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Explicit expressions of the full Hamiltonian of tri-atomic system in the hyperspherical elliptic (HSE) coordinates
are derived. The derivation is made from the expressions in the Delves coordinates. A numerical algorithm
is also presented to evaluate the surface eigenfunctions including all the effects of Coriolis coupling terms.
The whole formalism is numerically tested by using the Cl+ DH and O(1D) + HCl reaction systems. The
HSE coordinate system, which is well-known to be powerful to elucidate reaction mechanisms especially for
heavy-light-heavy systems, is now ready to be applied for clarifying full quantum dynamics of such systems.

1. Introduction

As is well-known, the hyperspherical coordinate approach is
one of the most powerful methods to treat chemical reaction
dynamics. This approach is useful not only for quantum
dynamics but also for classical and semiclassical dynamics, as
devised by Billing.1,2 There are basically three types of
hyperspherical coordinate systems for three-body systems, the
Smith-Whitten type,3-6 the Delves type,7 and the hyperspheri-
cal elliptic (HSE) type.8,9 These differ only in the definition of
hyperangle variables. The HSE coordinate system is the most
general one among them, because its definition apart from the
overall orientation contains a free parameter.

A general theory of elliptic coordinate systems was developed
by Jacobi.10 Application of elliptic coordinates to hyperspherical
studies of three-body systems was first discussed by Aquilanti
et al.11 However, these authors did not assume any relation
between the parameter defining their coordinate system and the
geometric characteristics of the physical system. In the HSE
coordinates introduced independently by Tolstikhin et al.,8 this
parameter is fixed by the skew angle.12 As a consequence, the
HSE coordinate system is well adapted to the relief of the
potential energy, which leads to approximate separability of the
variables. The efficiency of this approach in applications to
chemical reaction dynamics was demonstrated in refs 9, 13, and
14 (see also studies of three-body Coulomb systems).8,15 Not
only the high numerical efficiency is achieved but also chemical
reaction dynamics can be nicely conceptualized as vibrationally
nonadiabatic processes occurring in the vicinity of a potential
ridge. This can be visualized as avoided crossings of the

adiabatic potential energy curves as a function of hyperradius.
Even analytical treatment of reaction dynamics can be carried
out with use of the Zhu-Nakamura theory of nonadiabatic
transition.16-19 The HSE coordinates are especially convenient
for studying chemical reactions with heavy-light-heavy (HLH)
mass combination. In this case, with the help of good adiaba-
ticity of the HSE hyperangles, we can further clarify the
nonadiabatic reaction dynamics in the space of hyperangular
variables and can project out the vibrationally adiabatic ridge
lines onto the adiabatic potential-energy-curve diagram to
elucidate reaction mechanisms.20-22

The actual applications of the HSE coordinates to chemical
reactions have been limited only toJ (total angular momentum
quantum number)) 0. To make complete understanding of
reaction dynamics in the HSE coordinate system possible, in
this paper we formulate the full Hamiltonian in the HSE
coordinates, including Coriolis coupling terms for nonzeroJ.
At the same time an efficient numerical algorithm is proposed
to carry out all the necessary numerical computations. The
formulation and the algorithm are tested by applying to the
Cl + HD reaction system. Some preliminary calculations for
O(1D) + HCl on the 21A′ PES are also carried out.

This paper is organized as follows. For later convenience,
the definition of the HSE coordinates and some basic expres-
sions in Delves coordinates are recalled in section II. In section
III the kinetic energy operator expressed in terms of the HSE
coordinates is derived with the help of the expressions given in
section II. This is one of the main results of this paper. Section
IV explains our numerical algorithm, especially about the
preparation of basis functions to build up the surface eigen-
functions at fixed hyperradius and about the body-fixed (BF)
frame transformation. The test calculations for the Cl+ DH
and O(1D) + HCl reaction systems are reported in section V.
Concluding remarks and possible future applications are dis-
cussed in section VI. Further detailed procedures of numerical
calculations are explained in Appendix A, and Appendix B
clarifies the definition ofS matrix.
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2. Preliminaries

In this section, we provide the definition of our hyperspherical
elliptic (HSE) coordinates, their relations to the Delves hyper-
spherical coordinates, and the kinetic energy operator expressed
in terms of Delves coordinates. These will be used in later
sections.

A. HSE Coordinates. The HSE coordinates consist of the
usual hyperradiusF and the following hyperangles (êτ, ητ):9

whereøτ is one of the Delves hyperangles.7 Hereafter we use
the index τ to specify arrangement:τ ) A, for instance,
designates the A+ BC atom-diatom arrangement, andτ + 1
and τ + 2 are used to represent the other two arrangement
channels. The Delves coordinates are defined in terms of the
mass-scaled Jacobi coordinatesxτ andyτ as23

and

with

and

whereµ is the reduced mass of the system,

mj τ is the mass of the atomτ, µτ is the reduced mass in the
arrangementτ, andmτ is the reduced mass of diatomic molecule
in the same arrangement. The Jacobi vectorRτ is the vector
pointing the atomτ from the center of mass of the diatomic
molecule and the Jacobi vectorr τ is the vector pointingτ + 2
from τ + 1.

