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Explicit expressions of the full Hamiltonian of tri-atomic system in the hyperspherical elliptic (HSE) coordinates
are derived. The derivation is made from the expressions in the Delves coordinates. A numerical algorithm
is also presented to evaluate the surface eigenfunctions including all the effects of Coriolis coupling terms.
The whole formalism is numerically tested by using the4CDH and O{D) + HCI reaction systems. The

HSE coordinate system, which is well-known to be powerful to elucidate reaction mechanisms especially for
heavy-light—heavy systems, is now ready to be applied for clarifying full quantum dynamics of such systems.

1. Introduction adiabatic potential energy curves as a function of hyperradius.
Even analytical treatment of reaction dynamics can be carried
out with use of the ZhuNakamura theory of nonadiabatic

transition16-1° The HSE coordinates are especially convenient

As is well-known, the hyperspherical coordinate approach is
one of the most powerful methods to treat chemical reaction

dynamics. This approach is useful not only for quantum ) i . . )
dynamics but also for classical and semiclassical dynamics, as/o" Studying chemical reactions with heawght—heavy (HLH)

devised by Billingt2 There are basically three types of Mass combination. In this case, with the help of good.adiaba-
hyperspherical coordinate systems for three-body systems, thdiCity of the HSE hyperangles, we can further clarify the
Smith—Whitten type3-6 the Delves typé,and the hyperspheri- nor}adlabatlc reactlon_dynamlcs in _the space of _hype_ran_gular
cal elliptic (HSE) type®® These differ only in the definition of yarlables and can _prOje_ct out the_ vibrationally ad|apat|c ridge
hyperangle variables. The HSE coordinate system is the mostlines onto the adiabatic potential-energy-curve diagram to
general one among them, because its definition apart from theelucidate reaction mechanisis??
overall orientation contains a free parameter. The actual applications of the HSE coordinates to chemical
A general theory of elliptic coordinate systems was developed reactions have been limited only dqtotal angular momentum
by Jacobi'® Application of elliptic coordinates to hyperspherical quantum numbery= 0. To make complete understanding of
studies of three-body systems was first discussed by Aquilanti reaction dynamics in the HSE coordinate system possible, in
et al!! However, these authors did not assume any relation this paper we formulate the full Hamiltonian in the HSE
between the parameter defining their coordinate system and thecoordinates, including Coriolis coupling terms for nonzéro
geometric characteristics of the physical system. In the HSE At the same time an efficient numerical algorithm is proposed
coordinates introduced independently by Tolstikhin e &is to carry out all the necessary numerical computations. The
parameter is fixed by the skew angfeAs a consequence, the  formulation and the algorithm are tested by applying to the
HSE coordinate system is well adapted to the relief of the ¢| 4+ HD reaction system. Some preliminary calculations for
potential energy, which leads to approximate separability of the O('D) + HCI on the 2A’ PES are also carried out.

varlaples. The. effluency of this approach in qpphcatlons to This paper is organized as follows. For later convenience,
chemical reaction dynamics was demonstrated in refs 9, 13, and

14 (see also studies of three-body Coulomb syseior 08 S T0 0 7C S SO B SO0 R SR
only the high numerical efficiency is achieved but also chemical :

reaction dynamics can be nicely conceptualized as vibrationally i thg_ k|rt1et|c_; ed”efgy dOpiLa:ﬁr tre]xTresfstid in terms_ of th‘? HS.E
nonadiabatic processes occurring in the vicinity of a potential coordinates IS derived wi € NEIp of the Expressions given in

ridge. This can be visualized as avoided crossings of the section II. This is one of the main results of this paper. Section
' IV explains our numerical algorithm, especially about the
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2. Preliminaries

In this section, we provide the definition of our hyperspherical
elliptic (HSE) coordinates, their relations to the Delves hyper-
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spherical coordinates, and the kinetic energy operator expressed

in terms of Delves coordinates. These will be used in later

sections.

A. HSE Coordinates. The HSE coordinates consist of the

usual hyperradiug and the following hyperanglesy .):°

p=yx2+y,’ @)
Sr = Xe+1 + Xe+2 (2)

Ne = Xe+v1 — X2 3

wherey, is one of the Delves hyperanglésiereafter we use
the indext to specify arrangementr = A, for instance,
designates the A BC atom—diatom arrangement, and+ 1

andr + 2 are used to represent the other two arrangement
channels. The Delves coordinates are defined in terms of the

mass-scaled Jacobi coordinatesaandy, as®

where
c,=Cos %, (12)
s, =sin2y, (13)
+m.,+
tany, = (. MTEH M) y, < g (14)
The angley, satisfies the following relation:
Vet Verr T V2 =7 (15)

From egs 9, 10, and 15, we can obtain an important relation
amongyz,

S, COSy, + S11 €08,y + 5.4, COSy,4, =0 (16)

