# Ab Initio Study of the Torsional Spectrum of Glycolaldehyde

## M. L. Senent\*

Departamento de Astrofísica Molecular e Infrarroja, Instituto de Estructura de la Materia, C.S.I.C., Serrano 113b, Madrid 28006, Spain

Received: March 11, 2004; In Final Form: June 3, 2004

The torsional spectrum of glycolaldehyde (COH–CH<sub>2</sub>OH) is predicted from MP4(SDTQ)/cc-pVQZ ab initio calculations. This monosaccharide of astrophysical interest shows two large amplitude vibrations that confer nonrigid properties: the central bond torsion and the OH torsion. It presents five stable conformers, three of  $C_s$  symmetry (I-cis, II-trans, and IV-cis) and a double minimum of  $C_1$  symmetry (III-trans and III'-trans). The favorite geometry, I-cis, stabilizes by the formation of a hydrogen bond connecting the eclipsed oxygen atoms. The relative energies of the secondary minima are 1278.2 (II-trans), 1297.2 (III and III'-trans) and 1865.2 cm<sup>-1</sup> (IV-cis). A barrier of 1895 cm<sup>-1</sup> hinders the cis  $\rightarrow$  trans interconversion. The barriers for the OH torsion are 2040 (cis) and 191 and 713 cm<sup>-1</sup> (trans). The torsional energy levels have been calculated variationally up to J = 6 using a flexible model in two dimensions. Far-infrared frequencies and intensities have been determined at room temperature. In addition, the rotational parameters of the I-cis conformer have been computed to be A = 18583.85 MHz, B = 6563.83 MHz, C = 5009.34 MHz,  $D_J = -20.18$  kHz,  $D_{JK} = -82.36$  kHz, and  $D_K = 138.38$  kHz at the zero vibrational level. The parameters corresponding to the trans form are A = 38019.19 MHz, B = 4406.79 MHz, C = 4076.73 MHz, and  $D_J = -109.28$  kHz.

### Introduction

Glycolaldehyde is the first monosaccharide detected in the interstellar medium (ISM).<sup>1</sup> It represents a well-known molecule atmospherically relevant<sup>2</sup> and a potential intermediary in the prebiotic syntheses of sugars.

The impact of the detection has been significant although its abundance in the ISM is very low. It accomplishes the set of  $C_2O_4H_2$  isomers discovered, which has increased the interest in the study of isomerism in interstellar chemistry.<sup>1</sup> Characteristic millimeter-wave rotational transitions have been observed in emission toward Sagittarius B2 (N) (SgrB2(N)) with the National Radio Astronomy Observatory (NRAO) 12-m.<sup>1</sup> Later investigations have confirmed its insignificant abundance in other sources.<sup>3</sup> Recently, Hollis et al.<sup>4</sup> have spatially mapped the galactic center SgrB2(N) for evaluating the abundance ratio of the detected isomers (glycolaldehyde/acetic acid/methyl formate = 0.5:1:26).

Ab initio calculations can help the search for solutions of many astrophysical problems. Organic species such as glycolaldehyde bring up new questions to the astronomers related to the chemical evolution of the ISM and the interpretation of the observed spectra. Their mechanisms of formation in the ISM at low temperatures are the subject of recent investigations that suggest models in gas and in solid phase.<sup>5–7</sup> The radiative association reactions in gas phase proposed by Huntress and Mitchell for methyl formate<sup>5</sup> seem not to be able to be extended to all the observed large molecules. Because they become visible on surfaces, it is generally accepted that the surface of the interstellar dust grains plays an important role.<sup>7</sup> It may be assumed that molecular groups forming these species were synthesized on the grains and afterward the molecules were deposited in the gas phase.

Even though many mechanisms of glycolaldehyde formation occur in gas phase at low pressures and temperatures, few experimental<sup>8–12</sup> and theoretical<sup>13–15</sup> data are available for the isolated species. Databases for astrophysical molecules<sup>12</sup> simply collect the rotational parameters and the dipole moments of refs 8, 9, and 11 for the cis conformer. For this reason, the main goal of this paper is to obtain as much information as possible related to structural and spectroscopic properties that can be derived from ab initio calculations. Previous and extensive experience in ab initio studies of nonrigid molecules can help in elucidating the results without the use of experimental data for evaluating calculations.<sup>16–25</sup>

It may be expected that from the astrophysical point of view the large amplitude vibrations of glycolaldehyde will be the most interesting internal motions because they produce the nonrigidity and involve low energy levels that can be populated at very low temperatures. The low-frequency modes are the torsion of the central bond and the torsion of the hydroxyl alcoholic group. The first motion transforms the cis conformer, the one that has been detected, into an undetected trans minimum related to a secondary minimum conformation. Theoretically, it has been demonstrated that the cis form is the most stable geometry due to the formation of an intramolecular hydrogen bond.<sup>15</sup> However, to my knowledge, there are not available data for the trans form that is supposed to be less abundant. Marstokk and Møllendal,<sup>8-9</sup> who have measure the microwave spectrum of a mixture at room temperature, have assigned more than 90% of the lines to the cis conformer and have evaluated the dipole moment.

There are not astrophysical traces of *trans*-glycolaldehyde. Perhaps, it does not exist in the interstellar medium, or perhaps, its abundance with respect to the cis form is very low. It has to be taken into consideration that *cis*-glycolaldehyde is already a molecule of very low abundance. Then, the object of this paper is to use the ab initio calculations for determining the relative stabilities and the sizes of the torsional barriers that hinder the internal rotation. If these barriers are high enough and the

<sup>\*</sup> E-mail address: imts420@iem.cfmac.csic.es.

formation mechanisms in the grains can produce both conformers, both geometries can coexist at low temperatures. It is well-known that conformers of ethanol, a nonrigid molecule of similar properties, coexist in glass phases.<sup>26</sup>

Few experimental spectroscopic properties corresponding to *cis*-glycolaldehyde are published. To my knowledge, the farinfrared region has not been explored. Previous works are from Niki et al.,<sup>10</sup> who have detected the molecule among the products in photolysis of  $C_2H_4$  + NO in air using the long-path Fourier transform infrared spectroscopy (FTIR) method, and from Butler et al.,<sup>11</sup> who have measured recently the millimeter- and submillimeter-wave spectrum. They provide the rotational parameters of the cis form ground state. Niki et al.<sup>10</sup> have assigned nine vibrational bands of the absorption spectrum recorded between 600 and 2000 cm<sup>-1</sup> and 2500 and 3700 cm<sup>-1</sup>.

Without experimental measurements for evaluating the current results, this paper represents a prediction of properties unable to be compared with experimental data. For example, the farinfrared spectrum, which provides the most important information about torsional transitions, is not available. The plausibility of the results is based on a large amount of previous works where the model has been tested. Former investigations of molecules with internal rotation have demonstrated that the torsional barriers and fundamental frequencies for large amplitude motions can be calculated accurately using Möller-Plesset theory and extended basis sets, if the geometry is allowed to be relaxed. For example, the single-rotor torsional barriers of acetone,<sup>16</sup> dimethyl ether,<sup>17</sup> hydrogen peroxide,<sup>21</sup> ethanol,<sup>22</sup> and acetic acid<sup>23</sup> have been determined to be 267.1, 950.6, 406.1, 1296.3, and 169.8 cm<sup>-1</sup>, close to the experimental values of 266.1, 942.6, 387.1, 1251, and 168.2 cm<sup>-1</sup> [see refs 16, 17, and 21-23]. In the cases of molecules with two strongly interacting rotors, these parameters are effective barriers defined in one-dimension after one of the rotating groups is frozen at its minimum energy position.

#### Methods, Discussion, and Conclusions

**Computational Details.** The potential energy surface of glycolaldehyde has been determined with MP4(SDTQ)/cc-pVQZ ab initio calculations. The geometries of all the conformations have been optimized at the MP2/cc-pVQZ level. All the calculations have been performed with Gaussian 98.<sup>27</sup>

The harmonic frequencies corresponding to the conformers have been computed at the MP2/cc-pVTZ level using the method implemented in Gaussian 98.<sup>27</sup> The torsional levels have been calculated variationally with a flexible two-dimensional model depending on the two torsional angles. The kinetic energy parameters of the Hamiltonian have been computed with the code MATRIZG.f<sup>28</sup> from the optimized geometries. The program BIDIM.f, designed for the study of the ethanol far-IR spectrum,<sup>22</sup> and the subroutines constructed for the study of the overall rotation of acetic acid<sup>23</sup> have been employed for the determination of torsional energy levels and rotational parameters. Integral elements for the top symmetric functions are defined in ref 29.

