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We investigate the focusing, that is, the reversing of spreading of continuum wave packets created with
chirped laser pulses in the weak-field limit. Focusing can be accomplished when a negative-positioentum
correlation is created in the wave packet. Specializing to constant and linear (repulsive) potentials, we show
analytically that in a constant potential wave packet spreading can be compensated with positively chirped
laser pulses, whereas in the linear potential negatively chirped laser pulses are required, in the short-pulse
limit. The analytical results for the linear potential are supported by numerical simulations. The results are
discussed in the context of a classical model for wave packet focusing.

1. Introduction in the bound region of an excited-state potential, the wave packet
focuses after one recoil from the turning point of the potential.

When an atom or molecule interacts with an appropriateé gome of these predictions of wave packet focusing have now
ultrafast laser pulse, a wave packet, or time-dependent superyeen observed experimentatty.

position state, is created. Wave packets are quantum mechanical The early work on wave packet focus#d led to the

objects that exhibit a host of exotic features. For example, given development of a simole. classical model for the focusin
a chosen initial state, one can imagine designing laser pulses P pe, 9

with the aim of creating wave packets that steer a system into jSigaruzm’ ;Qaér?rﬁzrggi% EEEO?SELZIfCr)erzslﬂlttirp'lr'ﬁ??:I;szir(l:il
a specific target state, including states in which matter is d P :

transformed into a desired proddce On the experimental side, vr\rllg\(/jgl V;?Eekﬁrs:fe?fnaggr'?ﬁ;ntroa\l,f,.rg?,i;}enirg% Cg?epnigeﬂfn%fea
laser fields with complex pulse shapes can now be Createdto cregte a focused wave packet with agyout- gin moﬁwentum,
routinely?~7 Furthermore, using the concept of laboratory P going

feedback contrdl,it is possible to obtain control without any (th{j.lt IS, momentum .d|rected away frqm the.Fraﬂﬂondon

prior knowledge of the system Hamiltonian. This procedure is region), a pqsmve chirp should be applied. This causes the low-
based on the feedback from an observed experimental signalﬁ.nehrgy portions of the tvva\\/lshpaclt(ﬁt tr?. ?18 created before thte
and an algorithm that iteratively improves the applied femto- Igh-energy components. en he high-energy components

second laser pulse. Several applications of this approach hav%CatCh upT;/]\_nth thehlovy-ene_rgy comtpont_antts), tt::etr:/vave pt)_acket
been published recently4 ocuses. This mechanism is operative in bo e continuum

The present work, in line with refs 519, is an exploratory (termed previously the “cannon’), and the bound region of a

tudy with the aim of Vi d understanding the t ¢ potential (the “paddle-ball”). With a negatively chirped pulse,
study wi € aim of analyzing and understanding the type ot 5 ¢4¢sed wave packet with momentum directed toward the
dynamics that can be induced by ultrashort laser pulses. In

icul ider the simol f oh dulati Franck-Condon region (the “reflectron”) is formed in the bound
fha;:'fga%rs’ \;\ge (?l%r:l?:iv?;; eulssTZﬁzt itr):pev(\?highaizeamou; d?;'t?: region of a potential. In this case, the high-energy components
frequency sweep of the pphase Inp thgé time domai?1 this is of the wave paqket should be created.flrst, because they must

) ! . ’ ) ’ travel a longer distance to the target region than the lower energy
equivalent to a linear chirp of the pulse. Chirped pulses have

S - mponents. Note that this picture assumes that the high- and
now been applied in several experimett<2 For example, compone oe picture assume eng

. X - . . low-energy components start at the same position.
pulses with negative chirps, in which frequency decreases as a . . . .
The classical model describes much of the salient physics.