C. Kinetic Energy Operator in Delves Coordinates.Here,
for later convenience, we recall the explicit expression of kinetic

tan& _ Ve @) energy operator in Delves coordinateéd:24In the next section,
2 X the kinetic energy operator in HSE coordinates will be derived
from this expression by using the coordinate transformations
and given above. Because, as is well-known, the body-fixed (BF)
frame is more convenient than the space-fixed (SF) frame to
X, Y, describe reaction compléXwe use BF representation through-
cosf, = y (6) out this paper. Placing the BEaxis along they vector, and
’ putting thex vector in thexzplane k > 0), we can express the
with kinetic energy operatof explicitly as
\/E T=T,+Tot Tpp a7
X, =4/ "R, (6)
# with
and )
2uT, = —hz(a—z +2 i) (18)
m, ap> PP
Y. = \/; re ()
uT, = _ﬁz(a_2+2COSXi) _
whereu is the reduced mass of the system, =0 p?\ay?  siny oy
[ mmom, . 4’ [  coso i) (19)
“EN R M, ©) o sint \og?  sind 30
M, is the mass of the atom u; is the reduced mass in the and
arrangement, andm; is the reduced mass of diatomic molecule
in the same arrangement. The Jacobi ve&piis the vector 4JZ2 JI+1)— 2322 1
pointing the atonr from the center of mass of the diatomic  2uTy.q= - + x
molecule and the Jacobi vectoris the vector pointing: + 2 p°Sin”y sin” 6 p? cod p?codL
from 7 + 1. 2 2
B. Arrangement Transformation in Delves Coordinates. cosf 9
The transformation among different sets of Delves coordiantes {W(Jrh +33)+ ha_e(J— - J+)} (20)

(¢r+1, O0r+1) @nd {42, 6:4+2) can be obtained by expressing the
two sets of Smitk-Whitten coordinated? (X;+1, Ye+1, Z2), (Xe+2,
Y42, Z), in terms of p, yz+1, O:+1) and ,x.+2, 8:+2) and using
Smith’s kinematic rotatiod# The result is as follow8:

where J¢, J-, J, are the projections of the total angular
momentum onto the BF frame.
The volume element is given by
COS%H-Z = Cr COS%.H_]_ + Sr SinXH-l COSGI 1 (9) ) ) )
’ d® = 2%° sir? y sin 6 sinf dp dy d6 da dB dy  (21)
SiNy. 43 COSO, 1, = =S, COSY,11 + C, SNy, COSO,,, (10)
The present choice of BF frame is not unique, of course, and

SiNY, 4, SN0, =siNy, SN0, (11) the other frames can be obtained by simple rotations (see
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sections IV-B, for instance). Another convenient choice is, for wherep™ andp™ are defined as

instance, to take theaxis parallel to thex vector. In this case

the corresponding kinetic energy operator can be obtained

immediately by simple substitution g¢f — (7/2) — y in eq 4

and thus in eqs 1920. This choice of BF frame has advantage

in describing the asymptotic wave function.

3. Basic Equations in HSE Coordinates

In this section, we derive the kinetic energy operator in HSE
coordinates by transforming the coordinates from the Delves.

In principle, it is possible to use the rules of Podofkio

. Sk WL

— =1+ 28
S m +m (28)
and
~ TS m—m
= = 29
P $; m, +m, (29)

B. Kinetic Energy Operator in HSE Coordinates. As
mentioned before, we choose the BRxis to be parallel to

achieve this. Unfortunately, however, the application of the they vector withx in thexz plane & > 0). Although the total
Podolsky quantization rule has been found to be hopelessly\aye function is naturally invariant for the choice of BF
complicated. We have found that the direct transformation of fragme, the Coriolis coupling terms depend on the choice and
coordinates from Delves to HSE is much more convenient, nymerical efficiency is affected. The HSE coordinate is

although it is still complicated. Here, we outline this transforma- conyenient to describe the dynamics of healight—heavy

tion procedure as concisely as possible.

A. Coordinate Transformation between HSE and Delves.
Because the HSE angle variablés, ¢;;) are defined in terms
of y.+1 andy.+2 (see eqgs 2 and 3), it is necessary to expyess
0, 011, andB,, in terms ofy,+1 andy.+2. ¥, is easily evaluated
from these two by using eq 16. Others, i.e., €Rsc0S 0,41,
and cosf.+, can be expressed in terms of cps1 and cos
¥+2 as follows (see egs 9 and 10)

COSXI+2 - Cr COSXz-H

cosf, ., = S SNy (22)
cos6O — C, COSY 4 — COSY 1 (23)
e S, SiNr4
and
C,.., COS — C,, COS
siny, cosf, = w2 COSY o2 ™ Cppg COSY (24)

S,

Because co$;, always appears in the form of sjn cosé, in
the derivation, eq 24 is good enough.

