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We investigate the focusing, that is, the reversing of spreading of continuum wave packets created with
chirped laser pulses in the weak-field limit. Focusing can be accomplished when a negative position-momentum
correlation is created in the wave packet. Specializing to constant and linear (repulsive) potentials, we show
analytically that in a constant potential wave packet spreading can be compensated with positively chirped
laser pulses, whereas in the linear potential negatively chirped laser pulses are required, in the short-pulse
limit. The analytical results for the linear potential are supported by numerical simulations. The results are
discussed in the context of a classical model for wave packet focusing.

1. Introduction

When an atom or molecule interacts with an appropriate
ultrafast laser pulse, a wave packet, or time-dependent super-
position state, is created. Wave packets are quantum mechanical
objects that exhibit a host of exotic features. For example, given
a chosen initial state, one can imagine designing laser pulses
with the aim of creating wave packets that steer a system into
a specific target state, including states in which matter is
transformed into a desired product.1-3 On the experimental side,
laser fields with complex pulse shapes can now be created
routinely.4-7 Furthermore, using the concept of laboratory
feedback control,8 it is possible to obtain control without any
prior knowledge of the system Hamiltonian. This procedure is
based on the feedback from an observed experimental signal
and an algorithm that iteratively improves the applied femto-
second laser pulse. Several applications of this approach have
been published recently.9-14

The present work, in line with refs 15-19, is an exploratory
study with the aim of analyzing and understanding the type of
dynamics that can be induced by ultrashort laser pulses. In
particular, we consider the simplest type of phase modulation
that leads to (nontrivial) pulse shaping, which is a quadratic
frequency sweep of the phase. In the time domain, this is
equivalent to a linear chirp of the pulse. Chirped pulses have
now been applied in several experiments.20-22 For example,
pulses with negative chirps, in which frequency decreases as a
function of time, have been shown to enhance vibrational ladder
climbing compared to unchirped pulses.22

Wave packet dynamics in atoms and small molecules has an
appealing, if deceptive, simplicity. Previous theoretical work
has shown that when a continuum wave packet is created with
a transform-limited, Gaussian pulse, the wave packet spreads;
that is, the uncertainty in position increases with time. However,
when the continuum wave packet is created with a positively
chirped pulse,23-25 the wave packet focuses, thus counteracting
the “natural tendency” to spread. Alternatively, if the wave
packet is excited in a molecule with a negatively chirped pulse

in the bound region of an excited-state potential, the wave packet
focuses after one recoil from the turning point of the potential.
Some of these predictions of wave packet focusing have now
been observed experimentally.24

The early work on wave packet focusing23,24 led to the
development of a simple, classical model for the focusing
mechanism, that has formed the basis for interpreting many
subsequent experimental and theoretical results. This classical
model was based on the idea that high-energy components of a
wave packet travel faster than low-energy components. Hence,
to create a focused wave packet with an out-going momentum
(that is, momentum directed away from the Franck-Condon
region), a positive chirp should be applied. This causes the low-
energy portions of the wave packet to be created before the
high-energy components. When the high-energy components
“catch up” with the low-energy components, the wave packet
focuses. This mechanism is operative in both the continuum
(termed previously the “cannon”), and the bound region of a
potential (the “paddle-ball”). With a negatively chirped pulse,
a focused wave packet with momentum directed toward the
Franck-Condon region (the “reflectron”) is formed in the bound
region of a potential. In this case, the high-energy components
of the wave packet should be created first, because they must
travel a longer distance to the target region than the lower energy
components. Note that this picture assumes that the high- and
low-energy components start at the same position.

The classical model describes much of the salient physics.
However, no classical argument can capture completely the
detailed quantum mechanical effects of constructive and de-
structive interference that form the basis for wave packet
dynamics. The purpose of the present work is to analyze the
mechanism of wave packet focusing in greater detail, both
analytically and numerically. As shown below, the results
confirm, in some cases, the simple classical model and contradict
it in others.

In the next section, we review the theoretical framework
needed in order to describe the wave packet created by a laser
pulse. In Section 3, we consider wave packet focusing in linear
(including constant) potentials. For such potentials, analytical
expressions provide intimate insights on the dynamics. In
Section 4, we elaborate on simple arguments based on classical
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dynamics with the aim of providing a rationalization of the
results. Section 5 presents numerical studies of focusing in linear
repulsive potentials. Finally, conclusions and perspectives are
presented in Section 6.

2. The Promoted State Generated via a Laser Pulse

We consider an electronic transition in a molecule, from
electronic state “1” to state “2”. Within the electric-dipole
approximation and first-order perturbation theory for the inter-
action with an electromagnetic field, the state vector associated
with the nuclear motion in electronic state “2” is given by (at
times,t, when the laser pulse has vanished)26-28

Here,|ø2〉 is thepromoted state

whereE(t) is the laser field and

is the Franck-Condon wave packet. In this expression,|ø1〉 is
the initial stationary nuclear state in electronic state “1” with
energyε0 andµ12 is the projection of the electronic transition
dipole moment on the polarization vector of the electric field.

The target,|øfoc(tfoc)〉, is a focused state a timet ) tfoc. To
generate this state, we invert eq 1 to obtain|ø2〉

by propagating the focused target state backward in time to
obtain the corresponding promoted state in the Franck-Condon
region. The goal, then, is to find the laser pulse that best creates
this promoted state.

3. Spreading and Focusing of Wave Packets

We consider a one-dimensional system described by the
HamiltonianĤ ) p̂2/(2m) + V(x). The time evolution associated
with the variance (uncertainty) in position, is given by

where rt is the covariance (or correlation coefficient) of the
position and momentum. Thus, whenrt > 0 the wave packet
will spread, whereasrt < 0 implies that the wave packet will
focus (i.e., contract). At times when the correlationrt is zero,
the width is either in a local minimum or a local maximum.

Specializing to a linear potential

eq 5 can be integrated to give

Thus, forr0 g 0, the wave packet spreads continuously, whereas
for r0 < 0, (∆x)t

2 has a minimum as a function of time; that is,
when a negative correlation exists between the position and
momentum in the wave packet att ) 0 the wave packet will
(initially) focus. Differentiating eq 7 gives

Hence, for a linear potential, drt/dt is always positive, signifying
that for large enough times a wave packet always spreads. The
only way to achieve focusing is to have a wave packet that
initially has a negative position-momentum correlation,r0 <
0. In this situation the wave packet will contract until the time
tfoc, when the correlationrt is zero, that is

after which it starts spreading. The minimum width (at time
tfoc) is given by

3.1. Gaussian Wave Packets in Linear Potentials.For a
linear potential, we can construct the promoted state in eq 4
analytically. If the focused target state is chosen as a (minimum
uncertainty) Gaussian, the promoted state is also a Gaussian.
By analyzing the properties of the promoted state, we can gain
insight on how this promoted state might be created via an
ultrashort pulse.

Note that a linear potential is a reasonable approximation in
the Franck-Condon region of diatomic molecules or for wave
packets moving at high kinetic energies such that the potential
has a negligible effect.

3.1.1. The Promoted State.Consider a Gaussian wave
packet29,30

where xt and pt are the expectation values of position and
momentum, respectively, andAt is a complex parameter related
to the width and the correlation between position and momentum

wherert ) (p/2)Re(At)/Im(At).
The uncertainty in the momentum is given by

and therefore a focused Gaussian wave packet (rt ) 0) is a
minimum uncertainty state.

The Wigner phase-space function associated with the Gauss-
ian is

A contour plot of this function is shown in Figure 1.
Now, for the case of a linear (including a constant) potential,

eq 6, the time evolution ofAt is given by29

whereA0 is At at t ) 0. From this relation, eqs 7 and 8 can be
derived easily.

tfoc ) m|r0|/(∆p)0
2 (9)

(∆x)tfoc

2 ) (∆x)0
2 - r0

2/(∆p)0
2 (10)

ψG(x, t) ) exp{ i
p
[At(x - xt)

2 + pt(x - xt) + st]} (11)

At )
2rt + ip

4(∆x)t
2

(12)

(∆p)t
2 ) 4|At|2(∆x)t

2 )
p2/4 + rt

2

(∆x)t
2

(13)

ΓG(x, p, t) )
1

πp
exp[-2(∆p)t

2(x - xt)
2/p2 - 2(∆x)t

2(p - pt)
2/p2 +

4rt(x - xt)(p - pt)/p
2] (14)

At )
A0

1 + (2A0/m)t
(15)

|ø2(t)〉 ) exp(-iĤ2t/p) |ø2〉 (1)

|ø2〉 ) i
p
∫-∞

∞
dt′e-iε0t′/pE(t′) exp(iĤ2t′/p) |φ〉 (2)

| φ〉 ) µ12 | ø1〉 (3)

|ø2〉 ) exp(iĤ2tfoc/p) |øfoc(tfoc)〉 (4)

d
dt

[(∆x)t
2] ) 2

m
[〈xp̂ + p̂x〉/2 - 〈x〉〈p̂〉] ≡ (2/m)rt (5)

V(x) ) V(x0) - R(x - x0) (6)

(∆x)t
2 ) (∆x)0

2 + [(2/m)r0]t + [(∆p)0
2/m2]t2 (7)

rt ) r0 + [(∆p)0
2/m]t (8)
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Inserting eq 13 into eqs 9 and 10 we obtain, for a Gaussian
with r0 < 0

and

We now derive the reverse relations: Given the focusing time
tfoc and the associated width (∆x)tfoc

2 , what arer0 and (∆x)0
2 of

the promoted state? Inverting the above relations, we find

and

We see that for a chosen width of the focused wave packet,
(∆x)tfoc, a large value oftfoc implies that the width as well as
the absolute value of the position-momentum correlation of
the promoted state must be large.

Note thattfoc is related to the expectation value of the position
for the focused statexfoc

whereR is the slope of the potential andp0 ) 0.
Above we considered theA0 associated with the promoted

state obtained by backward propagation of the target state. Thus,
we can create a desired focused target state atanyselected time
or position xfoc, provided we can generate the associated
promoted state. A somewhat less ambitious goal is to consider
a promoted state with a fixed width, (∆x)0, and to find the form
of this state that produces a maximum focusing time,tfoc.
Maximizing tfoc in eq 16 with respect tor0 for a fixed value of
(∆x)0 gives the maximum focusing time

that can be achieved for an initial position-momentum cor-

relation of the promoted stater0 ) -p/2. We see again that to
obtain a large value oftfoc a delocalized promoted state is
required (obtained, for example, by excitation from an excited
state). To calculate the width of the focused packet at the target
time, we use eq 17 to find

This equation shows that when the focusing time is maximal,
focusing is limited to half of the initial width of the promoted
state. As an example, assume that (∆x)0

2 ) p/(2mω) as in a
harmonic vibrational ground state. Thentfoc

max ) 1/(2ω), which
corresponds toP/(4π) whereP is the vibrational period; that
is, tfoc

max is just a small fraction of the vibrational period.
From the analysis above, we see that obtaining a large value

of the focusing time requires a delocalized promoted state. From
eq 2, it is clear that a delocalized promoted statecannotbe
created with a short pulse.

3.1.2. Promoted StateVia an Ultrashort Laser Pulse.In this
section we investigate the properties of the promoted state
created by a chirped, ultrafast laser pulse. The electric field is
written in the form

The instantaneous frequency isω(t) ) ω0 + ât, whereω0 is
the carrier frequency, andâ is the linear chirp of the pulse. The
Fourier transform of the electric field is given by

whereτ0
2 ) τ2/(1 + τ4â2) andâ0 ) âτ4/(1 + τ4â2).

The initial state is assumed to be a Gaussian and the variation
of the electronic transition dipole moment over the width of
this Gaussian is neglected, that is,φ(x) ) N exp[-(x - x0)2/
4(∆x)g

2]. When the initial state and the electric field (in the
limit τ f 0) are inserted into eq 2 the time-evolution operator
is split into two parts. One part depends on the kinetic energy
operator, and one depends on the potential. The action of the
kinetic energy operator can be neglected (since the spreading
of the initial state during the interaction with the pulse is
negligible), and so only the part which depends on the potential
is retained.

Forpω0 ) V(x0) - ε0 (i.e., on-resonant excitation), we obtain
a promoted state given by31

where

The above equations demonstrate that anegatiVe chirp (â <
0) creates a Gaussian wave packet with a negative correlation,
r0 < 0 (see Figure 2). Furthermore, the promoted state is
squeezed compared to the initial vibrational ground state ((∆x)g

> (∆x)0), resulting in a smalltfoc. Note that forR ) 0 (i.e., a

Figure 1. Phase-space plot of the Wigner function for a Gaussian wave
packet. Two contours are shown. The contour “r < 0” corresponds to
a Gaussian with a negative position-momentum correlation, whereas
the contour “r > 0” corresponds to a Gaussian with a positive position-
momentum correlation.

(∆x)t
foc
max

2 ) (∆x)0
2/2 (22)

E(t) ) E0 exp[-t2/(2τ2) - iω0t - iât2/2] (23)

Ẽ(ω) ) E′0 exp[-τ0
2(ω - ω0)

2/2 + iâ0(ω - ω0)
2/2] (24)

ø2(x) ) i
p

Ẽ[V(x) - ε0

p ]φ(x)

) exp{ i
p

[A0(x - x0)
2 + s0]} (25)

Re(A0) )
r0

2(∆x)0
2

) R2

2p
â

(1/τ2)2 + (â)2

Im(A0) ) p

4(∆x)0
2

) p

4(∆x)g
2

+ R2

2p
1/τ2

(1/τ2)2 + (â)2
(26)

tfoc ) m(∆x)0
2

|r0|
p2/4 + r0

2
(16)

(∆x)tfoc

2 ) (∆x)0
2 p2/4

p2/4 + r0
2

(17)

r0 ) - p2

4m

tfoc

(∆x)tfoc

2
(18)

(∆x)0
2 ) (∆x)tfoc

2 + p2

4m2

tfoc
2

(∆x)tfoc

2
(19)

xfoc ) x0 + Rtfoc
2 /(2m) (20)

tfoc
max ) m

p
(∆x)0

2 (21)
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constant potential) the promoted state generated by an ultrashort
pulse is identical to the initial state, and focusing is not possible
in the ultrashort-pulse limit.

The time tfoc at which the wave packet will focus can be
determined using eq 16 to give

whereR′ ) R(∆x)g/p, anda ) (R′)2 + 1/(2τ2). The focusing
time depends on the chirp, and the maximum value oftfoc is
obtained whenâ ) âmax ) -2a. For this value of the chirp

where b ) p2/(2(∆x)g
2R2τ2). The associated uncertainty in

position is given by

In general, if the chirp has a valueâ ) kâmax, using eqs 26-
28 we obtain a focusing time

and associated uncertainty of

where, as expected,tfoc < tfoc
max. Given a ground-state wave

packet, and an excited linear potential, the formulas in eqs 30
and 31 allow us to predict the focusing time and the associated
uncertainty for any pulse with parametersτ andâ.

The expressions in eqs 28 and 29 are quite similar to the
results in eqs 21 and 22. They are not identical, however, since
they represent the connection between the focusing quantities,
tfoc and (∆x)tfoc

max, and the ground-state (instead of promoted
state) width, (∆x)g, the pulse width,τ, and the potential slope,
R. Furthermore, the real and imaginary parts ofA0 in eq 26 are

not independent since they both depend on the chirp parameter.
Note that in eqs 28 and 29 the chirp is not a parameter, since
it is implicitly set by the condition for a maximumtfoc (â )
-2a).

Rather than maximizing the focusing time, we can choose to
maximize the effect of the focusing. To do this, we define a
focusing parameter,f, as the ratio between the variance of the
promoted state, (∆x)0

2, and the variance at the focusing time,
(∆x)tfoc

2 . With the use of eq 17,f is given by

As can be seen in this equation, to maximizef, we must
maximizer0 (i.e., the initial correlation between position and
momentum) with respect to the chirp. By taking the ratio
Re(A0)/Im(A0), and settingâ ) kâmax, wherek is a positive
constant, andâmax is defined below eq 27, we obtain

whereb is defined above. The maximum of this ratio is obtained
for k ) xb/(1+b), which implies that

Note that, in the above formulas, bothtfoc
max andfmax depend on

the parameterb, which implies that all cases with the same value
of R2τ2 are equivalent.

3.2. Promoted State in a Constant Potential.The formulas
in the preceding section were derived in the short-pulse limit.
For pulses with a finite (nonzero) width, the explicit expression
for the promoted state is extremely complicated and not reported
here. However, one important observation can be made. The
promoted state is in general not a Gaussian, which in turn
implies that the linearly chirped electric field in eq 23 cannot
guide the system into a Gaussian (minimum uncertainty) target
state.

To simplify the analysis, we consider a constant potential,
using the form of the laser field in eq 23. Setting the excited-
state potentialV(x) ) V, we begin in the momentum-space
representation and obtain from eq 2

Assuming again that the initial state is a Gaussian,φ̃(p) )
N exp[-p2/4(∆p)g

2], it can be shown that

This relation shows, in contrast to the above analysis, that the
ratio r0/â can be either positive or negative, which implies that
either a negative or positive chirp might be required to create
a focused wave packet; depending on the width in momentum

Figure 2. Phase-space plot of the Wigner function in a linear potential,
created with an ultrashort negatively chirped pulse. The dashed (closed)
curve is a contour of the Wigner function of the initial Gaussian, the
solid (closed) curve is the Wigner function of the Gaussian created
with an ultrashort pulse with negative chirp. The parabolas are constant
energy contours corresponding to two different total energies. The center
of the Gaussian wave packet follows such a trajectory.

tfoc )
2m(R′)2(∆x)g

2

p
|â/2|

a2 + (â/2)2
(27)

tfoc
max )

m(∆x)g
2/p

1 + b
(28)

(∆x)t
foc
max

2 ) 1 + 2b
1 + b

(∆x)g
2/2 (29)

tfoc ) 2k

1 + k2
tfoc
max (30)

(∆x)tfoc

2 )
k(1 + 2b)

k2(1 + b) + b
(∆x)t

foc
max

2 (31)

f )
(∆x)0

2

(∆x)tfoc

2
) 1 + (2r0/p)2 (32)

|2r0

p | ) k

k2(1 + b) + b
(33)

fmax ) 1 + [4(b + b2)]-1 (34)

ø̃2(p) ) i
p
Ẽ(p2/2m + V - ε0

p )φ̃(p) (35)

r0 ) -pâτ2

2 [1 -
(∆p)0

2

(∆p)g
2] (36)
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space of the promoted state relative to the initial state. Forω0

> V - ε0, we find

In the ultrashort-pulse limit,τ0 f 0, the Fourier transform of
the electric field approaches a constant, and from eq 36 we
observe, as previously, that the position-momentum correlation
vanishes. For a long pulse, eq 37 is double-peaked, around the
values(p(ω0) ≡ (x2m(V-ε0-pω0), and therefore the width
of this function is, roughly speaking, given byp(ω0) Hence, to
obtain a focused wave packet (r0 < 0) eq 36 suggests that

In a recent paper,32 a free particle model was used to describe
the creation of electronic wave packets, and it was argued that
the spreading of such a wave packet can be compensated only
by a positively chirped pulse. However, in ref 32 only electrons
with positive momentum were considered. In this case, (∆p)0

is always smaller than (∆p)g, and according to eq 36 focusing
can only be obtained with a positiveâ.

In the next section, we discuss a simple classical model of
the dynamics, with the aim of providing an intuitive rationaliza-
tion of the analytical results, especially the dependence on the
sign of the chirp.