function of time, have been shown to enhance vibrational ladder .
However, no classical argument can capture completely the

climbing compared to unchirped pulsts. ) ! :
S detailed quantum mechanical effects of constructive and de-
Wave packet dynamics in atoms and small molecules has an o ;
structive interference that form the basis for wave packet

appealing, if deceptive, simplicity. Previous theoretical work dynamics. The purpose of the present work is to analyze the
has shown that when a continuum wave packet is created with o L :
S . mechanism of wave packet focusing in greater detail, both
a transform-limited, Gaussian pulse, the wave packet spreads; . .
. e L o analytically and numerically. As shown below, the results
that is, the uncertainty in position increases with time. However, 2 . . 8
) . . - confirm, in some cases, the simple classical model and contradict
when the continuum wave packet is created with a positively .~
. 305 .~ it in others.
chirped pulsé&3~25 the wave packet focuses, thus counteracting i ) )
the “natural tendency” to spread. Alternatively, if the wave In the next section, we review the theoretical framework

packet is excited in a molecule with a negatively chirped pulse N€eded in order to describe the wave packet created by a laser
pulse. In Section 3, we consider wave packet focusing in linear

 Part of the “Gert D. Billing Memorial Issue"" (mcludm_g constant) p(_)te_ntlals. _Fo_r such potentials, anqutlcal
* University of Florida. expressions provide |nt|maFe insights on the dynamics. I_n
8 Technical University of Denmark. Section 4, we elaborate on simple arguments based on classical
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dynamics with the aim of providing a rationalization of the
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Hence, for a linear potentialy¢dt is always positive, signifying

results. Section 5 presents numerical studies of focusing in linearthat for large enough times a wave packet always spreads. The
repulsive potentials. Finally, conclusions and perspectives areonly way to achieve focusing is to have a wave packet that

presented in Section 6.

2. The Promoted State Generated via a Laser Pulse

We consider an electronic transition in a molecule, from

electronic state “1” to state “2”. Within the electric-dipole

approximation and first-order perturbation theory for the inter-

initially has a negative positicnmomentum correlatiorry <
0. In this situation the wave packet will contract until the time
tioc, When the correlatiom; is zero, that is

tioe = MIrol/(AP)3 9)

action with an electromagnetic field, the state vector associated@fter which it starts spreading. The minimum width (at time

with the nuclear motion in electronic state “2” is given by (at
times,t, when the laser pulse has vanisH&d?
() 0= exp-iH ) [0 (1)

Here, |y2Uis the promoted state
=g [, dve O TE) exp(FtR) 160 (2)

whereE(t) is the laser field and
| L= uap | 24U ()

is the Franck-Condon wave packet. In this expressign/Jis
the initial stationary nuclear state in electronic state “1” with
energyeo andus» is the projection of the electronic transition
dipole moment on the polarization vector of the electric field.

The target,|yioc(tioc)5) is @ focused state a time= tie. TO
generate this state, we invert eq 1 to obtiit]

|X 2D= exp(iI:| 2tfoc/ h) |Xfoc(tfoc) 0 (4)

troc) IS given by

(Ax); = (AX)5 — rg/(AP)s (10)

3.1. Gaussian Wave Packets in Linear Potentialg-or a
linear potential, we can construct the promoted state in eq 4
analytically. If the focused target state is chosen as a (minimum
uncertainty) Gaussian, the promoted state is also a Gaussian.
By analyzing the properties of the promoted state, we can gain
insight on how this promoted state might be created via an
ultrashort pulse.

Note that a linear potential is a reasonable approximation in
the Franck-Condon region of diatomic molecules or for wave
packets moving at high kinetic energies such that the potential
has a negligible effect.

3.1.1. The Promoted StateConsider a Gaussian wave
packet®-30

Yol ) = exgf A"+ pc—x) + 5]} (@)

where x and p; are the expectation values of position and

by propagating the focused target state backward in time to momentum, respectively, aidis a complex parameter related

obtain the corresponding promoted state in the Fra@indon

to the width and the correlation between position and momentum

region. The goal, then, is to find the laser pulse that best creates

this promoted state.

3. Spreading and Focusing of Wave Packets

We consider a one-dimensional system described by thewherer; = (h/2)Re@)/Im(Ay).