The internuclear distances, r.+1, andr, (r; designates
the distance between the atoms- 1 andr + 2, for instance)
are easily obtained &s

= S [ cod ) cod )
r,= Zm[1+pf co{2 coyq5 +

p, sin %) sin(%)] " (25)

1 (&t
rHl:\/%sm( 7 (26)

and

M= & sin(%m) (27)

systems, whose internal momentum of inertia is close to that
of a prolate top. In this case the projection of total angular
momentum to the heawheavy axis (the axis of prolate top)
approximately conserves; and thus it is appropriate to choose
the y vector (heavy-heavy atom axis) as BE-axis. In the
following, we give the explicit expressions df—o and Tj-¢
separately.

1. Expression of JEo. This part is independent of the
arrangement. This can be easily understood from the fact
that T;=o in the Smith-Whitten coordinates is invariant
under Smith’s kinematic rotatiof. In the following we
transform theT;—o in the Delves coordinates in the arrange-
mentz + 1. Hereafter we omit for £ and# so that €, #)
stands for &;, 7). Similarly, ys, 1, andy2 (63, 61, and 6y)
are used to designate, y.+1, andyr+2 (07, 6:+1, and 6,1),
respectively.

Using the relations obtained from eq 9,

0 — COSy, COS
(lz) _ G~ COsy, Cosy (30)
M1 9, siny, siny,
and
o) Sysiny,sinb;
90, a a sing,
2 2
sir? ¥, — (Cosy, — C, COS
\/% %1 — (cosy, — c3 cosy;y) (31)

siny,

we can obtain

— COSy, — COos
B,
o, \otaly, siny,sing, 9%,

C1)=¢¥9¥m—mwm—%wwfgﬂ 33
00,/ siny, \0a,,
and
cosf COSy, — C5 COS
0Stuf 8 ) _ lecs Xif 0 (34)
sin 6,106,/ siny, \0x2),,
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Substituting these results ino—o, we obtain

4?8 &
Z/ATJ:O = — —2 (—2) + (—2 +
"\, \9x2),

2 cosxz( Kl ) N 2(c; — cosy, CoSy,) &2 (35)
siny, \0%a/,, sinyysiny, 10y,

Expressing¢; andy, in terms of& andy, we can finally havé

2 cosy,f o
siny, (8;(1)%2

16h°
—2 X
p“(cosny — cosé)

[ omaf) +afomn o)

UuTy o=~

2. Expression of jo. With use of egs 16 and 24 it can be

shown that

X3 $ 31
sm2 2(1 + s cosy, + s cosxl)

:1- + § Q T Q) § i ﬁ
2{1+p coszcosz+p S|n23|n2} (37)

s;” — co€ y, — cos y, + 2¢, COSy; COSy,

sin’ y5 sirf 6, = =
S3
(c3 — cosé)(cosn — c,)
= 2 (38)
S3
and
cost; C, COS), — C, COSy;
Sin s Vs — cog y, — co€ y, + 2, cosy, cosy,
(c,—c) cos§ cos — (c,+cy sin§ sinZ
_ 272 272 (39)

V(cs — cosé)(cosn — )

Using egs 16, 24, and 11, the oper&iid; can be transformed
as

(i) =s,sinf (i) — s, sinf (i)
a93 23 ! aXl 2o 2 BXZ 21

= \/(c; — cosg)(cosy — ¢y x

o, ol
S3siny\xaf,,  S3SiNxa\0xa/,,

_ /(e cosd)(cosn — ¢

cosny — cosé
{(p smgcosg p cosg sin )(%) +
(p sin i cos’7 p cosg sin g)(%)é} (40)
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Substituting these results into eq 20, we finally obtain

2J2

4857,

5 +
p°(c; — cosé)(cosny — cy)
JO+1)— 237

& nell

(1 + p cosz cos~

2uTy o=

+

Eainll
+p sm23|n2)

1
X
(1 +p cosg cos’7 +p sin2 s sin ’7)

2 272

g .
(c,—cy cos3 cosg +(c,+c¢) sin3 sm%

V(3 — cosé)(cosn — cy)

2hy/(c; — cosé&)(cosn — c3)
G, 43, + c0sy — COSE

{(p sin g COSZ P COSg sin 77)(885) +

X

(ersingcosZz P~ cosgsmzz)( )}(J -J)| (41)

2 22

where

(42)

oo fousfi ) - sl

The first and the second terms of eq 41 contain neifhemnor
J_. These terms represent the centrifugal barrier. The residual
third term describes the Coriolis coupling.

The volume element in the HSE coordinates can be obtained
easily from that of Delves coordinates. Starting from the volume
element in the arrangement= 1 (see eq 21) and using eq 22,
we obtain

(43)

Sirf , sin 0, A6, dy, = 513 Siny, Siny, dy, A,

1
= g(cosn — c0s§) dy, dy, (44)

Thus we finally have

2
dy = f—%pS(COSn — cosé) sinf dp d& diy do. dB dy  (45)

4. Implementation of Numerical Procedures

In the scattering calculation, we solve the close-coupling
equations along the hyperradigs as usual. To do this, first
we have to solve the surface eigenvalue problem at fixdd
this section, our procedures are summarized for this surface
eingenvalue problem.