The Molecular Structure of Glycolaldehyde. Glycolaldehyde exhibits two large amplitude vibrations responsible for the nonrigidity of the molecule: the central C–C bond torsion and the alcoholic hydroxyl torsion. The corresponding independent variables  $\theta_1$  and  $\theta_2$  can be identified with the O4C2C1O3 and H6O3C1C2 dihedral angles (see Figure 1). The OH torsion can be interpreted as the internal rotation of a top (OH) with respect to a fixed frame (COH–CH<sub>2</sub>). In contrast, the C–C torsion represents the internal rotation of two quasi-equivalent tops, COH and CH<sub>2</sub>OH, with respect to each other.



**Figure 1.** The definition of the  $\theta_1$  and  $\theta_2$  torsional coordinates and the axis system.



**Figure 2.** The four conformers of glycolaldehyde. The energies correspond to the one-dimensional barriers that hinder the conformer intertransformation.

If the structure is fully optimized at the MP2/cc-pVQZ level from different starting points, four conformers, I (0,0), II (180,180), III ((197.9,75.8), or (162.1,-75.8)), and IV (0,180), are found (see Figure 2). They are ordered following an increasing energy criterion. Three of them are planar with  $C_s$ symmetry, whereas the other one is a double minimum. In this case, the molecular plane is lost for minimizing the nonbonding steric repulsions between hydrogens H5 and H6 (see Figure 1). Hence, the potential energy surface shows a total number of five holes, two cis minima (I and IV) and three trans minima (II, III and III'). The most stable cis geometry (cis-I) is stabilized by the formation of a 2.0661 Å hydrogen bond between the hydroxyl hydrogen and the carbonyl oxygen. It breaks down during the torsions to produce the secondary minima of which the relative energies are higher than  $1200 \text{ cm}^{-1}$ . Table 1 shows the MP4(SDTQ)/cc-pVQZ relative energies. Conformers II and III lie at 1278.2 and 1297.2 cm<sup>-1</sup> over the I-cis conformer, whereas the relative energy of the cis-IV is  $1865.2 \text{ cm}^{-1}$ . The planar geometry ( $\theta_1, \theta_2$ ) = (180,180) represents a maximum.

The OH torsion interconverts trans forms (II and III) of similar stabilities (see Figure 3b). Their low energy difference ( $\Delta E$ -(MP4(SDTQ)/cc-pVQZ) = 19 cm<sup>-1</sup>) impedes definitive assertion of which one of the two geometries is the most stable. With cc-pVQZ, the most stable form is II, but if calculations are performed with cc-pVTZ, III appears slightly more stable ( $\Delta E = -3.1 \text{ cm}^{-1}$ ). With the zero point correction and the triple- $\zeta$  basis set, the II form presents an energy 59.3 cm<sup>-1</sup> lower than the one of III, as occurs with QZ. However, it can be asserted that *trans*-glycolaldehyde behaves from the spectroscopic point of view as a methyl group showing internal rotation and a distorted  $C_{3v}$  symmetry.<sup>24</sup> The three minima are separated ~120° by relatively low barriers.

Table 1 shows some characteristic structural and spectroscopic properties. It may be remarked that the cis and trans rotational

TABLE 1: Potential and Kinetic Parameters of Glycolaldehyde Conformers<sup>a</sup>

| conformers                      | Ι                              | II                             |                              | III                          | IV                             |  |  |  |
|---------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|--|--|--|
| symmetry                        | $C_s$                          | $C_s$                          |                              | $C_1$                        | $C_s$                          |  |  |  |
| $E_{\rm R}$ (cm <sup>-1</sup> ) | 0.0 <sup>b</sup>               | 1278.2                         |                              | 1297.2                       | 1865.2                         |  |  |  |
| $\theta_1$ (deg)                | 0.0                            | 180.0                          |                              | 197.9                        | 0.0                            |  |  |  |
| $\theta_2$ (deg)                | 0.0                            | 180.0                          |                              | 75.8                         | 180.0                          |  |  |  |
| μ (D)                           | 2.9153                         | 3.3500                         |                              | 2.1146                       | 4.7434                         |  |  |  |
| Kinetic Energy Parameters       |                                |                                |                              |                              |                                |  |  |  |
| A (MHz)                         | 18 464.6884                    | 38 896.                        | 1385                         | 36 917.3315                  | 19 534.1783                    |  |  |  |
| B (MHz)                         | 6635.2532                      | 4415.76                        | 61                           | 4335.0896                    | 6131.5172                      |  |  |  |
| C (MHz)                         | 5032.5810                      | 4066.21                        | 87                           | 4082.1320                    | 4805.3460                      |  |  |  |
| κ                               | -0.761 37                      | -0.979                         | 93                           | -0.98376                     | -0.819 92                      |  |  |  |
| $B_{11} ({\rm cm}^{-1})$        | 4.1345                         | 2.8610                         |                              | 2.78416                      | 4.3551                         |  |  |  |
| $B_{22}({\rm cm}^{-1})$         | 22.4992                        | 22.3874                        |                              | 22.5553                      | 22.1783                        |  |  |  |
| $B_{12} ({\rm cm}^{-1})$        | -2.6460                        | 1.0752                         |                              | -0.1873                      | -0.7903                        |  |  |  |
|                                 |                                | Potential Energy               | Barriers (cm <sup>-1</sup> ) |                              |                                |  |  |  |
| V(I↔IV)                         | V(II↔III)                      | V(III↔III)                     | V(I↔III)                     | V(III↔III)                   | V(II↔IV)                       |  |  |  |
| cis ↔ cis                       | trans ↔ trans                  | trans ↔ trans                  | cis ↔ trans                  | trans ↔ trans                | cis ↔ trans                    |  |  |  |
| $(\theta_1 \propto 0^\circ)$    | $(\theta_1 \propto 180^\circ)$ | $(\theta_1 \propto 180^\circ)$ | $(\theta_2 \propto 0^\circ)$ | $(\theta_2 \propto 0^\circ)$ | $(\theta_2 \propto 180^\circ)$ |  |  |  |
| 2040                            | 191                            | 713                            | 1895                         | 32                           | 1581                           |  |  |  |
| $\theta_2 = 1351$               | $\theta_2 = 1251$              | $\theta_2 = 01$                | $\theta_1 = 791$             | $\theta_1 = 1801$            | $\theta_1 = 641$               |  |  |  |
| (Figure 3a)                     | (Figure 3b)                    | (Figure 3b)                    | (Figure 3c)                  | (Figure 3c)                  | (Figure 3d)                    |  |  |  |

<sup>a</sup> Calculated with MP4(SDTQ)/cc-pVQZ//MP2/cc-pVQZ. <sup>b</sup>  $E_a = -228.786977$  au.



**Figure 3.** The one-dimensional PES of glycolaldehyde: (a)  $V^{\text{CIS}}(\theta_2)$  ( $\theta_1 \approx 0^\circ$ ); (b)  $V^{\text{TRANS}}(\theta_2)$  ( $\theta_1 \approx 180^\circ$ ); (c)  $V(\theta_1)$  ( $\theta_2 \approx 0^\circ$ ); (d)  $V(\theta_1)$  ( $\theta_2 \approx 180^\circ$ ).

constants are quite different, whereas the OH torsion is basically responsible for the dipole moment variation. The dipole moment is one the few properties of glycolaldehyde available in the literature.<sup>8–9</sup> For the absolute cis minimum, the MP2/cc-pVQZ calculations lead to a dipole moment value of 2.9153 D ( $\mu_a =$ 0.2682 and  $\mu_b = 2.9029$  D), which is higher than the experimental one ( $\mu = 2.33$ ,  $\mu_a = 0.26$ , and  $\mu_b = 2.33$  D) of Marstokk and Møllendal.<sup>9</sup> There is a reasonable agreement between experiments and calculations. Small differences can arise from the failure of the MP2 approximation to describe the electronic distribution between the aldehydic and alcoholic groups. The trans form shows a relatively low dipole moment (2.1146 D).