HamiltonianH = p?/(2m) + V(X). The time evolution associated
with the variance (uncertainty) in position, is given by

d 2 _ 20 _ _
Gil(Ax)] = [Xp+ P2 P = (2/m)r,

®)

wherer; is the covariance (or correlation coefficient) of the

position and momentum. Thus, when> 0 the wave packet

will spread, whereas; < 0 implies that the wave packet will

focus (i.e., contract). At times when the correlatigris zero,

the width is either in a local minimum or a local maximum.
Specializing to a linear potential

V(¥) = V(X)) — (X = X)) (6)
eg 5 can be integrated to give
(AX)? = (Ax)g + [@Im)rglt + [(Ap)mTIE (7)

2r,+ih
= > (12)
4(AX);
The uncertainty in the momentum is given by
2 2
(AP, = 4AHAX; = ——+ (13)
L AR e

and therefore a focused Gaussian wave paaket (0) is a
minimum uncertainty state.
The Wigner phase-space function associated with the Gauss-
ian is
Fs(x, p,t) =
- expl-2(AP)7(x — X)7h® — 2(AX)(p — P +
4r{x—x)(p — pY/H? (14)

A contour plot of this function is shown in Figure 1.
Now, for the case of a linear (including a constant) potential,

Thus, forrg = 0, the wave packet spreads continuously, whereas eq 6, the time evolution ofy is given by®

forro <0, (Ax)f has a minimum as a function of time; that is,

when a negative correlation exists between the position and

momentum in the wave packet at= 0 the wave packet will
(initially) focus. Differentiating eq 7 gives

r=ro+ [(Ap)ymit (8)

M
1+ (2A/mt

whereAg is A att = 0. From this relation, eqs 7 and 8 can be
derived easily.

A= (15)
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T T T 1 relation of the promoted statg = —#/2. We see again that to

obtain a large value of;,c a delocalized promoted state is

- 405 required (obtained, for example, by excitation from an excited
<0 r>0 state). To calculate the width of the focused packet at the target

p t 4o time, we use eq 17 to find

(AN = (AX)F2 (22)

This equation shows that when the focusing time is maximal,
1 05 0 05 1 focusing is limited to half of the initial width of the promoted
X state. As an example, assume thm()é = A/(2mw) as in a
Figure 1. Phase-space plot of the Wigner function for a Gaussian wave harmonic vibrational ground state. Theif* = 1/(2w), which

packet. Two contours are shown. The contaur<“0” corresponds to corresponds td/(4) whereP is the vibrational period; that
a Gaussian with a negative positemomentum correlation, whereas s, t;gix is just a small fraction of the vibrational period.

the contour f > 0” co_rresponds to a Gaussian with a positive position From the analysis above, we see that obtaining a large value
momentum correlation. of the focusing time requires a delocalized promoted state. From

Inserting eq 13 into eqs 9 and 10 we obtain, for a Gaussian €4 2. it is clear that a delocalized promoted stedenotbe

withro < 0 created with a short pulse.

3.1.2. Promoted Stat@a an Ultrashort Laser Pulsen this
5 Irol section we investigate the properties of the promoted state
toc = m(AX)ohzl—z (16) created by a chirped, ultrafast laser pulse. The electric field is

4+ 10 written in the form
and E(t) = E, exp[-t%/(27%) — iwgt — ift12] (23)
2
(Ax)tzf = (Ax)gzh—/"'z (17) The instantaneous frequencydgt) = wo + fit, whereay is
A4+ rg the carrier frequency, anglis the linear chirp of the pulse. The

Fourier transform of the electric field is given by
We now derive the reverse relations: Given the focusing time
tioc and the associated widtih); , what arero and (AX); of E(w) = By exp[~To(@ — )12 + iBy(w — we)72]  (24)
the promoted state? Inverting the above relations, we find
wheret; = 72(1 + 744?) andfo = pr4(1 + 46?).