A. Basis Functions—Inclusion of Coriolis Coupling. The
surface eigenvalue problem is split into three steps and is solved
by sequential diagonalization with use of new basis functions
at each step. For convenience, the Delves hyperangie8s]
are used occasionally, but their HSE representations can be
easily obtained from eqs 340, if necessary. The actual
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numerical integrations are, of course, carried out in the HSE
coordinatates, and they are discussed in Appendix A.

First, we solve the eigenvalue problem Tior, together with
the first term ofT ;- in the Q representation and the electronic
potential function. Hereafter we refer the solution of this
equation as “primitive basis”. This part requires relatively high
computational efforts and is carried out for a selected set of
hyperradiup = p andQ = 0, 1, 2. The equations to be solved
are

\_ pz(cosn8— cosg){(a_afé)ﬂ(C3 - COSS)(B—E)E)W *

25,2Q?
(367)7) 1 %)( )} (cg—cos?)(cosn c3)
up*(V(Em: p) —

U2(0) |2 m; ) =0 (46)

For later convenience, the following two integrals are prepared
(see egs 20 and 58):

geanl_ | go 1 €osOs - o14 (47)
VI s Sinbg
2sif =
2
and
G, 291 = | 2 1 339 oL (48)
r?XS 3

The calculation procedures of these quantities are given in
Appendix A-4. Second, we solve the equation compos&d-of

and the centrifugal part of -0 (see eqs 36 and 41) in the
representation,

[ p?(cosy — cosg)[aﬁ(c3 cosg) 5

2s,°K?
(c3 — cosé)(cosy — 03)

d ad

JI+1)—2K?
§ ol Eainll -
(1+p coszcos +p sm25|n2

up”(V(E ;) — U(o)) | DI Emip) = 0 (49)

by expanding in terms of the primitive basis:

Nst

MEmP) =S CF O(E D)

=

(50)
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with
0 K=0
Q=(1 K=1,3,5,... (51)
2 K=2,4,6, ..

The coefficientscﬂ“ are obtained from the following secular
equation:

KA
v

> 0,057 + Vi) C = G (52)

where

Vi (0.p) = @ (xﬂ,b)‘

JI+1) -

§ 1
2

2s(K? — Q%)
(c; — cosé)(cosny — ¢y)

2K?
+

5

cos;
2

(1+p cos2 +p sinzZsin

3

u(p™V(x1.0:0) = pV(1.0:p)) é?u,e,b)ﬂ(ss)

The selection ofQ for different K's as described above
guarantees good convergence, because the behavior of wave
function for odd and eveiK is different. Hereafter we refer
these function;ti)jK as “symmetric top basis”. These are given
for each set op, J, andK.

Finally, we diagonalize the Coriolis coupling term by
expanding the solution of surface function in terms of the
symmetric top basis,

OW(E,0,,7ip) = ;ci%‘ SIEmOTm(By) (54)

where

A [ 2]+ 1
4 o,0,Y) = — X
XMK( ﬂ V) 167'[2(1 + 6KO)

{Dly_«(@By) + (1) DL (i)} (55)

Here we follow the definition of Wigner function given in ref
28 with p designating the parity of the total system:

|

This symmetrized and normalized functigff, describes the
motion of the BF frame with definite total parity, total angular
momentum, and its square of the Blprojection. The following
secular equation determines the coefficie@g"

0 even parit;} (56)

1 odd parity

= UG (57)

Z(éK’Kél’AO + 6K K+1 K/lK+l)
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where

~Jp —
C/l’K/lK+l -

—J2J3+ 1) x

JO

A
. 2 X3
2 sirf >

1 (c0593

9 )| gn
sinéig+ )(I)’1

a0,

forK=0andJ + pis even

~JIT+1) - KK+ 1) x

cosf A
P B S I akic N P A
X3 sinf; 00

25|r125

forK >0

(58)
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BF-z
Elliptic
A(o, 0, m) J R5(0, 6,, ) \5'3(0, 0, 1)
BF-z
BF-x
3 3
3
BF-z
7 2 1 / 5 1 / 2 BFx
BF-x
Delv 1 Delv 2 Delv 3

All the eigenvectors of secular equations are assumed to berjgyre 1. Definition of 6 in the HSE-Delves BF frame transformation.

normalized asj|c|? = 1.