B. Arrangement Transformation in Delves Coordinates.
The transformation among different sets of Delves coordiantes
(øτ+1, θτ+1) and (øτ+2, θτ+2) can be obtained by expressing the
two sets of Smith-Whitten coordinates,3,4 (Xτ+1, Yτ+1, Z), (Xτ+2,
Yτ+2, Z), in terms of (F, øτ+1, θτ+1) and (F,øτ+2, θτ+2) and using
Smith’s kinematic rotation.3,4 The result is as follows:9

where

The angleγτ satisfies the following relation:

From eqs 9, 10, and 15, we can obtain an important relation
amongøτ,

C. Kinetic Energy Operator in Delves Coordinates.Here,
for later convenience, we recall the explicit expression of kinetic
energy operator in Delves coordinates.7,23,24In the next section,
the kinetic energy operator in HSE coordinates will be derived
from this expression by using the coordinate transformations
given above. Because, as is well-known, the body-fixed (BF)
frame is more convenient than the space-fixed (SF) frame to
describe reaction complex,25 we use BF representation through-
out this paper. Placing the BFz axis along they vector, and
putting thex vector in thexzplane (x > 0), we can express the
kinetic energy operatorT explicitly as

with

and

where J+, J-, Jz are the projections of the total angular
momentum onto the BF frame.

The volume element is given by

The present choice of BF frame is not unique, of course, and
the other frames can be obtained by simple rotations (see

F ) xxτ
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∂
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sections IV-B, for instance). Another convenient choice is, for
instance, to take thez axis parallel to thex vector. In this case
the corresponding kinetic energy operator can be obtained
immediately by simple substitution ofø f (π/2) - ø in eq 4
and thus in eqs 19-20. This choice of BF frame has advantage
in describing the asymptotic wave function.

3. Basic Equations in HSE Coordinates

In this section, we derive the kinetic energy operator in HSE
coordinates by transforming the coordinates from the Delves.
In principle, it is possible to use the rules of Podolsky26 to
achieve this. Unfortunately, however, the application of the
Podolsky quantization rule has been found to be hopelessly
complicated. We have found that the direct transformation of
coordinates from Delves to HSE is much more convenient,
although it is still complicated. Here, we outline this transforma-
tion procedure as concisely as possible.

A. Coordinate Transformation between HSE and Delves.
Because the HSE angle variables (êτ, ητ) are defined in terms
of øτ+1 andøτ+2 (see eqs 2 and 3), it is necessary to expressøτ,
θτ, θτ+1, andθτ+2 in terms oføτ+1 andøτ+2. øτ is easily evaluated
from these two by using eq 16. Others, i.e., cosθτ, cosθτ+1,
and cosθτ+2 can be expressed in terms of cosøτ+1 and cos
øτ+2 as follows (see eqs 9 and 10)

and

Because cosθτ always appears in the form of sinøτ cosθτ in
the derivation, eq 24 is good enough.

The internuclear distancesrτ, rτ+1, and rτ+2 (rτ designates
the distance between the atomsτ + 1 andτ + 2, for instance)
are easily obtained as9

and

wherep+ andp- are defined as

and

B. Kinetic Energy Operator in HSE Coordinates. As
mentioned before, we choose the BF-z axis to be parallel to
the y vector withx in the xz plane (x g 0). Although the total
wave function is naturally invariant for the choice of BF
frame, the Coriolis coupling terms depend on the choice and
numerical efficiency is affected. The HSE coordinate is
convenient to describe the dynamics of heavy-light-heavy
systems, whose internal momentum of inertia is close to that
of a prolate top. In this case the projection of total angular
momentum to the heavy-heavy axis (the axis of prolate top)
approximately conserves; and thus it is appropriate to choose
the y vector (heavy-heavy atom axis) as BF-z axis. In the
following, we give the explicit expressions ofTJ)0 and TJ>0

separately.
1. Expression of TJ)0. This part is independent of the

arrangementτ. This can be easily understood from the fact
that TJ)0 in the Smith-Whitten coordinates is invariant
under Smith’s kinematic rotation.27 In the following we
transform theTJ)0 in the Delves coordinates in the arrange-
ment τ + 1. Hereafter we omitτ for ê and η so that (ê, η)
stands for (êτ, ητ). Similarly, ø3, ø1, and ø2 (θ3, θ1, and θ2)
are used to designateøτ, øτ+1, and øτ+2 (θτ, θτ+1, and θτ+2),
respectively.

Using the relations obtained from eq 9,

and

we can obtain

and
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Substituting these results intoTJ)0, we obtain

Expressingø1 andø2 in terms ofê andη, we can finally have8

2. Expression of TJ>0. With use of eqs 16 and 24 it can be
shown that

and

Using eqs 16, 24, and 11, the operator∂/∂θ3 can be transformed
as

Substituting these results into eq 20, we finally obtain

where

The first and the second terms of eq 41 contain neitherJ+ nor
J-. These terms represent the centrifugal barrier. The residual
third term describes the Coriolis coupling.

The volume element in the HSE coordinates can be obtained
easily from that of Delves coordinates. Starting from the volume
element in the arrangementτ ) 1 (see eq 21) and using eq 22,
we obtain

Thus we finally have

4. Implementation of Numerical Procedures

In the scattering calculation, we solve the close-coupling
equations along the hyperradiusF, as usual. To do this, first
we have to solve the surface eigenvalue problem at fixedF. In
this section, our procedures are summarized for this surface
eingenvalue problem.

A. Basis FunctionssInclusion of Coriolis Coupling. The
surface eigenvalue problem is split into three steps and is solved
by sequential diagonalization with use of new basis functions
at each step. For convenience, the Delves hyperangles (ø3, θ3)
are used occasionally, but their HSE representations can be
easily obtained from eqs 37-40, if necessary. The actual
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numerical integrations are, of course, carried out in the HSE
coordinatates, and they are discussed in Appendix A.

First, we solve the eigenvalue problem forTJ)0 together with
the first term ofTJ>0 in theΩ representation and the electronic
potential function. Hereafter we refer the solution of this
equation as “primitive basis”. This part requires relatively high
computational efforts and is carried out for a selected set of
hyperradiusF ) Fj andΩ ) 0, 1, 2. The equations to be solved
are

For later convenience, the following two integrals are prepared
(see eqs 20 and 58):

and

The calculation procedures of these quantities are given in
Appendix A-4. Second, we solve the equation composed ofTJ)0

and the centrifugal part ofTJ>0 (see eqs 36 and 41) in theK
representation,

by expanding in terms of the primitive basis:

with

The coefficientsCν
JKλ are obtained from the following secular

equation:

where

The selection ofΩ for different K’s as described above
guarantees good convergence, because the behavior of wave
function for odd and evenK is different. Hereafter we refer
these functionsΦ̂λ

JK as “symmetric top basis”. These are given
for each set ofF, J, andK.

Finally, we diagonalize the Coriolis coupling term by
expanding the solution of surface function in terms of the
symmetric top basis,

where

Here we follow the definition of Wigner function given in ref
28 with p designating the parity of the total system:

This symmetrized and normalized functionø̂MK
Jp describes the

motion of the BF frame with definite total parity, total angular
momentum, and its square of the BF-zprojection. The following
secular equation determines the coefficientsCKλ

Jpµ:
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where

All the eigenvectors of secular equations are assumed to be
normalized as∑i|ci|2 ) 1.

B. BF Frame Transformation. So far we have used the BF
frame with thez axis along they vector. However, to represent
the asymptotic wave functions, another choice of BF frame with
BF-z axis along thex vector is more appropriate. When we
designate the orientation of the former HSE BF frame asRe,
and that of the latter BF frame asRd and the relative orientation
of the latter from the former asR′, the standard addition theorem
for Wigner D function takes the form

Substituting this into eq 55, we obtain

Definitions of the Euler angles and the WignerD functions are
taken from ref 28. Note that in this book, the rotated function
ψ′(x) is defined according toΨ(r ) f Ψ(r+δr ) (equivalent to
ψ′(r ) ) ψ(r ′)), wherer ′ denotes the rotated position ofr . We
have used more popular and intuitive definitionψ′(r ′) ) ψ(r ).
The definition ofθ for each Delves arrangement is depicted in
Figure 1. This equation is of great use to transform the HSE
wave function into that of Delves or Jacobi coordinates. Note
that in eq 60 the BF frame is rotated whereas the physical system
is fixed (passive rotation).

5. Numerical Examples

As a first example, we have studied the Cl+ HD reaction
on the BW4 potential energy surface (PES).29 This reaction
system is listed as one of the examples in the program ABC
developed by Skouteris et al.30 Their program has been used to
successfully reproduce several experimental results.31 Here we
use their results as a reference.

The outline of the computational scheme is almost identical
to our previous study.9,32 First, we sectorize the hyperradiusF
which spans 3.5a0-17.3a0 and is split into 69 sectors with the
same interval 0.2a0. At the minimumF and the first 20 sector
boundaries the primitive bases are prepared in the HSE
coordinates. At other sector boundaries including the maximum
F they are prepared in the Delves coordinates. The number of
DVR basis33 employed is listed in Table 1. Second, the basis
functions are solved at the minimum and maximumF, each
sector boundary, and 8 quadrature points within each sector.
The quadrature points in the first sector are prepared by scaling
the Jacobi polynomialsP(2,0)(x). Other quadrature points are

Ĉλ′KλK+1
Jp )