_ I The initial state is assumed to be a Gaussian and the variation
"= "am (AX)2 (18) of the electronic transition dipole moment over the width of
Yioc this Gaussian is neglected, that ¢&€x) = N exp[—(Xx — Xo)%

4(Ax)3]. When the initial state and the electric field (in the

and limit r — 0) are inserted into eq 2 the time-evolution operator
2 2 is split into two parts. One part depends on the kinetic energy
(AX)Z= (AX)th + A f°°2 (19) operator, and one depends on the potential. The action of the
e A (Ax)tf kinetic energy operator can be neglected (since the spreading

of the initial state during the interaction with the pulse is

We see that for a chosen width of the focused wave packet, Negligible), and so only the part which depends on the potential
(AX).., a large value ofy,. implies that the width as well as IS retained.

the absolute value of the positismomentum correlation of Forfwo = V(xo) — €0 (1.e., on-resonant excitation), we obtain
the promoted state must be large. a promoted state given By
Note that. is related to the expectation value of the position L IV(X) — €
i = 0
for the focused statgo. 1(¥) = 5 E[T]qb(X)
2
Xioc = Xo T Oltfod/(2M) (20) i
= exp{g [A(x — x)* + So]} (25)

wherea is the slope of the potential am@ = 0.
Above we considered th&, associated with the promoted  where

state obtained by backward propagation of the target state. Thus,

we can create a desired focused target staa@selected time o2 B

or position Xy, provided we can generate the associated Re@y) = 2(Ax) % (1/r2)2 + (,8)2

promoted state. A somewhat less ambitious goal is to consider 0

a promoted state with a fixed widthAK)o, and to find the form im(A) — A o2 172

of this state that produces a maximum focusing timg, o

Maximizing tioc in €q 16 with respect to, for a fixed value of 4(AX)O 4(AX)§ 2R (1/72)2 + (ﬂ)z

(AX)o gives the maximum focusing time

(26)

The above equations demonstrate thaegatve chirp (3 <
max 0) creates a Gaussian wave packet with a negative correlation,
tioc = h(A )o (21) ro < O (see Figure 2). Furthermore, the promoted state is
squeezed compared to the initial vibrational ground statg)g(
that can be achieved for an initial positemomentum cor- > (AX)g), resulting in a smalt;,c. Note that fora. = 0 (i.e., a
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not independent since they both depend on the chirp parameter.

p
I Note that in egs 28 and 29 the chirp is not a parameter, since
/ it is implicitly set by the condition for a maximurt. (8 =

—2a).
L Rather than maximizing the focusing time, we can choose to
maximize the effect of the focusing. To do this, we define a
focusing parametef, as the ratio between the variance of the

promoted state,A(x)S, and the variance at the focusing time,
(AX); . With the use of eq 17,is given by

X

G
(Ax)zoc

=1+ (2ryh)? (32)

Figure 2. Phase-space plot of the Wigner function in a linear potential,

created with an ultrashort negatively chirped pulse. The dashed (closed)As can be seen in this equation, to maximizewe must
curve is a contour of the Wigner function of the initial Gaussian, the maximizer, (i.e., the initial correlation between position and
solid (closed) curve is the Wigner function of the Gaussian created momentum) with respect to the chirp. By taking the ratio

with an ultrashort pulse with negative chirp. The parabolas are constant : _ : e
energy contours corresponding to two different total energies. The centerRe@‘O)/lm(AO)' and setting3 = kBmax wherek is a positive

of the Gaussian wave packet follows such a trajectory. constant, an@max is defined below eq 27, we obtain