B. BF Frame Transformation. So far we have used the BF
frame with thez axis along they vector. However, to represent
the asymptotic wave functions, another choice of BF frame with
BF-z axis along thex vector is more appropriate. When we
designate the orientation of the former HSE BF frameRgs
and that of the latter BF frame &€ and the relative orientation
of the latter from the former &R, the standard addition theorem
for Wigner D function takes the form

Dy (RE) = gDﬂnM"(Re) Dy (R) (59)

Substituting this into eq 55, we obtain

)ACi/lpK(Rd) =
J

PP (R) + JE; (~1)0o(6) 720 (RO)
=1

K=0andJ+ p=-even

dgo(6)

(—1)V2 & (6) 7R +
(—1)Ki_1{ e —c(6) + (=17 P ()} T (RO)

K > 0andJ+ p=even
(—1)Kzl{ & (0) + (=1 PR (0)} 2o (RO)

K> 0andJ+ p=odd
(60)

Definitions of the Euler angles and the Wigrizfunctions are
taken from ref 28. Note that in this book, the rotated function
y'(X) is defined according t&(r) — W(r+or) (equivalent to
Y'(r) = y(r"), wherer' denotes the rotated position ofWe
have used more popular and intuitive definitipf(r') = ¥ (r).

The definition of6 for each Delves arrangement is depicted in
Figure 1. This equation is of great use to transform the HSE
wave function into that of Delves or Jacobi coordinates. Note

The additional rotatiorR. transforms the BF frame used in HSE into
the one in Delves with arrangementThese rotations are depicted by
Euler angles in middle of the figure. Note that these Euler angles are
defined in terms of HSE BF frame.

TABLE 1: Number of DVR Basis Used in the Channel
Functions of Cl + DH?

p=35-7.3a p =7.5-12.3a, (Delves)
(HSE) DCl HCl HD
N; 130 N, 400(202) 400(144) 400(115)
N, 130 Ny 70 70 70
Nag 30  Na 10 10 10
Nbad2=0) 150 NuadQ=0) 80 50 20
Npad R=1) 150 NpadQ=1) 80 50 20
Npad 2=2) 150 Npad2=2) 60 50 20
Nbad2=3) 150 NuadQ=3) 60 50 15
Ns(K=0) 120 Ns(K=0) 80 50 20
Ns(K=1) 120 Ns(K=1) 80 50 20
Ns(K=2) 120 Ns(K=2) 60 50 20
Ns(K=3) 120 Ns(K=3) 60 50 15
Neh 300 Nen 160 100 40

2The numbers in parenthesesNf indicate that only this number
of the DVR basis aroung ~ 0 is employed. The range gfis restricted
in each arrangement channel to solve each arrangement separately.

5. Numerical Examples

As a first example, we have studied the €IHD reaction
on the BW4 potential energy surface (PES)his reaction
system is listed as one of the examples in the program ABC
developed by Skouteris et ®Their program has been used to
successfully reproduce several experimental redtltere we
use their results as a reference.

The outline of the computational scheme is almost identical
to our previous stud$:32 First, we sectorize the hyperradigs
which spans 3&—17.33 and is split into 69 sectors with the
same interval 0&. At the minimump and the first 20 sector
boundaries the primitive bases are prepared in the HSE
coordinates. At other sector boundaries including the maximum
p they are prepared in the Delves coordinates. The number of
DVR basi$® employed is listed in Table 1. Second, the basis
functions are solved at the minimum and maximpmeach
sector boundary, and 8 quadrature points within each sector.

that in eq 60 the BF frame is rotated whereas the physical systemThe quadrature points in the first sector are prepared by scaling

is fixed (passive rotation).

the Jacobi polynomial®@9)(x). Other quadrature points are
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Cl+HD -->H+ DCl, D+ HCI
on BW4 PES

N
o

N

-
o

Cumulative Reaction Probability

0.5

06
Total Energy [eV]

Figure 2. Total cumulative reaction probabilities for the €l HD

reactions on BW4 PES. Thick lines represent the DCI production
obtained by ABC. Thin lines represent the corresponding HCI produc-
tion. The types of lines distinguish the total angular momentum. Various
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Cl + HD(v=0, j=1) --> H + DCI (v=0, j=2)
J=3 "on BW4 PES

T T
0.012 H ABCk=0->0
<= ABCk=0->1
— — ABCk=0->2
--=- ABCk=1->0
0.01 [ -----ABCk=1->1 [fr=rsrromeeees
> -— ABCk=1->2
= + HSEk=0->0 4
ol x HSEk=0->1 +
® 0.008 H o HSEk=0->2 4 I
Q o HSEk=1->0 +
o A HSEk=1->1 ] 4 o
o [ o HSEk=1->2
c 0.006 H—— oo ST
S | "
..5 [a] "_‘,'X
8 0.004 g
8 0| /o
- o&"
0.002
0

0.4

Total Energy [eV]

Figure 3. State-to-state reaction probabilities for-€IHD(v=0,=1)