The two cis conformers are asymmetric tops with rotational constants equal to 18 464.6884, 6635.2532, and 5032.5810 MHz (I-cis) and 19 534.1783, 6131.5172, and 4805.3460 MHz (IV-

cis). In principle, these values can be compared with those measured for the cis-I conformer in the zero vibrational energy level (18 446.260 97, 6525.996 543, and 4969.234 992 MHz).<sup>11</sup>

The trans conformers are near-symmetric prolates ( $\kappa$ (II) =  $-0.979\,93$ ;  $\kappa$ (III) =  $-0.983\,76$ ). The corresponding MP2/ccpVQZ rotational constants are 38 896.1385, 4415.7661, and 4066.2187 MHz for the II-conformer and 36 917.3315, 4335.0896, and 4068.3973 MHz for the III-conformer. Because *trans*glycolaldehyde has not been detected in the ISM and the corresponding rotational spectrum has not been recorded, the calculated values cannot be compared with experiments. At room temperature, experimental mixtures appear to contain only the cis forms.<sup>8–9</sup> Future experiments are indispensable for starting the refinement of the calculations.

One question that ab initio calculations can answer is whether the thermodynamical properties allow the coexistence of various conformers in the interstellar medium. At very low temperatures, only the cis levels appear to be populated (the Bolzmann populations of the cis and trans ground states are 0.5311 and 0.0025 at 273.15 K and 1.0 and 0.0 at 10.15 K). From the astrophysical point of view, it is also of interest to discuss the coexistence of the cis and trans conformers on the basis of the internal rotation barriers. It could be possible if the formation processes follow different channels and the rotational barriers are high enough for hindering the trans/cis transformation. In this case, the two conformers can behave as different molecules.

The internal barriers of Table 1 have been calculated from the curves of Figure 3 produced from the fitting of the energies of a set of selected conformations related to different values of one coordinate ( $\theta_1$  or  $\theta_2$ ). Energies have been evaluated in one dimension optimizing the remaining 3N - 7. For this reason, they do not correspond to those employed for the calculation of the two-dimensional potential energy surface where 3N - 8coordinates are optimized. Figure 3a represents the cis conformer energy variation with OH. In this case,  $\theta_1$  has been allowed to relax. Curve 3b corresponds to the variation of OH in the trans conformer. Curves 3c and 3d are functions of the energy with the central bond torsion. In these cases,  $\theta_2$  has been optimized around the equilibrium values corresponding to the conformers I and IV. The cis/trans transformation (I/III) is hindered by barrier of 1895 cm<sup>-1</sup>, whereas the trans/cis transformation (III/ I) is hindered by barrier of 598  $\text{cm}^{-1}$ . The cis form OH torsion (I-cis/IV-cis) requires it to save an internal rotation barrier of  $2040 \text{ cm}^{-1}$ , whereas for the trans form the barriers are relatively low (V(II-trans/III-trans) = 191 cm<sup>-1</sup> and V(III-trans/III'-trans)  $= 713 \text{ cm}^{-1}$ .

The Torsional Energy Levels (J = 0). The torsional energy levels are calculated variationally using a flexible model in two dimensions. The two torsional angles are considered independent variables, whereas the remaining 3N - 8 coordinates are allowed to relax. Therefore, the vibrational effects of the medium and small amplitude modes on the large amplitude modes are partially described. The zero point vibrational correction is added for improving the results.

This flexible model has been tested for many systems using Möller–Plesset theory for the electronic structure.<sup>16–24</sup> Usually, differences between experimental and calculated frequencies are lower than 5 cm<sup>-1</sup>. It is well-known that it works well if the interactions are small enough but large interactions can introduce numerical errors. The harmonic analysis in 3N - 6 dimensions allows a first evaluation of the nature of the vibrational modes that may interact strongly. Table 2 shows the harmonic frequencies of the four conformers calculated with MP2/cc-pVTZ and assigned by isotopic substitution. Considering symmetry and energy criteria, it may be expected that the aldehydic hydrogen wagging will be the single mode that can interact significantly with the torsions. It may be well described by the flexible model.<sup>30</sup>

In the case of cis-I, the frequencies for deuterated glycolaldehyde (COH-CO<sub>2</sub>D) and the experimental values of ref 10 are also shown in Table 2. With the new information upcoming from the ab initio calculations, four of the nine bands observed in the absorbance spectrum have been reassigned.

The vibrational Hamiltonian for J = 0 can be identified with the pure torsional operator:

$$\hat{H} = \hat{H}_{\rm T} = \hat{H}_{\theta_1} + \hat{H}_{\theta_2} + \hat{H}_{\theta_1,\theta_2}$$

where  $H_{\theta_1}$  and  $H_{\theta_2}$  are one-dimensional operators for the central bond and the hydroxyl torsional motions, respectively.  $H_{\theta_1,\theta_2}$ 

TABLE 2: Harmonic Frequencies of the Glycolaldehyde Conformers (in  $cm^{-1}$ ) calculated with MP2/cc-pVTZ

| assignment              | I (OH)   | expt <sup>a</sup> (I) | I (OD)   | Π        | III      | IV       |
|-------------------------|----------|-----------------------|----------|----------|----------|----------|
|                         | A′       |                       | A′       | A'       |          | A'       |
| C-C-O bend              | 293.9    |                       | 282.2    | 324.1    | 333.9    | 262.5    |
| O=C-C bend              | 769.9    | 751.6                 | 737.7    | 548.3    | 529.0    | 729.7    |
| C-C stretch             | 889.8    | 860.4                 | 885.4    | 1027.1   | 1056.3   | 882.9    |
| C-O stretch             | 1150.2   | 1114.6                | 1174.6   | 1113.3   | 1108.7   | 1159.9   |
| H-O-C bend              | 1313.9   | 1275.3                | 1033.3   | 1234.6   | 1220.1   | 1230.7   |
| O-C-H bend              | 1405.5   |                       | 1408.2   | 1389.0   | 1350.0   | 1425.3   |
| H <sub>2</sub> C twist  | 1457.3   |                       | 1396.8   | 1447.0   | 1411.8   | 1457.4   |
| H-C-H bend              | 1501.6   |                       | 1500.6   | 1506.0   | 1486.0   | 1503.1   |
| C=O stretch             | 1768.6   | 1754.2                | 1768.1   | 1785.7   | 1778.1   | 1798.8   |
| C-H stretch             | 3005.2   | 2708.2                | 3005.6   | 2985.7   | 2963.3   | 2938.8   |
| CH <sub>2</sub> stretch | 3044.5   | 2832                  | 3045.0   | 3055.3   | 3081.7   | 3018.2   |
| O-H stretch             | 3735.5   | 3548.8                | 2717.3   | 3882.3   | 3864.9   | 3875.0   |
|                         | Α″       |                       | A′       | Α″       |          | Α″       |
| C-C tor                 | 213.4    |                       | 206.8    | 59.8     | 78.6     | 179.6    |
| O-H tor                 | 425.7    |                       | 323.5    | 222.0    | 309.9    | 252.1    |
| H wag                   | 738.2    |                       | 738.0    | 747.2    | 734.3    | 741.9    |
| CH <sub>2</sub> twist   | 1117.7   |                       | 1116.0   | 1117.6   | 1086.0   | 1116.3   |
| $H_2C-C$ bend           | 1266.4   |                       | 1263.8   | 1258.4   | 1400.2   | 1273.5   |
| CH <sub>2</sub> stretch | 3081.1   | 2881.1                | 3081.0   | 3107.2   | 3142.2   | 3058.6   |
| $ZPVE^{b}$              | 13 589.2 |                       | 13 589.2 | 13 405.3 | 13 467.4 | 13 452.3 |

<sup>*a*</sup> From ref 10; some experimental values (in bold) have been reassigned. <sup>*b*</sup> ZPV (au) = -228.595772 (I), -228.590514 (II), -228.590244 (III), and -228.587707 (IV).

represents the torsion-torsion interaction term.  $H_{\rm T}$  can be written as<sup>22</sup>

$$\begin{split} \hat{H}_{\mathrm{T}} &= -\left(\frac{\partial}{\partial\theta_{1}}\right) B_{11} \left(\frac{\partial}{\partial\theta_{1}}\right) - \left(\frac{\partial}{\partial\theta_{1}}\right) B_{12} \left(\frac{\partial}{\partial\theta_{2}}\right) - \left(\frac{\partial}{\partial\theta_{2}}\right) B_{12} \left(\frac{\partial}{\partial\theta_{1}}\right) - \\ & \left(\frac{\partial}{\partial\theta_{2}}\right) B_{22} \left(\frac{\partial}{\partial\theta_{2}}\right) + V(\theta_{1},\theta_{2}) + V'(\theta_{1},\theta_{2}) + V^{\mathrm{ZPVE}}(\theta_{1},\theta_{2}) \end{split}$$