2rg
h

=K (33)

constant potential) the promoted state generated by an ultrashort =
KK1+b)+b

pulse is identical to the initial state, and focusing is not possible
in the ultrashort-pulse limit.
The timetyc at which the wave packet will focus can be whereb is defined above. The maximum of this ratio is obtained

determined using eq 16 to give for k = y/b/(1+b), which implies that
2m(a) (A |12
= (27) f =1+[4b+b)]* 34
foc A az + (ﬂ/2)2 max [ ( )] ( )
wherea’ = a(Ax)g/fi, anda = (a')? + 1/(2r?). The focusing Note that, in the above formulas, bafff* andfmax depend on
time depends on the chirp, and the maximum valuéefis the parametdn, which implies that all cases with the same value
obtained wherf = fmax = —2a. For this value of the chirp of 0’72 are equivalent.
m(Ax)2 ” 3.2. Promoted State in a Constant PotentialThe formulas
max _ —9/ (28) in the preceding section were derived in the short-pulse limit.
foc 1+b For pulses with a finite (nonzero) width, the explicit expression

for the promoted state is extremely complicated and not reported
here. However, one important observation can be made. The
promoted state is in general not a Gaussian, which in turn

where b = h%/(2(AX)50’r%). The associated uncertainty in
position is given by

) 1+ 2b ) implies that the linearly chirped electric field in eq 23 cannot
(AX)ipar = 7 (AX)/2 (29) guide the system into a Gaussian (minimum uncertainty) target
state.
In general, if the chirp has a valfie= kfmax Using egs 26 To simplify the analysis, we consider a constant potential,
28 we obtain a focusing time using the form of the laser field in eq 23. Setting the excited-
2% state potentiaM(x) = V, we begin in the momentum-space
toe = — oot (30) representation and obtain from eq 2
1+ K
and associated uncertainty of . i [p12m+V — ).
- 7P) =1\ )3(P) (35)
1+2
(AY; = gmx)ﬁmax (31)
k2(1+ b)+b * Assuming again that the initial state is a Gaussigp) =

2- .
where, as expectedes < t7% Given a ground-state wave N EXP[-P74(Ap)gl, it can be shown that

packet, and an excited linear potential, the formulas in eqs 30

and 31 allow us to predict the focusing time and the associated hB7 (Ap);
uncertainty for any pulse with parameterandf. fo= o 1- > (36)
The expressions in eqs 28 and 29 are quite similar to the (Ap)

results in eqs 21 and 22. They are not identical, however, since

they represent the connection between the focusing quantities This relation shows, in contrast to the above analysis, that the
toc and Ax)me, and the ground-state (instead of promoted ratiory/3 can be either positive or negative, which implies that
state) width, AX)g, the pulse widthz, and the potential slope,  either a negative or positive chirp might be required to create
o.. Furthermore, the real and imaginary parts¢in eq 26 are a focused wave packet; depending on the width in momentum
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space of the promoted state relative to the initial state.dor P
>V = e, we find = /
2 - 2 3 <0
‘E(p /2m+ V 60) F/ B< .
h Q
2 2
p7/2m+V — ¢, — ho
B e e | S~
4]
b
In the ultrashort-pulse limitzo — 0, the Fourier transform of ®) =0
the electric field approaches a constant, and from eq 36 we
observe, as previously, that the posittanomentum correlation =
vanishes. For a long pulse, eq 37 is double-peaked, around the e —
valuestp(wg) = +4/2m(V—e,—hw,), and therefore the width
of this function is, roughly speaking, given pgwo) Hence, to

obtain a focused wave packet (< 0) eq 36 suggests that Figure 3. Phase-space plot of the “Wigner function” in a linear

potential (a) and constant potential (b), respectively. The density in

p <0, forp(wg) > (Ap)g phase space is the promoted state created with a negatively (a) or
positively (b) chirped pulse. These pictures are obtained within a
p >0, forp(wg) < (Ap)g (38) “classical approximation”, as detailed in the text. A pulse with a

Gaussian envelope function centered around0 has been used, and

In a recent pap€et a free particle model was used to describe the contributions to the phase-space density of the promoted state have
the creation of electronic wave packets, and it was argued thatbeen sketched at three times (chosen symmetrically aroer@@). The
the spreading of such a wave packet can be compensated onl hading of the “balls” reflect_s the_amplltude of the Gaussian envelope.
by a positively chirped pulse. However, in ref 32 only electrons he parabolas (a) and straight lines (b) are constant energy contours