{
-x2J(J + 1) ×

〈Φ̂λ′
J0| 1

2 sin2
ø3

2

(cosθ3

sin θ3
+ ∂

∂θ3
)|Φ̂λ

J1〉
for K ) 0 andJ + p is even

-xJ(J + 1) - K(K + 1) ×

〈Φλ′
JK| 1

2 sin2
ø3

2

{(K + 1)
cosθ3

sin θ3
+ ∂

∂θ3
}|Φ̂λ

JK+1〉
for K > 0

(58)

DMM′
J (Re) ) ∑

M′′
DMM′′

J (Re) DM′′M′
J (R′) (59)

ø̂MK
Jp (Rd) )

{d00
J (θ) ø̂M0

Jp (Re) + x2∑
K′)1

J

(-1)K′dK′0
J (θ) ø̂MK′

Jp (Re)

K ) 0 andJ + p ) even

(-1)Kx2 d0-K
J (θ) ø̂M0

Jp (Re) +

(-1)K ∑
K′)1

J

{d-K′-K
J (θ) + (-1)J+K′+pdK′-K

J (θ)}ø̂MK′
Jp (Re)

K > 0 andJ + p ) even

(-1)K ∑
K′)1

J

{d-K′-K
J (θ) + (-1)J+K′+pdK′-K

J (θ)}ø̂MK′
Jp (Re)

K > 0 andJ + p ) odd
(60)

Figure 1. Definition of θ in the HSE-Delves BF frame transformation.
The additional rotationR′τ transforms the BF frame used in HSE into
the one in Delves with arrangementτ. These rotations are depicted by
Euler angles in middle of the figure. Note that these Euler angles are
defined in terms of HSE BF frame.

TABLE 1: Number of DVR Basis Used in the Channel
Functions of Cl + DHa

F ) 7.5-12.3a0 (Delves)F ) 3.5-7.3a0

(HSE) DCl HCl HD

Nê 130 Nø 400(202) 400(144) 400(115)
Nη 130 Nθ 70 70 70
Nad 30 Nad 10 10 10
Nbas(Ω)0) 150 Nbas(Ω)0) 80 50 20
Nbas(Ω)1) 150 Nbas(Ω)1) 80 50 20
Nbas(Ω)2) 150 Nbas(Ω)2) 60 50 20
Nbas(Ω)3) 150 Nbas(Ω)3) 60 50 15
Nst(K)0) 120 Nst(K)0) 80 50 20
Nst(K)1) 120 Nst(K)1) 80 50 20
Nst(K)2) 120 Nst(K)2) 60 50 20
Nst(K)3) 120 Nst(K)3) 60 50 15
Nch 300 Nch 160 100 40

a The numbers in parentheses ofNø indicate that only this number
of the DVR basis aroundø ∼ 0 is employed. The range ofø is restricted
in each arrangement channel to solve each arrangement separately.
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obtained by scaling the Legendre polynomials. Third, theR
matrix propagation34-38 is performed. This procedure is again
quite similar to what we have used before.9,32The only extension
is that the evaluation of overlap integrals between channel
functions is now carried out for each quantum numberK. This
simply requires summation overK except for the HSE-Delves
boundary, where eq 60 must be applied. In Table 2, the number
of channel functions employed in theR matrix propagation is
listed. Finally, the propagatedR matrix is transformed into the
S matrix by matching the channel functions to the asymptotic
wave functions. To accelerate the convergence, the unperturbed
asymptotic wave functions of spherical Bessel functions are
used, and their derivatives with respect toF are evaluated with
use of the chain rule.

Figure 2 shows the total cumulative reaction probabilities for
J ) 0, 1+, 1-, 2-, 3- (the superscript designates the total parity
of the system). We can see almost complete agreement. Figure
3 shows some of the state-to-state reaction probabilities forJ
) 3-. In this figure, we usedk instead ofK to indicate that
they are measured at the asymptotic limit. Here we can again
confirm good agreement. The figure also indicates that for a
collinearly constrained overbarrier type reaction only small
number ofK components contribute to the reaction. Figure 4
depicts the real and imaginary parts of state-to-state reaction
amplitude. All these results guarantee that our present method
and calculations are correct up to the detailed complex phases.

The total CPU time is found to be slightly longer than that
of ABC in this reaction. This depends on the required accuracy,
however, and the present results are supposed to be more

accurate. We have also studied O(1D) + HCl on the 21A′ PES.
The PES function is the same as what we have already reported
before.39-41 The range ofF was chosen to be 5.20-20.12 au,
sectoring 5.20-8.00 with 0.20 width, 8.00-15.92 with 0.18,
and 15.92-20.12 with 0.20. The number of DVR basis,
primitive basis, and symmetric top basis are listed in Table 3.

Figure 2. Total cumulative reaction probabilities for the Cl+ HD
reactions on BW4 PES. Thick lines represent the DCl production
obtained by ABC. Thin lines represent the corresponding HCl produc-
tion. The types of lines distinguish the total angular momentum. Various
marks in the figure show the results of the present study.

TABLE 2: Number of Channels Used in the R Matrix
Propagation of Cl + DH

J ) 0 J ) 1+ J ) 1- J ) 2- J ) 3-

Nch 100 100 160 160 300

Figure 3. State-to-state reaction probabilities for Cl+ HD(V)0,j)1)
f H + DCl (V)0,j)2) on BW4 PES. The helicity quantum numberk
is also resolved and depicted separately in the figure. Various lines are
the results of ABC, and the marks represent the corresponding results
in the present calculation. The results fork ) 0 f k′ ) 0 are multiplied
by the factor1/5.

Figure 4. Real part and Imaginary part of the state-to-state reaction
amplitude for Cl+ HD(V)0,j)1,K)0) f H + DCl(V)0,j)2,K)0).
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The number of channel function in theR matrix propagation is
also listed in Table 4.

Figure 5 shows the total cumulative reaction probability of
the system for severalJ. The total energyEtot is measured from
the potential bottom of HCl and the zero point energy of HCl
is 0.19 eV.40

Figure 6 depicts the rovibrational distribution for one specific
inital state, O(1D) + HCl(V)0,j)14,k)2) for J ) 3+ at Etot )
0.544 eV. The overall reaction probability of this initial state is
0.658. Although the PES has the collinear transition state with
OHCl configuration,41 this result indicates that the initial state
with k ) 2 is also reactive. And the change of thek is not
negligible. Thus, the conventional highK-component truncation
and fixed K approximation (CS approximation) could be
inapropriate in this system, and further detailed studies are
necessary. The results show that the quantum numbersj andk
are mostly conserved during the reaction. This conservation is
supposed to be the adiabatic feature of the dynamics of HLH
system, of which the motion of BF frame is close to that of
prolate top. Hence, only the vibrationally nonadiabatic transition
is expected to be playing the deterministic role. In the HSE
coordinates the molecular vibration is closely correlated to the
adiabaticê-motion, and accordingly, the vibrationally adiabatic
ridge lines can be clearly defined. Chemical reactions can now
be nicely conceptualized as vibrationally nonadiabatic transition
in the vicinity of potential ridge lines.9,13,14,22,39,40Figure 6
actually shows the high selectivity of the reactive transitions as
found before,39,40 and this kind of selectivity can be nicely
comprehended with use of the HSE channel functions.

6. Concluding Remarks

In this paper, we have presented the full formulation of
quantum dynamics of triatomic reaction systems in terms of
the hyperspherical elliptic coordinates. All terms of the total
Hamiltonian including Coriolis couplings are treated exactly.
Not only the complete mathematical formalism but also a
numerical strategy to solve the resulting equations are explained.
The entire numerical procedure is already implemented in our
computer code. The correctness of the formulation and code is
demonstrated by comparing the results with another existing
code. This new methodology is expected to give all the
scattering information with better numerical efficiency and
physical understanding of reaction dynamics, especially for

systems with HLH mass combination. By using appropriate
diabatic representation, we can easily employ the same meth-
odology to investigate electronically nonadiabatic chemical
reactions.39,40 The quantum dynamics of O(1D) + HCl, for
instance, has been clarified on the basis of the accurate
information of potential energy surfaces including the two
excited ones.39-41 This has been, however, limited only toJ )
0 with the three potential energy surfaces treated separately.
With use of the present algorithm we can now clarify the full
quantum dyanmics. We believe that the present method will
add a new powerful tool to the hyperspherical coordinate
approach to chemical reaction dynamics. Full applications to
the O(1D) + HCl system, for instance, will be reported in near
future.
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Appendix A. Details of Numerical Procedures

1. DVR Basis.The DVR basis is a popular technique for
quantum molecular dynamics.33 Here, we introduce the follow-
ing DVR basis to deal with different boundary conditions of
the Coriolis coupling terms. First, we introduce the following
N functionsæn

(m):

TABLE 3: Number of DVR Basis Used in the Channel
Functions of O(1D) + HCl a

F ) 15.74-20.12a0 (Delves)F ) 5.2-9.98a0

(HSE)
F ) 10.16-15.56a0

(HSE) HCl OH

Nê 200(100) Nê 200(100) Nø 800(143) 600(124)
Nη 120 Nη 120 Nθ 80 100
Nad 45 Nad 50 Nad 15 25
Nbas 400 Nbas 400 Nbas 300 400
Nst 300 Nst 300 Nst 200 300
Nch 700 Nch 700 Nch 700 700

a The range ofê is restricted to reduce computational effort. Number
of Nbas(Ω) andNst(K) is common for allΩ ) 0, 1, 2, 3 andK ) 0, 1,
2, 3, respectiviely.Nch in the list is forJ ) 3+. See Table 4 for other
J values.

TABLE 4: Number of Channels Used in the R Matrix
Propagation of O(1D) + HCl

J ) 0 J ) 1+ J ) 1- J ) 2- J ) 2 + J ) 3- J ) 3+

Nch 200 200 400 400 550 550 700

Figure 5. Total cumulative reaction probabilites for the O(1D) + HCl
reactions on 21A′ NKB PES.