— H + DCI (¢=0,=2) on BW4 PES. The helicity quantum number

is also resolved and depicted separately in the figure. Various lines are
the results of ABC, and the marks represent the corresponding results
in the present calculation. The results kor 0— k' = 0 are multiplied

marks in the figure show the results of the present study. by the factori/s

TABLE 2: Number of Channels Used in the R Matrix

T ion et ot Cl + HD(v=0, j=1, k=0) --> H + DCI (v'=0, {'=2, k'=0)

J=3" on BW4 PES

J=0 J=1* J=1 J=2 J=3

Neh 100 100 160 160 300 0.3 !
obtained by scaling the Legendre polynomials. Third, fhe oo ABC Real
matrix propagatioff—38 is performed. This procedure is again 0.2 |- X HSE Rea % o iy
quite similar to what we have used bef8f8The only extension o 2 p_f\ {)‘/?\
is that the evaluation of overlap integrals between channel © I N }
functions is now carried out for each quantum numeT his = Tt 3 [ i
simply requires summation ovér except for the HSE-Delves g— o K /.'\_O ! / \ !
boundary, where eq 60 must be applied. In Table 2, the number <€ ¢ | oo %5 ’.' ! '-' \ '
of channel functions employed in th® matrix propagation is S 0\ '-\ !.o ! i
listed. Finally, the propagate matrix is transformed into the 3 AN/ L ! : b
S matrix by matching the channel functions to the asymptotic T 0.1 “O ,' . '.’
wave functions. To accelerate the convergence, the unperturbedy ik LR O
asymptotic wave functions of spherical Bessel functions are i \ ,\g\/' ‘.\ \
used, and their derivatives with respecptare evaluated with -0.2 y D)
use of the chain rule. \/

Figure 2 shows the total cumulative reaction probabilities for i 5 1
J=0, 1*, 17, 27, 3~ (the superscript designates the total parity -0.3 :

0.35 0.4 0.45 0.5 0.55 0.6

of the system). We can see almost complete agreement. Figure
3 shows some of the state-to-state reaction probabilities for
= 3. In this figure, we used instead ofK to indicate that
they are measured at the asymptotic limit. Here we can again
confirm good agreement. The figure also indicates that for a
collinearly constrained overbarrier type reaction only small
number ofK components contribute to the reaction. Figure 4
depicts the real and imaginary parts of state-to-state reactionaccurate. We have also studied'D) + HCI on the 2A’ PES.
amplitude. All these results guarantee that our present methodThe PES function is the same as what we have already reported
and calculations are correct up to the detailed complex phasesbefore3®-4! The range ofo was chosen to be 5.2220.12 au,

The total CPU time is found to be slightly longer than that sectoring 5.26-8.00 with 0.20 width, 8.0815.92 with 0.18,
of ABC in this reaction. This depends on the required accuracy, and 15.92-20.12 with 0.20. The number of DVR basis,
however, and the present results are supposed to be morgrimitive basis, and symmetric top basis are listed in Table 3.

Total Energy

Figure 4. Real part and Imaginary part of the state-to-state reaction
amplitude for Cl+ HD(v=0,=1K=0) — H + DCI(v=0,=2,K=0).
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TABLE 3: Number of DVR Basis Used in the Channel 1
Functions of O(D) + HCI2 O('D) +HCl -->Cl + OH
_ 1
p=5.2-998a p=10.16-15.568, P = 15:74-20.12a (Delves) on NKBPES 2 'A'
(HSE) (HSE) HCI OH
R
N:  200(100) Ng 200(100) N,  800(143) 600(124) S O T . P P S Al
N, 120 N, 120 Ny 80 100 ol | T
Nag 45 Ny 50 Nag 15 25 -B— J=-1 :
Noas 400 Noas 400 Npas 300 400 B )
Nt 300 Ny 300 Ny 200 300 20 [ TR L A R I
Nen 700 Nep 700 Ng 700 700 S S ;

aThe range of is restricted to reduce computational effort. Number
of Npad Q) andNs(K) is common for allQ =0, 1, 2, 3 andK = 0, 1,
2, 3, respectivielyNg in the list is ford = 3*. See Table 4 for other
J values.

TABLE 4: Number of Channels Used in the R Matrix
Propagation of O(D) + HCI

J=0 J=1" J=1 J=2 J=2+ J=3 J=3F
Nen 200 200 400 400 550 550 700

Total Cumulative Reaction Probability

The number of channel function in tiRematrix propagation is
also listed in Table 4.

Figure 5 shows the total cumulative reaction probability of
the system for severdl The total energ¥: is measured from
Fhe potential bottom of HCI and the zero point energy of HCI Total Energy [eV]
is 0.19 eVv40

Figure 6 depicts the rovibrational distribution for one specific Figure 5. Total cumulative reaction probabilites for the!D} + HCI
inital state, OD) + HCI(z=0j=14k=2) for J = 3" at Bot = reactions on A’ NKB PES.