*V* represents the potential energy surface, *V'* is the pseudopotential, and *V*<sup>ZPVE</sup> is the zero point vibrational correction; *B*<sub>11</sub>, *B*<sub>22</sub>, and *B*<sub>12</sub> are the central bond torsion, hydroxyl torsion, and torsion-torsion interactions kinetic energy parameters. They are related to the vibrational elements *g*<sub>44</sub> and *g*<sub>55</sub> and *g*<sub>45</sub> of the **G** matrix (*B*<sub>11</sub> = ( $\hbar^2/2$ )*g*<sub>44</sub>, *B*<sub>22</sub> = ( $\hbar^2/2$ )*g*<sub>55</sub>, and *B*<sub>12</sub> = ( $\hbar^2/2$ )*g*<sub>45</sub>; 1 = CC torsion and 2 = OH torsion). The pseudopotential *V'* can be calculated with the code described in ref 28 from the geometries, but as was observed for acetic acid,<sup>23</sup> its effect on the levels is negligible. It is defined as

$$V' = \frac{1}{4} \sum_{k=1}^{2} \sum_{l=1}^{2} \left[ \left( \frac{\partial}{\partial q_{k}} \right) B_{kl} \left( \frac{\partial \ln g}{\partial q_{l}} \right) - \left( \frac{\partial \ln g}{\partial q_{k}} \right) B_{kl} \left( \frac{\partial}{\partial q_{l}} \right) \right] + \frac{1}{16} \sum_{k=1}^{2} \sum_{l=1}^{2} \left( \frac{\partial \ln g}{\partial q_{k}} \right) B_{kl} \left( \frac{\partial \ln g}{\partial q_{l}} \right) \qquad (q_{1} = \theta, q_{2} = \theta_{2})$$

The Hamiltonian commutes with the  $C_s$  group symmetry operations. The PES, the zero point vibrational correction, and the kinetic parameters  $B_{11}$ ,  $B_{22}$ , and  $B_{12}$  are totally symmetric and can be described by fitting the values of each conformation to a periodic function transforming as the A = irreducible representation:

$$F'(\theta_1, \theta_2) = \sum_{N=0L=0} \sum_{L=0} (F_{NL}^{cc} \cos N\theta_1 \cos L\theta_2 + F_{NL}^{cs} \sin N\theta_1 \sin L\theta_2)$$

The potential energy surface (see Figure 4) has been determined by fitting to eq 3 the relative energies of a set of 74 conformations. The energies have been calculated with MP4-(SDTQ)/cc-pVQZ, optimizing 3N - 8 coordinates of each

conformation at the MP2/cc-pVQZ level (see Table 3). Then,

 $V(\theta_1, \theta_2) = 2021.596 - 179.902 \cos \theta_2 + 71.983 \cos 2\theta_2 +$  $159.175 \cos 3\theta_2 - 4.889 \cos 4\theta_2 - 2.334 \cos 5\theta_2 +$  $1.255 \cos 6\theta_2 + 164.444 \cos \theta_1 - 518.907 \cos \theta_1 \cos \theta_2 185.22 \cos \theta_1 \cos 2\theta_2 - 32.407 \cos \theta_1 \cos 3\theta_2 -$ 7.902 cos  $\theta_1$  cos  $4\theta_2$  – 0.275 cos  $\theta_1$  cos  $5\theta_2$  –  $0.156\cos\theta_1\cos6\theta_2-561.717\cos2\theta_1 171.206 \cos 2\theta_1 \cos \theta_2 - 155.729 \cos 2\theta_1 \cos 2\theta_2 60.475 \cos 2\theta_1 \cos 3\theta_2 - 22.492 \cos 2\theta_1 \cos 4\theta_2 4.914 \cos 2\theta_1 \cos 5\theta_2 - 0.879 \cos 2\theta_1 \cos 6\theta_2 264.087 \cos 3\theta_1 - 56.610 \cos 3\theta_1 \cos \theta_2 43.674 \cos 3\theta_1 \cos 2\theta_2 - 29.160 \cos 3\theta_1 \cos 3\theta_2 12.339 \cos 3\theta_1 \cos 4\theta_2 - 5.527 \cos 3\theta_1 \cos 5\theta_2 1.755 \cos 3\theta_1 \cos 6\theta_2 - 44.948 \cos 4\theta_1 7.538 \cos 4\theta_1 \cos \theta_2 - 11.004 \cos 4\theta_1 \cos 2\theta_2 8.506 \cos 4\theta_1 \cos 3\theta_2 - 8.757 \cos 4\theta_1 \cos 4\theta_2 5.767 \cos 4\theta_1 \cos 5\theta_2 - 2.383 \cos 4\theta_1 \cos 6\theta_2 +$  $7.123 \cos 5\theta_1 + 0.669 \cos 5\theta_1 \cos \theta_2 6.164\cos 5\theta_1\cos 2\theta_2 - 3.354\cos 5\theta_1\cos 3\theta_2 4.544 \cos 5\theta_1 \cos 4\theta_2 - 4.259 \cos 5\theta_1 \cos 5\theta_2 2.023 \cos 5\theta_1 \cos 6\theta_2 + 9.917 \cos 6\theta_1 +$  $1.038 \cos 6\theta_1 \cos \theta_2 - 0.558 \cos 6\theta_1 \cos 2\theta_2 0.464 \cos 6\theta_1 \cos 3\theta_2 - 1.397 \cos 6\theta_1 \cos 4\theta_2 1.935 \cos 6\theta_1 \cos 5\theta_2 - 1.105 \cos 6\theta_1 \cos 6\theta_2 +$  $283.393 \sin \theta_1 \sin \theta_2 + 200.494 \sin \theta_1 \sin 2\theta_2 +$  $26.131 \sin \theta_1 \sin 3\theta_2 + 5.456 \sin \theta_1 \sin 4\theta_2 0.063 \sin \theta_1 \sin 5\theta_2 + 204.295 \sin 2\theta_1 \sin \theta_2 +$  $65.529 \sin 2\theta_1 \sin 2\theta_2 + 63.903 \sin 2\theta_1 \sin 3\theta_2 +$  $22.170 \sin 2\theta_1 \sin 4\theta_2 + 4.482 \sin 2\theta_1 \sin 5\theta_2 +$ 81.231 sin  $3\theta_1 \sin \theta_2 + 27.936 \sin 3\theta_1 \sin 2\theta_2 +$  $26.336 \sin 3\theta_1 \sin 3\theta_2 + 12.974 \sin 3\theta_1 \sin 4\theta_2 +$  $4.866\sin 3\theta_1\sin 5\theta_2 + 9.892\sin 4\theta_1\sin \theta_2 +$  $13.948 \sin 4\theta_1 \sin 2\theta_2 + 10.175 \sin 4\theta_1 \sin 3\theta_2 +$  $8.778 \sin 4\theta_1 \sin 4\theta_2 + 3.982 \sin 4\theta_1 \sin 5\theta_2 1.130 \sin 5\theta_1 \sin \theta_2 + 12.511 \sin 5\theta_1 \sin 2\theta_2 +$  $2.865 \sin 5\theta_1 \sin 3\theta_2 + 3.318 \sin 5\theta_1 \sin 4\theta_2 +$  $2.053 \sin 5\theta_1 \sin 5\theta_2$ 

The optimization of the geometry produces deformations in the molecule that can generate unexpected weights in the terms of the fitted potential.<sup>24</sup> This problem can be minimized by frozen linear combination of coordinates during the relaxation process to give a more realistic definition of the independent variables. This refinement of the method is necessary when the deformation has an important effect on the torsional frequencies. In glycolaldehyde, it is difficult to evaluate this effect without comparing the results with experimental data.

The method for calculating the  $B_{ij}$  parameters from each optimized geometry is described in ref 28. The ZPVE correction is determined for each conformation within the harmonic approximation with the equation

$$E^{\text{ZPVE}} = \sum_{i=3}^{3N-6} \frac{1}{2} \omega_i$$

 TABLE 3: Relative Electronic Energies (in cm<sup>-1</sup>) of the

 Selected Conformation of Glycolaldehyde

| $\theta_1$ | $\theta_2$ | $E_{\rm R}$ | $\theta_1$ | $\theta_2$ | $E_{\rm R}$ | $\theta_1$ | $\theta_2$ | $E_{\rm R}$ |
|------------|------------|-------------|------------|------------|-------------|------------|------------|-------------|
| 0          | $0^a$      | 0.0         | 180        | 0          | 2012.2      |            |            |             |
| 0          | 30         | 419.5       | 180        | 30         | 1785.1      |            |            |             |
| 0          | 60         | 1018.0      | 180        | 60         | 1406.5      |            |            |             |
| 0          | 90         | 1607.4      | 180        | 90         | 1364.3      |            |            |             |
| 0          | 120        | 2025.2      | 180        | 120        | 1503.0      |            |            |             |
| 0          | 150        | 1991.2      | 180        | 150        | 1400.5      |            |            |             |
| 0          | 180        | 1865.2      | 180        | 180        | 1278.2      |            |            |             |
| 30         | 0          | 1125.4      | 60         | 0          | 2722.2      | 90         | 0          | 2949.9      |
| 30         | 30         | 1723.5      | 60         | 30         | 2934.0      | 90         | 30         | 2875.6      |
| 30         | 60         | 1994.7      | 60         | 60         | 2808.1      | 90         | 60         | 2535.2      |
| 30         | 90         | 2342.5      | 60         | 90         | 2941.6      | 90         | 90         | 2516.0      |
| 30         | 120        | 2645.5      | 60         | 120        | 3168.8      | 90         | 120        | 2649.1      |
| 30         | 150        | 2535.5      | 60         | 150        | 3064.6      | 90         | 150        | 2590.1      |
| 30         | 180        | 2326.8      | 60         | 180        | 2888.5      | 90         | 180        | 2563.7      |
| 30         | -30        | 663.9       | 60         | -30        | 2004.6      | 90         | -30        | 2358.8      |
| 30         | -60        | 1035.6      | 60         | -60        | 1751.2      | 90         | -60        | 1854.2      |
| 30         | -90        | 1710.4      | 60         | -90        | 2248.2      | 90         | -90        | 2125.1      |
| 30         | -120       | 2237.5      | 60         | -120       | 2784.0      | 90         | -120       | 2623.7      |
| 30         | -150       | 2333.0      | 60         | -150       | 2900.5      | 90         | -150       | 2699.9      |
| 120        | 0          | 2488.8      | 150        | 0          | 2108.9      |            |            |             |
| 120        | 30         | 2290.8      | 150        | 30         | 1905.0      |            |            |             |
| 120        | 60         | 1934.9      | 150        | 60         | 1575.9      |            |            |             |
| 120        | 90         | 1882.5      | 150        | 90         | 1511.5      |            |            |             |
| 120        | 120        | 1966.3      | 150        | 120        | 1579.8      |            |            |             |
| 120        | 150        | 1903.5      | 150        | 150        | 1477.6      |            |            |             |
| 120        | 180        | 1903.4      | 150        | 180        | 1423.8      |            |            |             |
| 120        | -30        | 2080.1      | 150        | -30        | 1818.9      |            |            |             |
| 120        | -60        | 1574.2      | 150        | -60        | 1379.9      |            |            |             |
| 120        | -90        | 1678.0      | 150        | -90        | 1394.5      |            |            |             |
| 120        | -120       | 2048.8      | 150        | -120       | 1643.2      |            |            |             |
| 120        | -150       | 2068.2      | 150        | -150       | 1586.1      |            |            |             |
| <i>a</i> 1 |            | 00 50 4 05  | -          |            |             |            |            |             |

 $^{a}E_{a} = -228.786\,977$  au.

where the summation is extended to all the vibrations once the torsional modes are eliminated. The harmonic fundamentals are obtained with MP2/cc-pVTZ at different points of the surface.

The levels are calculated using as a trial function a symmetryadapted double Fourier series. Once the matrix is diagonalized, the most arduous effort is constrained by the classification of the levels due the proximity of the two modes and the small gaps between splittings. For this purpose, four criteria are considered: (1) the symmetry; (2) the values of the probability integrals around the minima,

$$\int_{\theta_1=p}^{\theta_2=q} \int_{\theta_2=p'}^{\theta_2=q'} \psi_{\mathrm{T}}^* \psi_{\mathrm{T}} \,\mathrm{d}\theta_1 \,\mathrm{d}\theta_2$$

that allow one to distinguish between cis and trans levels; (3) the expectation values of the one-dimensional operators in the torsional levels,

$$\langle H_i \rangle = \langle \psi_{\mathrm{T}} | H_i | \psi_{\mathrm{T}} \rangle = \left\langle \psi_{\mathrm{T}} \Big| \mathbf{B}_i^0 \frac{\partial^2}{\partial i^2} + V(i,0) \Big| \psi_{\mathrm{T}} \right\rangle \qquad i = \theta_1, \theta_2$$

that allow one to assign the levels to each torsional mode; (4) the intensities of the infrared transitions that allow one to construct sequences of the levels.

In Table 4, the energies calculated with and without the zero vibrational correction are compared. As we demonstrated in a previous paper testing different high-level corrections (extrapolation of the basis set, core correlation, adiabatic corrections, etc.) in the current model, the consideration of the zero point vibrational energy is relevant for determining accurate excitations.<sup>25</sup> For the cis conformer, the fundamental frequency of the CC torsion has been determined to be 202.1 cm<sup>-1</sup> (without ZPVE) and to be 199.3 cm<sup>-1</sup> (with ZPVE), below the harmonic frequency of Table 2 (213.4 cm<sup>-1</sup>). The effect of the vibrational



Figure 4. The two-dimensional potential energy surface of glycolaldehyde.

| TABLE 4: | Torsional Energy Levels of COH-CH <sub>2</sub> OH (OH) |
|----------|--------------------------------------------------------|
| and COH- | $CH_2OD$ (OD) (in cm <sup>-1</sup> )                   |

|        | cis-   | OH     | cis-OD    |             |    | trans-OH | trans-OD |
|--------|--------|--------|-----------|-------------|----|----------|----------|
|        | -ZPVE  | +ZPVE  | -ZPVE     |             |    | -ZPVE    | -ZPVE    |
| 00 A'  | 0.0    | 0.0    | 0.0       | 0 0         | A′ | 1111.6   | 1138.1   |
|        |        |        |           | $0 \ 0^{-}$ | Α″ | 1161.2   | 1180.5   |
|        |        |        |           | $0 \ 0^+$   | A′ | 1165.0   | 1180.8   |
| 10 A"  | 202.1  | 199.3  | 194.5     | 10          | Α″ | 1183.5   | 1210.8   |
| 20 A'  | 393.5  | 392.7  | 376.4     | $1 \ 0^{-}$ | Α″ | 1221.3   | 1238.4   |
| 30 A"  | 578.0  | 582.8  | 552.6     | $1 \ 0^+$   | A′ | 1223.3   | 1240.4   |
| 40 A'  | 756.2  | 768.7  | 725.0     |             |    |          |          |
| 50 A"  | 927.9  | 948.9  | 892.7     | 20          | A′ | 1258.5   | 1286.7   |
| 60 A'  | 1091.3 | 1122.1 | 1054.6    | $2 \ 0^+$   | A′ | 1282.6   | 1298.4   |
| 70 A″  | 1246.4 | 1286.6 | 1209.1    | $2 0^{-}$   | Α″ | 1290.6   | 1301.7   |
| 80 A'  | 1389.6 | 1442.5 | 1355.0    |             |    |          |          |
|        |        |        |           | 30          | Α″ | 1333.4   | 1365.7   |
| 01 A″  | 352.1  | 368.7  | 279.8     | $3 0^+$     | Α″ | 1347.5   | 1359.0   |
| 02 A'  | 657.4  | 687.1  | 540.0     | 3 0-        | A' | 1355.8   | 1364.0   |
| 03 A"  | 924.1  | 964.5  | 784.5     |             |    |          |          |
| 04 A'  | 1164.6 | 1214.3 | 1016.3    | 40          | A' | 1418.6   | 1404.6   |
| 05 A"  | 1387.0 | 1446.7 | 1237.3    | $4 0^+$     | A' | 1403.4   | 1427.6   |
|        |        |        |           | $4 \ 0^{-}$ | Α″ | 1409.7   | 1420.8   |
| 11 A'  | 547.1  | 558.5  | 463.5     |             |    |          |          |
| 21 A"  | 736.7  | 750.1  | 634.8     |             |    |          |          |
| 12 A"  | 845.5  | 866.9  | 710.7     | 01          | Α″ | 1274.7   | 1264.9   |
| 31 A'  | 921.5  | 940.7  | 802.5     | $0 \ 1^+$   | A′ | 1363.3   | 1327.8   |
| 22 A'  | 1032.7 | 1057.3 | 868.5     | $0 \ 1^{-}$ | Α″ | 1399.1   | 1352.0   |
| 13 A'  | 1104.3 | 1131.7 | 942.1     |             |    |          |          |
| 41 A'' | 1100.0 | 1126.7 | 967.8     |             |    |          |          |
| 32 A"  | 1216.7 | 1248.8 | 1023.9    | 11          | A′ | 1338.1   | 1333.9   |
| 23 A"  | 1287.1 | 1319.5 | 1087.5    | $1 \ 1^+$   | Α″ | 1431.7   | 1395.5   |
|        |        |        |           | 1 1-        | A′ | 1456.4   | 1393.6   |
|        |        | (      | One Dimer | nsion       |    |          |          |
|        | 1.0    |        | 218.4     |             |    | 218      | 5        |

