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Statistical Mechanics of Mean Field Ehrenfest Quantum/Classical Molecular Dynamics:
The Damped Harmonic Oscillator'

GUnter K&b*
Max-Planck-Institut fu Biophysikalische Chemie, Am Fassberg 11, D-3707igen, Germany

Receied: March 12, 2004; In Final Form: June 18, 2004

In this contribution, we discuss the statistical mechanical implications of the mean field Ehrenfest method of
quantum/classical dynamics for a quantum harmonic oscillator in a classical heat bath using the Brownian
motion Hamiltonian as a model. A mean field quantum/classical master equation is derived and compared to
the corresponding Redfield master equation, and the deficiencies of the quantum/classical approach pointed
out by analyzing the nature of energy/population relaxation and decoherence.

1. Introduction The lowest level of theory (weak correlation class) is
. . . . represented by the so-called mean field Ehrenfest (MF) or
Theoretical chemical dynamics of large systems or in

. lassical path methot19 which may be derived from the
condensed phases has seen in recent years a tremendous : o ; .
. N - : . ) - Ingle-configuration time-dependent self-consistent field (TD-
increasing interest in hybrid methods, which allow for inclusion

of important quantum effects in a relevant subsystem whereasSCF) approximatiori'® As a result, it suffers from the same
the Igss i grtant degrees of freedom (DoF) gf the ’(solvent) approximations as involved in the derivation of TDSCF, namely,
environmenFt) or heat bgth are treated by classical mechiris, & (partial) neglect of quantum correlation between subsystems
L . y " described by separate lower-dimensional time-dependent wave

By partitioning the total system into a usually small quantum functions? In general terms, the drawback of the mean field
sccc:I?n ag;j tﬁelaggﬁ];?ggogf;g ?tn tv?/:tr? l{[gsey‘:']tjnr?l’)e?noﬁcgsgt?geapproach arises from the property that the motion of classical

ing : . degrees of freedom is not correlated to the full reduced density
maintained. Examples include electron transfer and electroni-

o 14 operator of the quantum DoF, but only to an expectation value
cally nonadiabatic processés!* or proton/hydrogen transfer calculated therefrom. namelv. an average Hell nman
in chemistry and biolog§1>1Vibrational energy transfer [VET, ' Y g Y

ibrati - i type force®2021
or vibrational energy relaxation (VER)] is an elementary process . . . .
of fundamental importance in chemical dynardicsvhere The molecular dynamics with electronic transitions method
quantum effects may also become important due to the (in its fewest switches implementatioH)widely known as

nonnegligible zero-point energy of high-frequency vibrations trajectory surface hopping (TSH}?? or its later extension,
gligo P 9 9 q y termed molecular dynamics with quantum transitions (MD&T),
and the finite energy level spacings.

It is the purpose of the present work to analyze and clarify represents the second class of QCMD ;chemes, and has been
the dynamical properties of the simplest mixed quantum/classicaldes'gned to address the strong correlation case. For a broader
dynamics method (theean field Ehrenfesicheme, see below) (re)v_iew on bo_th _the MF and the TSH QCMD classe_s and their
as applied to vibrational energy relaxation fro,m a statistiéal relation to (ab initio) direct guantum molecular dynamics applied

, ) ) . . o to nonadiabatic problentd; 26 see refs 6 and 9.
mechanical point of view? Using a suitable model Hamiltonian, : )
’ . - . . Inthis work, we apply mean field QCMD methodology to a
a mean field quantum/classical generalized master equation is

derived and compared to the respective quantum generalizedﬂOdel of condensed phase vibrational energy relaxation, i.e., a

master equation. Focusing on the nature of eneravio ulationsituation where the system-environment interaction is usually
€4 : 9 . gy’pop of the weak coupling type, and therefore its effect on the relevant
relaxation and decoherence, the analytical properties of the

uantum/classical master equation are used to analyze the resuItSUbSyStem dynamics may be evaluated via low-order time-
q ) . q ay : aependent perturbation theory. The resultant generalized quan-
of model simulations. Thereby we hope to provide a starting

point for improvement of the mean field quantum/classical tum master equation for the reduced density opetatSttakes

aporoach. both in the reaime of weak counling between uantuminto account the dissipative effect of the environmental DoF
aﬁg class:ical Subs ster?ns and possibl ge %nd q due to fluctuating and frictional forces. In fact, because of its
; y anc p y beyond. convenience, this is the framework within which condensed

In hybrid quantum/classical molecular dynamics, hereafter

; . _~phase VER is usually treatéd3°Although it is often argued 32
denoted by.QCMD, quaqtum and classical equations of mo.t|o.n that TDSCF/MF approaches are applicable to situations with
are solved in a self-consistent manner, but the way how this is

done demends on the dearee of correlation between quant small coupling between the respective subsystems or where the
p 9 ! W quantum e raction is of an average type, we will show that mean field

and classical subsystems that is c_onsidered to be Fmportant. A%hrenfest QCMD even performs poorly in this weak coupling
a consequence, there are essentially two categories of QCMDregime, because friction is a correlation effect and will therefore

&?ﬁgﬁ%r\]’,\,’hg; n;?:ili\t)eel termed "weak correlation” and "strong not be correctly accounted of by an approach, which neglects
€SP Y- an important part of the correlation, however small the system-
 Part of the “Gert D. Billing Memorial Issue"" bath interaction may be. We anticipate that our findings/
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Tel.: +49 (0)551/201-1256. Fax:+49 (0)551/201-1006. application of mean field QCMD to diatomic vibrational
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relaxation in aqueous solutidA33 Other recent examples of d
mean field Ehrenfest molecular dynamics as applied to vibra- dt
tional energy transfer and relaxation include refs 34 and 35.

See also ref 10 for an extensive review of the classical path AO) = Hg(X)

WLO0= — 4 (s + V1; QI W)

method (including the so-called symmetrized Ehrenfest ap- P Ix=x
proach) and its application to rovibrationally inelastic and

reactive scattering. Examples of surface hopping methodology If’(t) _ IHg(X) _
as applied to vibrational energy transfer and relaxation include 90Q  Ix=x(

refs 36 and 37. 5
In a recent investigation, we have reported on mean field —Dllfs(t)|\7(q, Q)|1P3(t)Eb (2)
guantum/classical simulations of a model breathing sphere in a Q Q=Q()
Lennard-Jones fluid at liquid density,where some of the
present issues have already been raised. Here we employ th
so-called Brownian motion Hamiltoni&h“? for a particle

where Hs and Hg denote the system and bath Hamiltonian,
respectively. The equations of motion (eom) for the classical

moving in a one-dimensional potential and coupled bilinearly degrees of freedom thus contain a fcircAe derived from the
to a heat bath composed of harmonic oscillators. Although duantum averaged Interaction potentigk = V(q, Q) evaluated
restricted to a bilinear form of the interaction potential, this at the classical patilQ = Q(t). Although the form of this