0.544 eV. The overall reaction probability of this initial state is

0.658. Although the PES has the collinear transition state with

OHCI configuratiorf! this result indicates that the initial state ~ Systems with HLH mass combination. By using appropriate
with k = 2 is also reactive. And the change of thdés not diabatic representation, we can easily employ the same meth-
negligible. Thus, the conventional higlacomponent truncation ~ odology to investigate electronically nonadiabatic chemical
and fixed K approximation (CS approximation) could be reactions’®40 The quantum dynamics of &@§) + HCI, for
inapropriate in this system, and further detailed studies are instance, has been clarified on the basis of the accurate
necessary. The results show that the quantum nunjlzergk information of potential energy surfaces including the two
are mostly conserved during the reaction. This conservation is excited ones$?-4! This has been, however, limited only Jo=
supposed to be the adiabatic feature of the dynamics of HLH O with the three potential energy surfaces treated separately.
system, of which the motion of BF frame is close to that of With use of the present algorithm we can now clarify the full
prolate top. Hence, only the vibrationally nonadiabatic transition quantum dyanmics. We believe that the present method will
is expected to be playing the deterministic role. In the HSE add a new powerful tool to the hyperspherical coordinate
coordinates the molecular vibration is closely correlated to the approach to chemical reaction dynamics. Full applications to
adiabaticE-motion, and accordingly, the vibrationally adiabatic the O¢D) + HCI system, for instance, will be reported in near
ridge lines can be clearly defined. Chemical reactions can now future.

be nicely conceptualized as vibrationally nonadiabatic transition

in the vicinity of potential ridge line8:%1422394%Figure 6 Acknowledgment. This research was supported in part
actually shows the high selectivity of the reactive transitions as py the Research Grant No.15002011 for Specially Promoted
found before’4® and this kind of selectivity can be nicely  prgject “Studies of Nonadiabatic Chemical Dynamics based on

o lgppeE® b b ]
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

comprehended with use of the HSE channel functions. the Zhu-Nakamura theory” from the Ministry of Education,
Culture, Sports, Science and Technology of Japan. O.I.T. thanks
6. Concluding Remarks I. V. Komarov for drawing his attention to ref 10.

In this paper, we have presented the full formulation of
quantum dynamics of triatomic reaction systems in terms of

the hyperspherical elliptic coordinates. All terms of the total 1. DVR Basis. The DVR basis is a popular technique for
Hamiltonian including Coriolis couplings are t'reated exactly. guantum molecular dynamié&Here, we introduce the follow-
Not only the complete mathematical formalism but also a jng pVR basis to deal with different boundary conditions of

numerical strategy to solve the resulting equations are explainedthe Coriolis coupling terms. First, we introduce the following
The entire numerical procedure is already implemented in our N funCtiOﬂS(p(m)'
o

computer code. The correctness of the formulation and code is
demonstrated by comparing the results with another existing - e )
code. This new methodology is expected to give all the 5" =1 —x)"3,() n=1,..N,m=0,7,1 (A1)
scattering information with better numerical efficiency and 5 .

physical understanding of reaction dynamics, especially for Pn(¥) = Py1(¥) (A.2)

Appendix A. Details of Numerical Procedures
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Product Rovibrational Distribution
O('D) + HCI (v=0, j=14, k=2) --> C1 + OH("', j', k")
E,_=0.544eV on 2'A' NKB PES

Reaction Probability

Reaction Probability

Figure 6. Product rovibrational distribution of for @@) + HCI(v=0,=14k=2) J = 3* at Bt = 0.544 eV.

whereP,_1(X) is the normalized Legendre polynomial and the The function
parametem specifies the boundary behavior of the functions.

The derivatives of these functions are given by

(%) = (1 —x)" "

(A.3)
with
Fg = —NFIND) g+
AJ@n—1)@2n+1)
(n—(Mn—-2m) .

P._ A.4
TEECED n—2(¥) (A.4)

s@f]m)(x) are introduced for later convenience.

Taking thesep™ as basis, the DVR basis™(x) can be
constructed:

N

aM(x) = Zﬁ?"wﬁ"‘kx)

n=

(A.5)

with

(A.6)
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whereT,; is the standard DVR-FBR transformation matrix for
Legendre polynomials. The pointwise character of these function

is obvious from its definition and the nature Bf_1(X). Their

N N
1
orthogonality is guaranteed by the following approximate (A'll):kle(l
=1{= _Xi'

numerical integration:

[0 7™(x) dx =

6ik

1 \mf 1 mNW_(l_ Z)ZmEQd.
el 2

J

(A.7)

Kamisaka et al.

