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We present a method to evaluate absorption energies of a solvated molecule described through a semiempirical
wave function. In particular, this paper extends the polarizable continuum model (PCM), in the formulation
of the integral equation formalism (IEF), to the ZINDO semiempirical method. The level of theory for the
interpretation of the electronic spectra is the Tamm-Dancoff approximation (TDA), using the Hartree-Fock
state as reference state. Three different formulas are introduced to calculate the solute-solvent interaction
potential. The most relevant formal aspects of the theory are discussed and numerical applications to the
study of the transitions from the ground state to the first electronic excited state of some coumarins, of a
pyridiniophenoxide betaine molecule, and of the methylene blue dye are presented.

1. Introduction

In this paper we present the extension of the solvation model
called the polarizable continuum model (PCM)1,2 to the
semiempirical method known as Zerner’s intermediate neglect
of differential overlap (ZINDO).3-6 The PCM method was
formulated several years ago by Tomasi and co-workers to
introduce solvent effects within quantum mechanical (QM)
procedures. The PCM method can be easily applied to many
levels of QM description and modeled to include various
concepts and approaches provided by QM theory.7 The solute
is embedded in a molecular cavity of realistic shape and size
inside a continuum dielectric mimicking the solvent, and the
corresponding (reaction field) operators are represented through
an apparent surface charge (ASC) approach. Many versions of
the PCM model have been developed in the past few years;
here we shall use the last and most accurate reformulation
known as the integral equation formalism (IEF).8-10 Until now
the PCM model has been applied to ab initio methods, and thus
its extension to the semiempirical quantum mechanical methods
seems to be natural. In fact, at the present time the semiempirical
methods are widely used in computational chemistry, in a huge
range of applications to phenomena in condensed phase, from
the simulation of electronic spectra of solvated systems to the
study of reaction mechanisms in biological systems.

Among the semiempirical methods, ZINDO is one of the most
popular to perform calculations of electronic excitation energies.
It was developed by Zerner, starting from the INDO method,
with parameters coming from atomic spectroscopic data, and
optimizing the results to reproduce experimental UV spectra.
Within the ZINDO scheme, the absorption energies are calcu-
lated on the basis of the linear response theory, through the
Tamm-Dancoff approximation (TDA), also called the config-
uration interaction singles (CIS) procedure.

Many attempts have been made to take into account the
solvent effects with INDO type methods. The Onsager model,11

representing the solute-solvent interaction as a dipole-dipole
interaction and embedding the solute in a spherical cavity, is
often used.12-14 However, other approaches have been also
presented, for which some examples are reported in refs 15-
20.

Here we present the first implementation of ZINDO with
IEF-PCM. We focus our attention on the electrostatic solute-
solvent interaction energy, this being in many cases the most
important term. The same approximation was made in all the
preceding methods we have quoted.11-20 The definition of this
term depends on the definition of the molecular electrostatic
potential (MEP) of the solute. The MEP of a moleculeM, VM(r),
is the expectation value of a one-electron observable, defined
as

whereΓ(r) is the solute charge distribution,ZR is the charge of
the nucleusR, and we have introduced an expansion of the
molecular orbitals on a basis set of atomic orbitals (AO), so
that Pµν are the elements of the electronic density matrix on
such basis and the terms within brackets are integrals of the
|r′ - r|-1 operator. The analytic expression ofVM given in eq
1 may be replaced by simpler and less costly approximations,
especially in connection with semiempirical wave functions. For
a comprehensive review we refer to ref 21; here we shall focus
on one of the possible strategies, namely that based on the
multipole expansion of the MEP.22,23This approach introduces
approximations because the expansion theorem holds for points
r lying outside a sphere containing all the elements of the charge
distribution. In molecules, this condition is never exactly
satisfied, because the electron charge distribution has an
exponential decay. However, the use of multipole expansion* Corresponding author. E-mail: m.caricato@sns.it.
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may reduce the computation time with respect to the MEP
analytic expression but still provide a quite accurate description
in a large number of cases.

The simplest case of a multipole expansion is given by the
expansion limited to the first term, the monopole, represented
by proper atomic charges. Many ways can be followed to define
atomic charges, among them we quote here the Mulliken
population analysis, the so-called potential derived (PD) methods
(they start from MEP values, obtained by calculation, and derive
atomic charges fitting best the molecular potential),24 and also
experimental methods, introducing “experimental” charges.

In this work, all the approaches just mentioned to compute
the MEP (the analytic expression, the multipole expansion, and
the atomic charges) will be used in connection with the ZINDO
wave function. In this framework, not all the elements of eq 1
must be calculated, because of the zero differential overlap
(ZDO) approximation employed in the ZINDO semiempirical
method, which reduces further the computational time.

To test our method, a series of calculations on various systems
in different solvents are reported. These compounds are: three
7-aminocoumarin dyes, a pyridiniophenoxide betaine and the
methylene blue dye. All these molecules are very sensitive to
the surrounding medium, and they present a solvatochromic shift
in the absorption energies that appreciably depends on the
solvent polarity. Many experimental data are present in the
literature for these systems. For these reasons they can be taken
as valid tests for the reliability of ZINDO/PCM results. Although
strong approximations have been introduced in the wave
function through a semiempirical method, in the solvent
representation through a continuum model, in the MEP calcula-
tion, and in the absorption energy evaluation through the TDA
procedure, the ZINDO/PCM method is shown to provide results
in very good agreement with the experimental data.

This paper is organized as follows. In section 2 the general
theory of the ZINDO/PCM method and the implementation
details are described. In section 3 we report the numerical
applications.