model provides access to a quantum mechanical solution either quantum force” in eq 2, with the coordinate derivative

via the path integral technig®#43-45 or through the generalized performed after the quantum trace, tak_e_s account of a possible

guantum master equation (QME).2 Q-dependence of the state vectdfs(t)[]it is usually assumed
Our paper is organized as follows. In section 2, we briefly that the derivative can be drawn inside the quantum bra-ket,

describe the mean field Ehrenfest quantum/classical approach,'orovIde the basis functlor_ls_ used to expand the wave function
discuss the model Hamiltonian and the resultant dynamical do not depend on th_e posmo.n}(t_) of the cl_assmal DoF.
properties in terms of the generalized Langevin (GLE) and In practical .numerlcal applications a unitary scheme has to
guantum master equations, respectively, and then go on to derivé)e employed in order to conserve the norm of the state vector
a mean field quantum/classical master equation (QCME), and as well as the_quantum averaged Fotal energy and momentum.
therefrom obtain some theoretical implications of the mean field A convenient '”‘g%ga“of‘ scheme is provided by the PICKA-
Ehrenfest equations of motion. For the sake of a close PACK algorithm’ | Wh'.Ch has the structur'e of a q“a"t“F"/
comparison of the mean field QCME to the GLE/QME and the class_|_cal symr;"letnc split propagator and is used here in a
underlying approximations (if any), we give a fairly detailed modified forn

yet compact discussion of the GLE and QME, respectively, for At

the underlying model Hamiltonian. Simulation results using an Qos=Qy+M 'R, >

ohmic bath parametrization of the model are presented and

discussed in section 3. Section 4 concludes. i At
W35 =ex{ ~ s} 1Wel
2. Theory

Before entering this section, some words on notational matters Vg(Q) V(9,Q)
may be useful in order to avoid ambiguity. As usual in statistical P, =Py — W + EW’ D At
mechanics, the total (closed) system is divided into two Q=Q Q=Qos0
subsystems, a small subsystem of interest (relevant subsystem,
or simply the system) and a large environmental subsystem _ i ~n At i,
(environment, heat bath, or simply the bath). In the following, Wi = eXF{_ﬁHSE} exp{—ﬁV(q, Qo,s)At} Wslds
the above names for each of the two subsystems are used
interchangeably. Whenever aspects of the interaction or cor-
relation between subsystems are addressed, the term subsystems
refers to the subsystem of interest and its (classical or quantum)
environment. whereM is the diagonal mass matrix and subscripts 0, 0.5, and
2.1. Mean Field Ehrenfest Molecular DynamicsThe mean 1 denote classical phase space variables and quantum wave
field Ehrenfest method has been reviewed many tiié$,21046  functions at timed, t + At/2 andt + At, respectively.
so we try to stay very brief here. Starting from a total ~ 2.2. Model Hamiltonian and Relevant Subsystem Dynam-

_1 At
Qi =QstM 1P17 3

Hamiltonian of the general type ics. For the purpose of analytical investigations and the ability
to provide an (approximate) quantum dynamical reference, we
A= |2|S(q’ p) + V(a, Q) + Hy(Q, P) restrict ourselves to the so-called Brownian motion (Caldeira-
Leggett) Hamiltoniaf?~42 as a model
a2
Hs(g, p) = £ + Vs(a) P I5|2 w|2 . g |2
2 A= @) |00
N Pi R 2u 2 2 a)|2
Hg(Q.P)= > — + V4(Q) 1) . . . .
T 2m = Hg(@, p) + Vsl + Hsp(@, Q) + Hg(Q, P) - (4)

whereQ = {Q;} andP = {P;}, or collectivelyX = (Q, P), the whereVso(q) = 1/25 (g/w)%P, Hss = —§319Q andHg is
mean field Ehrenfest quantum/classical equations of motion takethe unperturbed bath Hamiltonian. The mean field quantum/
the form classical eom then read
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d L 6 Cot— 9 = BF(YOF(S =

5 WsO0= —{Foy - qZ 9 Q O} ¥s(®D ' o
Q) =P (1) ke T w_.z cosw,(t — ) = ukg Ty (t — 9 (10)
P/(t) = — »’Q(t) + g @ (5)

for a heat bath at canonical equilibrit#®* In the quantum
domain, the operator forcéF(t) has the following statistical

where Hsoy = Hs + Vs (Solvate Hamiltonian) andl.[J = propertie&®44

Ws(t)]... | Ps(t)L]

2.2.1. Generalized Langi® Equation.As is well-known?8:50-52 Eﬁli(t)@ -0
Hamiltonian (4) provides the basis for a microscopic derivation
of the (nonlinear) generalized Langevin equation (G£354 hg?

C(t) = BF()OFO)3 = Z_{(n' +1)e " + ey

dat) _ )
dt U
%_ st(Q) _f; Sy(t—9 p + OF)  (6) = Z—{(2n|+1)coswt—|smw|t}

(11)

both in classical and in quantum dynamics. For contextual with the (perturbed) heat bath canonical density operasdr
reasons, we choose the quantum picture, where the system angd-sfs g = (ksT)~%, andn = @/ &4[3 = {&*"*i — 1} "L the mean

bath phase space variables (operators) obey the Heisenberg eongermal occupation number of ttigh bath oscillator.

and the intrinsic force—VqVS(q) is a matrix defined by the In the classical limit,sy — (Bhw)~ > 1, the real and
commutator i(h)[V<(a), pl.p = —iAV, symmetric part ofC(t) is
The bath equations of motion are linear and can therefore be
integrated out to give , rllim oC+(t) = C,(t) = ukg Ty (1) (12)
)
- A P (0) _ o
Q) = Q,(0) cosw,t + "o sinot+ The antisymmetric (imaginary) part @{t) does not depend on
! ) temperature, and is (again a property of the model Hamiltonian)
¢ Sino(t—s)_ related to the time-derivative of the friction kernel
9 f, ds—— ——( (7)
l 2
C (=i i t 'hd() (t)
After partial integration of the convolution integral, this leads -y =~ —Smw =—u—yt)=———
o partial integrati volution integ i 20, [ at ok, T dt c|()
QI (t) — q(t) — QI (0) — 9 “L8(0)| cosw, t + which will be L_Jsed later in the d_erivation _of the mean field
IZ guantum/classical master equation (section 2.3). For later

reference, we also summarize here some general relations in
, (8) the frequency domaitf. The Fourier transforms @(t) = C(t)
+ C_(t) andC*(t) = C4(t) — C_(t) = C(—t) obey the detailed
balance relationship
which by insertion into the system eom gives the GLE, eq 6,