4. Qualitative Arguments Based on Classical Dynamics

In the quantum picture, the dynamics is given by the excited-
state wave function, which according to eqs 1 and 2 can be
written in the form

whereφ(x, t - t′) ) 〈x | exp[-iĤ2(t - t′)/p] | φ〉. Thus, the
excited-state wave function can be thought of as a coherent
superposition of Franck-Condon wave packets created in the
upper state at timest′ with different weighting factors (given
by E(t′)) and phases. At timet, each of these wave packets in
the superposition has evolved for a timet - t′. The promoted
state wave function is obtained by settingt ) 0 in eq 39. Since
the initial state is a stationary state in the electronic ground state
“1”, the expectation value of the momentum associated with
φ(x, 0) is zero. Furthermore, when the description in Section
3.1.2 is extended to “off-resonant” excitationpω0 > V(x0) or
pω0 < V(x0), the maximum in the amplitude of the wave packet
is displaced tox < x0 andx > x0, respectively.31 With a pulse
of nonzero duration (and its associated frequency distribution),
a chirped pulse can be viewed as a series of short pulses with
time-dependent center frequencies.

For the purpose of interpreting the quantum results, classical
arguments are often applied.23,24To do this, we neglect the initial
momentum and position distribution of the Franck-Condon
wave packets and consider the dynamics of classical trajectories
on the excited-state surface. All trajectories begin with zero
momentum, and the objective is for the trajectories to evolve
to the positionxfoc at time tfoc. The focusing timetfoc and its
dependence on the initial position is, for a linear potential, given

by eq 20. On this potential all trajectories experience the same
acceleration. As a result, the trajectories excited with high
frequencies must be excited firststhey must travel a longer
distance in order to reachxfoc; that is, a pulse with anegatiVe
chirp is required. Note the differences in this argument compared
to the one presented in the Introduction, where all trajectories
were assumed to start out at the same position. Figure 3a shows
the promoted state constructed as described above. This plot is
an approximate picture of the Wigner function, and since the
dynamics in phase space for a linear potential can be described
exactly in terms of classical trajectories, we see that the time
evolution of the promoted state leads to focusing in coordinate
space. This picture should be valid also in a real nonlinear
potential as long as we consider focusing within the Franck-
Condon region.

In the special case of a constant potential the classical picture
is slightly different. Here all the trajectories begin at the same
position but with different nonzero momenta determined by the
instantaneous center frequency of the field. Figure 3b shows
the promoted state generated by a positively chirped pulse, that
creates the parts with (numerically) small momenta first. If,
for example, we consider the part with positive momentum, we
see that time evolution leads to focusing since the high-
momentum part will catch up with the low-momentum part.
Note that these predictions coincide with the exact results
described in the previous section, with one exceptionsthe
“turnover” to a negative chirp for a constant potential cannot
be described within the classical picture.

Next, consider a nonlinear, for example, exponential potential
and focusing in the asymptotic region far from the Franck-
Condon region. In this case, trajectories excited with high
frequencies will experience a higher final speed than the
trajectories excited with lower frequencies. Thus, although
trajectories excited with high frequencies must travel a longer
distance to reachxfoc, they will do so with a higher speed.
Consequently, it might be necessary to first excite the trajectories
with the smallest final speed (total energy); that is, apositiVe
chirp should be required. Depending on the value ofxfoc, a

|Ẽ(p2/2m + V - ε0

p )|2

)

| E′0|2 exp[-τ0
2(p2/2m + V - ε0 - pω0

p )2] (37)

â < 0, for p(ω0) > (∆p)g

â > 0, for p(ω0) < (∆p)g (38)

ø2(x, t) ) i
p
∫-∞

∞
dt′e-iε0t′/pE(t′)φ(x, t - t′) (39)

Figure 3. Phase-space plot of the “Wigner function” in a linear
potential (a) and constant potential (b), respectively. The density in
phase space is the promoted state created with a negatively (a) or
positively (b) chirped pulse. These pictures are obtained within a
“classical approximation”, as detailed in the text. A pulse with a
Gaussian envelope function centered aroundt ) 0 has been used, and
the contributions to the phase-space density of the promoted state have
been sketched at three times (chosen symmetrically aroundt ) 0). The
shading of the “balls” reflects the amplitude of the Gaussian envelope.
The parabolas (a) and straight lines (b) are constant energy contours
(at equidistant energies) corresponding to different total energies.
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crossover from negative to positive chirp might be anticipated,
connecting the analysis in this work with previous work.23,24

Finally, it should be remembered that the classical model
neglects the initial position and momentum distributions of the
Franck-Condon wave packet. Furthermore, dynamics in phase
space can be described exactly in terms of classical trajectories
only for potentials that are linear or harmonic. As a result, the
simple explanations discussed in this section are not expected
to be highly reliable for a general potential.

5. Numerical Results

In this section, we present the results of several numerical
simulations designed to test the range of validity of the analytical
expressions derived in Section 3.1.2. The numerical results are
obtained via a direct integration of the time-dependent Schro¨-
dinger equation. As a model system, we consider the photo-
dissociation of the molecule ICN. In this molecule, dissociation
occurs along the I-C coordinate, and the CN bond can be
considered rigid. A linearization of one of the purely repulsive
excited electronic states of ICN33 in the Franck-Condon region
leads toR ) 0.08 bohr-1, whereR is defined in eq 6. The linear
approximation is reasonable for the first 20-25 fs.33 At longer
times, the linear potential is simply a model potential. For the
ground vibrational state of ICN, (∆x)g ) 0.08 bohr. The reduced
mass,m, of ICN is 21.6 amu.

Figure 4 shows snapshots of the wave packet dynamics for
the maximum focusing time case for the ground vibrational state
of ICN. The pulse width,τ, is 3.0 fs, and the chirp,â, is the
optimal value of-0.248 fs-2. With these parameters, eq 28
predicts thattfoc

max ) 3.4 fs, and the location at which the
focusing occurs isxfoc ) 0.02 bohr. As can be seen in the figure,
these predictions agree perfectly with the numerical results. The
focusing,f, for this case is modest, withf ) 1.08.

While the results in Figure 4 confirm the validity of the
analytical formulas, they are somewhat disappointing in the
sense that the maximum focusing time occurs just after the end
of the pulse, and the focusing distance is very close to the
Franck-Condon point. The reason for this difficulty can be
seen by examining eqs 28 and 29. The maximum focusing time,
for a fixed slope of the potential and mass, depends on (∆x)g

and τ. The maximum possibletfoc
max is obtained asτ f ∞, in

which casetfoc
max ∝ (∆x)g

2. Consequently, when (∆x)g
2 is small,

tfoc
max is small, andxfoc must also be small. With a short pulse,

both effects are compounded.
To obtain more impressive focusing results, we consider (∆x)g

) 0.24 bohr, which corresponds to the variance associated with
an excited vibrational state of ICN withν ) 4.30 Figure 5a shows
snapshots of the wave packet propagation fortfoc

max, with pulse
parameters as listed in the caption. In this case, the focusing
time is 52.5 fs, which is well after the end of the excitation
pulse, and the focusing position is 4.78 bohr, which is well
beyond the Franck-Condon region. The focusing,f, is 1.37.
Once again, the agreement with the analytical formulas is
perfect. While the focusing in Figure 5a appears to be relatively
moderate, if the sign of the chirp is reversed, as in Figure 5b,
the wave packet dynamics is completely different. The wave
packet spreads continuously, and the width at the target time is
much greater than in the negatively chirped case. The compari-
son of parts a and b of Figure 5 shows that the negative chirp
does indeed counteract the natural tendency for wave packets
to spread.

Figure 6 shows snapshots of the dynamics for the same
situation as in Figure 5, except that the chirp has be chosen
according to eq 34 such that the focusing is maximized. The
focusing, f, is 2.56 and the wave packet is focused attfoc )
21.0 fs, in the region in which the linear approximation to the
excited-state potential of ICN is reasonable.

