be- }} \leq 3.0$	$3.0<R_{\text {Be-H }} \leq 5.0$	$5.0<R_{\text {Be- }}$
CCSD	1.303	0.379	0.640	1.303	0.493	0.847	1.303
CCSD(T)	1.321	0.166	0.167	1.321	0.065	0.112	1.321
CR-CCSD(T)	0.398	0.154	0.225	0.398	0.080	0.259	0.398

[^1]shorter $\mathrm{Be}-\mathrm{H}$ and $\mathrm{H}-\mathrm{F}$ distances. The large errors in the CCSD and $\operatorname{CCSD}(\mathrm{T})$ results are considerably reduced by the CR$\operatorname{CCSD}(\mathrm{T})$ approach (see Table 4 and Figure 8e). For example, the 2.773 eV maximum error characterizing the standard $\operatorname{CCSD}(\mathrm{T})$ calculation for the collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeH}+\mathrm{F}$ reaction reduces to 0.428 eV , when the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ method
is employed (cf. Table 4) and for most geometries shown in Figure 8, the differences between the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ energies are on the order of $0.01-0.1 \mathrm{eV}$.

Saddle Points Obtained with the ce-pVTZ Basis Set. The energies and geometries of the saddle points corresponding to several angles θ between 45° and 180°, resulting from the

Figure 8. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVTZ basis set, for the $\theta=0^{\circ}$ case corresponding to the H atom located between Be and F , calculated with the $\operatorname{MRCI}(\mathrm{Q})$ (a), $\operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ (e) energies for the $\theta=0^{\circ}$ case, where H is between Be and F , on the $\mathrm{Be}-\mathrm{H}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{H}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the Be + HF reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=50.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr $)$. A contour spacing of 0.3 eV is used throughout the plots. The thick contour line at 3 eV accentuates the presence of an artificially low and artificially well pronounced barrier on the $\operatorname{CCSD}(\mathrm{T}) \operatorname{PES}$ in the region where none is present. The error energy scales on the right side of (d) and (e) are in electronvolts.

TABLE 4: Maximum Absolute Errors (in Electronvolts), Relative to MRCI(Q), in the CCSD, CCSD(T), and CR-CCSD(T) Energies for the Ground-State PES of the BeFH System at a Be-F-H Angle θ of $\boldsymbol{0}^{\circ}$ (Be Approaching the \mathbf{H} Atom of the HF Molecule), Calculated with the cc-pVTZ Basis Set ${ }^{a}$

		maximum absolute error					
method	all geometries	$R_{\text {Be- }-\mathrm{H}} \leq 3.1$	$3.1<R_{\mathrm{Be}-\mathrm{H}} \leq 5.0$	$5.0<R_{\mathrm{Be}-\mathrm{H}}$	$R_{\mathrm{H}-\mathrm{F}} \leq 2.0$	$2.0<R_{\mathrm{H}-\mathrm{F}} \leq 3.0$	$3.0<R_{\mathrm{H}-\mathrm{F}}$
CCSD	0.980	0.980	0.815	0.592	0.421	0.695	0.980
CCSD(T)	2.773	2.773	0.545	0.228	0.070	0.140	2.773
CR-CCSD(T)	0.428	0.428	0.136	0.109	0.069	0.131	0.428

${ }^{a}$ The $R_{\mathrm{Be}-\mathrm{H}}$ and $R_{\mathrm{H}-\mathrm{F}}$ values are in bohr.
$\operatorname{CCSD}(\mathrm{T}), \mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\mathrm{MRCI}(\mathrm{Q})$ calculations employing the cc-pVTZ basis set, are shown in Table 5 (cf. also, Figure 9). As can be seen in Table 5 and Figure 9, at larger values of θ, the energies of the saddle points calculated with the $\operatorname{CCSD}(\mathrm{T})$ method are below those obtained with the $\operatorname{MRCI}(\mathrm{Q})$ approach,
while at smaller θ values this trend is reversed, i.e., the $\operatorname{CCSD}(\mathrm{T})$ energy barriers are greater than their $\mathrm{MRCI}(\mathrm{Q})$ counterparts. For example, at $\theta=180^{\circ}$ the $\operatorname{CCSD}(\mathrm{T})$ approach produces an energy barrier of 1.30 eV , while the $\mathrm{MRCI}(\mathrm{Q})$ approach gives a barrier height of 1.35 eV . For $\theta=135^{\circ}$, the $\operatorname{CCSD}(\mathrm{T})$ barrier

TABLE 5: Energies (E) and Geometries ($\boldsymbol{R}_{\mathrm{Be}-\mathrm{F}}$ and $\boldsymbol{R}_{\mathrm{H}-\mathrm{F}}$) of the Saddle Points on the BeFH PES for the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ Angles $\theta=45^{\circ}, 70^{\circ}, 80^{\circ}, 90^{\circ}, 135^{\circ}$, and 180°, and Energies (E) and Geometries ($\boldsymbol{R}_{\mathrm{Be}-\mathrm{F}}$ and $\boldsymbol{R}_{\mathrm{Be}-\mathrm{H}}$) of the HBeF Insertion Minimum Resulting from the CCSD(T), CR-CCSD(T), and $\operatorname{MRCI}(Q)$ Calculations with the cc-pVTZ Basis Set ${ }^{a}$

θ	quantity	CCSD(T)	CR-CCSD(T)	MRCI(Q)
45°	E	1.36	1.41	1.30
	$R_{\mathrm{Be}-\mathrm{F}}$	3.51	3.50	3.52
70°	$R_{\mathrm{H}-\mathrm{F}}$	2.35	2.35	2.34
	E	0.61	0.64	0.58
	$R_{\mathrm{Be}-\mathrm{F}}$	2.98	2.96	3.01
80°	$R_{\mathrm{H}-\mathrm{F}}$	2.05	2.06	2.03
	E	0.60	0.65	0.57
	$R_{\mathrm{Be}-\mathrm{F}}$	2.78	2.77	2.79
90°	$R_{\mathrm{H}-\mathrm{F}}$	2.20	2.22	2.18
	E	0.83	0.79	0.71
	$R_{\mathrm{Be}-\mathrm{F}}$	2.72	2.71	2.72
135°	$R_{\mathrm{H}-\mathrm{F}}$	2.31	2.34	2.30
	E	1.19	1.29	1.22
	$R_{\mathrm{Be}-\mathrm{F}}$	2.76	2.74	2.76
180°	$R_{\mathrm{H}-\mathrm{F}}$	2.31	2.36	2.30
	E	1.30	1.40	1.35
	$R_{\mathrm{Be}-\mathrm{F}}$	2.80	2.79	2.81
0° (HBeF minimum)	$R_{\mathrm{H}-\mathrm{F}}$	2.29	2.34	2.28
	E	-3.92	-3.93	-3.98
	$R_{\mathrm{Be}-\mathrm{F}}$	2.59	2.58	2.59
	$R_{\mathrm{Be}-\mathrm{H}}$	2.49	2.49	2.49

${ }^{a}$ Energies are in electronvolts, Relative to the $\mathrm{Be}+\mathrm{HF}$ asymptote, and internuclear separations are in bohr.

Figure 9. Dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(Q)$ saddle point energies (solid bars) and CR-CCSD(T) and $\mathrm{MRCI}(\mathrm{Q})$ saddle point energies (half-filled bars) for the BeFH system, as described by the cc-pVTZ basis set, on the $\mathrm{Be}-\mathrm{F}-\mathrm{H}$ angle θ.
is 0.03 eV below the $\mathrm{MRCI}(\mathrm{Q})$ result. In the $\theta=45^{\circ}-90^{\circ}$ region, the $\operatorname{CCSD}(\mathrm{T})$ values of the saddle point energies are $0.03-0.12 \mathrm{eV}$ above the corresponding $\mathrm{MRCI}(\mathrm{Q})$ values. In fact, the $\operatorname{CCSD}(\mathrm{T})$ saddle point energy at $\theta=90^{\circ}$ is above the corresponding $\operatorname{MRCI}(\mathrm{Q})$ and $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ values. An entirely different pattern is observed in the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ calculations. The CR-CCSD(T) method produces saddle point energies that are invariably above the corresponding $\operatorname{MRCI}(\mathrm{Q})$ values for all θ values. The differences between the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ saddle point energies are always positive and range between 0.05 and 0.11 eV .

The above patterns confirm our earlier observation that the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ PESs are virtually parallel and very close to each other. This is reflected by the small positive and almost constant differences between the saddle point energies obtained in the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ calculations at all θ values. The fact that the $\operatorname{CCSD}(\mathrm{T})$ saddle point energies fluctuate around the $\operatorname{MRCI}(\mathrm{Q})$ values, being below the $\operatorname{MRCI}(\mathrm{Q})$ values at larger angles θ and above the $\mathrm{MRCI}(\mathrm{Q})$ saddle point energies at smaller angles θ, shows once again that the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})$ PESs are not parallel. Although both $\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ methods give small unsigned errors in the calculated saddle point energies, it is better to use an approach that is capable of producing small errors and PESs that are parallel to the virtually exact PES, obtained in this case with the $\operatorname{MRCI}(\mathrm{Q})$ approach. The $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ method is in this category.

The PES for the Collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ Reaction $\left(\boldsymbol{\theta}=\mathbf{1 8 0}^{\circ}\right)$ Obtained with the cc-pVQZ Basis Set. The PESs for the collinear, $\theta=180^{\circ}$, BeFH system calculated with the $\operatorname{CCSD}(\mathrm{T}), \mathrm{CR}-\operatorname{CCD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ approaches and the ccpVQZ basis set are shown in Figure 10. It is clear from Figure 10 that, as in the cc-pVTZ case (cf. Figure 1), the PES calculated with the $\operatorname{CCSD}(\mathrm{T})$ approach is completely pathological when compared to the PES calculated with the $\operatorname{MRCI}(\mathrm{Q})$ method. At large $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ separations, the errors in the $\operatorname{CCSD}(\mathrm{T})$ energies, relative to $\operatorname{MRCI}(\mathrm{Q})$, increase to 4.077 eV (see Table 1) and the $\operatorname{CCSD}(\mathrm{T}) \mathrm{PES}$ goes significantly below the $\operatorname{MRCI}(\mathrm{Q})$ PES (see Figure 10d). This should be contrasted with the small, 0.198 eV , maximum error obtained with the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ approach and the virtually perfect agreement between the $\operatorname{MRCI}(\mathrm{Q})$ and CR-CCSD(T) PESs shown in Figure 10a,c, respectively (cf. also, Figure 10e). The PES calculated with the CR-CCSD(T) method is nearly identical to the PES calculated with the $\operatorname{MRCI}(\mathrm{Q})$ method, and the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ approach eliminates the catastrophic failure and nonvariational behavior of the $\operatorname{CCSD}(\mathrm{T})$ approach in the region of stretched $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ (particularly, $\mathrm{H}-\mathrm{F}$) distances (cf. Figure 10d,e). As in the cc-pVTZ case, the $\operatorname{CCSD}(\mathrm{T})$ method produces a saddle point that is too low in energy, when compared to the $\operatorname{MRCI}(\mathrm{Q})$ and CR-CCSD(T) results. The BeF +H product valley resulting from the CR-CCSD(T)/cc-pVQZ calculations is slightly above and almost parallel to the product valley on the analogous MRCI(Q) PES, while the product valley on the CCSD(T) PES is too low in energy, with energies in the region of larger $\mathrm{H}-\mathrm{F}$ distances dropping significantly below the energy of the $\mathrm{Be}+$ HF reactants. The CR-CCSD(T) and MRCI(Q) product valleys are shaped in almost identical ways, whereas there is a significant difference between the $\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ PESs in the region behind the barrier where the $\mathrm{BeF}+\mathrm{H}$ products are formed. All of this can be seen by examining the thick contour line at 1.3 eV in Figure 10 and by noticing that the thin contour line at 0 eV , which is clearly visible in the $\operatorname{CCSD}(\mathrm{T})$ contour plot shown in Figure 10b, does not appear in the product valley of the $\mathrm{CR}-\mathrm{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}(\mathrm{Q})$ PESs. In addition, the endothermicity of the $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ reaction obtained with the $\operatorname{CCSD}(\mathrm{T})$ approach and the cc-pVQZ basis set of -0.051 eV has the wrong sign when compared to the $\operatorname{MRCI}(\mathrm{Q})$ endothermicity of 0.099 eV . The CR-CCSD(T) endothermicity of 0.301 eV has the correct sign and is in reasonable agreement with the experimentally derived value of 0.193 eV , obtained using the dissociation energies of HF and BeF.