P.(0)

coswI (t—19 p(s)
Tsmw, -g L ==

with C(a)) f dt C(t) e g ot

g P (0) +|w

o0 =3 o | Q0 ~—a(0) | cost + —sinayt C(-w)= [ dic@H e =
(UI (o) L/“_:’ dt C*(t) e*iwt = eBhw é(w) (14)

2
»(©) =E g—lcosa) (t) ) where é = (f, + 1)/n,. For the Fourier transforms of the
U o2 ! symmetric and antisymmetric parts G{t), we thus obtain
[

N A 1 0y A
The form of the fluctuating forc@F(t) implies that the bath ~ Ci(») =5{1+ "y Cw), C_(0)= —{1 e} C(w)

degrees of freedom are to be considered initially equilibrated (15)
to the system coordinat@, if [OF(t)[d = O and translational
invariance of the friction force is requirdé>° Although, for 2.2.2. Quantum Master Equatioithe quantum Langevin

the model chosen, the friction kernelt) is temperature- equation, eq 6, is of limited use, except for the damped harmonic
independent and the same both in classical and in quantumoscillator, because the operator foreﬁqu(q) is nonlinear in
dynamics, the statistics of the random fordg(t) is different. general.

In the realm of classical dynamics, the autocorrelation  The quantum master equation (QME) for the reduced density
function of the fluctuation forc@F(t) is related to the friction operatorps(t) = Trg p(t) provides access to complete informa-
kernely(t) via the fluctuation-dissipation relation (FDR) tion about the relevant subsystem. A systematic route to the
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QME is provided by the Nakajima-Zwanzig projection operator d

technique?829.5LFor comparison with the treatment in section gt ps(t) = h[HS’pS(t)]

2.3, we take a short cut to the second order Redfield-type QME ~(0)
using the interaction representation (“Dirac” picture, D) with #2 f ds Qt — ) [0, #(t, s) A ps'(9)] +

respect to the bath Hamiltonidts5®
50 = e C(t-91a, 74950 a 0
() = ULt to) pt) Ug(t, to)

[
05t 0 t) Aty Ut t)Us(t, 1) = ‘E[HS’ Pl =
0,5t 07 = 270t 1) 3(t) (16) —{[q, A pS0]1 - [8, 5O A1} (i) (20)

for the total density operator, wheté(t, to) and U, (inverse ~ where Zg(t, s) is the system Liouville space propagatoi(t)

U;%) are Hilbert space time evolution operators in the Schro = /o ° dr C() &s(—7) and AT(t) = [o ° dr C¥(1) ds(—1),
dmger and Dirac picture, respectively, and®)(t, t) is a ds(—1) = %<(t, 5) § = Ug(t, 9) qUS(t sandt =t —s. p(o)(t)
Liouville space time evolution operator. For the model Hamil- denotes the reduced density operator to zeroth order in the
tonian eq 4, the von Neumann equation for the total density system-bath interaction. According to approximation (ii), the

operatorp(®)(t) then reads motion of the relevant subsystem during the time range of the
convolution integral is not substantially affected by dissipation,
- ie.
S5O0 = £ Pl + A0, 5°0]  (17)

pENS) = 24t 9p8 () = UL(t, 928 () Us(t, 9)
with FAsg(t) = U 5(t, to)AseUs(t, to) = — 3191 Qi (t) = —aFs(t),

which defines the bath-induced operator force ThecorwvolutionlessQME of eq 20 takes account of the system-
bath correlations contained inp®)(t) = 2pO)(t) to second
p (0) order in the system-bath interaction and includes-Markaian
ﬁB(t) = Z g Q| (0) coso,t + —S|nw|t (18) effects in an approximate manner, i.e., in terms of seemingly
, Markovian (time-local) but frequency-dependent friction. For

comparison with the mean field quantum/classical master
Note thatFg(t) differs from oF(t), eq 9, only by the defini-  €quation (QCME), to be derived below, it may be rewritten as
tion of initial conditions, and is assumed to have the same .
statistical properties, eq 11, for the unperturbed heat bath at— P(t) = —'_[|3|S, ps®] —
canonical equilibrium. This difference may be taken into dt h

account by simultaneously lettings(t) — oF(t) and ij’t ds C,(t— 9 [a, Zs(t, 96, 3OS —
Hsov — Hs. hz 0 , ' ,

Through definition of a time-independent Liouville space t ~ A ~(0)
projector<” and its complement. = 1 — ¢, the information _2fo ds C.(t =9 [q #s(t, 90 ps’(9)]4]
contained in the total density operaff)(t) may be split into
relevant andirrelevant parts, respectively - __[Hs peD)] —

prel(©) = P70 = Trg{ p7(0} ® pieq {[q, (A, @, 50T + 8 [A_@, 52011} (21)
AP =20 =p"0 - p® 19
with
where the relevant part is a direct product of the reduced densﬂy A o g . q
operatorps(t) = Trep®)(t) and the bath statistical operafieq A= J, drC (1) 8(—7) an
= e #Me/Tr e e at canonical equilibrium, and contains the full N _ [t .
information on the relevant subsystem, while its complement A0 j; drC._(7) 4s(~7)

contains the correlations (entanglement) as a result of the ) o N . N

interactionFlss(t). The quantum Liouville equation, eq 17, can  UPON taking the limits lim-»A(t) and lim—A'(t), QME (20)

thus be reformulated in terms of two coupled equations for tUrns into the respective multilevel Redfield equatiéf?**>7

2p®)t) and 2 pO(t). Formal elimination of the irrelevant part At the most approximate level of description, t_he off-d|ago!1al

delivers the most general form of QME, which forms the starting €/€ments (coherenceg)(t) of the reduced density operator in

point for approximations, often involvifig (i) the neglect of € energy representatioHsinl= ennL] are either decoupled

initial correlations, 23®)(to) = O (or their rapid decay), and  fom the diagonal elements (secular approximatih©°-§ or

(ii) the short bath correlation time approximation, related to neglected altogether (random phase assumijiofihis leads

assumption (i). to a Pauli master equati®®?® for the diagonal elements
Solving Liouville eq 17 under these approximations gives (POPUlationS)om(t) = pm(t)

(i) the non-Markovian (time-retarded) generalized master equa-

tion and (i) the convolutionless (time-local) QME, respec- _ - _

tively, for the relevant subsystem reduced density opefaor dt Prl®) pm(t)n;nwwn(t) " an PoOWe-n(t) (22)

(1) = Tre{ pO)(t)} = Tre{ »p®)(1)}, directly in the Schidinger

picture with (time-dependent) rate coefficients
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1 N A N N to give
Wiy () = - IAQ ImTgInC- I min A"(t) n} v

dt Ps(t) = h[HS solv’ PS(t)] -

= L imigm [ dr C(r) & (23) S
n 2 Jots C.(t~ 91EIa, PLO] + 110, PLOIF() (29)

whereC*(—t) = C(t) has been used. For times larger than the
bath correlation time, whei@(t) — 0, the Golden Rule reséft whereC_(t) is the antisymmetric part of the quantum bath force
correlation function, eq 13, related to the friction kerpét),
lim w,,.(t) = iz|m1|q|m|]zé(wnm) (24) Fg(t) is the fluctuation force of eq 18 in the classical limit, and
>0 h y(t) anddF(t) conform to the classical limit of eq 9, witij(0)
replaced bygld. Equation 29 has the structure of a stochastic
guantum/classical Liouville equation, or quantum/classical
generalized Langevin equation in the Salinger picture, where
the dynamics of the quantum subsystem is governed by time-
retarded friction and fluctuation forces, respectively, in addition
to the system (solvate) Hamiltonidh, = Hs + Vson. DUe to
the mean field coupling of the classical phase space variables

is obtained, wher€(wnn) is the Fourier transform, eq 14, of
the force correlation functio(t) at the transition frequency
Wpm = Wn — WOm.

For the damped harmonic oscillator (HO) of angular fre-
guencywo, only single-quantum transitions with rate coefficients

Wiy = n+t1a — =C(+w wp) = V( o) —n(wy, H(n+ 1) to the quantum subsystem, eqgs 5 and 27, the non-Markovian
2uhw, friction force is correlated to the history of the quantum-averaged
( ) position [§d = [Wg(9)|§|Ws(s)d(momentump) only. Note
A that eq 29 is still an exact representation of the mean field
Whn—17= 2/4h C( wg) = —5—{N(wo, T) + 1}n (25) Ehrenfest dynamics for the total system, subject to model

Hamiltonian (4), analogous to GLE (6).
are allowed, and an exponential decay of the mean occupation The time-evolved system pure state vector (projector) of egs
number@(mean energy) is obtained from the Pauli QME, eq 5, 27, and 29 depends on the history of the classical Qéth

22, according to through the bath initial conditiono = (Qo, Po), i.e., Py(t) =
( ) ( | PJQ(t); t] = PgXo; t]. Upon averaging over the classical bath
d Wy A canonical initial state, the reduced denS|ty operator of the
ot [hi= - 2ubw, { (LN} = {[dL—n} (26) quantum subsystem is obtainég(t) = Tra{ Ps[X(), t] ® pedXo)}

= [ dXo P[Xo; t]pedXo0), Whereds(to) = Ps(to).
wheren = R(wo, T) is the mean thermal occupation number at To derive the second-order mean field quantum/classical

frequencywo, and the rate constant of mean energy derés; master equation analogous to egs 20, 21, we start from eq 29,
by way of eqs 9, 11, and 14, equalio= 7(wq)/2. simultaneously replacingilsoy — Hs and Fa(t) — oF(t) (see
2.3. Mean Field Quantum/Classical Master Equation.  section 2.2.2), and noting that the friction term, involvidg(t),

Having discussed the quantum master equation approach tdS already second order in the system-bath interaction, while
relaxation based on the Brownian motion Hamiltonian, we now the fluctuation term is of first order. The second order
derive a quantum/classical master equation for the same modefccumulated effect of the classical fluctuation forde(t) is
subject to the mean field Ehrenfest equations of motion, eqs 2 €valuated by integrating eq 29 to

and 5, which shall provide a basis for subsequent analytical

investigations and for rationalizing the numerical results to be Ps(t) = Uyt tO)PS(tO) + - f ds 7/4(t, 9) [8, S(s)] OF(9)
presented below. From eq 5, we obtain the von Neumann (30)
equation

and reinserting into the rhs to obtain, still formally exactly

d. i .
—Pg(t) = _%[Hsolv - QZ 9,Q (1), Ps(t)]

d - [
o 3P0 =5 [As Ps] -
t) =Pt N

A © 2 [Mds C_(t — 9, PO +

Pi(t) =~/ Q1) + g [@L (27) R i
for the pure state projectdts(t) = |W(t)IW(t)|, from which E[q’ et LIPS(to)] OF(D) —
the classical bath eom can be eliminated via direct integration 1 pt A A B
[see eqs 7.9] J 12 ﬂo ds OF(1)OF(s) [, Zuelt, 9) [8, Ps(9)]] (31)
QM= where Z4e(t, to) is the Liouville space propagator accounting

P0) . sinw,(t —9) for deterministic Hamiltonian dynamics and friction effects in
Q (0) coswt + "o sinwt + 9|ﬁ) dST KD the quantum subsystem, aRg(to) = ds(to).

: An overall second-order scheme implie&ge(t, s) —

/(t, 9) everywhere tp < s < t), and Pg(s) — PQ(s) =
/(s, to)Ps(to) = 69)(s) in the term containing the fluctuation
force to second order. However, in the friction term, containing
i . C_(t), the replacemerfes(t) — & 2)(t) is not sensible, since the
= _Z[a@"‘ OF(t) — fo dsy(t — 9)[pL (28) expectation @ = Tr{Ps(s)4} and thus the friction force
@ operating onPs(t) reflect the single-trajectory mean field

2
Z G Qi () = Fg(t) + gﬁ) ds C_(t — 9l

2
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correlation between the quantum system and its classical 2.3.1. Energy Relaxatiofrrom QME (21) it readily follows
environment. Finally, invoking thehort bath correlation time that

approximation 9(s) = 2Lt, 95 9(t) and @ = Tr{ Ps(s)}

~ TG /4t 9PO} = Gels — O wheredsls — ) = S HgO= {05, A, (O] 05, A_(9).0
Ut 9) G dt h
Upon taking the classical statistical average over bath initial 0ot ~ A
conditions, with@F(®)3 = 0 and BF()0F(9)8 = Calt — 9), = Jo 4{C.()W, G(—)]
the resultant mean field quantum/classical generalized master C_(0)Ib, 4(—7)]. 0 (34)
equation (QCME), in its time-retarded (i) and convolutionless
forms (ii), is where? = plu = (i/h)[Hs, § andas(—7) = § cosvor — (Vlwo)

sinwoer. With

d. dg
—04(t) = [ dXg pedXo) 5 Pe[Xoi 1] i on
750 = S Xoped g Plo 00 A O10= 5 [ dr C.(7) cosog

= — 1[5, 550)] -

[N P .
=0, A_(1)] 0= 18, pl.[J, dr C_(r) cosw,T —
#fotds C,(t—9) [8 Zt 96 69 — h T hu + b/(]) 0