! L . ; (at equidistant energies) corresponding to different total energies.
with positive momentum were considered. In this cadg)d
is always smaller tharAp)q, and according to eq 36 focusing
can only be obtained with a positiy®

In the next section, we discuss a simple classical model of
the dynamics, with the aim of providing an intuitive rationaliza-
tion of the analytical results, especially the dependence on the
sign of the chirp.

by eq 20. On this potential all trajectories experience the same
acceleration. As a result, the trajectories excited with high
frequencies must be excited firsthey must travel a longer
distance in order to reach; that is, a pulse with aegatve
chirp is required. Note the differences in this argument compared
to the one presented in the Introduction, where all trajectories
were assumed to start out at the same position. Figure 3a shows
the promoted state constructed as described above. This plot is
In the quantum picture, the dynamics is given by the excited- an approximate picture of the Wigner function, and since the
state wave function, which according to egs 1 and 2 can be dynamics in phase space for a linear potential can be described
written in the form exactly in terms of classical trajectories, we see that the time
. evolution of the promoted state leads to focusing in coordinate
2o(% 1) :%fj" d'e "PE)p(x, t — t) (39) space. This picture should be valid also in a real nonlinear
* potential as long as we consider focusing within the Franck

whereg(x, t — ) = X | expl—ifislt — t)/K] | $0 Thus, the ~ Condon region. . N
excited-state wave function can be thought of as a coherent, Inlthe Spe.c'a' case of a constant potenpal the glaSS|caI picture
superposition of FranckCondon wave packets created in the IS sl.lghtly d|ffgren§. Here all the Irajectories begin a.t the same
upper state at times with different weighting factors (given _posmon but with different nonzero momenta det_ermlned by the
by E(t')) and phases. At time each of these wave packets in instantaneous center frequency of the_ _fleld. Fl_gure 3b shows
the superposition has evolved for a time t'. The promoted the promoted state g_enerated t_)y a positively chirped pu_Ise, that
state wave function is obtained by settirrg 0 in eq 39. Since creates the parts W|t_h (numencally) smalll 'momenta first. If,
the initial state is a stationary state in the electronic ground state " €xample, we consider the part with positive momentum, we
“1", the expectation value of the momentum associated with S€€ that time evolution leads to focusing since the high-
#(x, 0) is zero. Furthermore, when the description in Section mementum part will catch up with the low-momentum part.
3.1.2 is extended to “off-resonant’ excitatitiwo > V(o) Or Note _that Fhese pred|pt|ons c0|_nC|de _W|th the exact_ results
Rao < V(Xo), the maximum in the amplitude of the wave packet described in the previous section, with one exceptitire
is displaced tox < xo andx > xo, respectively! With a pulse “turnover_" toa negatlve chlrp_ for a constant potential cannot
of nonzero duration (and its associated frequency distribution), P€ described within the classical picture.
a chirped pulse can be viewed as a series of short pulses with Next, consider a nonlinear, for example, exponential potential
time-dependent center frequencies. and focusing in the asymptotic region far from the Franck
For the purpose of interpreting the quantum results, classical Condon region. In this case, trajectories excited with high
arguments are often applié#*To do this, we neglect the initial ~ frequencies will experience a higher final speed than the
momentum and position distribution of the Franrgkondon trajectories excited with lower frequencies. Thus, although
wave packets and consider the dynamics of classical trajectoriedrajectories excited with high frequencies must travel a longer
on the excited-state surface. All trajectories begin with zero distance to reach, they will do so with a higher speed.
momentum, and the objective is for the trajectories to evolve Consequently, it might be necessary to first excite the trajectories
to the positionxi,c at timetie. The focusing timei,. and its with the smallest final speed (total energy); that ipasitive
dependence on the initial position is, for a linear potential, given chirp should be required. Depending on the valuexgf, a

4. Qualitative Arguments Based on Classical Dynamics
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(a)

probability amplitude (arbitrary units)

05 0 0.5 1
distance (bohr)

Figure 4. Snapshots of the wave packet evolution for the maximum
focusing time case. The width of the initial statAxjy = 0.08 bohr,
corresponds to the width of the ground vibrational state of ICN. The
pulse width,r = 3.0 fs, and the value of the chirf,= —0.248 fs?,

are chosen to maximize the focusing time. The focusing time,is |
3.4 fs, according to the analytical formulas. The focusidor this
case is 1.08. From left to right the propagation times are 0, 1.9, 3.4,
5.3,7.3,9.2,11.1, 13.1, 15.0, and 16.9 fs.