æn
(m)(x) ) (1 - x2)mæ̃n(x) n ) 1, ...,N, m ) 0, 1/2, 1 (A.1)

æ̃n(x) ) P̃n-1(x) (A.2)
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whereP̃n-1(x) is the normalized Legendre polynomial and the
parameterm specifies the boundary behavior of the functions.
The derivatives of these functions are given by

with

The functionsæj n
(m)(x) are introduced for later convenience.

Taking theseæn
(m) as basis, the DVR basisπi

(m)(x) can be
constructed:

with

Figure 6. Product rovibrational distribution of for O(1D) + HCl(V)0,j)14,k)2) J ) 3+ at Etot ) 0.544 eV.

æ′n
(m)(x) ) (1 - x2)m-1æj n

(m) (A.3)

æj n
(m)(x) )

n(n + 2m - 1)

x(2n - 1)(2n + 1)
P̃n(x) +

(n - 1)(n - 2m)

x(2n - 3)(2n - 1)
P̃n-2(x) (A.4)

πi
(m)(x) ) ∑

n)1

N

Tni
(m)æn

(m)(x) (A.5)

Tni
(m) ) ( 1

1 - xi
2)m

Tni (A.6)
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whereTni is the standard DVR-FBR transformation matrix for
Legendre polynomials. The pointwise character of these function
is obvious from its definition and the nature ofP̃n-1(x). Their
orthogonality is guaranteed by the following approximate
numerical integration:

Here xi and wi are the standard Gauss-Legendre quadrature
points and weights, respectively. Unlike the genuine DVR basis,
the above orthogonality is not exact, but accurate form , N.
Because we only usem ) 0, 1/2, 1 in comparison with the
number of quadrature pointsN ) 100-200, the error is almost
negligible. Thus the DVR basisπi

(m)(x) satisfies the two
required conditions, adjustable boundary behavior and fixed
quadrature points.

2. Integrals of Kinetic Energy Operator. We prepare two
integrals of the kinetic energy operators inη andê space. Let
us first consider the following integral:

where

and

Introducingt ) (η/2γ), we have

In the case ofΩ ) 0 this can be evaluated as

Similarly, in the case ofΩ > 0 we have

Integrals eqs A.12 and A.13 can be computed with use of the
Gauss-Gegenbaur quadrature accurately.42

Next, let us consider the following integral inê space:

where

and

Using the new variablet ) (ê - π)/(π - 2γ), it can easily be
shown that eq A.16 is equivalent to eq 10 withγ f (π/2) - γ.

3. Calculation of Primitive Basis. It can be easily seen that
eq 46 has the separable form with respect toê andη (see the
volume element given by eq 45):

This enables us to resort to the SDT technique43-45 and solve
theê andη motion sequentially. Assuming that we are dealing
with heavy-light-heavy triatomic system, we solve theê
motion first (For light-heavy-light system,η motion should
be solved first, but this change is not substantial):

The set ofηj is chosen to be the quadrature points ofη. Nad is
the number of eigenfunctions of thisη-fixed eigenvalue problem.
Expanding the wave function in terms of the DVR basis
functions introduced,

and integrating the equation with use of the volume element

∫-1

1
πi

(m)(x) πj
(m)(x) dx =

( 1

1 - xi
2)m( 1

1 - xj
2)m

∑
k)1

N

wk

δik

xwi

(1 - xk
2)2m

δjk

xwj

= δij

(A.7)

〈πi′
η(η)|Kη|πi

η(η)〉 (A.8)

πi
η(η) ) 1

x2γ
πi

(Ω/2)( η
2γ) (A.9)

Kη ) -8{ ∂

∂η
(cosη - c)

∂

∂η
- s2Ω2

4(cosη - c)} (A.10)

(A.8) ) 4

γ2∫-1

1 ∂πi′
(Ω/2)(t)

∂t
sin γ(1 - t) sin γ(1 + t) ×

∂πi
(Ω/2)(t)

∂t
dt + 2s2Ω2∫-1

1
πi′

(Ω/2)(t) ×

1
sin γ(1 - t) sin γ(1 + t)

πi
(Ω/2)(t) dt (A.11)

(A.11) ) ∑
k)1

N

∑
l)1

N

Tki′Tli

4

γ2
∫-1

1
(1 - t2)æk

(0)(t) ×

sin γ(1 - t) sin γ(1 + t)

(1 - t)(1 + t)
æl

(0)(t) dt (A.12)

(A.11) ) ∑
k)1

N

∑
t)1

N ( 1

1 - xi′
2)Ω/2( 1

1 - xi
2)Ω/2

Tki′Tli ×

∫-1

1
(1 - x2)Ω-1{ 4

γ2
æj k

(Ω/2)(t)
sin γ(1 - t) sin γ(1 + t)

(1 - t)(1 + t)
×

æj t
(Ω/2)(t) + s2Ω2æj k(t)

(1 - t)(1 + t)

sin γ(1 - t) sin γ(1 + t)
æj l(t)} dt

(A.13)