210 ot
2 A [ﬁ) dr C_(7) sinwgt
2 Jo ds C.(t — s) M1, Ps()]F () wha
Ly A 1.2 A dr C_(r)e 35
~ 415 50] ~ 316, (A0, 5001 - ﬂzhwof "C. 3%
h%mi_(t)qq, ﬁ’s(t)]@ (i) (32) the rate of energy relaxation at long timesst — o, is given
by58,59
Yvheref\c.(t) = /o dr Ca(7) 8s(—7) an.df\,(t) = Jo dr C-(7) d - 1 A 0 .
Gs(—7), [Md andA(t)Jare single-trajectory expectations, and  g; Hst= 2u C (o) + o C_(wo)
[l.[8 represents the average over bath initial conditions. Equation # N
32, although termed master equation here and in the following, Mwo) Eﬁ)ZD
is not a closed equation fdr(t), due to the appearance (t) = —_0{_ — E(wo, T)} ~
and expectations calculated therefrom. 2 ( )
The mean field quantum/classical master equation of eq 32 A
is our central result to be compared with the QME of eq 21. {DHSD_ E(wo' N} (36)
Obviously, the mean field Ehrenfest equations of motion imply _ .
the replacements whereE(wo, T) = hwof N(wo, T) ‘f: 1/2} and the relation€_(wq)
= —uhwo P(w0)/2, eq 13, andCi(wo) = —{2N(wo, T) + 1}
AL(t)— Ayd) C_(wo), eq 15, have been used. Note that in the derivation of

eq 36 a bath-induced frequency shift, appearing in eq 85 ([
&, [A_(0), 91,1 — [a, A1) Pu(t 33 p]-+ term), has been neglected first (line 1), and then a secular/
(G [A-(0, 55011 — [0 TA-OF P{OLE] (33) rotating wave approximatié&s®invoked (line 2).

Although the first replacemenC.(t) — Cu(t) = uksTy(t), From QCME (32), instead, we obtain

changes the type of asymptotic equilibrium from quantum to ¢
classical (see below for details), the second, by itself, must lead g H = h{ 09, Ag(®] 0+ T2, A0, [Ld}
to a loss of quantum detailed balance, since the combined effect
of both operators\.(t), A_(t) (or A(t), Af(t)) is necessary to 1 o [I]b[ﬁ@
obtain the correct transition rates, eqs 23 and 24, in the EZf—t dr Cy(z) e ™
incoherent hopping regime (Pauli QME, Golden Rule). In the
fully coherent (quasi-classial) wave packet regime only, as will
be demonstrated below, does the mean field QCME produce and at long timest — oo
sensible results.

In the following, we examine the implications of QCME (32) 4 . 1 A DIjﬁ[ﬁ@ .
for energy relaxation restricting ourselves to the damped — Hsl = 2u a@g) +———C_(wo)
harmonic oscillator, and show that an ensemble (with respect # ho

f dr C_(r)e "
(37)

to classical bath initial conditions!) of coherent states of the

harmonic oscillator evolving subject to the underlying stochastic - V(wo) {% — kBT}
Liouville eq 29 represents the only situation, where the mean 2

field QCME gives physically meaningful resuilts. y( wg)

Operator expectation®= Tr{5s(t)O} obtained from the {Ey(DHE — E(T} (38)
mean field QCME imply single trajectory (conditional) pure . .

state,[OL] and subsequent classical bath ensemble averaging,using Ce(wg) = uksTP(wo), eqs 10 and 12, an@_(wo) =

[.[8. Wherever necessary, the occurrence of a sequence of-uhwo 7(wo)/2, eq 13.

averages is made explicit, throug®= [Tr{Ps(t)O}3 = Comparison of egs 36 and 38 shows that, although the mean

OLIE, to avoid ambiguity. rate of energy relaxation is unchanged (being a property of the
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model Hamiltonian), the mean field QCME drives the quantum d . 1 nt

subsystem to a classical equilibrium state, where however thegr 0 = ~iwgaV) — Eﬂ) dsy(t — s{a(s) — aX(9)} +
nonequilibrium energy is measured “classically”, i.e., in terms i OF(t)

of single-trajectory expectations of position and momentum. The ———— (45)
only type of quantum state, for which this is physically 2uhwyg

meaningful, is a minimum uncertainty state (coherent state of
the harmonic oscillator) to which we turn below. In contrast, .
for quantum states delocalized in phase space, the mean energ{f&J€ctory.

is encoded in the detailed (nodal) structure of the wave packet Eduation 38 then reads
or density matrix, and not simply related to the quantum first

is conserved along a single mean field quantum/classical

moments of the phase space variables. hwog ATa= _tho EDa(t)Iz@ — E (46)
2.3.2. Coherent State:Blution. The stochastic quantum dt 2 Ao,
Liouville eq 29 withHs = hwo(a™a + 1/2) describes a forced
harmonic oscillator subject to linear damping and fluctuation, where
where Eﬁ)[ﬂ 5
H“wq
d N Ragla(t)® = e +t— Gl = Eq(t)
g = w

which is the classical limit of eqs 36 and 26. Thus, subject to
g[ﬁﬂ: —u @~ f‘ dsy(t — )P+ oF(t) (39) the mean field Ehrenfest equations of motion, an ensemble of
dt 0 minimum uncertainty Gaussian wave packets settles into a quasi-

classical equilibrium state of mean enefgyonc(wo, T) = kg T

or (provided anharmonicity does not play a role), but the discrete

d 1 energy levels only apparently lose their meaning (see section

S A= —iwB— 5 [ dsy(t — 9{ - AT} + 3.2.3).

dt 20 . However, in the case of a general quantum initial state (e.g.,
i OF(t) (40) an energy eigenstate of the HO), the situation is even worse,

/Zuhwo because the mean field correlation between subsystems implies
that the nonequilibrium energy is measured classically, as shown

in terms of boson-type second quantization operators. Conse-200Ve (section 2.3.1). As aresult, all quantum initial states other

quently, a coherent state (minimum uncertainty Gaussian wavethan minimum uncertainty states must settle into an unphysical
packet) asymptotic equilibrium state, depending on their apparent

classical initial energy. This will be demonstrated in numerical
1 2 o . simulations with a quantum harmonic oscillator initialized in
|lo(t) = exp{—§|a(t)| +o(t) & }|0D ala(t) = aft)|a(t) one of its energetically excited eigenstates.

When anharmonicity of the potential energy surface can no

(t)| = E(Dlexp[—1|a(t)|2 + o%(1) a} [ou(t)|a" = ou(t)|ac*(t) longer be neglected, it is expected that even a coherent state
2 (41) ensemble will asymptotically fail to obey quasi-classical equi-
librium statistics, because of the inevitable broadening of the
with the propertie® wave packet in position and momentum space during a single
guantum/classical trajectory.
alo(t)J o*(t Jdla(t)td a(t
;(18 = { - 2( ) + é+} |a(t)Dﬁ = {—%} la(t)O 3. Simulation Results
. 3.1. Model Parameterization and Simulations.In the
ora(0)| _ Ek(t)l{—@ + é} el _ ml(t)l{ @ (t)} simulations, an ohmic spectral density of bath oscill&tgts
da*(t) 2 da(t) (42)
2

will evolve without changing (the product of) its position and

a9 )
Jw) = > Z —o(w — ) = uywe "' 47)
momentum uncertaintiéd.Via the chain rule @

with exponential cutoff has been assumed, where the fluctuating

dlo(t)Ud ) (43) force correlation function is given by

do(t) dt

8|a(t)Dg

d
o “O0= docx(t) dt

a(t) +

_ 1 ® = —iwt = +iwt
using eqs 4642 together with egs 28 and 29, it is straightfor- cH = nﬂ) do Ad@){ (N(w, T) +1)& ™ + N, T) e}

ward (although a little tedious) to show that o)
2 o, Jw

A o 5 Cy(t) = kgT= [ dw — coswt (48)
%Ek(t)lPs(t)la(t)Eh (6 (t) | Pg(t) [ (t) CH- [au(t) [P(t) | cu(t) CH- ' nj(‘) a)
m’»(t)l{%lss(t)} )= 0 (44) and the correlation spectrurm (= 0) becomes

E(w) = 2k J(w) Nw, T) = 2uy hon(w, T)e '

if Ps(t) = |o(t)@a(t)|. Thus, the probabilityr{ ﬁ)s(t)|(l(t)A|:|EL(t)|} 1@)
= [d(t)|Ps(t)|o(t)Ofor staying in the coherent state,(t) = A _ A\w) —wlwg
|ou(t) D]ﬁt(t)T with Calw) = 2kgT— = =2uy kgTe (49)
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Figure 1. Decay of mean vibrational quantum number (occupation
number) for an ensemble of coherent and diabatic initial states of the b 650 . . . . . .
damped harmonic oscillator, respectively, toward mean field Ehrenfest e b) & diabatic initial state
guantum/classical equilibrium. For the theoretical analysis, see text. E diabatic: single trajectory
T easp T theory o g
For the system oscillator a harmonic frequencyweRr = 250 §
cm! has been chosen, and the bath spectral density adjusted S 600} e .
such thatp(wo)/2 = 0.1 pst (y = 1.0 ps’L, w/2w = 108.574 z
cm™?), and discretized using 2000 classical oscillators in the E ol & |
range 0-10w.. The choice of a rather low-frequency system 8 ' f
oscillator helps avoiding small integration steps, while classical 3
and quantum equilibrium statistics are still distinguishable. 5.50 |&
An ensemble of 400 quantum/classical nonequilibrium tra- : . . . L A L

jectories starting from a mean energy [éfd = 5 vibrational 0 5 10 15 20 25 30

guanta and a classical canonical distribution of bath initial time / ps

conditions atT = 300 K has been run for up to 30 ps, where Figure 2. Time evolution of the product of (ensemble averaged)
the initial wave function was chosen to be (i) a coherent state, position and momentum uncertainties (in unitdipfor a) an ensemble
with initial phaseo(0) = + /g, or (ii) an eigenstatén,= of coherent initial states, b) an ensemble of diabatic initial states. See
|500f Hs (diabatic state). The heat capacily = 2000kg of text, for the theoretical analysis.

the classical bath ensures that the rise (change) of bath

temperature is kept below 1 K. (A[g + 1/2) even during a single mean field quantum/classical

The classical canonical statistics of bath initial conditions was trajectory, as also shown in Figure 1. Since the quantum wave
obtained by Monte Carlo sampling for each bath oscillator from packet is monitored by the environment throughl ((pLy), the
an exponential distribution of energyeE) U e %, and then initial energy eigenstate behaves like a classically motionless
assigning a random vibrational phase at given energy. The mear(“cold”) state of the oscillator, whereas its true quantum energy
field Ehrenfest equations of motion, egs 2 and 5, were solved is not detected by the classical heat bath. Consequently, thermal
numerically via the symplectic scheme (3), using a combination relaxation of the oscillator corresponds to a heating process.
of Hs (Hson) eigenstate and position space (sinc-DVR) repre- As shown recently? for an initial superposition state intermedi-
sentations for the quantum split propagdfomvhereas the  ate between a purks eigenstate and a coherent state of the
classical mechanical part is identical to the leapfrog algorfhm. harmonic oscillator, only the classical p&i(0) = hwo| BLd|?

3.2. Results and Discussion3.2.1. Energy Relaxatiorin of the initial excess energy can be dissipated into the classical
Figure 1 is shown the relaxation of mean occupation number heat bath, while the remaining quantum part is “inert” with
A0 (mean energy) for different quantum initial conditions, respect to dissipation.
subject to the quantum/classical equations of motion. Obviously, Using the term ‘classical energy statistics’ above, we referred
the ensemble of coherent initial states exhibits energy dissipationto the first moment of the respective equilibrium energy
and settles into a state of lower energy, while the ensemble of distribution only (see section 3.2.3).
diabatic initial states does not, but relaxes toward a state of 3.2.2. Decoherencdnergy relaxation of the open quantum
higher energy. Comparison to the theoretical prediction basedsubsystem oscillator is accompanied by phase relaxation (dephas-
on egs 38 and 46 confirms that the energy relaxation time is ing), or decoherence in the energy representation, which in the
tver = 10 ps in both cases. Although the asymptotic equilibrium present case corresponds to the absence of pure depfasing;
for the coherent state ensemble corresponéatdii > Awonc- that is, the phase (position and momentum) relaxation time is
(wo, T) = kgT, i.e., ‘classical energy statistics’ (see below, ;= 21, WhererIlz y(wo)/2 is the rate of energy dissipation.
however), it ishwoM— hwolild + kgT for the ensemble of  As an additional global measure of dephasing, the decay of the
diabatic initial states. Both results are easily understood on theposition and momentum variances toward thermal equilibrium
basis of eq 38 in terms of an effectively classical dynamical may be used, which in turn must be related to energy relaxation.
correlation between subsystems, where the classical energyin Figure 2a,b is shown the time evolution of the product of
assigned to the quantum wave packefdgt) = hwo|[AL]2. For ensemble averaged vs single trajectory position and momentum
a coherent stat&(t) = hwola(t)|2 = Awoll] for a diabatic uncertaintiesAgAp in units ofi, whereAq = ([@R0— [GE)Y?
initial state, howeverEg(t) = hwolllland in particulartEq(0) = gq andAp = ([H°0— PB)? = oy, starting from the different
= 0. For the same reason, an oscillator starting in an energy quantum initial conditions, (a) a coherent state (constructed from
eigenstate does not fall below its initial quantum endigy eigenstates ofis), and (b) a diabatic state, respectively. Apart
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from the different offsets (origins at time zero), the temporal

Kab

0’ = E(wo, Nluwh, 05 = uE(wo, T) andCqp = 0.8 Therefore,

behavior is the same in both cases, where relaxation towardit is concluded that, subject to the mean field Ehrenfest equations
some equilibrium value is observed for the ensemble averagedof motion, gg(t) and gi(t) must relax toward the quasi-

quantities, to be analyzed below. The time-independence (on ag|assical equi”briumjs(t) — keTluw? + 02(0) andos(t) —

coarse-grained time scale) of the single trajectory uncertainty

product is immediately clear from the analysis in section 2.3.2.

uksT + 03(0) depending on their initial values, with the

damping ratey(we)/2, and henceogy(t)op(t) — ksT/wo +

On a sub-ps time scale, weak amplitude reversible oscilla‘rionsh(nO + 1/2) according to
are observed (not shown), due to the presence of the quadratic

Vsonv term in the model Hamiltonian. Note that the same

sequence of random numbers has been used in both cases to(t) o(t) = h{ -

initialize the classical bath oscillators such that the remaining
noise leaves the same “fingerprint” in parts a and b of Figure
2.

From the convolutionless quantum master equation (QME),
egs 20 and 21, we obtain the following equations for the first
and second moments of phase space varidbfésalid at long
times (0Kt < o)

S22
PO~ —uod - ?(6200) pOl (50)
%E@F[h @D
9 0~ 0308, B1, 0 0N T 1Ew, T)
T Pl ZEfZD‘ Qe @ ?(62%) 6,60 (5)

from which the evolution equations for the varian@%:ét) =
[@P0— meA andag(t) = [p?0— [P, and the covarianc€q (1)

= (1/2)716, pl+0— BIpUfollow.
From the mean field quantum/classical master equation
(QCME), eq 32, we obtain eq 50 for the first moments and

d o (06p.0
a0,
S B o, B, O P(oo{ TP — k)

(@)
2

2
AP i

< 110,p1,0- o, BT (52)
for the second moments, which is the quasi-classical limit of
(51) with the replacement@?0— [PLPEE and([g, p]+C— (4,
P+ Gg = 20GLIPLLE on the rhs of lines 2 and 3, respectively.
Thus, the equations of motion for the variances read

o2 = pCasl!)
£ 02(0) = ~2u0% Cy ) — P TLfI3 — L - pksT)

2
o)
P 2
— —uw
u Uwq

"9 mrpers - e
(53)

d

a Cq,p(t) = Oé(t) -

where on the rhsaf)(t) and Cy(t) appear as their quasi-
classical counterparts. At thermal equilibrium, the variances

2

ks T
h_a)o} GX% -

7(@o) t} N

ke T 1
h{h_wo + (no +§)} (54)
instead of
a4(t) (1) = h{ny — N(w,, T} exp{ B 77((200) t} n

R f(wy, T) +% (55)

subject to the QME, where (ay = 0 for the coherent initial
state and (b)np = [Ag = 5 for the diabatic initial state.
Comparing the analysis with the quantum/classical simulation
results, also shown in Figure 2a,b, gives excellent agreement,
given the finite ensemble size. Note that these findings are in
accord with the results on energy relaxation in the previous
subsection. Again, only for the ensemble of coherent initial states
is the gquasi-classical nature of the phase relaxation physically
meaningful, where eq 54 far, = 0 is the quasi-classical limit

of eq 55. For the ensemble of initial energy eigenstates (diabatic
states) withng > n(wo, T), the relaxation of the position-
momentum uncertainty product according to eq 55 should
correspond to a localization in position/momentum space. Under
the mean field equations of motion, however, the delocalized
nature of the wave function is not detected by the classical
environment. Even on the single-trajectory level, the uncertainty
product is not allowed to fall below its initial value, as observed
for the mean energy.

From the perspective of quantum-classical correspondence,
eq 53 is equivalent to the time evolution of second moments
as obtained from the Klein-Kramers Fokké?lanck equa-
tion 5258.59.63except for the presence of a minimal position-
momentum indeterminacy.

In summary, energy relaxation and decoherence subject to
mean field Ehrenfest quantum/classical dynamics suffer from
the unphysical survival of position/momentum-delocalized
superposition states, as a result of the essentially classical
dynamical correlation between the respective subsystems. The
method gives physically meaningful results only for wave
packets which remain in a state of maximum localization relative
to the form of system-environment interaction. Due to the
extremely localized nature of classical mechanics, there exists
no mechanism in mean field QCMD by which the environment
is able to monitor and destroy delocalized states of the quantum
subsystem.

3.2.3. Population Relaxatiorin Figure 3a,b, the nature of
population relaxation observed for the coherent initial state
ensemble (3a) is contrasted with that obtained for the ensemble
of diabatic initial states (3b). Although in the former case
relaxation toward a canonical equilibrium distribution is ob-
served (see below), a (biased) diffusion-type relaxation in energy
space toward an obviously noncanonical equilibrium is obtained

obtained from the QME (20 and 21) must assume the valuesin the latter, indicating a breakdown of quantum detailed
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[
e
N
o

statistical mechanics, the mean squared energy fluctuation
] following from eq 56, fwe)?Nci(Ne + 1) = kgT(keT + Awg) >

] (kgT)?, is even larger than predicted by classical equilibrium
statistics at finite temperature. The latter is an unavoidable
consequence of the quantum mechanical description of the
respective subsystem in mean field Ehrenfest quantum/classical
dynamics, as has been confirmed by monitoring the ensemble
averaged mean squared quantum number fluctuatdd?Ll=
[ — [BLE for the coherent initial state case (not shown here,
but see below).

3.2.4. Approach to Thermal Equilibriunkinally, we dem-
onstrate that for an ensemble of coherent initial states, subject
to mean field Ehrenfest QCMD, the equilibrium quantum energy
level populations of the damped harmonic oscillator have indeed
the form given by eq 56, using the nonequilibrium (information)
entropy*90

0.20 |-

diabatic level population p (t)

S(t) = —Tr{ag) N 55} = = Py(t) I Py(t) = In Neg(H)
" (57)

as a global measure for the shape of the evolving distribution
{pn(t)}. For the sake of an intuitive physical picture, the identity
St) = In Nex(t) is employed, defining a reference distribution
where New(t) states are equally populated. As soon as the
distribution{ ps(t)} acquires the form of eq 56 with — [}

the nonequilibrium entropy may be expressed as

diabatic level population p (t) T"

0 5 10 15 20 25 30

time / ps Ssanonicdt) = (BLI+ 1) In B+ 1) — HRINGL (58)
Figure 3. Decay of diabatic energy level populatioms=€ 5, 5+ 1,
5+ 2) for (a) an ensemble of coherent initial states and (b) an ensemble

e NG and the distribution as a whole characterized by a nonequilibrium
of diabatic initial states.

temperature. Figure 5a shows that, within a time scale on the

-. T T order of the energy relaxation time, the ensemble of coherent
LZZZ coherent initial state initial states indeed relaxes toward a nonequilibrium quasi-
K diabatio nital state canonical distributiod® where[{dN)2[j= ML{[AL+ 1), whereas
the ensemble of diabatic initial states, Figure 5b, obviously does
not. It is, however, interesting to note that in the latter case
|imt~oo{ Ncanonica(t) - Neff(t)} =5= [mlo