(b)

/
/
probability amplitude (arbitrary units)

crossover from negative to positive chirp might be anticipated, =
connecting the analysis in this work with previous weétk* | _
Finally, it should be remembered that the classical model -5 0 5 10 15 20
neglects the initial position and momentum distributions of the distance (bohr)
Franck-Condon wave packet. Furthermore, dynamics in phase Figure 5. (Panel a): Snapshots of the wave packet evolution for the
space can be described exactly in terms of classical trajectoriegnaximum focusing time case. The width of the initial statex) =
only for potentials that are linear or harmonic. As a result, the 0.24 bohr, corresponds to the width of the= 4 excited vibrational

simple explanations discussed in this section are not expecteo;t"’ie EfllglNé fTShze gt‘ésir‘]’é'ggﬁ 24,;12615}71?;3 mg ¥3Lﬂii2;tTi%gh'$ﬁe
to be highly reliable for a general potential. focusing time ., is 52.5 fs, according to the analytical formulas. The
) focusing,f, for this case is 1.37. From left to right the propagation
5. Numerical Results times are 0, 14.5, 27.8, 41.1, 52.5, 62.9, 72.6, 82.2, 91.9, and 101.6 fs.

. . . (Panel b): Same as panel a, except that the sign of the chirp is reversed;
In this section, we present the results of several numerical that is, 8 = 1.318 fs2.

simulations designed to test the range of validity of the analytical

expressions derived in Section 3.1.2. The numerical results arewhich casetfya* O (AX);. Consequently, whem); is small,
obtained via a direct integration of the time-dependent Schro "3 js small, andx,. must also be small. With a short pulse,
dinger equation. As a model system, we consider the photo- hoth effects are compounded.

dissociation of the molecule ICN. In this molecule, dissociation T obtain more impressive focusing results, we consitleyy(
occurs along the+C coordinate, and the CN bond can be = (.24 bohr, which corresponds to the variance associated with
considered rigid. A linearization of one of the purely repulsive  an excited vibrational state of ICN with= 4.3° Figure 5a shows
excited electronic states of ICRin the Franck-Condon region snapshots of the wave packet propagationtff, with pulse

leads tau = 0.08 bohr*, wherea is defined in eq 6. The linear  arameters as listed in the caption. In this case, the focusing
approximation is reasonable for the first-285 fs33 At longer time is 52.5 fs, which is well after the end of the excitation
times, the linear potential is simply a model potential. For the pulse, and the focusing position is 4.78 bohr, which is well
ground vibrational state of ICNAK)q = 0.08 bohr. The reduced beyond the FranckCondon region. The focusing, is 1.37.
mass,m, of ICN is 21.6 amu. _ Once again, the agreement with the analytical formulas is

Figure 4 shows snapshots of the wave packet dynamics for perfect. While the focusing in Figure 5a appears to be relatively
the maximum focusing time case for the ground vibrational state moderate, if the sign of the chirp is reversed, as in Figure 5b,
of ICN. The pulse widthz, is 3.0 fs, and the chirgf, is the  the wave packet dynamics is completely different. The wave
optimal value 0f—0.248 fs. With these parameters, eq 28 packet spreads continuously, and the width at the target time is
predicts thattye” = 3.4 fs, and the location at which the much greater than in the negatively chirped case. The compari-
focusing occurs igoc = 0.02 bohr. As can be seen in the figure, son of parts a and b of Figure 5 shows that the negative chirp
these predictions agree perfectly with the numerical results. Thedoes indeed counteract the natural tendency for wave packets
focusing,f, for this case is modest, with= 1.08. to spread.