corrections is more important for the OH torsion where the fundamental varies from 352.1 cm<sup>-1</sup> (without ZPVE) to 368.7 cm<sup>-1</sup> (with ZPVE). Also, the anharmonicity is more important for OH (v = 368.7 cm<sup>-1</sup> and  $\omega = 425.7$  cm<sup>-1</sup>). For the deuterated species, the two fundamentals have been determined to be 194.5 and 279.8 cm<sup>-1</sup>, whereas the harmonic values of Table 2 are 206.8 and 323.5 cm<sup>-1</sup>.

283.4

276.7

01

Calculations have been also performed in one dimension for evaluating the torsional interactions. In this case, the Hamiltonian is determined from the energies and geometries obtained by optimizing 3N - 7 internal coordinates. By comparing the two-dimensional results (202.1 and 352.1 cm<sup>-1</sup>) with those obtained in one dimension (218.4 and 283.4 cm<sup>-1</sup>), it may be inferred that the effect on the OH torsion is larger than that on

 TABLE 5: Predicted Far-IR Frequencies (cm<sup>-1</sup>) and

 Absolute Intensities for Cis and Trans Glycolaldehyde

 Calculated at 273.15 K

|                       |                       |       | cis    |         |                       | trans |                      |       |  |
|-----------------------|-----------------------|-------|--------|---------|-----------------------|-------|----------------------|-------|--|
| $vv \rightarrow v'v'$ | sym                   | freq  | int    | ω       | $vv \rightarrow v'v'$ | freq  | int                  | ω     |  |
|                       | CC Transitions        |       |        |         |                       |       |                      |       |  |
| $00 \rightarrow 10$   | $A_1 \rightarrow A_2$ | 199.2 | 0.0038 | 213.4   | $00 \rightarrow 10$   | 72.0  | $0.4\times 10^{-4}$  | 59.8  |  |
| $10 \rightarrow 20$   | $A_2 \rightarrow A_1$ | 193.5 | 0.0031 |         |                       | 56.2  | $0.4 \times 10^{-5}$ | 78.6  |  |
| $20 \rightarrow 30$   | $A_1 \rightarrow A_2$ | 190.1 | 0.0016 |         |                       | 62.1  | $0.1\times 10^{-4}$  | 78.6  |  |
| $30 \rightarrow 40$   | $A_2 \rightarrow A_1$ | 185.9 | 0.0009 |         | $10 \rightarrow 20$   | 74.9  | $0.6\times 10^{-4}$  |       |  |
| $40 \rightarrow 50$   | $A_1 \rightarrow A_2$ | 180.2 | 0.0003 |         |                       | 61.3  | $0.1\times 10^{-4}$  |       |  |
|                       |                       |       |        |         |                       | 67.3  | $0.3\times10^{-4}$   |       |  |
|                       |                       |       | OH     | Transi  | tions                 |       |                      |       |  |
| $00 \rightarrow 01$   | $A_1 \rightarrow A_2$ | 368.7 | 0.1022 | 425.7   | $00 \rightarrow 01$   | 163.2 | $0.8 \times 10^{-4}$ | 222.0 |  |
| $01 \rightarrow 02$   | $A_2 \rightarrow A_1$ | 318.4 | 0.0249 |         |                       | 234.1 | $0.8 \times 10^5$    | 309.9 |  |
| $02 \rightarrow 03$   | $A_1 \rightarrow A_2$ | 277.4 | 0.0054 |         |                       | 202.1 | $0.4 \times 10^{-5}$ | 309.9 |  |
| $03 \rightarrow 04$   | $A_2 \rightarrow A_1$ | 249.7 | 0.0012 |         |                       |       |                      |       |  |
| $04 \rightarrow 05$   | $A_1 \rightarrow A_2$ | 232.4 | 0.0003 |         |                       |       |                      |       |  |
|                       |                       |       | Comb   | ination | Bands                 |       |                      |       |  |
| $01 \rightarrow 11$   | $A_2 \rightarrow A_1$ | 189.8 | 0.0017 |         |                       |       |                      |       |  |
| $10 \rightarrow 11$   | $A_2 \rightarrow A_1$ | 359.2 | 0.0356 |         |                       |       |                      |       |  |
| $11 \rightarrow 21$   | $A_1 \rightarrow A_2$ | 191.6 | 0.0012 |         |                       |       |                      |       |  |
| $11 \rightarrow 12$   | $A_1 \rightarrow A_2$ | 308.4 | 0.0087 |         |                       |       |                      |       |  |
|                       |                       |       |        |         |                       |       |                      |       |  |

TABLE 6: Rotational Levels (cm<sup>-1</sup>) for the Cis and the Trans Vibrational Ground States  $(vv') = (0 \ 0)$  and the First Cis Excited State  $(vv') = (1 \ 0)$ 

|   |               |         |      |       | (0,0)    |      | (1,0)   |
|---|---------------|---------|------|-------|----------|------|---------|
| J | $ K_{\rm a} $ | $ K_c $ | symm | cis   | trans    | symm | cis     |
| 0 | 0             | 0       | A'   | 0.000 | 1111.573 | Α″   | 202.100 |
| 1 | 0             | 1       | Α″   | 0.386 | 1111.856 | A'   | 202.484 |
| 1 | 1             | 1       | Α″   | 0.787 | 1112.988 | A'   | 202.888 |
| 1 | 1             | 0       | A'   | 0.839 | 1112.977 | Α″   | 202.938 |
| 2 | 0             | 2       | A'   | 1.153 | 1112.422 | Α″   | 203.248 |
| 2 | 1             | 2       | A'   | 1.507 | 1113.565 | Α″   | 203.605 |
| 2 | 1             | 1       | Α″   | 1.663 | 1113.532 | A'   | 203.767 |
| 2 | 2             | 1       | Α″   | 2.866 | 1116.926 | Α″   | 204.973 |
| 2 | 2             | 0       | A'   | 2.870 | 1116.926 | A'   | 204.968 |
| 3 | 0             | 3       | Α″   | 2.293 | 1113.271 | A'   | 204.383 |
| 3 | 1             | 3       | Α″   | 2.585 | 1114.434 | A'   | 204.679 |
| 3 | 1             | 2       | A'   | 2.896 | 1114.368 | Α″   | 204.983 |
| 3 | 2             | 2       | A'   | 4.024 | 1117.790 | Α″   | 206.121 |
| 3 | 2             | 1       | Α″   | 4.047 | 1117.790 | A'   | 206.144 |
| 3 | 3             | 1       | Α″   | 6.161 | 1123.437 | A'   | 208.269 |
| 3 | 3             | 0       | A'   | 6.161 | 1123.437 | Α″   | 208.269 |

the central bond torsion. As was first observed for ethanol,<sup>22</sup> the one-dimensional model is quite nonsensical in the case of the OH torsion. For the trans levels, the interactions between the two modes are really significant.