A Comparison of the CR-CCSD(T) Results for the Collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ Reaction $\left(\theta=\mathbf{1 8 0}^{\circ}\right)$

Figure 10. Contour plots for the ground-state PES of the BeFH system, as described by the cc-pVQZ basis set, at $\theta=180^{\circ}$, calculated with the $\operatorname{MRCI}(\mathrm{Q})(\mathrm{a}), \operatorname{CCSD}(\mathrm{T})(\mathrm{b})$, and $\operatorname{CR-CCSD}(\mathrm{T})$ (c) methods and the dependence of the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{MRCI}(\mathrm{Q})(\mathrm{d})$ and $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ and MRCI(Q) (e) energies for $\theta=180^{\circ}$ on the $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ internuclear separations, $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{H}-\mathrm{F}}$, respectively. All energies are reported in electronvolts relative to the $\mathrm{Be}+\mathrm{HF}$ reactants ($\mathrm{R}_{\mathrm{Be}-\mathrm{F}}=8.0$ bohr and $\mathrm{R}_{\mathrm{H}-\mathrm{F}}=1.7325$ bohr). The thick contour line at 1.3 eV , shown in $(\mathrm{a}-\mathrm{c})$, separates the region where the contour spacing is 0.3 eV from the region where the contour spacing is 0.5 eV . An extra contour line corresponding to 0.099 eV has been added to (a) to better describe the product channel. The error energy scales on the right side of (d) and (e) are in electronvolts.

Obtained Using the cc-pVTZ and cc-pVQZ Basis Sets with the Previously Published Results Obtained with the MIDI Basis Set. As mentioned in the Introduction, the CR-CCSD(T) PES for the collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ reaction has been obtained earlier using a small, MIDI, basis set. ${ }^{39}$ The use of the MIDI basis set allowed the authors of ref 39 to compare the $\operatorname{CCSD}(\mathrm{T})$ and $\operatorname{CR}-\operatorname{CSD}(\mathrm{T})$ PESs with the exact PES obtained with the full CI method. A comparison of the results reported in ref 39 with those obtained in this work shows that the main conclusions of the small basis set study ${ }^{39}$ regarding the relative performance of the $\operatorname{CCSD}(\mathrm{T})$ vs $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ methods do not depend on the basis set. Thus, independent of the basis set employed, the $\operatorname{CCSD}(\mathrm{T})$ PES has the wrong topology, particularly in the product valley and in the region where both $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bonds are stretched, which is corrected by the CR-CCSD(T) approach. Independent of the basis set employed, the CR-CCSD(T) PES is slightly above and
virtually parallel to the exact, full CI, or virtually exact, $\operatorname{MRCI}(\mathrm{Q})$, PESs, whereas the $\operatorname{CCSD}(\mathrm{T})$ PES is, for the most part, far from being parallel to the full CI or $\operatorname{MRCI}(\mathrm{Q})$ PESs and significantly below the latter two PESs.

As shown in Table 1, the absolute values of errors in the $\operatorname{CCSD}, \operatorname{CCSD}(\mathrm{T})$, and $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ results, relative to full CI or $\operatorname{MRCI}(\mathrm{Q})$, depend on the basis set, although the differences between the errors obtained with the cc-pVTZ and cc-pVQZ basis sets are already rather small, implying that the results obtained in this work are close to the basis set limit in these two cases, particularly when the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ method is examined. Typically, the unsigned errors resulting from the calculations with the MIDI basis set are 2-4 times smaller than the errors resulting from the calculations using the cc-pVTZ and cc-pVQZ basis sets, since the number of unoccupied orbitals dramatically increases as we go from the MIDI basis set to the cc-pVTZ and cc-pVQZ basis sets, but the overall error patterns
observed in the small and larger basis set calculations are similar (see Table 1). Interestingly enough, the errors in the CR$\operatorname{CCSD}(\mathrm{T})$ results in the region of stretched $\mathrm{Be}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bonds do not grow as rapidly with the basis set as in the $\operatorname{CCSD}(\mathrm{T})$ case (cf. the $R_{\mathrm{Be}-\mathrm{F}}>5.0 \mathrm{bohr}$ and $R_{\mathrm{H}-\mathrm{F}}>5.0 \mathrm{bohr}$ region in Table 1), which is another manifestation of the fact that the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ approach is much more robust than the $\operatorname{CCSD}(\mathrm{T})$ method in the PES regions where the $\operatorname{CCSD}(\mathrm{T})$ method fails.

In conclusion, a comparison of the results obtained in this article using the cc-pVTZ and cc-pVQZ basis sets with those obtained earlier with the MIDI basis set ${ }^{39}$ shows that the success of the $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$ method in small basis set calculations guarantees the successful performance of this method in realistic calculations employing large basis sets.

Summary

The CR-CCSD(T) method has been used to calculate the entire ground-state PES for the $\mathrm{Be}+\mathrm{HF}$ reaction. The cc-pVTZ and cc-pVQZ basis sets have been employed. The resulting PESs have been compared with the PESs obtained with the CCSD, $\operatorname{CCSD}(\mathrm{T})$, and $\mathrm{MRCI}(\mathrm{Q})$ methods. In addition to the collinear $\mathrm{Be}+\mathrm{HF} \rightarrow \mathrm{BeF}+\mathrm{H}$ reaction, several angles of approach of the HF molecule by the Be atom, leading to the formation of the $\mathrm{BeF}+\mathrm{H}, \mathrm{BeH}+\mathrm{F}$, and HBeF products, have been examined.

It has been shown that the single-reference "black-box" CR$\operatorname{CCSD}(\mathrm{T})$ method employing the spin- and symmetry-adapted RHF reference provides a highly accurate PES of the BeFH system, which is almost identical to the PES resulting from the more expensive and more complicated $\mathrm{MRCI}(\mathrm{Q})$ calculations. The CR-CCSD(T) approach eliminates large errors and pathologies observed in the standard CCSD and $\operatorname{CCSD}(\mathrm{T})$ calculations. In particular, the $\mathrm{CR}-\operatorname{CCSD}(\mathrm{T})$ method eliminates the nonvariational collapse of the $\operatorname{CCSD}(\mathrm{T})$ approach in regions of the PES corresponding to larger internuclear separations without making the calculations significantly more expensive or difficult to perform. Unlike the CCSD and CCSD(T) PESs, the CR$\operatorname{CCSD}(\mathrm{T})$ PES is close and virtually parallel to the $\operatorname{MRCI}(\mathrm{Q})$ PES and has the correct topology, enabling us to understand the formation of different reaction products that the interaction of the Be atom with HF can lead to.

The relatively low cost and ease-of-use of the CR-CCSD(T) method, when compared to the advanced multireference techniques, such as $\operatorname{MRCI}(\mathrm{Q})$, which would usually be used to calculate accurate reactive PESs, along with its high accuracy, make the CR-CCSD(T) method an attractive alternative for studies of chemical reactions proceeding on singlet PESs, where single bonds are broken and formed. Work is in progress toward extending the highly efficient CR-CCSD(T) computer programs ${ }^{37}$ in GAMESS to nonsinglet PESs. The preliminary results for bond breaking on doublet PESs, employing the ROHF references, have already been reported, ${ }^{32}$ and we hope to extend these studies to exchange chemical reactions proceeding on doublet and triplet PESs soon.

Acknowledgment. This work has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, SciDAC Computational Chemistry Program (Grant No. DE-FG02-01ER15228), by the Alfred P. Sloan Foundation, and by the National Science Foundation (under Grant No. CHE0309517).

Supporting Information Available: Tables with the CCSD, $\mathrm{R}-\operatorname{CCSD}(\mathrm{T}), \operatorname{CR}-\operatorname{CCSD}(\mathrm{T})$, and $\operatorname{MRCI}(\mathrm{Q})$ energies for all
nuclear geometries of the BeFH system considered in this study. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) (a) Kuntz, P. J.; Roach, A. C. J. Chem. Phys. 1981, 74, 3420. (b) Roach, A. C.; Kuntz, P. J. J. Chem. Phys. 1981, 74, 3435. (c) Kuntz, P. J.; Schreiber, J. L. J. Chem. Phys. 1982, 76, 4120.
(2) Aguado, A.; Sanz, V.; Paniagua, M. Int. J. Quantum Chem. 1997, 61, 491.
(3) Schor, H.; Chapman, S.; Green, S.; Zare, R. N. J. Chem. Phys. 1978, 69, 3790.
(4) Chapman, S.; Dupuis, M.; Green, S. Chem. Phys. 1983, 78, 93.
(5) Garcia, E.; Lagana, A. Mol. Phys. 1985, 56, 629.
(6) Liu, X.; Murrell, J. N. J. Chem. Soc., Faraday Trans. 1991, 87, 435.
(7) Aguado, A.; Sieiro, C.; Paniagua, M. J. Mol. Struct. (THEOCHEM) 1992, 260, 179.
(8) Keller, A.; Visticot, J. P.; Tsuchiya, S.; Zwier, T. S.; Duval, M. C.; Jouvet, C.; Soep, B.; Whitham, C. J. In Dynamics of Polyatomic van der Waals Complexes; Halberstadt, N., Janda, K. C., Eds.; Plenum: New York, 1990; pp 103-121.
(9) Keller, A.; Lawruszczuk, R.; Soep, B.; Visticot, J. P. J. Chem. Phys. 1996, 105, 4556.
(10) Skowronek, S.; Gonzalez-Ureña, A. Prog. React. Kinet. Mech. 1999, 24, 101.
(11) Soep, B.; Whitham, C. J.; Keller, A.; Visticot, J. P. Faraday Discuss. Chem. Soc. 1991, 91, 191.
(12) Soep, B.; Abbés, S.; Keller, A.; Visticot, J. P. J. Chem. Phys. 1991, 96, 440.
(13) Lawruszczuk, R.; Elhanine, M.; Soep, B. J. Chem. Phys. 1998, 108, 8374.
(14) Skowronek, S.; Pereira, R.; Gonzalez-Ureña, A. J. Chem. Phys. 1997, 107, 1668.
(15) Skowronek, S.; Pereira, R.; Gonzalez-Ureña, A. J. Phys. Chem. A 1997, 101, 7468.
(16) Stert, V.; Farmanara, P.; Radloff, W.; Noack, F.; Skowronek, S.; Jimenez, J.; Gonzalez-Ureña, A. Phys. Rev. A 1999, 59, R1727.
(17) Skowronek, S.; Jimenez, J. B.; A. Gonzalez-Ureña, A. Chem. Phys. Lett. 1999, 303, 275.
(18) Farmanara, P.; Stert, V.; Radloff, W.; Skowronek, S.; GonzalezUreña, A. Chem. Phys. Lett. 1999, 304, 127.
(19) Skowronek, S.; Jimenez, J. B.; Gonzalez-Ureña, A. J. Chem. Phys. 1999, 111, 460.
(20) Coester, F. Nucl. Phys. 1958, 7, 421.
(21) Coester, F.; Kümmel, H. Nucl. Phys. 1960, 17, 477.
(22) Čížek, J. J. Chem. Phys. 1966, 45, 4256.
(23) Čížek, J. Adv. Chem. Phys. 1969, 14, 35.
(24) Čížek, J.; Paldus, J. Int. J. Quantum Chem. 1971, 5, 359.
(25) Piecuch, P.; Kowalski, K. In Computational Chemistry: Reviews of Current Trends; Leszczyński, J., Ed.; World Scientific: Singapore, 2000; Vol. 5, pp 1-104.
(26) (a) Kowalski, K.; Piecuch, P. J. Chem. Phys. 2000, 113, 18. (b) Kowalski, K.; Piecuch, P. J. Chem. Phys. 2000, 113, 5644.
(27) Kowalski, K.; Piecuch, P. J. Mol. Struct. (THEOCHEM) 2001, 547, 191.
(28) Piecuch, P.; Kowalski, K.; Pimienta, I. S. O.; Kucharski, S. A. In Low-Lying Potential Energy Surfaces; Hoffman M. R., Dyall, K. G., Eds.; ACS Symposium Series 828; American Chemical Society: Washington, DC, 2002; pp 31-64.
(29) (a) Kowalski, K.; Piecuch, P. J. Chem. Phys. 2001, 115, 2966. (b) Kowalski, K.; Piecuch, P. J. Chem. Phys. 2002, 116, 7411.
(30) Piecuch, P.; Kowalski, K.; Pimienta, I. S. O.; McGuire, M. J. Int. Rev. Phys. Chem. 2002, 21, 527.
(31) Piecuch, P.; Kowalski, K.; Fan, P.-D.; Pimienta, I. S. O. In Advanced Topics in Theoretical Chemical Physics; Maruani, J., Lefebvre, R., Brändas, E., Eds.; Progress in Theoretical Chemistry and Physics; Kluwer: Dordrecht, The Netherlands, 2003; Vol. 12, pp 119-206.
(32) Piecuch, P.; Kowalski, K.; Pimienta, I. S. O.; Fan, P.-D.; Lodriguito, M.; McGuire, M. J.; Kucharski, S. A.; Kuś, T.; Musiał, M. Theor. Chem. Acc., in press.
(33) Kowalski, K.; Piecuch, P. Chem. Phys. Lett. 2001, 344, 165.
(34) Purvis, G. D., III; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910.
(35) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479.
(36) Piecuch, P.; Kucharski, S. A.; Špirko, V.; Kowalski, K. J. Chem. Phys. 2001, 115, 176.
(37) Piecuch, P.; Kucharski, S. A.; Kowalski, K.; Musiał, M. Comput. Phys. Commun. 2002, 149, 71.
(38) Özkan, I.; Kinal, A.; Balci, M. J. Phys. Chem. A 2004, 108, 507
(39) McGuire, M. J.; Kowalski, K.; Piecuch, P. J. Chem. Phys. 2002, 117, 3617.
(40) Huzinaga, S.; Andzelm, J.; Klobukowski, M.; Radzio-Andzelm, E.; Sakai, Y.; Tatewaki, H. Gaussian Basis Sets for Molecular Calculations; Elsevier: Amsterdam, 1984.
(41) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(42) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, 1347.
(43) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803.
(44) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1988, 145, 514.
(45) Amos, R. D.; Bernhardsson, A.; Berning, A.; Celani, P.; Cooper, D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer, G.; Knowles, P. J.; Korona, T.; Lindh, R.; Lloyd, A. W.; McNicholas, S. J.; Manby, F. R.; Meyer, W.; Mura, M. E.; Nicklass, A.; Palmieri, P.; Pitzer, R.; Rauhut, G.; Schütz, M.; Schumann, U.; Stoll, H.; Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Werner, H.-J. MOLPRO, a package of ab initio programs, version 2002.1.
(46) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure; Constants of Diatomic Molecules; Van Nostrand: New York, 1979; Vol. 4.
(47) Coxon, J. A.; Hajigeorgiou, P. G. J. Mol. Spectrosc. 1990, 142, 254.
(48) Hildenbrand, D.; Murad, E. J. Chem. Phys. 1966, 44, 1524.

[^0]: † Part of the "Gert D. Billing Memorial Issue".

 * To whom correspondence should be addressed. E-mail: piecuch@ cem.msu.edu. Internet: www.cem.msu.edu/~piecuch/group_web.
 ${ }^{*}$ Michigan State University.
 § Alfred P. Sloan Research Fellow.
 " Also at: Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824.
 ${ }^{\perp}$ University of Silesia.

[^1]: ${ }^{a}$ The $R_{\mathrm{Be}-\mathrm{F}}$ and $R_{\mathrm{Be}-\mathrm{H}}$ values are in bohr.