While the results in Figure 4 confirm the validity of the Figure 6 shows snapshots of the dynamics for the same
analytical formulas, they are somewhat disappointing in the situation as in Figure 5, except that the chirp has be chosen
sense that the maximum focusing time occurs just after the endaccording to eq 34 such that the focusing is maximized. The
of the pulse, and the focusing distance is very close to the focusing,f, is 2.56 and the wave packet is focusedat =
Franck-Condon point. The reason for this difficulty can be 21.0 fs, in the region in which the linear approximation to the
seen by examining egs 28 and 29. The maximum focusing time, excited-state potential of ICN is reasonable.
for a fixed slope of the potential and mass, dependsAogy( Figure 7 shows snapshots of the dynamics for the maximum
and r. The maximum possibl oi‘x is obtained ag — , in focusing case, where the pulse width,is chosen to be 24.2
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potential. Future work will investigate this effect in greater detail
and will consider more complicated, nonlinear forms of the
potential.

6. Conclusions

We investigated the focusing of continuum wave packets
created with chirped laser pulses in the weak-field limit. We
demonstrated that focusing can be accomplished when a
negative positiorrmomentum correlation is created in the wave
packet. Specializing to constant and linear (repulsive) potentials,
we showed that if the focused target state is chosen as a
minimum uncertainty Gaussian the promoted state, created by
the laser pulse, must also be a Gaussian. Furthermore, with a
target state located far from the FrardBondon region, a
delocalized promoted state is required, which in turn requires a
pulse with a long duration.

Figure 6. Same as in Figure 5, except that the chirp has been chosen With a Gaussian pulse shape with linear chirp, the promoted

to maximize the focusing? = —0.275 fs2 The focusing timety,c, is
21.0 fs, according to the analytical formulas. The focusfnépr this

case is 2.56. From left to right the propagation times are 0, 8.5, 14.5

21.0, 26.6, 36.3, 46.0, 55.6, 65.3, and 75.0 fs.

probability amplitude (arbitrary units)
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distance (bohr)

Figure 7. Snapshots of the wave packet evolution for the maximum
focusing case. The width of the initial statehx)g = 0.24 bohr,
corresponds to the width of the= 4 excited vibrational state of ICN.
The pulse widthzy = 24.2 fs, and the value of the chirff,= —0.513
fs72, are chosen to maximize the focusing. The focusing titeg,is
38.2 fs, according to the analytical formulas. The focusfnfpr this

state is non-Gaussian, except in the limit of an ultrashort
Gaussian pulse. We showed analytically that in a constant
' potential wave packet spreading can be compensated with
positively chirped laser pulses, whereas in the linear potential
negatively chirped laser pulses are required, in the short-pulse
limit. Numerical simulations showed that the formulas derived
in the short-pulse limit worked surprisingly well also for pulses
of longer duration (fwhm~40-50 fs). We elaborated on a
classical model for wave packet focusing and showed that most
of the predictions could be rationalized within this model.
As mentioned in the Introduction, it was found in earlier
numerical simulations on wave packet focug#tjthat focusing
of a continuum wave packet far from the Franc&ondon region
could be accomplished with a positively chirped pulse. Since
we found that negatively chirped laser pulses compensated for
the spreading in a linear repulsive potential, it is clear that the
nonlinearity of real potentials must play a role. Thus, in order
to fully account for the focusing of wave packets we must study
focusing in nonlinear potentials, for example, using the expo-
nential (model) ICN3 Future work will address the crossover
from negative to positive chirp in nonlinear repulsive potentials
depending on the chosen position of the focused wave packet
Xoc, the curvature of the potential, and the parameters of the
laser pulse.
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fs, a much longer pulse than in Figure 5. The focusing time is raferences and Notes
38.2 fs, which, as expected, is considerably shorter than the

maximum focusing time. However, the focusing,is 2.70,
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