The labeling of the trans levels has been particularly arduous. Around the trans minima, the potential is quite anharmonic and

 TABLE 7: Computed Rotational Parameters for cis- and trans-CH2OHCOH at the Lowest Vibrational States

|                  |                    |               | uan            | 3             |               |                    |               |
|------------------|--------------------|---------------|----------------|---------------|---------------|--------------------|---------------|
|                  | ground state (0,0) |               |                | first excite  | d state (1,0) | ground state (0.0) |               |
|                  | expected values    | fitted values | exptl values11 | fitted values | exptl values8 | expected values    | fitted values |
| A (MHz)          | 18 537.1           | 18 583.85     | 18 446.260 97  | 18 620.65     | 18 463.653    | 38 387.4           | 38 019.19     |
| B (MHz)          | 6566.5             | 6563.83       | 6525.996 543   | 6518.27       | 6482.563      | 4405.8             | 4406.79       |
| C (MHz)          | 5008.0             | 5009.34       | 4969.234 992   | 4998.43       | 4965.085      | 4073.2             | 4076.73       |
| $D_J$ (kHz)      |                    | -20.18        | 6.222 193 1    | -74.34        | -25.58        |                    | -109.28       |
| $D_{JK}$ (kHz)   |                    | -82.36        | -20.395 79     | 35.50         | -72.46        |                    | 605.67        |
| $D_K$ (kHz)      |                    | 138.38        | 47.722 86      | -2.26         | 95.0          |                    | 4491.06       |
| $\delta_J$ (kHz) |                    | 48.17         | 1.834 147      | 7.23          | 5.309         |                    |               |
| $\delta_K$ (kHz) |                    | -5.53         | 8.874 43       | -5.14         | -3.80         |                    |               |

the separation between splittings is larger than the gaps of the levels. The shape of the one-dimensional potential energy surface for the OH torsion (see Figure 3b) is similar to the one describing the internal rotation of a methyl group. There are three quasi-equivalent holes separated by barriers of 191 and 713 cm<sup>-1</sup>. Each level splits into three components with a relatively high energy difference as a consequence of the low barriers. The zero vibrational energy has been calculated to be 1111.6, 1161.2, and 1165.0 cm<sup>-1</sup>. The two fundamentals have been calculated to be 72.0, 56.2, and 62.1 cm<sup>-1</sup> and 163.2, 234.1, and 202.1 cm<sup>-1</sup>, whereas the energy differences between splittings are 49.6 and 54.4 cm<sup>-1</sup>.

Infrared intensities are quite useful in the classification of the levels using the large difference between the oscillator strengths for the two modes. The intensities of the Q branches of the "out of plane" type C bands are calculated with the equation<sup>16</sup>

$$I = \frac{q}{3R^2 e^2 B} \omega(P_j P_i) \langle \psi_i | \mu_c | \psi_j \rangle^2$$

where *i* and *j* represent two connected states. *R* is the average radius of the rotor (1.39 Å),  $B = (B_{11}B_{22})^{1/2}$ ,  $\mu_c$  are the dipole moment components that transform as the A" representation, and  $P_K$  represents the Bolzmann population;  $\omega$  is the frequency and *q* the nuclear statistical weight. The selection rules are shown in Appendix I.

The  $\mu_c(\theta_1, \theta_2)$  moment has been calculated with MP2/ccpVQZ for each conformation and fitted to an adapted Fourier series of A" symmetry. Table 5 shows frequencies and intensities of three series of transitions of the far-infrared spectrum calculated at 273.15 K. The strongest band corresponds to the OH torsion fundamental  $0, 0 \rightarrow 0, 1$  (frequency = 368.7 cm<sup>-1</sup>; intensity = 0.1022). The central bond torsion fundamental shows an intensity of 0.0038. In the case of the trans minimum, the OH fundamental (163.2 cm<sup>-1</sup>) is also the most intense band ( $0.8 \times 10^{-4}$ ).

The Rotational Parameters of Glycolaldehyde. For  $J \neq 0$ , the rotational-torsional Hamiltonian is written as the sum of the pure rotational Hamiltonian and the interaction operators,

$$H = H_{\rm ROT} + H_{\rm TR}$$

defined by the equations<sup>29</sup>

îr

$$\hat{H}_{\rm R} = \sum_{\lambda=1}^{3} \sum_{\mu=1}^{3} g_{\lambda\mu} P_{\lambda} P_{\mu} \qquad \lambda, \mu = x, y, z$$

$$H_{\rm RT} = \frac{i}{2} \sum_{\lambda=1}^{3} \left( 2g_{\lambda4}(\theta_1) P_{\lambda} \frac{\partial}{\partial \theta_1} \left( \frac{\partial^2_{\lambda4}}{\partial \theta_1} \right) \frac{\partial}{\partial \lambda} + 2g_{\lambda5}(\alpha) P_{\lambda} \frac{\partial}{\partial \theta_2} \left( \frac{\partial^2_{\lambda5}}{\partial \theta_2} \right) \frac{\partial}{\partial \lambda} \right)$$

where *x*, *y*, and *z* are the molecular Cartesian axis.  $P_{\lambda}$  represents the angular momentum components, and  $g_{\lambda\mu}$  and  $g_{\lambda n}$  are the rotational and rotational-torsional elements of the **G** matrix.<sup>28</sup> The definition of the molecular axis follows the PAM method (see Figure 1). In I-cis, the *A* molecular axis is almost to the C-C central bond, *B* lies in the cis plane, and *C* lies in the trans plane (see Figure 1). Then, the  $g_{ij}$  elements for ij = 11, 22, 33, 12, 14, 24, 15, and 25 transform as A' and those for ij= 13, 23, 34, and 35 transform as A''. The totally symmetric elements can be fitted to a function formally identical to the one of the potential. For the asymmetric elements, the analytic form is

$$F''(\theta, \alpha) = \sum_{N=0L=0} \sum (F_{NL}^{cs} \cos N\theta_1 \sin L\theta_2 + F_{NL}^{sc} \sin N\theta_1 \cos)$$

The rotational-vibrational energy levels are calculated variationally using contrated basis set to reduce the Hamiltonian matrix dimension that increases with the J rotational quantum number. It has to be taken into consideration that for glycol-aldehyde the convergence of the torsional levels requires two Hamiltonian matrix with dimensions of 1301 (A') and 1300 (A'').

The contracted basis set for  $J \neq 0$  may be a product of solutions of the vibrational Hamiltonian,  $\varphi^{\text{TOR}}$ , for describing the torsion, and solutions of the symmetric top for the overall rotation. The set of contract functions,  $\varphi^{\text{TOR}}$ , helps the assignments of the rotational energies to the vibrational levels. Then, the complete trial function is

$$\Psi(\theta, \Theta, \phi, \theta_1, \theta_2) = \sum_{n, J, K, M} C_{n, J, K, M} \phi_n^{\text{TOR}}(\theta_1, \theta_2) G_{J, \pm K, M}(\Theta, \phi, \chi)$$

where  $\Theta$ ,  $\varphi$ , and  $\kappa$  are the Euler angles. To obtain a real Hamiltonian matrix, the  $G_{J,\pm K,M}$  symmetric top solutions are defined in Cartesian coordinates using the linear combinations:

$$G_{J,\pm K,M}(\Theta,\phi,\chi) = B(S_{J+K,M}(\Theta,\phi,\chi) e^{i(+K)\chi} \pm (S_{J,K,M}(\Theta,\phi,\chi) e^{i(K)\chi}) e^{iM\phi})$$

where the S functions are symmetric top solutions in spheric coordinates and the sign before the rotational quantum number K corresponds to the sign of the linear combination.

Taking into consideration the symmetry (see Appendix I), the Hamiltonian matrix factorizes in two boxes corresponding to the A' and A'' representations.