Figure 7 shows snapshots of the dynamics for the maximum
focusing case, where the pulse width,τ, is chosen to be 24.2

Figure 4. Snapshots of the wave packet evolution for the maximum
focusing time case. The width of the initial state, (∆x)g ) 0.08 bohr,
corresponds to the width of the ground vibrational state of ICN. The
pulse width,τ ) 3.0 fs, and the value of the chirp,â ) -0.248 fs-2,
are chosen to maximize the focusing time. The focusing time,tfoc, is
3.4 fs, according to the analytical formulas. The focusing,f, for this
case is 1.08. From left to right the propagation times are 0, 1.9, 3.4,
5.3, 7.3, 9.2, 11.1, 13.1, 15.0, and 16.9 fs.

Figure 5. (Panel a): Snapshots of the wave packet evolution for the
maximum focusing time case. The width of the initial state, (∆x)g )
0.24 bohr, corresponds to the width of theν ) 4 excited vibrational
state of ICN. The pulse width,τ ) 4.2 fs, and the value of the chirp,
â ) -1.318 fs-2, are chosen to maximize the focusing time. The
focusing time,tfoc, is 52.5 fs, according to the analytical formulas. The
focusing, f, for this case is 1.37. From left to right the propagation
times are 0, 14.5, 27.8, 41.1, 52.5, 62.9, 72.6, 82.2, 91.9, and 101.6 fs.
(Panel b): Same as panel a, except that the sign of the chirp is reversed;
that is,â ) 1.318 fs-2.
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fs, a much longer pulse than in Figure 5. The focusing time is
38.2 fs, which, as expected, is considerably shorter than the
maximum focusing time. However, the focusing,f, is 2.70,
which is greater than in the previous case. Once again, the
agreement between the analytical predictions and the numerical
results is excellent.

The formulas derived in Section 3.1.2 were obtained in the
limit τ f 0. It is natural, then, to question at what point does
this approximation becomes invalid. In the short-pulse limit,
the promoted state is Gaussian (for a Gaussian initial state).
We find that for a givenâ, asτ increases the promoted state
becomes increasingly non-Gaussian. This is an indication of
the breakdown of the short-pulse approximation. Interestingly,
though, we find, even for moderately distorted promoted states,
the analytical predictions fortfoc and xfoc remain valid. We
suspect that this is due to the special nature of the linear

potential. Future work will investigate this effect in greater detail
and will consider more complicated, nonlinear forms of the
potential.

6. Conclusions

We investigated the focusing of continuum wave packets
created with chirped laser pulses in the weak-field limit. We
demonstrated that focusing can be accomplished when a
negative position-momentum correlation is created in the wave
packet. Specializing to constant and linear (repulsive) potentials,
we showed that if the focused target state is chosen as a
minimum uncertainty Gaussian the promoted state, created by
the laser pulse, must also be a Gaussian. Furthermore, with a
target state located far from the Franck-Condon region, a
delocalized promoted state is required, which in turn requires a
pulse with a long duration.

With a Gaussian pulse shape with linear chirp, the promoted
state is non-Gaussian, except in the limit of an ultrashort
Gaussian pulse. We showed analytically that in a constant
potential wave packet spreading can be compensated with
positively chirped laser pulses, whereas in the linear potential
negatively chirped laser pulses are required, in the short-pulse
limit. Numerical simulations showed that the formulas derived
in the short-pulse limit worked surprisingly well also for pulses
of longer duration (fwhm∼40-50 fs). We elaborated on a
classical model for wave packet focusing and showed that most
of the predictions could be rationalized within this model.

As mentioned in the Introduction, it was found in earlier
numerical simulations on wave packet focusing23,24that focusing
of a continuum wave packet far from the Franck-Condon region
could be accomplished with a positively chirped pulse. Since
we found that negatively chirped laser pulses compensated for
the spreading in a linear repulsive potential, it is clear that the
nonlinearity of real potentials must play a role. Thus, in order
to fully account for the focusing of wave packets we must study
focusing in nonlinear potentials, for example, using the expo-
nential (model) ICN.33 Future work will address the crossover
from negative to positive chirp in nonlinear repulsive potentials
depending on the chosen position of the focused wave packet
xfoc, the curvature of the potential, and the parameters of the
laser pulse.
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