〈πi′
ê(ê)|Kê|πi

ê(ê)〉 (A.14)

πi
ê(ê) ) 1

xπ - 2γ
πi

(Ω/2)( ê - π
π - 2γ) (A.15)

Kê ) -8{ ∂

∂ê
(c - cosê)

∂

∂ê
-

s2Jz
2

4(c - cosê)} (A.16)

[ -8
cosη - cosê{ ∂

∂ê
(c - cosê)

∂

∂ê
- s2Ω2

4(c - cosê)
+

∂

∂η
(cosη - c)

∂

∂η
- s2Ω2

4(cosη - c)} + νF2(V - Uν)]Φh ν ) 0

(A.17)

[ -8
cosηj - cosê{ ∂

∂ê
(c - cosê)

∂

∂ê
- s2Ω2

4(c - cosê)} +

µF2(V(ê,ηj;F) - unê
j )]φnê

(ê;ηj,F) ) 0 (A.18)

φnê
(ê,ηj;F) ) ∑

i)1

Nê 2xs

π

ci
jnê πi

ê(ê)

x(cosηj - cosêi)

(A.19)
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(π2/4s)(cosη - cosê), we obtain the following secular equation
to determine the coefficientci

jnê:

Subsequently, we expand the primitive basis in the following
form:

The coefficientcnêj
ν can be obtained by the following secular

equation:

where

Note that eqs A.22 and A.23 do not contain the volume element,
because it has already been used in eq A.20. The eigenvectors
ci

jnê and cnêj
ν are assumed to be normalized as∑i|ci|2 ) 1, as

usual.
For the evaluation of Coriolis couplings, the basis functions

Φh ν
Ω(ê,η;F) have the separable form with respect toê andη and

are expanded as follows:

From eqs A.19 and A.21 the coefficientsdij
Ων are defined by

4. Calculation of Coriolis Couplings. Let us evaluate the
Coriolis integral in eq 47,

wherea(ê,η) andb(ê,η) are defined as follows (see eqs 37-39):

and

This integrand has singularity, and the numerical convergence
is not guaranteed unless the singularity is handled properly.
However, the wave function fortunately does not approach this
point, because at this point two atomsτ + 1 andτ + 2 coalesce.
Thus we can simply ignore this singularity and integrate the
function with use of the same equadrature (êi, ηj) as follows:

wherea(êi,ηj) andb(êi,ηj) are abbreviated toaij andbij.
Let us next consider the other integral in eq 48:

whereb(ê,η) is defined by eq A.28 andg(ê,η), f(ê)(ê,η), and
f(η)(ê,η) are defined as

and

We need theê derivative andη derivative ofΦh ν
Ω+1 at (êi,ηj).

Noting thatπj′
η(ηj) ) δj′j(2γwj)-1/2, these can be evaluated as

and

Finally, eq A.30 is evaluated as follows:

b(ê,η) ) 1 + p+ cos
η
2

cos
ê
2

+ p- sin
η
2

sin
ê
2

(A.28)

(A.26) ) ∑
i)1

Nê

∑
j)1

Nη

dij
Ων′

aij

bij

dij
Ω+1ν (A.29)

Ch ′ν′ν
ΩΩ+1 ) 〈Φh ν′

Ω|g(ê,η)

b(ê,η)(f(ê)(ê,η)
∂

∂ê
+ f(η)(ê,η)

∂

∂η)|Φh ν
Ω+1〉
(A.30)

g(ê,η) )
2x(c - cosê)(cosη - c)

cosη - cosê
(A.31)

f(ê)(ê,η) ) p- sin
ê
2
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η
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ê
2
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η
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(A.32)

f(η)(ê,η) ) p+ sin
ê
2
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η
2

- p- cos
ê
2
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η
2

(A.33)
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ê|Kê|πi
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µF2V(êi,ηj,F)δi′i]ci
jnê ) µF2unê

j ci′
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η(η)〉Oj′jn′
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+ µF2unê
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ν )

µF2Uµ(F)cn′êj′
ν (A.22)
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(ê,ηj′;F) φnê

(ê;ηj,F) dê
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Nê ci
j′n′

ê ci
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Φh ν
Ω(ê,η;F) ) ∑

j)1

Nη

∑
i)1

Nê 2xs dij
Ων

πxcosηj - cosêi

πi
ê(ê)πj

η(η) (A.24)

dij
ΩV ) ∑

n
ε
)1

Nad

cnε

V cjnêci
jnê (A.25)

Ch ν′ν
ΩΩ+1 ) 〈Ψh ν′

Ω|a(ê,η)

b(ê,η)|Ψh ν
Ω+1〉 (A.26)

a(ê,η) )
(c2 - c1) cos

η
2

cos
ê
2

- (c2 + c1) sin
η
2
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ê
2

x(c - cosê)(cosη - c)
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wherewi represents the weight factor of theith Gauss-Legendre
quadrature point out ofNê points andwj is the weight forjth
quadrature point out ofNη, respectively. The subscripts forg,
f(ê), andf(η) mean that these functions are evaluated at quadrature
points (êi, ηj).