2. Theory of ZINDO-PCM

2.1. IEF-PCM Basic Theory. In the PCM method1,2 the
solvent S is represented by a homogeneous continuum medium
which is polarized by the solute M placed in a cavity built in
the bulk of the dielectric. The solute-solvent interactions are
described in terms of a solvent reaction potential. This potential,
V̂int, is introduced as a perturbation of the Hamiltonian of the
isolated molecule,Ĥ0:

In eq 2 the Born-Oppenheimer approximation is employed.
In general the solvent-induced termV̂int is written as a sum

of contributions from different physical origins, related to
dispersion, repulsion, and electrostatic forces between solute
and solvent molecules. In this article we shall focus on the
electrostatic part of the interaction only. Within this framework
the physics we have to describe is as follows. The solute charge
density produces a polarization of the solvent; this polarization
is represented by an apparent charge density on the cavity
surface which is completely determined by the solute electro-
static potential on the cavity surface, the solvent dielectric
constant, and the cavity shape. To simplify the calculation of
the solvent apparent charge, the cavity surface is divided into
small regions calledtesserae, with known area. In this way one
can approximate the charge density on each tessera as a single-

value quantity in order to define the equivalent set of point-
like charges. As a consequence the interaction potential can be
written in the form

whereqi andV̂i are the apparent surface charge and the solute
electrostatic potential operator on the tesserai, respectively, and
the sum runs over the number of tesseraeNts. The apparent
charges are calculated, using a matrix notation, as8

where the matrixQ depends only on the solvent dielectric
constant and on the cavity shape and the vectorsq andV are
the vectors of the apparent charges and of the solute potential
on the tesserae. Since the solute charge distribution can be
divided into nuclear and electronic parts, the same division can
be made for the apparent surface charges and for the electrostatic
potential, namely

where the relation betweenqx andVx (x ) E, N) is given in eq
4.

We shall not go into the details of the computational
formulation of the method, for which we refer to refs 8-10,
but we focus on the specificities due to the semiempirical
description. In the semiempirical framework the differences are
in the definition of Ĥ0, that in our case is the ZINDO
Hamiltonian, as implemented in the GAUSSIAN 03 package,25

and in the definition of the solute electrostatic potential on the
cavity surface. The latter definition will be treated in the next
section.

2.2. Interaction Potential. As shown by eqs. 2-4, in the
development of the PCM model in the framework of the ZINDO
semiempirical method, the central problem is the calculation
of the solute electrostatic potential. The electrostatic potential
produced by the solute nuclear charges has a simple form:

where the nuclear chargeZR′ is reduced for the core electrons
and the denominator is the distance modulus between the
nucleusR and the center of the tesserai.

As shown in eq 1, the electronic potential is represented by
a one-electron operator. Because of the ZDO approximation,
the one-electron integrals involving two basis functions centered
on two different atoms and an operator centered on a third atom
are neglected. In the INDO method the one-electron integrals
involving two different basis functions centered on the same
atom and an operator centered on another atom are also
neglected. In the case of PCM the operatorV̂ is centered on the
tesserae, therefore only the one-electron integrals involving the
same basis functions centered on the same atom are kept. The
following, eqs 8-10 show how the one- and the two-electron

ĤeffΨ ) [Ĥ0 + V̂int]Ψ ) EΨ (2)

V̂int f ∑
i

Nts

qiV̂i (3)

q ) QV (4)

qi ) qi
E + qi

N (5)

Vi ) Vi
E + Vi

N (6)

Vi
N ) ∑

R

atoms

-
Z′R

|rR - si|
(7)
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terms of the INDO Fock matrix are modified by the presence
of the solvent:

whereµA andνB represent two atomic orbitals centered on atoms
A and B, andh andG(P) are the one- and two-electron operators
of the isolated molecule, respectively (we indicate with the
notation (P) the dependence of the two-electron operatorG and
of the electronic apparent surface chargesqi

E from the density
matrix). We do not show the explicit form of the ZINDO
integrals of the isolated molecules and the relative parameteriza-
tion; the interested reader can find all the details in ref 6. On
the contrary, we focus our attention on the PCM integrals:V̂i

E

is the operator of the electrostatic potential induced by the solute
electronic charge distribution on the center of the tesserai, qi

N

andqi
E(P) are the apparent surface charges on the same tessera,

as defined in eq 5, and the sum runs over the number of tesserae,
Nts. It is important to stress the difference betweenVi

E in eq 6
and V̂i

E in eq 8: the first one is the expectation value of the
electronic potential and it is needed to computeqi

E according
to eq 4; the second one is the corresponding operator. It must
be noted that the integrals in eqs 9 and 10 remain unaffected
by the introduction of the PCM operators owing to the INDO
approximation. In the present paper, three approximated for-
mulas are introduced for the evaluation of the electronic potential
and of its corresponding integrals.

Multip. The first formula is based on the multipolar expansion
of the electrostatic potential integrals〈µA|V̂i

E|µA〉. Within this
approach the elementary charge distributionµA

*µA is ap-
proximated by a series of point charges: the elements involving
two s-type orbitals are represented by a monopole and the
elements involving two p-type orbitals are represented by a
monopole plus a linear quadrupole:

wherer is the distance between the atom and the center of the
tessera and the subscriptk represents a Cartesian coordinate.
The parameterQ(i) represents the atomic quadrupolar distance
for the ith element. This kind of approach is used in the NDDO-
type methods26-28 to approximate the electronic charge distribu-
tion. For INDO methods, however, the parametersQ(i) have
not been calculated; therefore, we have used those obtained for
the MNDO method,29 as implemented in the GAUSSIAN
package. This choice is justified by the fact that these parameters
will not be very different for ZINDO (as they are not so different
between MNDO, AM1,30 and PM331). As a final comment, we
note that the multipole expansion of the potential integrals is
exploited also in the calculation of the MEP expectation value
Vi

E and in the corresponding apparent chargesqi
E.

Integr.The second formula explicitly calculates the potential
integrals as in the ab initio methods:

where |r - si| is the modulus of the distance between the
electron and the tesserai, and then it excludes the ones that
have to be zero for eqs 8-10. Contrary to the previousMultip
formula, this choice is independent of numerical parameters,
but it is computationally more expensive. However, the incre-
ment of computational time is not dramatic, therefore we can
preserve the advantages of the semiempirical method. As we
will show in the application section, the differences of the
numerical results between these two options are small and both
are close to the experimental ones. Some considerations must
be made on the basis set used. Semiempirical methods generally
use the minimal basis set, with one s and three p Slater-type
orbitals (expanded as STO-6G functions in the GAUSSIAN
package). Much attention has been paid to the influence of the
basis set in the MEP calculations; the overall conclusion is that
the MEP is not heavily affected by the basis set.21

Chg. Contrary to the previous two formulas, the third one
affects only the calculation of the expectation valueVi

E and of
the electronic apparent surface charges,qi

E. According to this
approach, the electronic charge distribution is described in terms
of point charges centered on the nuclei (monopole approxima-
tion), and the electrostatic potential acquire a form analogous
to the potential produced by the nuclei:

The electronic charge on each nucleusR, qR, is calculated as

wheree is the electron charge andPµµ are the diagonal elements
of the density matrix relative to the atomR in the atomic basis
set. This option is often used to compute electrostatic potentials
with the INDO method.18-20 For the calculation of the integrals
in eq 8 we use eq 12.

The formulas described in this section are also used in the
calculation of the transition energies in the TDA-PCM scheme,
treated in the following section.

2.3. Excitation Energies Calculation.For the evaluation of
the excitation energies we used the Tamm-Dancoff approxima-
tion (TDA), also called configuration interaction-singles (CIS).32,33

This method uses a Hartree-Fock reference state, and it can
be seen as a specific case of the more general random phase
approximation (RPA). For the development of RPA in the
ZINDO framework we refer to refs 14 and 34.

When we are interested in the calculation of excitation
energies in condensed phase we need to consider an additional
problem not present in isolated systems. The transition to
electronically excited states, in fact, involves a dynamical
process in which the solvent relaxation time cannot be ne-
glected.35 One of the most used theories to account for this
dynamic effect identifies the solvent response function with a
polarization vector depending on time. In most applications, this
polarization is divided into two contributions, representingfast
and slow responses. The fast term is associated with the
polarization due to the bounded electrons of the solvent
molecules, which instantaneously adjust themselves to any

Fµµ
AA ) 〈µA|F̂|µA〉 ) hµµ

AA + ∑
i

Nts

〈µA|V̂i
E|µA〉qi

N + Gµµ
AA(P) +

∑
i

Nts

〈µA|V̂i
E|µA〉qi

E(P) (8)

Fµν
AA ) 〈µA|F̂|νA〉 ) Gµν

AA(P) (9)

Fµν
AB ) 〈µA|F̂|νB〉 ) hµν

AB + Gµν
AB(P) (10)

ss r-1

pkpk r-1 + Q(i)2(3rk
2

r5
- r-3) (11)

〈µA|V̂i
E|µA〉 ) 〈µA| 1

|r - si||µA〉 (12)

Vi
E ) ∑

R

atoms qR

|rR - si|
(13)

qR ) - e∑
µ∈R

Pµµ (14)
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change in the solute charge distribution. The slow term collects
many different nuclear and molecular motions in the solvent
(vibrational relaxations, rotational and translational diffusion,
etc.) related to generally much longer times than those involved
both in the change of the solute electronic state and in the solvent
electronic polarization. Immediately after a vertical electronic
transition, only the fast term will be in equilibrium with the
new electronic state. In the PCM scheme this description leads
to the definition of two sets of apparent surface charges: the
first one (indicated with the subscript f, fast,qf) depends on
the optical dielectric constant of the solvent,ε∞, and on the
charge density of the final solute electronic state, and the second
one (indicated with the subscript s, slow,qs) depends on the
static dielectric constant of the solvent,ε, and on the charge
density of the initial solute electronic state. This delayed
solvation is generally known as nonequilibrium solvation.

The nonequilibrium IEF-PCM approach is extensively
treated elsewhere;36-38 here we focus on its formulation within
the framework of the TDA-ZINDO scheme.39 In the TDA
scheme, the transition energies are obtained as the solution of
an eigenvalue problem of the form32

whereωp is the transition energy for the electronic state p and
Xp is the relative eigenvector.

Including the PCM contribution, theM matrix of eq 15 has
the form

The spin-orbitals are denoted as follows:a, b for the virtuals
and i, j for the occupied;ε are the orbital energies (and we
have used the Dirac formalism for the antisymmetrized two-
electron integrals). As in section 2.2, here we do not show the
explicit formulation and parameterization of the ZINDO inte-
grals for the isolated molecule, as reported in detail in refs 6
and 39, but we examine only the PCM terms.

Solvent effects on the excitation energies are present in two
ways: implicitly and explicitly. The implicit effect is included
in the orbitals and in the orbital energies because of the presence
of the PCM operators in the ground-state energy calculation.
The explicit effect is represented by the last term on the right-
hand side of eq 16; it can be described as the interaction between
the solute transition charge density associated with the MO’s
|a〉 and|i〉 and the response of the solvent induced by the parallel
transition charge density associated to the MO’s|b〉 and|j〉. This
explicit term can be written in terms of the vector product
between the electrostatic potential and the induced apparent fast
charges, determined by the corresponding transition density
charge, namely:

The excitation energy that follows from the solution of the
system (15), i.e.,

includes both solvent effects and it also accounts for the
nonequilibrium solvation.

In this paper we do not go into the details of the formal
derivation of the TDA procedure within the PCM model, for
which we refer to refs 37 and 38, but we stress only the fact
that also in this case the PCM fundamental eq 17 depends on
the definition of the electrostatic potential. As for the ground-

state free energy evaluation, this potential is here calculated
following the three approximated formulations described in
section 2.2.

Despite the known limits of the TDA approach and the
approximation introduced in the interaction potential, ZINDO
combined with IEF-PCM offers very good results for the
transition energies, as shown in the next section. Sometimes
they are better than those obtained with ab initio methods, in
addition to being much less time demanding.

These three options, as implemented in a local version of
the GAUSSIAN 03 development code, were tested on a series
of compounds for which experimental data are available. The
results are reported in the numerical section.

3. Numerical Applications

In this section we present some applications of the ZINDO/
PCM approach to a series of compounds for the calculation of
transition energies from the ground state to the first singlet
excited state. The aim is to compare the semiempirical results
with the experimental data and with ab initio results. Moreover,
a comparison of the timings between the gas phase and the
solution calculations and between the three options for the
potential evaluation are reported in section 3.1.

In section 3.2 three different coumarin dyes are studied into
two solvents, the first one apolar (cyclohexane) and the second
one polar and aprotic (acetonitrile); in section 3.3 the system
studied is a betaine in a series of solvents with increasing pol-
arity; in section 3.4 calculations performed with different meth-
ods on the methylene blue dye in water solvent are compared.

The cavity is built as usual, through interlocking spheres
centered on atoms; the hydrogen atoms bonded to carbon atoms
are included in the spheres of the carbons. The radii of the
spheres areRF ) 1.67 Å for fluorine atoms,RO ) 1.82 Å for
oxygen atoms,RN ) 1.86 Å for nitrogen atoms,RC ) 2.04 Å
for carbons without bonded hydrogen,RC1 ) 2.28 Å for carbons
with one bonded hydrogen,RC2 ) 2.40 Å for carbons with two
or three bonded hydrogens, andRH ) 1.44 Å for hydrogens
not bonded to a carbon.

The geometries of all the compounds were obtained with the
AM1/PCM optimization method that we have recently imple-
mented in the same local version of GAUSSIAN 03 code. In
AM1/PCM the definition of the potential integrals is obtained
in terms of a multipolar expansion, as in the optionMultip, using
the correct parameters for the AM1 method.30

3.1. Timing. Before going into the details of the numerical
applications, some consideration about the timing of the
calculations should be taken. The inclusion of the solvent effect
in the calculation obviously leads to an increase of the
computational effort. In the case of PCM this increment
principally depends on the evaluation of the electrostatic
potential, eq 6, and on the solution of the system in eq 4 for
the evaluation of the apparent surface charges. This system is
usually solved through the technique of the matrix inversion,
which scales as the square of the number of the tesserae.

In ab initio calculations, the increment due to the PCM is of
the same order of magnitude needed for the evaluations of the
integrals of the gas-phase Hamiltonian. This condition is no
longer true in the semiempirical framework. In fact, although
the interaction potential evaluation is simplified through the
approximations introduced in section 2.2, the solution of the
system (eq 4) still depends on the square number of the tesserae,
through the inversion of the matrixQ. Thus the relative increase
of the computational time passing from gas phase to solution

MXp ) ωpXp (15)

Mai,bj ) δai,bj(εa - εi) + 〈aj||ib〉 + Bai,bj (16)

Bai,bj ) Vai [qf]bj (17)

ωp ) ∑
ai

(εa - εi)Xai
2 + ∑

aibj

[〈aj||ib〉 + Bai,bj]XaiXbj (18)
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calculations is much more evident in the semiempirical frame-
work than in the ab initio one.

Here we do not report the timing for all the compounds, but
we report just some comments. The calculations were carried
out with a Pentium IV 2.0 GHz machine. For the betaine
molecule, which is the smallest system, the order of magnitude
of timing passes from 10 s in the gas phase to 10-20 min in
different solvents (with the optionMultip, which is the fastest
one). In this case the number of tesserae is of the order of 1450
(the number of tesserae varies with the shape of the cavity,
which depends on the equilibrium geometry of the solute in
the various solvents). In the case of the coumarin 153, which is
the largest system, the timing passes from 30 s in the gas phase
to 130 min in solution (still with the optionMultip), with the
number of tesserae∼1800. However, we note that other factors
can influence the speed of a calculation, such as the convergence
of the SCF or the evaluation of the transition energies, which
can be different in the various solvents, thus the values reported
are only indicative.

Despite that the relative increase of the timings for the
calculations in solution is relevant, it is important to stress that
ab initio calculations in solution still remain much more
expensive (and, as we shall show below, not necessarily closer
to the experimental data). For example, in the calculation of
coumarin 153 at the level B3LYP/6-311+G(d), the timing is
of the order of 5600 min, and thus ZINDO/PCM calculations
are∼45 times faster.

Moreover, we recall that another method has been recently
developed for the calculation of the apparent surface charges,40

based on the fast multipole method (FMM). This method
iteratively solves the system in eq 4 and linearly scales with
the number of the tesserae. Although we did not use this method
in the present work (the compounds studied here are in fact
relatively small), it can be used with ZINDO/PCM and it surely
represents the most efficient approach for larger molecules. All
these considerations should be sufficient to state that, by using
PCM with the semiempirical methods, one does not lose the
advantages of the velocity of these methods.

Another important consideration can be made about the
relative timing between the three approximations introduced in
section 2.2 for the calculation of the electrostatic potential. We
found that theMultip option is the fastest one, followed by the
Chgoption (from∼10% to∼30% slower than theMultip), and
finally by theIntegeroption (from∼20% to∼55% slower than
theMultip). We note that these differences also depend on the
number of the tesserae: the difference decreases with increasing
the number of the tesserae. The reason is that by increasing the
surface of the cavity (and the number of tesserae), the effort of
solving eq 4 becomes more important than the evaluation of
the potential, and this fact leads to a leveling of the performances
of the three options.

For this paper we chose systems small enough to be treated
at an ab initio level, and this fact allowed us to compare different
levels of QM theory. Comparing the different options used for
the evaluation of the potential, we can see that, considering the
computational time, the best one is theMultip option, which
also provides, in the large number of systems, the values of
transition energies closest to the experimental data, as it will
be shown in the next sections.

3.2. Coumarins.The 7-aminocoumarins41-44 are an important
class of laser dyes for the blue-green region because of their
strong absorption cross sections and large radiative yields. The
energy of the lowest singlet excited state relative to the ground
state is quite sensitive to the substituents on the amine function

and also to the polarity of the environment (due to the dipole
moment change between the ground and the excited state). There
is a large interest in the absorption and emission spectra of this
class of molecules, therefore, many data, measured and calcu-
lated, are available for systems with different substituents and
in various solvents.

Here we present the calculations on three different coumarins
(see Figure 1). The absorption energies and their dependence
on the solvent polarity are studied and comparisons with
experimental data and with the TD-DFT/PCM calculations are
presented.

For coumarins 102 and 522, the calculations were performed
in cyclohexane (dielectric constantε ) 2.02) and in acetonitrile
(ε ) 36.64); for coumarin 153, only in acetonitrile. The
experimental42 and the ZINDO/PCM results are reported in
Tables 1-3. For the ZINDO/PCM, three sets of data are
reported, corresponding to the three different options we have
implemented; the notation is the same as defined in section 2.2.
For coumarin 153, the TD-DFT/PCM results (using the B3LYP
functional, a 6-311G(d) basis set for the geometry optimization,
and a 6-311+G(d) basis set for the transition energy evaluation)
are also reported.

The experimental data show a red shift of absorption
wavelength with increasing solvent polarity; all three ZINDO/
PCM options reproduce correctly this trend. Tables 1-3 also
show that the difference among the three alternative ZINDO/
PCM options is at most 0.08 eV, with the results obtained with
theIntegrandChgoptions being very close to each other. With
respect to the experimental data, the optionMultip in general
gives the best results, very close to the experimental results for
the more polar solvent (acetonitrile). For the apolar solvent the
results are worse, probably because the approximation to

Figure 1. Molecular structures of the three coumarins. Top: coumarin
102; center: coumarin 522; bottom: coumarin 153.
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consider only electrostatic solute-solvent interaction is too
strong in this case. However, the experimental trend of the
transition energies, passing from the polar solvent to the apolar
one, is well reproduced.

As far as coumarin 153 is concerned, the TD-DFT/PCM and
the ZINDO/ PCM results are similar and they both well agree
with the experimental data.

To achieve a more detailed analysis of the PCM effect on
the spectra, in Table 4 we report the ZINDO results obtained
for the three coumarins in vacuo and with PCM (acetonitrile,
optionMultip), at the geometries optimized in acetonitrile with
the AM1/PCM method. In this way we have separated the sol-
vent effect on the geometries from that on the absorption ener-
gies. As shown in the table, the results in vacuo are systemati-
cally too large with respect to the experimental data. In contrast,
the use of PCM provides energy values in very good agreement
with the experimental values, correctly reproducing the stabi-
lization effect of the solvent on the solute electronic excited
state.

3.3. Betaine.Also the family of pyridiniophenoxide betaines
is the subject of considerable interest because of their solvato-
chromic properties.45-49 In fact, the most famous member of
this class, the betaine 30, was used for the definition of a polarity
scale (called the ET(30) scale) of wide application.50 The solvent
sensibility of the absorption spectra is due to the fact that the
excited state involves a charge transfer (CT) from the phenoxide

donor ring to the pyridinium acceptor ring. The stabilization of
this CT state with respect to the ground state and the position
of the band in the spectrum are largely affected by the solvents
as well as the nature of the substituents on the rings. In this
article we focus our attention on the unsubstituted molecule,
see Figure 2, so to avoid the effect of substituents and leave
only that of the solvent.

We performed calculations in a series of solvents with
increasing polarity. Contrary to the previous collection of
systems, presenting a quite rigid geometrical structure, in this
system one immediately recognizes a critical geometrical
parameter, namely the dihedral angleθ between the rings (see
Figure 2). To have a better analysis of the importance of this
parameter and of its changes according to the solvent, in Table
5 we report the values ofθ, obtained by geometry optimizations
performed with the AM1 and B3LYP (6-311G(d) basis set)
methods in vacuo and in different solvents. Table 5 also reports
the dielectric constantsε of the solvents.

From the analysis of the results reported in Table 5 it comes
out thatθ increases with the solvent polarity to a saturation
value for the most polar solvents. It can be noted that the semi-
empirical method provides values ofθ quite close to those ob-
tained with the DFT method; this fact makes us confident of
the accuracy of the AM1 geometries. This confidence is also
confirmed by other studies on similar compounds, performed
with different computational methods and solvation models, in
which a similar gas-to-solvent change of the dihedral angle is
found.49

The values ofθ have been then used to compute absorption
energies in the different environments. Table 6 shows the results
for the absorption energies in vacuo and in solvents with the
three ZINDO/PCM options, the experimental data,47 and the
calculations performed with TD-DFT/PCM (B3LYP/6-311+G-
(d)). Each system has been studied at the geometry optimized
in the corresponding phase.

It can be noted that the ZINDO result in vacuo is quite far
from the experimental data in the solvents, so the use of PCM
becomes necessary to correctly reproduce the measured absorp-
tion energies.

Except for the less polar solvent (benzene) and for the protic
solvents (methanol and water), which we will examine more

TABLE 1: Absorption Energies (eV) for Coumarin 102 in
Two Different Solventsa

102 acetonitrile cyclohexane

exp. 3.26 3.43
Multip 3.21 3.34
Integr 3.21 3.26
Chg 3.20 3.26

a Calculations performed with the three options of the ZINDO/PCM
method.

TABLE 2: Absorption Energies (eV) for Coumarin 522 in
Two Different Solventsa

522 acetonitrile cyclohexane

exp. 3.06 3.25
Multip 3.04 3.15
Integr 2.98 3.07
Chg 2.98 3.08

a Calculations performed with the three options of the ZINDO/PCM
method.

TABLE 3: Absorption Energies (eV) for the Coumarin 153
in Acetonitrile a

153 absorption energy

exp. 2.97
TD-DFT 2.95
Multip 3.00
Integr 2.95
Chg 2.94

a Calculations performed with the three options of the ZINDO/PCM
method and with the TD-DFT/PCM method (B3LYP, 6-311+G(d)
basis set).

TABLE 4: Absorption Energies (eV) for the Coumarins
Reported in Figure 1 in Vacuo and in Acetonitrile (option
Multip )a

vacuum PCM exp.

102 3.48 3.21 3.26
522 3.34 3.04 3.06
153 3.31 3.00 2.97

a In all cases the geometries are those optimized with the AM1/
PCM in acetonitrile.

Figure 2. Molecular structure of the betaine molecule. Torsional angle
θ between the two rings.

TABLE 5: Dielectric Constants (E) and Dihedral Angle θ
(degrees) for the Betaine Molecule in Vacuo and in Solvent
of Increasing Polarity, Obtained by Geometry Optimizations
with AM1 and B3LYP/6-311G(d) Methods and PCM

ε AM1 DFT

vacuum 1 30.8 31.5
benzene 2.25 34.0 35.8
CHCl3 4.90 36.2 38.8
CH2Cl2 8.39 37.3 40.3
acetone 20.7 38.1 42.2
acetonitrile 36.64 38.3 42.7
CH3OH 32.6 38.3 41.8
water 78.39 38.7 42.7
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accurately following this section, for all aprotic solvents the
differences between ZINDO/PCM results and experimental data
are smaller than 0.1 eV. TheIntegr andChg options still give
results very close to each other and numerically smaller than
the Multip option, which still gives the best results.

The comparison of ZINDO and TD-DFT calculations is also
of interest. In fact, for the latter method the results are worse
than for the former. This example clearly testifies to the validity
of the ZINDO/PCM method, which, despite the approximations
it introduces in the QM description, can give results more in
agreement with the experimental data than the ab initio one.

The ZINDO/PCM result becomes worse in benzene, but the
result is not improved by increasing the level of the calculation
and passing to the TD-DFT/PCM method. As for the coumarins,
also in this case an electrostatic-only description of the solute-
solvent interaction seems to be a too strong approximation. This
fact can also be reflected in the geometry, and, for example,
the value ofθ obtained with the algorithm accounting only for
the electrostatic term could be not correct. To check this issue
we performed a series of calculations of absorption energies at
different dihedral angles, starting from the geometry optimized
in benzene with the AM1 method, keeping the other internal
coordinates fixed. The results are reported in the diagram of
Figure 3.

As shown in the diagram, probably the value ofθ obtained
in the geometry optimization (34°) is too large but, even varying
this parameter, the calculated absorption energy remains still
quite far from the experimental value. This fact seems to show
that nonelectrostatic effects should be explicitly introduced in
the calculation of the excitation energies as well as accounted
for in the determination of the geometry. We also note that the

diagram again reveals that theIntegr andChg results are very
close to each other, but that theMultip option provides the best
performance.

Examining the results for the protic solvents, we can guess
that the hydrogen bond has an important role for this system
(that presents intramolecular charge separation), but this con-
tribution cannot be well described with a continuum-only model.
This deficiency can be reduced by inserting one or moreexplicit
solvent molecules H-bonded to the oxygen atom. Choosing
water as the test case (for methanol the results should be
analogous), we performed the absorption energy calculations
in water, adding one explicit water molecule, see Figure 4.

The geometry of the H-bonded 1-water betaine system was
optimized using the B3LYP/ PCM (6-311G(d) basis set),
because it is known that the AM1 does not give reliable
hydrogen bonding distances. In Table 7 we report the absorption
energies calculated in vacuo and in water (with the three options)
at the same geometry (θ ) 48.3°).

From this table one can see that the presence of the explicit
water molecule improves the performance of ZINDO/PCM. In
contrast, for the calculation in vacuo the absorption energy value
is not influenced at all. This strange behavior is due to two
opposite effects: the increase of torsional angleθ, due to the
presence of the water molecule, tends to decrease the value of
the transition energy with respect to the isolated molecule and,
on the other hand, the polarization effect of the same water
molecule tends to increase this value. In the calculation in vacuo,
these two effects cancel each other and we obtain the same result
as obtained for the isolated molecule (see Table 6). In the PCM
calculation, the polarization effect due to the explicit water
molecule is stronger, providing a significant net increase of the
absorption energy with respect to the value reported in Table

TABLE 6: Absorption Energy (eV) in Vacuo and in Various
Solvents for the Betaine Moleculea

exp. Multip Integr Chg TD-DFT

vacuum 1.83b 2.08
benzene 2.35 2.03 1.98 1.98 2.06
CHCl3 2.40 2.33 2.31 2.30 2.14
CH2Cl2 2.49 2.48 2.46 2.46 2.19
acetone 2.55 2.60 2.57 2.57 2.22
acetonitrile 2.60 2.65 2.63 2.63 2.24
CH3OH 3.03 2.64 2.63 2.63 2.24
water 3.28 2.69 2.67 2.66 2.25

a Calculations performed in vacuo with ZINDO and TD-DFT
(B3LYP/6-311+G(d)) methods and in solvent with the three options
of the ZINDO/PCM and with the TD-DFT/PCM (B3LYP/ 6-311G(d))
methods.b Calculation in vacuo provides only a single value.

Figure 3. Absorption energies (eV) diagrammed as a function of the
dihedral angleθ (degree) for the betaine molecule in benzene, evaluated
with the three options of the ZINDO/PCM method. The experimental
energy value is plotted as reference.

Figure 4. Structure of the betaine+ explicit water molecule system.
The water molecule is H-bonded to the oxygen atom of the betaine.

Figure 5. Molecular structure of the methylene blue cation.

TABLE 7: Betaine + One Explicit Water Molecule,
Absorption Energy (eV) Calculated in Vacuo and in Watera

absorption energy

exp. 3.28
vacuum 1.83
Multip 2.89
Integr 2.89
Chg 2.88

a Geometry optimized in water with B3LYP/PCM (6-311G(d) basis
set).
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6. To verify that in water the geometrical effect does not strongly
influence the values of the transition energies, we performed
calculations with PCM and in the presence of the explicit water
molecule changing the angleθ (and keeping fixed the other
internal coordinates). From these calculations we found that the
transition energies do not vary significantly with respect to the
values reported in Table 7.

From the comparison of the PCM results of Tables 6 and 7,
we can see that the discrepancy found in water with respect to
experiments is significantly reduced, however, it remains larger
than in aprotic solvents. The addition of a second H-bonded
water molecule does not change the description, and thus we
are led to think that this remaining discrepancy is due to an
intrinsic limit of the ZINDO method to correctly describe the
effect of H-bonds.

To summarize the results of this section, we can see that,
when the most important part of the solute-solvent interaction
is electrostatic, the semiempirical PCM approach to the absorp-
tion energy evaluation is very good, providing results very close
to the experimental results, even better than those obtained with
ab initio methods.

3.4. Methylene Blue.Methylene blue is a cationic dye (see
Figure 5) largely used in different fields. We quote here its use
in the treatment of various diseases, as a dye in surgical and
medical marking, and as an indicator dye.51 In the latter case
its interactions with clay minerals are widely examined;52-55

in these studies visible spectra of dye-clay suspensions in water
are reported, as are the spectra of dilute solutions.55 In this paper
we analyze the absorption spectra of the methylene blue,
comparing different methods, ab initio and semiempirical, with
respect to each other and the experimental data.53

In Figure 6 we report a diagram showing the experimental
absorption energy compared with those obtained with TD-HF,
TD-DFT, and ZINDO methods, in vacuo and in water. The
geometries optimized in vacuo and in solvent have been obtained
with the AM1 method.

Due to the rigidity of this system, the solvent effects on the
geometry are small; in fact we also performed geometry
optimizations with HF and B3LYP (both with the 6-311G(d)
basis set), in vacuo and in water, and the values of absorption
energies obtained at these geometries are very similar to that
reported in the diagram of Figure 6. In contrast, the solvent
effects are important to the absorption energies, as can be seen
from data reported in Figure 6.

For all the methods, the calculations in vacuo provide values
of transition energies larger than those obtained considering the
solvent effect. Although the PCM improves the results, TD-
HF and TD-DFT methods still overestimate the correct value
of the transition energy. Also in this case, ZINDO performance
is better than the ab initio results. In particular, the use of
ZINDO with PCM allows us to obtain a value of the absorption
energy very close to the experimental value.

This last example shows once more the effective potential
of ZINDO/PCM to estimate the experimental data, providing
results comparable and sometimes better than the ab initio
methods and computationally less expensive.

Summary

The IEF-PCM solvation model has been applied to the
ZINDO semiempirical method. The latter is one of the most
used methods to perform molecular calculations of absorption
energies. In fact, despite its approximation, it was calibrated to
give results quite close to the experimental data for a large series
of organic molecules. When one is interested in transition
energies for systems in solution, a good representation of the
interaction between the solute and its surrounding is necessary.
In the past years the IEF-PCM has been proven to be a very
powerful model to represent the solvent response to the solute
electronic excitation when coupled to ab initio methods. Here
we have shown that the same good results can be obtained by
coupling the IEF-PCM with ZINDO; this is an interesting result
as ZINDO/PCM can become an important tool to describe the
experimental trends of the spectra for many families of
compounds, especially when the dimensions of the systems
prevent from accurate ab initio approaches.

For the representation of the solute-solvent interaction, three
different formulas of the electrostatic potential (and of the
relative integrals) have been introduced in the INDO framework.
In these formulas the potentials have been calculated (i) using
a multipolar expansion (optionMultip), (ii) using the ab initio
expression of the integrals but neglecting those integrals that
must be zero in the ZDO approximation (optionIntegr), (iii)
using a point representation of the solute electronic charge
(option Chg). The three formulas have been applied to the
calculation of the PCM operators, introduced both in the SCF
scheme and in the TDA approach developed to evaluate
transition energies.

Three different classes of molecules have been selected to
test the ZINDO/PCM model: three 7-aminocoumarin dyes, a
pyridiniophenoxide betaine molecule, and the methylene blue
dye. All the tests seem to confirm the validity of the model and
of its approximations. Indeed, the results are in good agreement
with the experimental data. For all the systems examined, the
differences between the calculated and measured energies are
lower than 0.1 eV in the polar solvents (for which the
electrostatic term of the solute-solvent interaction is the most
important one).

Comparing the three options for the calculation of the
electrostatic potential, one can see that the values obtained for
the excitation energies are close to each other, with differences
less than 0.08 eV. This fact testifies that all three formulas,
despite the different formulation, provide a quite good descrip-
tion of the potential.

Considering the timing, we have found that, despite the
increase due to the PCM being more sensitive in semiempirical
methods than in ab initio methods, the calculations remain much
faster than the corresponding ab initio ones. In addition, we
recall that for very large molecules a fast and efficient algorithm

Figure 6. Absorption energies (eV) for the methylene blue dye. The
geometry was optimized in vacuo and in water with the AM1 method.
The absorption energies were evaluated in vacuo and in water with the
ZINDO, TD-HF (6-31+G(d) basis set), and TD-DFT (B3LYP,
6-31+G(d) basis set) methods. For ZINDO/PCM, theMultip option
was used.
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has been developed for calculating the PCM terms,40 which
linearly scales with the number of the tesserae. This algorithm,
even if it has not been used in this work, can be straightfor-
wardly extended to the ZINDO/PCM model and it surely
represents a further reason for making this model a valid
computational tool.

Among the three formulas presented, we suggest as prefer-
ential choice the optionMultip: its results are in fact the closer
to the experimental data with respect to the other two options
and its computational cost is the lowest.

The comparison with TD-HF and TD-DFT methods has
also shown that for these molecular systems the semiempirical
formulation of the PCM provides results more close to the
experiments, despite its simplified form. In fact, for the betaine
molecule the absorption energies obtained in acetone and
acetonitrile with the TD-DFT/PCM method are 0.3-0.4 eV
lower than the experimental energies, instead of the 0.02-0.05
eV obtained with ZINDO/PCM. Also for the methylene blue,
the calculations in water with the TD-HF and TD-DFT
methods are shown to be worse than that performed with
ZINDO, the differences being with respect to the experimental
value of the order of 0.9, 0.4, and 0.01 eV, respectively.

In conclusion, the examples reported in this paper show that
the ZINDO/PCM method can accurately describe the phenom-
enon of the electronic absorption in solution and thus it can be
seen as a promising method to study the absorption transitions
of large systems in solution.

Acknowledgment. Francesca Ingrosso is acknowledged for
providing the DFT calculations of the coumarin 3 and Paula
Homem de Mello for performing the calculations of the
methylene blue dye.

References and Notes

(1) Miertus, S.; Scrocco, E.; Tomasi, J.J. Chem. Phys. 1981, 55, 117.
(2) Tomasi, J.; Persico, M.Chem. ReV. 1994, 94, 2027.
(3) Bacon, A. D.; Zerner, M. C.Theo. Chim. Acta1979, 53, 21.
(4) Correa de Mello, P.; Hehenberger, M.; Zerner, M. C.Int. J.

Quantum Chem.1982, 21, 251.
(5) Zerner, M. C.J. Chem. Phys. 1975, 62, 7, 2788.
(6) Zerner, M. C.ReViews in Computational Chemistry, Lipkowitz,

K. B., Boyd, D. B.; VCH Publishing: New York, 1991; Vol.2, pp 313-
366.

(7) Tomasi, J.; Cammi, R.; Mennucci, B.; Cappelli, C.; Corni, S.Phys.
Chem. Chem. Phys.2002, 4, 5697.

(8) Cance`s, E.; Mennucci, B.J. Mater. Chem. 1998, 23, 309.
(9) Cance`s, E.; Mennucci, B.; Tomasi, J.J. Chem. Phys. 1997, 107,

3031.
(10) Mennucci, B.; Cance`s, E.; Tomasi, J.J. Phys. Chem. B1997, 101,

10506.
(11) Onsager, L.J. Am. Chem. Soc. 1936, 58, 1486.
(12) Karelson, M. M.; Zerner, M. C.J. Phys. Chem. 1992, 96, 6949.
(13) Albert, I. D. L.; Marks, T. J.; Ratner, M. A.J. Phys. Chem. 1996,

100, 9714.
(14) Yu, J.; Zerner, M. C.J. Chem. Phys. 1994, 100, 10, 7487.
(15) Kölle, C.; Jug, K.J. Comput. Chem. 1997, 18, 1, 1.
(16) Baraldi, I.; Momicchioli, F.; Ponterini, G.; Vanossi, D.Chem. Phys.

1998, 238, 353.
(17) Manas, E. S.; Wright, W. W.; Sharp, K. A.; Friedrich, J.;

Vanderkooi, J. M.J. Phys. Chem. B2000, 104, 6932.
(18) Vivian, T. J.; Callis, P. R.Biophys. J. 2001, 80, 2093.
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