To summarize, if conditions are such that mean field
1 Ehrenfest QCMD gives physically meaningful results, the
asymptotic thermal equilibrium between the quantum subsystem
. and the classical heat bath is of a quasi-classical nature, where
the first moment of energy is in accord with classical equilibrium
: statistics but the energy fluctuations are larger than predicted
20 25 by classical statistical mechanics.
vibrational quantum number n

057 T T

n

e o
[ e

diabatic level population p
o
N

0.1

Figure 4. Diabatic energy level populations close to mean field 4. Conclusion

quantum/classical equilibriunt & 30 ps). In the present work, we have presented a detailed comparison
of mean field Ehrenfest quantum/classical molecular dynamics
(QCMD) and its underlying assumptions to the corresponding
Redfield second order quantum master equation (QME), using
the Brownian motion Hamiltonian as a model applied to

balance. This is also illustrated in Figure 4, comparing the level
populations at long times (30 ps). As shown recefitliy the

coherent initial state case, population relaxation is in accord
with a Pauli QME treatment (or the secular approximation), eqs vibrational energy relaxation of a harmonic oscillator. We were

e o ety A o e21e 0 B the e fkd quentumicissial quations o
PP 9 p motion into an ensemble averaged form with respect to the

. ) : - _ 1
Feijii, '? rgﬁlace(:lrtgr/“llts ClljaS:t'S;l :Lm]r&n(wc;? L iIib(r'?LTrﬁO()ji iribu- classical bath initial conditions, where the resultant evolution
gtoanapp y qua € equ s equation for the quantum subsystem reduced density operator

tion® and the assumptions made in mean field QCMD can be
A\ kT |0 Ao discussed in terms of deviations from the QME. In particular,

P, = (_ n ) _ - ( ) 0 (56) the real and symmetric part of the quantum bath force correlation
TNt N+l (KT + Awgf kT + Ay function is replaced by its classical limit, whereas the antisym-

metric part is retained, its effect, however, taken into account
Note that, although the mean thermal energy in excess of theonly via the (single-trajectory) time-dependent expectation of
zero-point levelhwong(wo, T) = kgT, is in accord with classical ~ the respective operator appearing in the dissipative part of the
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a § 20.0 [ T T T T T T this QCMD method remains to be evaluated. This seems to be
R 2 ¢ enwopy from populations | ] relevant also for the interpretation of simulation results reported
r . ical entropy . . .

3 for the case of a damped anharmonic oscillator in a molecular
g 150/, . solvent3233 As stated above, our general expectations are that
EXTT ".. i anharmonicity will tend to further weaken the applicability of
g ., mean field QCMD.
5 1008 " ) In summary, mean field Ehrenfest quantum/classical dynamics
é gives essentially a classical dynamical correlation between the
3 guantum subsystem and its classical environriamt suffers
2 from the absence of a physical mechanism for environment-
8 induced decoherence, a quantum bath effect of fundamental
% ool A . . . . . importance for open quantum systef&> Mean field QCMD

0 5 10 15 20 25 30 therefore seems to be inapplicable to most of the realistic

time / ps situations encountered in condensed phase dynamics. We want

_ to argue, that this failure is not (so much) a matter of the strength

b $ 200 T T T T T T of system-environment interaction, but is related to an improper
2 175k A treatment of the relevant subsystem in terms of pure state
3 Schrainger/Liouville-type time evolution, coupled to classical
g 150 environmental dynamics. As noted by other grofifs/° a
g 12,5 proper treatment oflecoherencén the open quantum system
8 is of crucial importance for achieving maximum correlation
« 10.0 ; .
4 between quantum and classical subsystems. However, this
2 715 necessitates inclusion of (approximate) quantum environmental
§ 5.0 effects. The nature of decoherent states (or pointer &%ates
2 selected by the process of decoherence, will in general depend
g 251° b) © entropy from populations 4 on the form of system-bath interaction, i.e., on the system
ad:’ b ® canonical entropy . - . " .
£ ool . 1 1 1 N observable which is “monitored” by the environment. In the

0 5 10 15 20 25 30 present context of vibrational energy transfer, position is the
time / ps relevant subsystem observable. Therefore, states of optimum
Figure 5. Time evolution of the nonequilibrium entrop§(t) = In localization in position (and momentum) space are expected to

N (in terms of an effective number of occupied energy levels) as play the role of pointer states.

calculated from the dlabat_lc energy level popul_atlons and as obtamed Itis our hope that the present investigation may prove useful
from the mean occupation number (assuming a quasi-canonical

distribution) for (a) an ensemble of coherent initial states and (b) an @S @ starting point for finding the (minimal) “missing link” for
ensemble of diabatic initial states. improving mean field Ehrenfest QCMD, while trying to avoid

the ad hoc application of a vibrational surface hopping

quantum master equation. The result is a loss of quantum proceduré’ The basic idea is, to replace the classical phase
detailed balance. space point of mean field QCMD by a (minimum uncertainty)

Subsequent analytical investigation of the mean field quantum/ Gaussian wave packet (GWP). We have recently suggested the
classical master equation (QCME) allows for a rationalization Use of a time-dependent Gauss-Hermite (TDGH) basi¥sét,
of simulation results partly obtained earlier, but for a noninte- the ground state of which is a GWP, for going beyond the mean
grable system-bath HamiltonidhIn particular, energy relax- field classical path of the environmental degrees of freedom
ation and decoherence, population relaxation and the nature of(DOF), by treating these DoF semiclassically and adding
asymptotic thermal equi”brium are ana|yzed_ For the |inear|y Gaussian (|n|t|a|) fluctuations around the classical path in terms
damped harmonic oscillator, an ensemble of minimum uncer- of boson-type second quantization operators defined in the
tainty Gaussians (coherent states), due to optimum localizationtrajectory-driven TDGH basi&:"® The use of a projection
with respect to the system-bath coupling, is the only type of operator technique then allows for a perturbative evaluation of
quantum initial states, which gives physically meaningful results, the correlation effect due to quantum fluctuations. Work along
namely energy/population relaxation and dephasing toward these lines is in progress. Results obtained for the damped
quasi-c|assica| thermal equ”ibrium’ whereas a breakdown of harmonic oscillator (HO) indeed reveal, that HO coherent states
quantum detailed balance as well as unphysical decoherence igre dynamically stable, whereas energy eigenstates decohere into
observed in general, e.g., for an initial energy eigenstate. & statistical mixture of HO coherent states.
However, even for an ensemble of coherent initial states the
nature of thermal equilibrium with mean eneryyonc(wo, T) Acknowledgment. It is my true desire to express my deep
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