Appendix B. Definition of S Matrix

We introduce the following wave function of noninteracting
atom-diatom system:

with

whereµτ is the reduced mass of the atom-diatom system,Ej is
the rotational energy of the diatomic molecule, andEtot is the
total energy of the system. The angles (θR, φR) and (θr, φr) are
defined with respect to the SF frame. The normalization factor

x(µτ/pkj) is introduced so that the wave functions have unit
probability flux density alongR direction. Because we concern
the definition of theS matrix here, we have ignored the
vibrational motion of the diatomic molecule.

By rotating the xyz frame according to the Euler angle
(φR, θR, 0), applying Rayleigh’s formula45 with Pl(cosθ) )
D00

l (0,θ,0), expanding the original spherical harmonics with
those in newxyzframe, and finally using the addition theorem
of Wigner functions and the symmetry properties of Clebsh-
Gordan coefficients, the BF representation of eq B.1 is derived
as23

where (θ′r, θ′r) is the direction of diatomic molecule with
respect to the BF frame (helicity representation).

Splitting the incoming and outgoing component, the wave
function can be rewritten as

where

and

The superscriptM is equal tom, but we usedM to indicate that
this represents thezcomponent of the total angular momentum.
The subscripts ofIj-m

JM and Ojm
JM represent their asymptotic

helicity quantum numbers:

and

The different signs ofm in Ij-m
JM andOjm

JM reflect the flipping of
the BF frame that occurs even in the noninteracting atom-
diatom system.23 Note that the probability flux densities of these
two functions are normalized as unity when integrated over the
entire solid angle. These equation also indicate thatm ) K at
asymptotic limit.

TheSmatrix is defined according to the asymptotic behavior
of the perturbed wave function as

Because of the invariance of the Hamiltonian under the parity
operationr f -r and R f -R, we can further decompose
the entire problem. Using the total parity of the system given
by j + l, let us introduce the parity-adapted incoming and
outgoing components as follows:

with substitution

The factor 1/x1+δm0 is introduced to normalize the prob-
ability flux density. The parity-adaptedSmatrix can be defined
for each fixedJ andp as

Ψjm
0 ) xµτ

pkj
eikjRcosθRYjm(θr,φr) (B.1)

kj ) x2µτ(Etot - Ej) (B.2)

(B.1)) xµτ
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∑

J)|m|

∞

(2J + 1) ∑
l)|J-j|

J+j

i lj l(kR) ∑
m′)-min(j,J)

min(j,J)

(-1)m+m′ ×

〈jmJ - m|l0〉〈jm′J - m|l0〉D-m-m′
J (φR,θR,0) Yjm′(θ′r,φ′r) (B.3)

(B.1) )
xπ

k
∑

J)|m|

∞

(2J + 1){Ij-m
JM - Ojm

JM} (B.4)

Ij-m
JM (µτ,k,R) ) xµτk

πp
∑

K)-j

j

D-M-K
J (φR,θR,0) YjK(θ′r,φ′r) ×

∑
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J+j

i l
hl

(2)(kR)

2
〈jmJ - m|l0〉〈jKJ - K|l0〉 (B.5)

Ojm
JM(µτ,k,R) ) -xµτk

πp
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K)-j

j

D-M-K
J (φR,θR,0) YjK(θ′r,φ′r) ×

∑
l)|J-j|

J+j

i l
hl

(1)(kR)

2
〈jmJ - m|l0〉〈jKJ - K|l0〉 (B.6)

Ij-m
JM (µτ,k,R)98

Rf∞ xµτk
πp

iJ+j+1D-Mm
J (φR,θR,0) Yj-m(θ′r,φ′r) ×

e-i{kR-(J+j)π/2}

2kR
(B.7)

Ojm
JM(µτ,k,R)98

Rf∞ µτk
πp

iJ+j+1D-M-m
J (φR,θR,0) Yjm(θ′r,φ′r) ×

ei{kR-(J+j)π/2}

2kR
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Ψjm f
xπ

kj
∑

J)|m|

∞

(2J + 1){Ij-m
JM (µτ,kj,R) -

∑
j′m′

Sj′m′j-m
J Oj′m′

JM (µτ,kj′,R)} (B.9)

{ Ijm
JMp

Ojm
JMp} ) { Ijm

JM

Ojm
JM}

∑
l)|J-j|

J+j

f
1

x1 + δm0

∑
l)|J-j|

J+j

δj+l,p (B.10)

Ψjm
Jp f C{Ijm

JMp - ∑
j′m′

Sj′m′jm
Jp Oj′m′

JMp} (m g 0, m′ g 0) (B.11)
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whereC is an arbitrary constant. Due to the symmetry ofIjm
JMp

andOjm
JMp with respect tom,

the originalS matrix can be obtained from this parity-adapted
S matrix as

and

This definition of the parity-adaptedS matrix is the same as
that of ABC.30
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