Table 6 shows the rotational levels corresponding to the vibrational cis and trans ground states. They have been calculated using set of 19 cis torsional functions (10 A' and 9 A'') and 17 trans torsional functions (9 A' and 8 A''). The levels are labeled with the J,  $K_a$ , and  $K_c$  rotational numbers. In the case of the cis form, calculations have been performed with the ZPVE correction, although its effect is negligible. By fitting

the energies and the expectations values of the rotational Hamiltonian operators at the levels to the equation

$$\begin{split} E &= \langle \psi_i | H_{\text{ROT}} | \psi_i \rangle = + \frac{1}{2} (B + C) J (J + 1) + \\ & \left[ A - \frac{1}{2} (B + C) \right] \langle \psi_i | \hat{J}_z^2 | \psi_i \rangle - D_J [J (J + 1)]^2 - \\ D_{JK} J (J + 1) \langle \psi_i | J_z^2 | \psi_i \rangle - D_K \langle \psi_i | \hat{J}_z^4 | \psi_i \rangle + H_J [J (J + 1)]^3 + \\ H_{JK} [J (J + 1)]^2 \langle \psi_i | \hat{J}_z^2 | \psi_i \rangle + H_{KJ} J (J + 1) \langle \psi_i | \hat{J}_z^4 | \psi_i \rangle + \\ H_K \langle \psi_i | \hat{J}_z^6 | \psi_i \rangle + \frac{1}{4} (B - C) \langle \psi_i | \hat{J}_+^2 + \hat{J}_-^2 | \psi_i \rangle + \\ \delta_J J (J + 1) \langle \psi_i | \hat{J}_+^2 + \hat{J}_-^2 | \psi_i \rangle + \delta_K \langle \psi_i | \hat{J}_+^4 + \hat{J}_-^4 | \psi_i \rangle + \\ \phi_J [J (J + I)]^2 \langle \psi_i | \hat{J}_+^2 + \hat{J}_-^2 | \psi_i \rangle + \\ \phi_{JK} J (J + 1) \langle \psi_i | \hat{J}_+^4 + \hat{J}_-^4 | \psi_i \rangle + \phi_K \langle \psi_i | \hat{J}_+^6 + \hat{J}_-^6 | \psi_i \rangle \end{split}$$

one is able to evaluate the rotational constants and the centrifugal distortions constants at the levels. This method produces observable parameters and represents an improvement of the usual way consisting in the direct determination of the parameters from ab initio force fields. That method gives unobservable results calculated in the potential minimum.

Table 7 shows the fitted parameters corresponding to three different vibrational states. For the cis conformer, the parameters of the ground state and the first excited state are compared with the experimental values of refs 11 and 8, respectively. For the trans conformers, the tabulated values represent a first prediction.

**Acknowledgment.** This work has been also supported by the Ministerio de Ciencia y Tecnología of Spain, Grant AYA2002-02117.

#### Appendix I

Selection rules for the infrared transitions:

| A-type bands $\mu_a(A')$                                                          | B-type bands $\mu_b(A')$                                                        | C-type bands $\mu_{c}(A'')$ |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|
| $\begin{array}{c} A' \nleftrightarrow A' \\ A'' \nleftrightarrow A'' \end{array}$ | $\begin{array}{c} A' \leftrightarrow A' \\ A'' \leftrightarrow A'' \end{array}$ | $A' \leftrightarrow A''$    |

Eigenfunctions for glycolaldehyde:

|    | $arphi_{ m T}$                                                              | J    | K    |
|----|-----------------------------------------------------------------------------|------|------|
| A' | $\sum (A_i \cos \theta_1 \cos \theta_2 + B_i \sin \theta_1 \sin \theta_2)$  | even | even |
|    | $\sum (A_i \cos \theta_1 \sin \theta_2 + B_i \sin \theta_1 \cos \theta_2)$  | even | odd  |
|    | $\sum (A_i \cos \theta_1 \cos \theta_2 + B_i \sin \theta_1 \sin \theta_2)$  | odd  | odd  |
|    | $\sum (A_i \cos \theta_1 \sin \theta_2 + B_i \sin \theta_1 \cos \theta_2)$  | odd  | even |
| Α″ | $\sum (A_i \cos \theta_1 \cos \theta_2 + B_i \sin \theta_1 \sin \theta_2)$  | even | odd  |
|    | $\sum (A_i \cos \theta_1 \sin \theta_2 + B_i \sin \theta_1 \cos \theta_2)$  | even | even |
|    | $\sum (A_i \cos \theta_1 \cos \theta_2 + B_i \sin \theta_1 \sin \theta_2)$  | odd  | even |
|    | $\Sigma(A_1 \cos \theta_1 \sin \theta_2 + B_1 \sin \theta_1 \cos \theta_2)$ | odd  | odd  |

#### **References and Notes**

(1) Hollis, J. M.; Lovas, F. J.; Jewell, P. R. Astrophys. J. 2000, 540, L107.

(2) Bacher, G.; Tyndall, G. S.; Orlando, L. J. J. Atmos. Chem. 2001, 39, 171.

(3) Dickens, J. E.; Irvine, W. M.; Nummelin, A.; Møllendal, H.; Saito, S.; Thorwirth, S.; Hjalmarson, A.; Ohishi, M. *Spectrochim. Acta, Part A* **2001**, *57A*, 643.

(4) Hollis, J. M.; Vogel, S. N.; Snyder, L. E.; Jewell, P. R.; Lovas, F. J. Astrophys. J. 2001, 554, L81.

(5) Huntress, W. T., Jr.; Mitchell, G. F. Astrophys. J. 1979, 231, 456.
(6) Kaiser, R. I. Chem. Rev. 2002, 102 (5), 1309.

- (d) Kalsel, R. I. Chem. Rev. 2002, 102 (5), 1509.
   (7) Sorrell, W. H. Astrophys. J. 2001, 555, L129.
- (7) Solicii, W. H. Astrophys. 3. 2001, 555, 1125.
  (8) Markstokk, K. M.; Møllendal, H. J. Mol. Struct. 1970, 5, 205.
- (9) Markstokk, K. M.; Møllendal, H. J. Mol. Struct. 1976, 3, 205.
   (9) Markstokk, K. M.; Møllendal, H. J. Mol. Struct. 1973, 16, 259.
- (10) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Chem.
   Phys. Lett. 1981, 80, 499.

(11) Butler, R. A. H.; de Lucia, F. C.; Petkie, D. T.; Møllendal, H.; Horn, A.; Herbst, E. Astrophys. J. 2001, 134, 319.

(12) Crovisier, J. BASEMOLE.

(13) Markham, D. G.; Bock, C. L.; Trachtman, M.; Bock C. W. J. Mol. Struct. (TEOCHEM) 1999, 459, 187.

(14) Su, C. C.; Lin, C. K.; Wu, C. C.; Lien, M. H. J. Phys. Chem. A 1999, 103 (17), 3289.

(15) Chen, C.; Hsu, F. S. J. Mol. Struct. (THEOCHEM) 2000, 506, 147.
(16) Smeyers, Y. G.; Senent, M. L.; Botella, V.; Moule, D. C. J. Chem. Phys, 1993, 98 (4), 2754.

(17) Senent, M. L.; Moule, D. C.; Smeyers, Y. G. J. Chem. Phys. 1995, 102, 5952.

- (18) Smeyers, Y. G., Villa, M.; Senent, M. L. J. Mol. Spectrosc. 1998, 191, 232.
- (19) Makarewicz, J.; Kreglewski, M.; Senent, M. L. J. Mol. Spectrosc. 1997, 186, 162.

(20) Muñoz-Caro, C.; Niño, A.; Senent, M. L. Chem. Phys. Lett. 1997, 273, 135.

(21) Senent, M. L.; Fernández-Herrera, S.; Smeyers, Y. G. Spectrochim. Acta, Part A 2000, 56A, 1457.

(22) Senent, M. L.; Smeyers, Y. G.; Dominguez-Gómez, R.; Villa, M. J. Chem. Phys. 2000, 112, 5809.

(23) Senent, M. L. Mol. Phys. 2001, 15, 1311.

(24) Szalay, V.; Császár, A. G.; Senent, M. L. J. Chem. Phys. 2002, 117, 6489.

(25) Császár, A. G.; Szalay, V.; Senent, M. L. J. Chem. Phys. 2004, 120 (3), 1203.

(26) Talón, C.; Ramos, M. A.; Vieira, S.; Cuello, G. J.; Bermejo, F. J.; Criado, A.; Senent, M. L.; Bennington, S. M.; Fischer, H. E.; Schober, H. *Phys. Rev. B* **1998**, *58*, 745.

(27) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.1x; Gaussian, Inc.: Pittsburgh, PA, 1998.

(28) Senent, M. L. Chem. Phys. Lett. 1998, 296, 299.

(29) Senent, M. L. J. Mol. Spectrosc. 1998, 191, 265.

(30) Senent, M. L.; Fernández-Herrera, S.; Smeyers, Y. G.; Domínguez-Gómez, R. M.; Villa, M. *Mol. Phys.* **1999**, *96*, 775.