Similarly, in the case of2 > 0 we have

orf 1 \er
5 ( 2) T Ty
1-x%
iny(L—t)siny(1+1t)
1 1— 321 i_(gz/z) \Slny
[ra—%) [yzwk O Toasy
1-t)(1+t
P 2(0) + SRR (N)— — : ) @(t)} d
siny(1—t)siny(1+1)

(A.13)

Integrals egs A.12 and A.13 can be computed with use of the
Gauss-Gegenbaur quadrature accuratély.
Next, let us consider the following integral f1space:

Here x; andw; are the standard Gauskegendre quadrature
points and weights, respectively. Unlike the genuine DVR basis,
the above orthogonality is not exact, but accuratenfiox N.

Because we only usm = 0, Y/,, 1 in comparison with the @§(§)|K§|n§(§)ﬂ (A.14)
number of quadrature poindé= 100-200, the error is almost
negligible. Thus the DVR basisi™(x) satisfies the two  Where
required conditions, adjustable boundary behavior and fixed 1 £
quadrature points. 7(E) = nFQ’Z)( — ”) (A.15)
2. Integrals of Kinetic Energy Operator. We prepare two ' N — 2y bo\r—2y
integrals of the kinetic energy operatorszirand & space. Let
us first consider the following integral: and
. ; K.= -8 2(c— cos&)L — Sy (A.16)
HIi'(77)|K;7|‘7fi () (A.8) g aE 9 4(c — cosé) :
h Using the new variable= (§ — n)/(w — 2y), it can easily be
where shown that eq A.16 is equivalent to eq 10 with~ (2/2) — y.
3. Calculation of Primitive Basis. It can be easily seen that
N eq 46 has the separable form with respect end# (see the
7' (1) = @”i (ﬂ) (A.9) volume element given by eq 45):
-8 { 3 3 sQ°
—(c—cosl)z——F—"—F+
and ’cosn — cosé& 3&'( g)aé, 4(c — cosé)
9 d £Q? } 2 .
2 —(cosyp—C)——————= tvp(V—U)|P,=0
K, = —S{Bi(cosn — c)ai — 452—9_} (A.10) an dn  4(cosy — ¢
i n  4(cosn —c) (A.17)
Introducingt = (57/2y), we have This enables us to resort to the SDT technf§u® and solve
the & andny motion sequentially. Assuming that we are dealing
with heavy-light—heavy triatomic system, we solve thge
4 a0 _ motion first (For light-heavy-light system,; motion should
(A.8)= V—Zf_lT siny(1 —t)siny(1+1) x be solved first, but this change is not substantial):
-8 3 3 sQ°
a2t —{— c— CoSE)-- — —} +
'T() dt + 25°Q? ffl a2ty x cosy; — cosé 85( 5)85 4(c — cosé&)
2 SN vy ) —
: 1 292 dt (A.11) o (V(E,11;30) U‘ng)] ¢n(&1,0) =0 (A.18)
siny(1—t)siny(1+1t)

In the case of2 = O this can be evaluated as

N N 4
(Al1)= ‘ZZTki’TIi _ijl(l — )gd(t) x
T Y

siny(1 —t)siny(1+1t)

POty dt (A.12)
(1—-tH@L+1

The set ofy; is chosen to be the quadrature points;oNag is
the number of eigenfunctions of thjsfixed eigenvalue problem.
Expanding the wave function in terms of the DVR basis
functions introduced,

Yovs A

¢n(Emip) = ) —

=

(A.19)
(cosn; — cosé)

and integrating the equation with use of the volume element
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(?/4s)(cosn — cosé), we obtain the following secular equation
to determine the coefficierd"&:

;| K| O
+

— cosg&;)(cosn; — cos))

Ng
'Z \/ (cos;
up™V(E ;)05 €™ = o, (A.20)

Subsequently, we expand the primitive basis in the following
form:
Nag N)]

Z Crjn ) (1) (A21)

n:=1j

D, (Emip) =

The coefficientc;,; can be obtained by the following secular
equation: )

Nag N,
2 v
n;]: (G IK, 7 07) Oy, + 10y 8110y 1y =
up®U,(p)Cry (A.22)
where
_.7'[2 2712y . )
i, = 2g)a,  PEyP) ¢n(Enyp) AE
NE Cl n; C|n§

(A.23)

Z\/ (cosy; — cos§;)(cosny; — cosE))

Note that eqs A.22 and A.23 do not contain the volume element,
because it has already been used in eq A.20. The eigenvector

d" and cﬁsj are assumed to be normalized Bgci|2 = 1, as
usual.

For the evaluation of Coriolis couplings, the basis functions

é?(g,n;p) have the separable form with respecttands; and
are expanded as follows:

N, Ng V

D E ) = ZZ

From egs A.19 and A.21 the coefficierd?” are defined by

7 E)(n) (A.24)
7T/ COSI; — cos&I

Nag

=5 c e (A.25)
n=1

4. Calculation of Coriolis Couplings. Let us evaluate the
Coriolis integral in eq 47,
IIJQH'D

wherea(&,n) andb(&,n) are defined as follows (see eqs-339):
7 coss £

S _ inZ siné
5 C0s3 (c, + ