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In this contribution, we discuss the statistical mechanical implications of the mean field Ehrenfest method of
quantum/classical dynamics for a quantum harmonic oscillator in a classical heat bath using the Brownian
motion Hamiltonian as a model. A mean field quantum/classical master equation is derived and compared to
the corresponding Redfield master equation, and the deficiencies of the quantum/classical approach pointed
out by analyzing the nature of energy/population relaxation and decoherence.

1. Introduction

Theoretical chemical dynamics of large systems or in
condensed phases has seen in recent years a tremendously
increasing interest in hybrid methods, which allow for inclusion
of important quantum effects in a relevant subsystem, whereas
the less important degrees of freedom (DoF) of the (solvent)
environment or heat bath are treated by classical mechanics.1-10

By partitioning the total system into a usually small quantum
“core” and a large environmental subsystem, an acceptable
scaling of the numerical effort with the number of DoF is
maintained. Examples include electron transfer and electroni-
cally nonadiabatic processes11-14 or proton/hydrogen transfer
in chemistry and biology.5,15,16Vibrational energy transfer [VET,
or vibrational energy relaxation (VER)] is an elementary process
of fundamental importance in chemical dynamics17 where
quantum effects may also become important due to the
nonnegligible zero-point energy of high-frequency vibrations
and the finite energy level spacings.

It is the purpose of the present work to analyze and clarify
the dynamical properties of the simplest mixed quantum/classical
dynamics method (themean field Ehrenfestscheme, see below),
as applied to vibrational energy relaxation, from a statistical
mechanical point of view.18 Using a suitable model Hamiltonian,
a mean field quantum/classical generalized master equation is
derived and compared to the respective quantum generalized
master equation. Focusing on the nature of energy/population
relaxation and decoherence, the analytical properties of the
quantum/classical master equation are used to analyze the results
of model simulations. Thereby we hope to provide a starting
point for improvement of the mean field quantum/classical
approach, both in the regime of weak coupling between quantum
and classical subsystems and possibly beyond.

In hybrid quantum/classical molecular dynamics, hereafter
denoted by QCMD, quantum and classical equations of motion
are solved in a self-consistent manner, but the way how this is
done depends on the degree of correlation between quantum
and classical subsystems that is considered to be important. As
a consequence, there are essentially two categories of QCMD
methods, which may be termed “weak correlation” and “strong
correlation”, respectively.

The lowest level of theory (weak correlation class) is
represented by the so-called mean field Ehrenfest (MF) or
classical path method,1,3,10 which may be derived from the
single-configuration time-dependent self-consistent field (TD-
SCF) approximation.7,19 As a result, it suffers from the same
approximations as involved in the derivation of TDSCF, namely,
a (partial) neglect of quantum correlation between subsystems
described by separate lower-dimensional time-dependent wave
functions.4 In general terms, the drawback of the mean field
approach arises from the property that the motion of classical
degrees of freedom is not correlated to the full reduced density
operator of the quantum DoF, but only to an expectation value
calculated therefrom, namely, an average Hellmann-Feynman
type force.6,20,21

The molecular dynamics with electronic transitions method
(in its fewest switches implementation),11 widely known as
trajectory surface hopping (TSH),22,23 or its later extension,
termed molecular dynamics with quantum transitions (MDQT),15

represents the second class of QCMD schemes, and has been
designed to address the strong correlation case. For a broader
(re)view on both the MF and the TSH QCMD classes and their
relation to (ab initio) direct quantum molecular dynamics applied
to nonadiabatic problems,24-26 see refs 6 and 9.

In this work, we apply mean field QCMD methodology to a
model of condensed phase vibrational energy relaxation, i.e., a
situation where the system-environment interaction is usually
of the weak coupling type, and therefore its effect on the relevant
subsystem dynamics may be evaluated via low-order time-
dependent perturbation theory. The resultant generalized quan-
tum master equation for the reduced density operator27-29 takes
into account the dissipative effect of the environmental DoF
due to fluctuating and frictional forces. In fact, because of its
convenience, this is the framework within which condensed
phase VER is usually treated.17,30Although it is often argued31,32

that TDSCF/MF approaches are applicable to situations with
small coupling between the respective subsystems or where the
interaction is of an average type, we will show that mean field
Ehrenfest QCMD even performs poorly in this weak coupling
regime, because friction is a correlation effect and will therefore
not be correctly accounted of by an approach, which neglects
an important part of the correlation, however small the system-
bath interaction may be. We anticipate that our findings/
arguments are at variance with the results obtained in an
application of mean field QCMD to diatomic vibrational
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relaxation in aqueous solution.32,33 Other recent examples of
mean field Ehrenfest molecular dynamics as applied to vibra-
tional energy transfer and relaxation include refs 34 and 35.
See also ref 10 for an extensive review of the classical path
method (including the so-called symmetrized Ehrenfest ap-
proach) and its application to rovibrationally inelastic and
reactive scattering. Examples of surface hopping methodology
as applied to vibrational energy transfer and relaxation include
refs 36 and 37.

In a recent investigation, we have reported on mean field
quantum/classical simulations of a model breathing sphere in a
Lennard-Jones fluid at liquid density,38 where some of the
present issues have already been raised. Here we employ the
so-called Brownian motion Hamiltonian39-42 for a particle
moving in a one-dimensional potential and coupled bilinearly
to a heat bath composed of harmonic oscillators. Although
restricted to a bilinear form of the interaction potential, this
model provides access to a quantum mechanical solution either
via the path integral technique8,39,43-45 or through the generalized
quantum master equation (QME).27-29

Our paper is organized as follows. In section 2, we briefly
describe the mean field Ehrenfest quantum/classical approach,
discuss the model Hamiltonian and the resultant dynamical
properties in terms of the generalized Langevin (GLE) and
quantum master equations, respectively, and then go on to derive
a mean field quantum/classical master equation (QCME), and
therefrom obtain some theoretical implications of the mean field
Ehrenfest equations of motion. For the sake of a close
comparison of the mean field QCME to the GLE/QME and the
underlying approximations (if any), we give a fairly detailed
yet compact discussion of the GLE and QME, respectively, for
the underlying model Hamiltonian. Simulation results using an
ohmic bath parametrization of the model are presented and
discussed in section 3. Section 4 concludes.

2. Theory

Before entering this section, some words on notational matters
may be useful in order to avoid ambiguity. As usual in statistical
mechanics, the total (closed) system is divided into two
subsystems, a small subsystem of interest (relevant subsystem,
or simply the system) and a large environmental subsystem
(environment, heat bath, or simply the bath). In the following,
the above names for each of the two subsystems are used
interchangeably. Whenever aspects of the interaction or cor-
relation between subsystems are addressed, the term subsystems
refers to the subsystem of interest and its (classical or quantum)
environment.

2.1. Mean Field Ehrenfest Molecular Dynamics.The mean
field Ehrenfest method has been reviewed many times,1,3,4,6,9,10,46

so we try to stay very brief here. Starting from a total
Hamiltonian of the general type

whereQ ≡ {Qi} andP ≡ {Pi}, or collectivelyX ≡ (Q, P), the
mean field Ehrenfest quantum/classical equations of motion take
the form

where ĤS and ĤB denote the system and bath Hamiltonian,
respectively. The equations of motion (eom) for the classical
degrees of freedom thus contain a force derived from the
quantum averaged interaction potentialĤSB ) V̂(q, Q) evaluated
at the classical pathQ ) Q(t). Although the form of this
“quantum force” in eq 2, with the coordinate derivative
performed after the quantum trace, takes account of a possible
Q-dependence of the state vector|ΨS(t)〉, it is usually assumed
that the derivative can be drawn inside the quantum bra-ket,
provided the basis functions used to expand the wave function
do not depend on the positionsQ(t) of the classical DoF.6

In practical numerical applications a unitary scheme has to
be employed in order to conserve the norm of the state vector
as well as the quantum averaged total energy and momentum.
A convenient integration scheme is provided by the PICKA-
PACK algorithm,47,48 which has the structure of a quantum/
classical symmetric split propagator and is used here in a
modified form49

whereM is the diagonal mass matrix and subscripts 0, 0.5, and
1 denote classical phase space variables and quantum wave
functions at timest, t + ∆t/2 andt + ∆t, respectively.

2.2. Model Hamiltonian and Relevant Subsystem Dynam-
ics. For the purpose of analytical investigations and the ability
to provide an (approximate) quantum dynamical reference, we
restrict ourselves to the so-called Brownian motion (Caldeira-
Leggett) Hamiltonian40-42 as a model

where V̂solv(q) ) 1/2∑ l(gl/ωl)2q̂2, ĤSB ) -q̂∑ lglQ̂l and ĤB is
the unperturbed bath Hamiltonian. The mean field quantum/
classical eom then read

Ĥ ) ĤS(q, p) + V̂(q, Q) + ĤB(Q, P)

ĤS(q, p) )
p̂2

2µ
+ V̂S(q)
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2
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d
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-

∂
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V̂(q; Q0.5)∆t}|ΨS〉0.5
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Ĥ )
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+
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2
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) ĤS(q, p) + V̂solv(q) + ĤSB(q, Q) + ĤB(Q, P) (4)
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where Ĥsolv ) ĤS + V̂solv (solvate Hamiltonian) and〈...〉t )
〈ΨS(t)|...|ΨS(t)〉.

2.2.1. Generalized LangeVin Equation.As is well-known,28,50-52

Hamiltonian (4) provides the basis for a microscopic derivation
of the (nonlinear) generalized Langevin equation (GLE)40,53,54

both in classical and in quantum dynamics. For contextual
reasons, we choose the quantum picture, where the system and
bath phase space variables (operators) obey the Heisenberg eom,
and the intrinsic force-∇qV̂S(q) is a matrix defined by the
commutator (i/p)[V̂S(q), p̂],p̂ ) -ip∇q.

The bath equations of motion are linear and can therefore be
integrated out to give

After partial integration of the convolution integral, this leads
to

which by insertion into the system eom gives the GLE, eq 6,
with

The form of the fluctuating forceδF̂(t) implies that the bath
degrees of freedom are to be considered initially equilibrated
to the system coordinateq̂, if 〈δF̂(t)〉B ) 0 and translational
invariance of the friction force is required.44,50 Although, for
the model chosen, the friction kernelγ(t) is temperature-
independent and the same both in classical and in quantum
dynamics, the statistics of the random forceδF̂(t) is different.

In the realm of classical dynamics, the autocorrelation
function of the fluctuation forceδF(t) is related to the friction
kernelγ(t) via the fluctuation-dissipation relation (FDR)

for a heat bath at canonical equilibrium.51,54 In the quantum
domain, the operator forceδF̂(t) has the following statistical
properties29,44

with the (perturbed) heat bath canonical density operatorF̂B ∝
e-âĤB, â ) (kBT)-1, andnjl ≡ 〈âl

† âl〉B ) {eâpωl - 1}-1 the mean
thermal occupation number of thelth bath oscillator.

In the classical limit,njl f (âpωl)-1 . 1, the real and
symmetric part ofC(t) is

The antisymmetric (imaginary) part ofC(t) does not depend on
temperature, and is (again a property of the model Hamiltonian)
related to the time-derivative of the friction kernel

which will be used later in the derivation of the mean field
quantum/classical master equation (section 2.3). For later
reference, we also summarize here some general relations in
the frequency domain.29 The Fourier transforms ofC(t) ) C+(t)
+ C-(t) andC*( t) ) C+(t) - C-(t) ≡ C(-t) obey the detailed
balance relationship

where eâpω ) (njω + 1)/njω. For the Fourier transforms of the
symmetric and antisymmetric parts ofC(t), we thus obtain

2.2.2. Quantum Master Equation.The quantum Langevin
equation, eq 6, is of limited use, except for the damped harmonic
oscillator, because the operator force-∇qV̂S(q) is nonlinear in
general.

The quantum master equation (QME) for the reduced density
operatorF̂S(t) ) TrB F̂(t) provides access to complete informa-
tion about the relevant subsystem. A systematic route to the

d
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|ΨS(t)〉 ) -

i

p
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QME is provided by the Nakajima-Zwanzig projection operator
technique.28,29,51For comparison with the treatment in section
2.3, we take a short cut to the second order Redfield-type QME29

using the interaction representation (“Dirac” picture, D) with
respect to the bath HamiltonianĤB

55

for the total density operator, whereÛ(t, t0) and Ût (inverse
Û t

-1) are Hilbert space time evolution operators in the Schro¨-
dinger and Dirac picture, respectively, andU (D)(t, t0) is a
Liouville space time evolution operator. For the model Hamil-
tonian eq 4, the von Neumann equation for the total density
operatorF̂(D)(t) then reads

with ĤSB(t) ) ÛB
†(t, t0)ĤSBÛB(t, t0) ) - q̂∑l gl Q̂l (t) ≡ -q̂F̂B(t),

which defines the bath-induced operator force

Note thatF̂B(t) differs from δF̂(t), eq 9, only by the defini-
tion of initial conditions, and is assumed to have the same
statistical properties, eq 11, for the unperturbed heat bath at
canonical equilibrium. This difference may be taken into
account by simultaneously lettingF̂B(t) f δF̂(t) and
Ĥsolv f ĤS.

Through definition of a time-independent Liouville space
projectorP and its complementQ ) 1 - P , the information
contained in the total density operatorF̂(D)(t) may be split into
releVant and irreleVant parts, respectively

where the relevant part is a direct product of the reduced density
operatorF̂S(t) ) TrBF̂(D)(t) and the bath statistical operatorF̂B,eq

) e-âĤB/Tr e-âĤB at canonical equilibrium, and contains the full
information on the relevant subsystem, while its complement
contains the correlations (entanglement) as a result of the
interactionĤSB(t). The quantum Liouville equation, eq 17, can
thus be reformulated in terms of two coupled equations for
P F̂(D)(t) andQ F̂(D)(t). Formal elimination of the irrelevant part
delivers the most general form of QME, which forms the starting
point for approximations, often involving29 (i) the neglect of
initial correlations,Q F̂(D)(t0) = 0 (or their rapid decay), and
(ii) the short bath correlation time approximation, related to
assumption (i).

Solving Liouville eq 17 under these approximations gives
(i) the non-Markovian (time-retarded) generalized master equa-
tion and (ii) the convolutionless (time-local) QME, respec-
tively, for the relevant subsystem reduced density operatorF̂S-
(t) ) TrB{F̂(D)(t)} ) TrB{P F̂(D)(t)}, directly in the Schro¨dinger
picture

whereUS(t, s) is the system Liouville space propagator,Λ̂(t)
) ∫0

t-t0 dτ C(τ) q̂S(-τ) and Λ̂†(t) ) ∫0
t-t0 dτ C*(τ) q̂S(-τ),

q̂S(-τ) ) US(t, s) q̂ ) ÛS(t, s) q̂ÛS
†(t, s) andτ ) t - s. F̂S

(0)(t)
denotes the reduced density operator to zeroth order in the
system-bath interaction. According to approximation (ii), the
motion of the relevant subsystem during the time range of the
convolution integral is not substantially affected by dissipation,
i.e.

TheconVolutionlessQME of eq 20 takes account of the system-
bath correlations contained in∆F̂(D)(t) ) Q F̂(D)(t) to second
order in the system-bath interaction and includesnon-MarkoVian
effects in an approximate manner, i.e., in terms of seemingly
Markovian (time-local) but frequency-dependent friction. For
comparison with the mean field quantum/classical master
equation (QCME), to be derived below, it may be rewritten as

with

Upon taking the limits limtf∞Λ̂(t) and limtf∞Λ̂†(t), QME (20)
turns into the respective multilevel Redfield equation.27,29,56,57

At the most approximate level of description, the off-diagonal
elements (coherences)Fmn(t) of the reduced density operator in
the energy representation,ĤS|n〉 ) εn|n〉, are either decoupled
from the diagonal elements (secular approximation27,29,56,58) or
neglected altogether (random phase assumption56). This leads
to a Pauli master equation27,29 for the diagonal elements
(populations)Fmm(t) ) pm(t)

with (time-dependent) rate coefficients

F̂(D)(t) ) ÛB
† (t, t0) F̂(t) ÛB(t, t0)

) ÛB
† (t, t0)Û(t, t0) F̂(t0) Û†(t, t0)ÛB(t, t0)
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d
dt

F̂(D)(t) ) - i
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[Ĥsolv + ĤSB(t), F̂(D)(t)] (17)

F̂B(t) ) ∑
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(D)(t) (19)

d
dt
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p
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1
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t
ds C(t - s) [q̂, US(t, s) q̂ F̂S
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1
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t
ds C*( t - s) [q̂, US(t, s) F̂S

(0)(s) q̂] (i)

= - i
p

[ĤS, F̂S(t)] -

1

p2
{[q̂, Λ̂(t) F̂S

(0)(t)] - [q̂, F̂S
(0)(t) Λ̂†(t)]} (ii) (20)

F̂S
(0)(s) = U S

†(t, s)F̂S
(0)(t) ) ÛS

†(t, s)F̂S
(0)(t)ÛS(t, s)

d
dt

F̂S(t) = - i
p

[ĤS, F̂S(t)] -

1

p2∫0

t
ds C+(t - s) [q̂, US(t, s)[q̂, F̂S

(0)(s)]] -

1

p2∫0

t
ds C-(t - s) [q̂, US(t, s)[q̂, F̂S

(0)(s)]+]

= - i
p

[ĤS, F̂S(t)] -

1

p2
{[q̂, [Λ̂+(t), F̂S

(0)(t)]] + [q̂, [Λ̂-(t), F̂S
(0)(t)]+]} (21)

Λ̂+(t) ) ∫0

t-t0 dτC+(τ) q̂S(-τ) and

Λ̂-(t) ) ∫0

t-t0 dτC-(τ) q̂S(-τ)

d

dt
pm(t) ) -pm(t)∑

n*m

wmfn(t) + ∑
n*m

pn(t)wnfm(t) (22)
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whereC*(-t) ) C(t) has been used. For times larger than the
bath correlation time, whereC(t) f 0, the Golden Rule result29

is obtained, whereĈ(ωnm) is the Fourier transform, eq 14, of
the force correlation functionC(t) at the transition frequency
ωnm ) ωn - ωm.

For the damped harmonic oscillator (HO) of angular fre-
quencyω0, only single-quantum transitions with rate coefficients

are allowed, and an exponential decay of the mean occupation
number〈n̂〉 (mean energy) is obtained from the Pauli QME, eq
22, according to

wherenj ) nj(ω0, T) is the mean thermal occupation number at
frequencyω0, and the rate constant of mean energy decaywj is,
by way of eqs 9, 11, and 14, equal towj ) γ̂(ω0)/2.

2.3. Mean Field Quantum/Classical Master Equation.
Having discussed the quantum master equation approach to
relaxation based on the Brownian motion Hamiltonian, we now
derive a quantum/classical master equation for the same model
subject to the mean field Ehrenfest equations of motion, eqs 2
and 5, which shall provide a basis for subsequent analytical
investigations and for rationalizing the numerical results to be
presented below. From eq 5, we obtain the von Neumann
equation

for the pure state projectorP̂S(t) ) |ΨS(t)〉〈ΨS(t)|, from which
the classical bath eom can be eliminated via direct integration
[see eqs 7-9]

to give

whereC-(t) is the antisymmetric part of the quantum bath force
correlation function, eq 13, related to the friction kernelγ(t),
FB(t) is the fluctuation force of eq 18 in the classical limit, and
γ(t) andδF(t) conform to the classical limit of eq 9, withq̂(0)
replaced by〈q̂〉0. Equation 29 has the structure of a stochastic
quantum/classical Liouville equation, or quantum/classical
generalized Langevin equation in the Schro¨dinger picture, where
the dynamics of the quantum subsystem is governed by time-
retarded friction and fluctuation forces, respectively, in addition
to the system (solvate) HamiltonianĤsolv ) ĤS + V̂solv. Due to
the mean field coupling of the classical phase space variables
to the quantum subsystem, eqs 5 and 27, the non-Markovian
friction force is correlated to the history of the quantum-averaged
position 〈q̂〉s ) 〈ΨS(s)|q̂|ΨS(s)〉 (momentum〈p̂〉s) only. Note
that eq 29 is still an exact representation of the mean field
Ehrenfest dynamics for the total system, subject to model
Hamiltonian (4), analogous to GLE (6).

The time-evolved system pure state vector (projector) of eqs
5, 27, and 29 depends on the history of the classical pathQ(t)
through the bath initial conditionsX0 ) (Q0, P0), i.e., P̂S(t) ≡
P̂S[Q(t); t] ) P̂S[X0; t]. Upon averaging over the classical bath
canonical initial state, the reduced density operator of the
quantum subsystem is obtained,σ̂S(t) ) TrB{P̂S[X0; t] X Feq(X0)}
) ∫ dX0 P̂S[X0; t]Feq(X0), whereσ̂S(t0) ≡ P̂S(t0).

To derive the second-order mean field quantum/classical
master equation analogous to eqs 20, 21, we start from eq 29,
simultaneously replacingĤsolv f ĤS and FB(t) f δF(t) (see
section 2.2.2), and noting that the friction term, involvingC-(t),
is already second order in the system-bath interaction, while
the fluctuation term is of first order. The second order
accumulated effect of the classical fluctuation forceδF(t) is
evaluated by integrating eq 29 to

and reinserting into the rhs to obtain, still formally exactly

whereUdet(t, t0) is the Liouville space propagator accounting
for deterministic Hamiltonian dynamics and friction effects in
the quantum subsystem, andP̂S(t0) ≡ σ̂S(t0).

An overall second-order scheme impliesUdet(t, s) f

US(t, s) everywhere (t0 e s < t), and P̂S(s) f P̂S
(0)(s) )

US(s, t0)P̂S(t0) ≡ σ̂S
(0)(s) in the term containing the fluctuation

force to second order. However, in the friction term, containing
C-(t), the replacementP̂S(t) f σ̂ S

(0)(t) is not sensible, since the
expectation〈q̂〉s ) Tr{P̂S(s)q̂} and thus the friction force
operating onP̂S(t) reflect the single-trajectory mean field

d
dt

P̂S(t) ) - i
p

[ĤS + V̂solv, P̂S(t)] -

2

p2∫0

t
ds C-(t - s)〈q̂〉s[q̂, P̂S(t)] + i

p
[q̂, P̂S(t)]FB(t) (29)

P̂S(t) ) Udet(t, t0)P̂S(t0) + i
p
∫t0

t
ds Udet(t, s) [q̂, P̂S(s)] δF(s)

(30)

d
dt

P̂S(t) ) - i
p

[ĤS, P̂S(t)] -

2

p2∫0

t
ds C-(t - s)〈q̂〉s[q̂, P̂S(t)] +

i
p

[q̂, Udet(t, t0)P̂S(t0)] δF(t) -

1

p2∫t0

t
ds δF(t)δF(s) [q̂, Udet(t, s) [q̂, P̂S(s)]] (31)

wmfn(t) ) 1

p2
{〈n|Λ̂(t)|m〉〈m|q̂|n〉 + 〈n|q̂|m〉〈m|Λ̂†(t)|n〉}

) 1

p2
|〈n|q̂|m〉|2∫-t

+t
dτ C(τ) e-iωnmτ (23)

lim
t.0

wmfn(t) ) 1

p2
|〈n|q̂|m〉|2Ĉ(ωnm) (24)

wnfn+1 ) n + 1
2µpω0

Ĉ(+ω0) )
γ̂(ω0)

2
nj(ω0, T)(n + 1)

wnfn-1 ) n
2µpω0

Ĉ(-ω0) )
γ̂(ω0)

2
{nj(ω0, T) + 1}n (25)

d
dt

〈n̂〉 ) -
Ĉ(ω0)

2µpω0nj
{〈n̂〉 - nj} ≡ -

γ̂(ω0)

2
{〈n̂〉 - nj} (26)

d

dt
P̂S(t) ) -

i

p
[Ĥsolv - q̂∑

l

gl Ql (t), P̂S(t)]

Q̇l (t) ) Pl (t)

Ṗl (t) ) -ωl
2Ql (t) + gl 〈q̂〉t (27)

Ql (t) )

Ql (0) cosωl t +
Pl (0)

ωl
sin ωl t + gl∫0

t
ds

sin ωl (t - s)

ωl
〈q̂〉s

∑
l

gl Ql (t) ) FB(t) +
2i

p
∫0

t
ds C-(t - s)〈q̂〉s

) ∑
l

gl
2

ωl
2
〈q̂〉t + δF(t) - ∫0

t
dsγ(t - s)〈p̂〉s (28)

8870 J. Phys. Chem. A, Vol. 108, No. 41, 2004 Käb



correlation between the quantum system and its classical
environment. Finally, invoking theshort bath correlation time
approximation,σ̂ S

(0)(s) = U S
†(t, s)σ̂ S

(0)(t) and〈q̂〉s ) Tr{P̂S(s)q̂}
= Tr{q̂ U S

†(t, s)P̂S(t)} ) 〈q̂S(s - t)〉t, where q̂S(s - t) )
US(t, s) q̂.

Upon taking the classical statistical average over bath initial
conditions, with〈δF(t)〉B ) 0 and〈δF(t)δF(s)〉B ) Ccl(t - s),
the resultant mean field quantum/classical generalized master
equation (QCME), in its time-retarded (i) and convolutionless
forms (ii), is

whereΛ̂cl(t) ) ∫0
t dτ Ccl(τ) q̂S(-τ) and Λ̂-(t) ) ∫0

t dτ C-(τ)
q̂S(-τ), 〈q̂〉s and〈Λ̂-(t)〉t are single-trajectory expectations, and
〈...〉B represents the average over bath initial conditions. Equation
32, although termed master equation here and in the following,
is not a closed equation forσ̂S(t), due to the appearance ofP̂S(t)
and expectations calculated therefrom.

The mean field quantum/classical master equation of eq 32
is our central result to be compared with the QME of eq 21.
Obviously, the mean field Ehrenfest equations of motion imply
the replacements

Although the first replacement,C+(t) f Ccl(t) ) µkBTγ(t),
changes the type of asymptotic equilibrium from quantum to
classical (see below for details), the second, by itself, must lead
to a loss of quantum detailed balance, since the combined effect
of both operatorsΛ̂+(t), Λ̂-(t) (or Λ̂(t), Λ̂†(t)) is necessary to
obtain the correct transition rates, eqs 23 and 24, in the
incoherent hopping regime (Pauli QME, Golden Rule). In the
fully coherent (quasi-classial) wave packet regime only, as will
be demonstrated below, does the mean field QCME produce
sensible results.

In the following, we examine the implications of QCME (32)
for energy relaxation restricting ourselves to the damped
harmonic oscillator, and show that an ensemble (with respect
to classical bath initial conditions!) of coherent states of the
harmonic oscillator evolving subject to the underlying stochastic
Liouville eq 29 represents the only situation, where the mean
field QCME gives physically meaningful results.

Operator expectations〈Ô〉 ) Tr{σ̂S(t)Ô} obtained from the
mean field QCME imply single trajectory (conditional) pure
state,〈Ô〉t, and subsequent classical bath ensemble averaging,
〈...〉B. Wherever necessary, the occurrence of a sequence of
averages is made explicit, through〈Ô〉 ) 〈Tr{P̂S(t)Ô}〉B )
〈〈Ô〉t〉B, to avoid ambiguity.

2.3.1. Energy Relaxation.From QME (21) it readily follows
that

whereV̂ ) p̂/µ ) (i/p)[ĤS, q̂] and q̂S(-τ) ) q̂ cosω0τ - (V̂/ω0)
sinω0τ. With

the rate of energy relaxation at long times, 0, t f ∞, is given
by58,59

whereEh(ω0, T) ) pω0{nj(ω0, T) + 1/2} and the relationsĈ-(ω0)
) -µpω0 γ̂(ω0)/2, eq 13, andĈ+(ω0) ) -{2nj(ω0, T) + 1}
Ĉ-(ω0), eq 15, have been used. Note that in the derivation of
eq 36 a bath-induced frequency shift, appearing in eq 35 ([q̂,
p̂]+ term), has been neglected first (line 1), and then a secular/
rotating wave approximation58,59 invoked (line 2).

From QCME (32), instead, we obtain

and at long times,t f ∞

using Ĉcl(ω0) ) µkBTγ̂(ω0), eqs 10 and 12, andĈ-(ω0) )
-µpω0 γ̂(ω0)/2, eq 13.

Comparison of eqs 36 and 38 shows that, although the mean
rate of energy relaxation is unchanged (being a property of the

d
dt

σ̂S(t) ) ∫ dX0 Feq(X0)
d
dt

P̂S[X0; t]

= - i
p

[ĤS, σ̂S(t)] -

1

p2∫0

t
ds Ccl(t - s) [q̂, US(t, s) [q̂, σ̂S

(0)(s)]] -

2

p2∫0

t
ds C-(t - s) 〈〈q̂〉s[q̂, P̂S(t)]〉B (i)

= - i
p

[ĤS, σ̂S(t)] - 1

p2
[q̂, [Λ̂cl(t), σ̂S

(0)(t)]] -

2

p2
〈〈Λ̂-(t)〉t[q̂, P̂S(t)]〉B (ii) (32)

Λ̂+(t) f Λ̂cl(t)

[q̂, [Λ̂-(t), F̂S
(0)(t)]+] f [q̂, 〈[〈Λ̂-(t)〉t, P̂S(t)]+〉B] (33)

d
dt

〈ĤS〉 ) i
p

{〈[V̂, Λ̂+(t)]〉 + 〈[V̂, Λ̂-(t)]+〉}

) i
p
∫0

t
dτ{C+(τ)〈[V̂, q̂S(-τ)]〉 +

C-(τ)〈[V̂, q̂S(-τ)]+〉} (34)

i
p

〈[V̂, Λ̂+(t)]〉 ) 1
2µ∫-t

t
dτ C+(τ) cosω0τ

i
p

〈[V̂, Λ̂-(t)]+〉 ) i
pµ

〈[q̂, p̂]+〉∫0

t
dτ C-(τ) cosω0τ -

2i〈p̂2〉
µ2pω0

∫0

t
dτ C-(τ) sinω0τ

=
〈p̂2〉

µ2pω0

∫-t

t
dτ C-(τ)e-iω0τ (35)

d
dt

〈ĤS〉 = 1
2µ

Ĉ+(ω0) +
〈p̂2〉

µ2 pω0

Ĉ-(ω0)

) -
γ̂(ω0)

2 {〈p̂2〉
µ

- Eh(ω0, T)} =

-
γ̂(ω0)

2
{〈ĤS〉 - Eh(ω0, T)} (36)

d
dt

〈ĤS〉 ) i
p

{〈[V̂, Λ̂cl(t)]〉 + 〈〈[V̂, 〈Λ̂-(t)〉t]+〉t〉B}

= 1
2µ∫-t

t
dτ Ccl (τ) e-iω0τ +

〈〈 p̂〉t
2〉B

µ2 pω0

∫-t

t
dτ C-(τ)e-iω0τ

(37)

d
dt

〈ĤS〉 = 1
2µ

Ĉcl(ω0) +
〈〈 p̂〉t

2〉B

µ2 pω0

Ĉ-(ω0)

) -
γ̂(ω0)

2 {〈〈 p̂〉t
2〉B

µ
- kBT} =

-
γ̂(ω0)

2
{〈Ecl(t)〉B - Ehcl(T)} (38)

The Damped Harmonic Oscillator J. Phys. Chem. A, Vol. 108, No. 41, 20048871



model Hamiltonian), the mean field QCME drives the quantum
subsystem to a classical equilibrium state, where however the
nonequilibrium energy is measured “classically”, i.e., in terms
of single-trajectory expectations of position and momentum. The
only type of quantum state, for which this is physically
meaningful, is a minimum uncertainty state (coherent state of
the harmonic oscillator) to which we turn below. In contrast,
for quantum states delocalized in phase space, the mean energy
is encoded in the detailed (nodal) structure of the wave packet
or density matrix, and not simply related to the quantum first
moments of the phase space variables.

2.3.2. Coherent State EVolution. The stochastic quantum
Liouville eq 29 withĤS ) pω0(â+â + 1/2) describes a forced
harmonic oscillator subject to linear damping and fluctuation,
where

or

in terms of boson-type second quantization operators. Conse-
quently, a coherent state (minimum uncertainty Gaussian wave
packet)

with the properties60

will evolve without changing (the product of) its position and
momentum uncertainties.61 Via the chain rule

using eqs 40-42 together with eqs 28 and 29, it is straightfor-
ward (although a little tedious) to show that

if P̂S(t) ≡ |R(t)〉〈R(t)|. Thus, the probabilityTr{P̂S(t)|R(t)〉〈R(t)|}
) 〈R(t)|P̂S(t)|R(t)〉 for staying in the coherent stateP̂R(t) ≡
|R(t)〉〈R(t)| with

is conserved along a single mean field quantum/classical
trajectory.

Equation 38 then reads

where

which is the classical limit of eqs 36 and 26. Thus, subject to
the mean field Ehrenfest equations of motion, an ensemble of
minimum uncertainty Gaussian wave packets settles into a quasi-
classical equilibrium state of mean energypω0njcl(ω0, T) ) kBT
(provided anharmonicity does not play a role), but the discrete
energy levels only apparently lose their meaning (see section
3.2.3).

However, in the case of a general quantum initial state (e.g.,
an energy eigenstate of the HO), the situation is even worse,
because the mean field correlation between subsystems implies
that the nonequilibrium energy is measured classically, as shown
above (section 2.3.1). As a result, all quantum initial states other
than minimum uncertainty states must settle into an unphysical
asymptotic equilibrium state, depending on their apparent
classical initial energy. This will be demonstrated in numerical
simulations with a quantum harmonic oscillator initialized in
one of its energetically excited eigenstates.

When anharmonicity of the potential energy surface can no
longer be neglected, it is expected that even a coherent state
ensemble will asymptotically fail to obey quasi-classical equi-
librium statistics, because of the inevitable broadening of the
wave packet in position and momentum space during a single
quantum/classical trajectory.

3. Simulation Results

3.1. Model Parameterization and Simulations. In the
simulations, an ohmic spectral density of bath oscillators29,44

with exponential cutoff has been assumed, where the fluctuating
force correlation function is given by

and the correlation spectrum (ω g 0) becomes

d
dt

〈q̂〉t )
〈p̂〉t

µ

d
dt

〈p̂〉t ) -µω0
2〈q̂〉t - ∫0

t
ds γ(t - s)〈p̂〉s + δF(t) (39)

d
dt

〈â〉t ) -iω0〈â〉t - 1
2∫0

t
ds γ(t - s){〈â〉s - 〈â+〉s} +

i δF(t)

x2µpω0

(40)

|R(t)〉 ) exp{-1
2
|R(t)|2 + R(t) â+}|0〉 â|R(t)〉 ) R(t)|R(t)〉

〈R(t)| ) 〈0|exp{-1
2
|R(t)|2 + R*( t) â} 〈R(t)|â+ ) 〈R(t)|R*( t)

(41)

∂|R(t)〉
∂R(t)

) {-
R*( t)

2
+ â+}|R(t)〉

∂|R(t)〉
∂R*( t)

) {-
R(t)
2 }|R(t)〉

∂〈R(t)|
∂R*( t)

) 〈R(t)|{-
R(t)
2

+ â} ∂〈R(t)|
∂R(t)

) 〈R(t)|{-
R*( t)

2 }
(42)

d
dt

|R(t)〉 )
∂|R(t)〉
∂R(t)

d
dt

R(t) +
∂|R(t)〉
∂R*( t)

d
dt

R*( t) (43)

d
dt

〈R(t)|P̂S(t)|R(t)〉 ) 〈R̆(t)|P̂S(t)|R(t)〉 + 〈R(t)|P̂S(t)|R̆(t)〉 +

〈R(t)|{ d
dt

P̂S(t)}|R(t)〉 ≡ 0 (44)

d
dt

R(t) ) -iω0R(t) - 1
2∫0

t
ds γ(t - s){R(s) - R*(s)} +

i δF(t)

x2µpω0

(45)

pω0
d
dt

〈â+â〉 = -
γ̂(ω0)

2
pω0{〈|R(t)|2〉B -

kBT

pω0
} (46)

pω0|R(t)|2 )
〈p̂〉R

2

2µ
+

µω0
2

2
〈q̂〉R

2 ≡ Ecl(t)

J(ω) ≡ π

2
∑

l

gl
2

ωl

δ(ω - ωl) ) µγωe-ω/ωc (47)

C(t) ) 1
π∫0

∞
dω pJ(ω){(nj(ω, T) + 1) e-iωt + nj(ω, T) e+iωt}

Ccl(t) ) kBT
2
π∫0

∞
dω

J(ω)
ω

cosωt (48)

Ĉ(ω) ) 2p J(ω) nj(ω, T) ≡ 2µγ pωnj(ω, T) e-ω/ωc

Ĉcl(ω) ) 2kBT
J(ω)

ω
≡ 2µγ kBTe-ω/ωc (49)
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For the system oscillator a harmonic frequency ofω0/2π ) 250
cm-1 has been chosen, and the bath spectral density adjusted
such thatγ̂(ω0)/2 = 0.1 ps-1 (γ ) 1.0 ps-1, ωc/2π ) 108.574
cm-1), and discretized using 2000 classical oscillators in the
range 0-10ωc. The choice of a rather low-frequency system
oscillator helps avoiding small integration steps, while classical
and quantum equilibrium statistics are still distinguishable.

An ensemble of 400 quantum/classical nonequilibrium tra-
jectories starting from a mean energy of〈n̂〉0 ) 5 vibrational
quanta and a classical canonical distribution of bath initial
conditions atT ) 300 K has been run for up to 30 ps, where
the initial wave function was chosen to be (i) a coherent state,
with initial phaseR(0) ) + x〈n̂〉0, or (ii) an eigenstate|n0〉 )
|5〉 of ĤS (diabatic state). The heat capacityCV ) 2000kB of
the classical bath ensures that the rise (change) of bath
temperature is kept below 1 K.

The classical canonical statistics of bath initial conditions was
obtained by Monte Carlo sampling for each bath oscillator from
an exponential distribution of energy,Feq(E) ∝ e-âE, and then
assigning a random vibrational phase at given energy. The mean
field Ehrenfest equations of motion, eqs 2 and 5, were solved
numerically via the symplectic scheme (3), using a combination
of ĤS (Ĥsolv) eigenstate and position space (sinc-DVR) repre-
sentations for the quantum split propagator,46 whereas the
classical mechanical part is identical to the leapfrog algorithm.62

3.2. Results and Discussion.3.2.1. Energy Relaxation.In
Figure 1 is shown the relaxation of mean occupation number
〈n̂〉 (mean energy) for different quantum initial conditions,
subject to the quantum/classical equations of motion. Obviously,
the ensemble of coherent initial states exhibits energy dissipation
and settles into a state of lower energy, while the ensemble of
diabatic initial states does not, but relaxes toward a state of
higher energy. Comparison to the theoretical prediction based
on eqs 38 and 46 confirms that the energy relaxation time is
τVER = 10 ps in both cases. Although the asymptotic equilibrium
for the coherent state ensemble corresponds topω0〈n̂〉 f pω0njcl-
(ω0, T) ) kBT, i.e., ‘classical energy statistics’ (see below,
however), it ispω0〈n̂〉 f pω0〈n̂〉0 + kBT for the ensemble of
diabatic initial states. Both results are easily understood on the
basis of eq 38 in terms of an effectively classical dynamical
correlation between subsystems, where the classical energy
assigned to the quantum wave packet isEcl(t) ) pω0|〈â〉t|2. For
a coherent stateEcl(t) ) pω0|R(t)|2 ≡ pω0〈n̂〉t, for a diabatic
initial state, however,Ecl(t) * pω0〈n̂〉t and in particularEcl(0)
) 0. For the same reason, an oscillator starting in an energy
eigenstate does not fall below its initial quantum energypω0

(〈n̂〉0 + 1/2) even during a single mean field quantum/classical
trajectory, as also shown in Figure 1. Since the quantum wave
packet is monitored by the environment through〈q̂〉t (〈p̂〉t), the
initial energy eigenstate behaves like a classically motionless
(“cold”) state of the oscillator, whereas its true quantum energy
is not detected by the classical heat bath. Consequently, thermal
relaxation of the oscillator corresponds to a heating process.
As shown recently,38 for an initial superposition state intermedi-
ate between a pureĤS eigenstate and a coherent state of the
harmonic oscillator, only the classical partEcl(0) ) pω0|〈â〉0|2
of the initial excess energy can be dissipated into the classical
heat bath, while the remaining quantum part is “inert” with
respect to dissipation.

Using the term ‘classical energy statistics’ above, we referred
to the first moment of the respective equilibrium energy
distribution only (see section 3.2.3).

3.2.2. Decoherence.Energy relaxation of the open quantum
subsystem oscillator is accompanied by phase relaxation (dephas-
ing), or decoherence in the energy representation, which in the
present case corresponds to the absence of pure dephasing;58

that is, the phase (position and momentum) relaxation time is
τ2 ) 2τ1, whereτ1

-1 = γ̂(ω0)/2 is the rate of energy dissipation.
As an additional global measure of dephasing, the decay of the
position and momentum variances toward thermal equilibrium
may be used, which in turn must be related to energy relaxation.
In Figure 2a,b is shown the time evolution of the product of
ensemble averaged vs single trajectory position and momentum
uncertainties,∆q∆p in units of p, where∆q ) (〈q̂2〉 - 〈q̂〉2)1/2

≡ σq and∆p ) (〈p̂2〉 - 〈p̂〉2)1/2 ≡ σp, starting from the different
quantum initial conditions, (a) a coherent state (constructed from
eigenstates ofĤS), and (b) a diabatic state, respectively. Apart

Figure 1. Decay of mean vibrational quantum number (occupation
number) for an ensemble of coherent and diabatic initial states of the
damped harmonic oscillator, respectively, toward mean field Ehrenfest
quantum/classical equilibrium. For the theoretical analysis, see text.

Figure 2. Time evolution of the product of (ensemble averaged)
position and momentum uncertainties (in units ofp) for a) an ensemble
of coherent initial states, b) an ensemble of diabatic initial states. See
text, for the theoretical analysis.
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from the different offsets (origins at time zero), the temporal
behavior is the same in both cases, where relaxation toward
some equilibrium value is observed for the ensemble averaged
quantities, to be analyzed below. The time-independence (on a
coarse-grained time scale) of the single trajectory uncertainty
product is immediately clear from the analysis in section 2.3.2.
On a sub-ps time scale, weak amplitude reversible oscillations
are observed (not shown), due to the presence of the quadratic
V̂solv term in the model Hamiltonian. Note that the same
sequence of random numbers has been used in both cases to
initialize the classical bath oscillators such that the remaining
noise leaves the same “fingerprint” in parts a and b of Figure
2.

From the convolutionless quantum master equation (QME),
eqs 20 and 21, we obtain the following equations for the first
and second moments of phase space variables,58,59valid at long
times (0, t < ∞)

from which the evolution equations for the variancesσq
2(t) )

〈q̂2〉 - 〈q̂〉2 andσp
2(t) ) 〈p̂2〉 - 〈p̂〉2, and the covarianceCq,p(t)

) (1/2)〈[q̂, p̂]+〉 - 〈q̂〉〈p̂〉 follow.
From the mean field quantum/classical master equation

(QCME), eq 32, we obtain eq 50 for the first moments and

for the second moments, which is the quasi-classical limit of
(51) with the replacements〈p̂2〉 f 〈〈p̂〉t

2〉B and〈[q̂, p̂]+〉 f 〈〈[q̂,
〈p̂〉t]+〉t〉B ) 2〈〈q̂〉t〈p̂〉t〉B on the rhs of lines 2 and 3, respectively.
Thus, the equations of motion for the variances read

where on the rhsσp
2(t) and Cq,p(t) appear as their quasi-

classical counterparts. At thermal equilibrium, the variances
obtained from the QME (20 and 21) must assume the values

σq
2 ) Eh(ω0, T)/µω0

2, σp
2 ) µEh(ω0, T) andCq,p ) 0.58 Therefore,

it is concluded that, subject to the mean field Ehrenfest equations
of motion, σq

2(t) and σp
2(t) must relax toward the quasi-

classical equilibriumσq
2(t) f kBT/µω0

2 + σq
2(0) andσp

2(t) f

µkBT + σp
2(0) depending on their initial values, with the

damping rateγ̂(ω0)/2, and henceσq(t)σp(t) f kBT/ω0 +
p(n0 + 1/2) according to

instead of

subject to the QME, where (a)n0 ) 0 for the coherent initial
state and (b)n0 ) 〈n̂〉0 ) 5 for the diabatic initial state.
Comparing the analysis with the quantum/classical simulation
results, also shown in Figure 2a,b, gives excellent agreement,
given the finite ensemble size. Note that these findings are in
accord with the results on energy relaxation in the previous
subsection. Again, only for the ensemble of coherent initial states
is the quasi-classical nature of the phase relaxation physically
meaningful, where eq 54 forn0 ) 0 is the quasi-classical limit
of eq 55. For the ensemble of initial energy eigenstates (diabatic
states) withn0 > nj(ω0, T), the relaxation of the position-
momentum uncertainty product according to eq 55 should
correspond to a localization in position/momentum space. Under
the mean field equations of motion, however, the delocalized
nature of the wave function is not detected by the classical
environment. Even on the single-trajectory level, the uncertainty
product is not allowed to fall below its initial value, as observed
for the mean energy.

From the perspective of quantum-classical correspondence,
eq 53 is equivalent to the time evolution of second moments
as obtained from the Klein-Kramers Fokker-Planck equa-
tion,52,58,59,63except for the presence of a minimal position-
momentum indeterminacy.

In summary, energy relaxation and decoherence subject to
mean field Ehrenfest quantum/classical dynamics suffer from
the unphysical survival of position/momentum-delocalized
superposition states, as a result of the essentially classical
dynamical correlation between the respective subsystems. The
method gives physically meaningful results only for wave
packets which remain in a state of maximum localization relative
to the form of system-environment interaction. Due to the
extremely localized nature of classical mechanics, there exists
no mechanism in mean field QCMD by which the environment
is able to monitor and destroy delocalized states of the quantum
subsystem.

3.2.3. Population Relaxation.In Figure 3a,b, the nature of
population relaxation observed for the coherent initial state
ensemble (3a) is contrasted with that obtained for the ensemble
of diabatic initial states (3b). Although in the former case
relaxation toward a canonical equilibrium distribution is ob-
served (see below), a (biased) diffusion-type relaxation in energy
space toward an obviously noncanonical equilibrium is obtained
in the latter, indicating a breakdown of quantum detailed

d
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balance. This is also illustrated in Figure 4, comparing the level
populations at long times (30 ps). As shown recently,38 in the
coherent initial state case, population relaxation is in accord
with a Pauli QME treatment (or the secular approximation), eqs
22-25, where the mean thermal occupation numbernj(ω0, T)
appearing in the expressions for the state-to-state transition rates,
eq 25, is replaced by its classical limitnjcl(ω0, T) ) (âpω0)-1,
leading to an apparently quantum thermal equilibrium distribu-
tion60

Note that, although the mean thermal energy in excess of the
zero-point level,pω0njcl(ω0, T) ) kBT, is in accord with classical

statistical mechanics, the mean squared energy fluctuation
following from eq 56, (pω0)2njcl(njcl + 1) ) kBT(kBT + pω0) >
(kBT)2, is even larger than predicted by classical equilibrium
statistics at finite temperature. The latter is an unavoidable
consequence of the quantum mechanical description of the
respective subsystem in mean field Ehrenfest quantum/classical
dynamics, as has been confirmed by monitoring the ensemble
averaged mean squared quantum number fluctuation〈(δn̂)2〉t )
〈n̂2〉t - 〈n̂〉t

2 for the coherent initial state case (not shown here,
but see below).

3.2.4. Approach to Thermal Equilibrium.Finally, we dem-
onstrate that for an ensemble of coherent initial states, subject
to mean field Ehrenfest QCMD, the equilibrium quantum energy
level populations of the damped harmonic oscillator have indeed
the form given by eq 56, using the nonequilibrium (information)
entropy54,60

as a global measure for the shape of the evolving distribution
{pn(t)}. For the sake of an intuitive physical picture, the identity
S(t) ) ln Neff(t) is employed, defining a reference distribution
where Neff(t) states are equally populated. As soon as the
distribution{pn(t)} acquires the form of eq 56 withnj f 〈n̂〉t,
the nonequilibrium entropy may be expressed as

and the distribution as a whole characterized by a nonequilibrium
temperature. Figure 5a shows that, within a time scale on the
order of the energy relaxation time, the ensemble of coherent
initial states indeed relaxes toward a nonequilibrium quasi-
canonical distribution,38 where〈(δn̂)2〉t ) 〈n̂〉t(〈n̂〉t + 1), whereas
the ensemble of diabatic initial states, Figure 5b, obviously does
not. It is, however, interesting to note that in the latter case
limtf∞{Ncanonical(t) - Neff(t)} = 5 ≡ 〈n̂〉t)0.

To summarize, if conditions are such that mean field
Ehrenfest QCMD gives physically meaningful results, the
asymptotic thermal equilibrium between the quantum subsystem
and the classical heat bath is of a quasi-classical nature, where
the first moment of energy is in accord with classical equilibrium
statistics but the energy fluctuations are larger than predicted
by classical statistical mechanics.

4. Conclusion

In the present work, we have presented a detailed comparison
of mean field Ehrenfest quantum/classical molecular dynamics
(QCMD) and its underlying assumptions to the corresponding
Redfield second order quantum master equation (QME), using
the Brownian motion Hamiltonian as a model applied to
vibrational energy relaxation of a harmonic oscillator. We were
able to bring the mean field quantum/classical equations of
motion into an ensemble averaged form with respect to the
classical bath initial conditions, where the resultant evolution
equation for the quantum subsystem reduced density operator
and the assumptions made in mean field QCMD can be
discussed in terms of deviations from the QME. In particular,
the real and symmetric part of the quantum bath force correlation
function is replaced by its classical limit, whereas the antisym-
metric part is retained, its effect, however, taken into account
only via the (single-trajectory) time-dependent expectation of
the respective operator appearing in the dissipative part of the

Figure 3. Decay of diabatic energy level populations (n ) 5, 5 ( 1,
5 ( 2) for (a) an ensemble of coherent initial states and (b) an ensemble
of diabatic initial states.

Figure 4. Diabatic energy level populations close to mean field
quantum/classical equilibrium (t ) 30 ps).
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quantum master equation. The result is a loss of quantum
detailed balance.

Subsequent analytical investigation of the mean field quantum/
classical master equation (QCME) allows for a rationalization
of simulation results partly obtained earlier, but for a noninte-
grable system-bath Hamiltonian.38 In particular, energy relax-
ation and decoherence, population relaxation and the nature of
asymptotic thermal equilibrium are analyzed. For the linearly
damped harmonic oscillator, an ensemble of minimum uncer-
tainty Gaussians (coherent states), due to optimum localization
with respect to the system-bath coupling, is the only type of
quantum initial states, which gives physically meaningful results,
namely energy/population relaxation and dephasing toward
quasi-classical thermal equilibrium, whereas a breakdown of
quantum detailed balance as well as unphysical decoherence is
observed in general, e.g., for an initial energy eigenstate.
However, even for an ensemble of coherent initial states the
nature of thermal equilibrium with mean energypω0njcl(ω0, T)
) kBT is not entirely classical, since the mean squared energy
fluctuation is (pω0)2njcl(njcl + 1) > (kBT)2, owing to the discrete
energy scale of the quantum subsystem oscillator. This issue
deserves further consideration, also in other applications of
quantum/classical methodology. It is in contrast to our earlier
erroneous claim,38 that the quantum subsystem energy scale
behaves as if continuous.

Although the present statistical mechanical analysis of mean
field Ehrenfest quantum/classical molecular dynamics has been
restricted to the simple case of a damped harmonic oscillator,
the role of anharmonicity and its effect on the performance of

this QCMD method remains to be evaluated. This seems to be
relevant also for the interpretation of simulation results reported
for the case of a damped anharmonic oscillator in a molecular
solvent.32,33 As stated above, our general expectations are that
anharmonicity will tend to further weaken the applicability of
mean field QCMD.

In summary, mean field Ehrenfest quantum/classical dynamics
gives essentially a classical dynamical correlation between the
quantum subsystem and its classical environment,3 and suffers
from the absence of a physical mechanism for environment-
induced decoherence, a quantum bath effect of fundamental
importance for open quantum systems.64,65 Mean field QCMD
therefore seems to be inapplicable to most of the realistic
situations encountered in condensed phase dynamics. We want
to argue, that this failure is not (so much) a matter of the strength
of system-environment interaction, but is related to an improper
treatment of the relevant subsystem in terms of pure state
Schrödinger/Liouville-type time evolution, coupled to classical
environmental dynamics. As noted by other groups,6,66-70 a
proper treatment ofdecoherencein the open quantum system
is of crucial importance for achieving maximum correlation
between quantum and classical subsystems. However, this
necessitates inclusion of (approximate) quantum environmental
effects. The nature of decoherent states (or pointer states65),
selected by the process of decoherence, will in general depend
on the form of system-bath interaction, i.e., on the system
observable which is “monitored” by the environment. In the
present context of vibrational energy transfer, position is the
relevant subsystem observable. Therefore, states of optimum
localization in position (and momentum) space are expected to
play the role of pointer states.

It is our hope that the present investigation may prove useful
as a starting point for finding the (minimal) “missing link” for
improving mean field Ehrenfest QCMD, while trying to avoid
the ad hoc application of a vibrational surface hopping
procedure.37 The basic idea is, to replace the classical phase
space point of mean field QCMD by a (minimum uncertainty)
Gaussian wave packet (GWP). We have recently suggested the
use of a time-dependent Gauss-Hermite (TDGH) basis set,10,71

the ground state of which is a GWP, for going beyond the mean
field classical path of the environmental degrees of freedom
(DoF), by treating these DoF semiclassically and adding
Gaussian (initial) fluctuations around the classical path in terms
of boson-type second quantization operators defined in the
trajectory-driven TDGH basis.72,73 The use of a projection
operator technique then allows for a perturbative evaluation of
the correlation effect due to quantum fluctuations. Work along
these lines is in progress. Results obtained for the damped
harmonic oscillator (HO) indeed reveal, that HO coherent states
are dynamically stable, whereas energy eigenstates decohere into
a statistical mixture of HO coherent states.
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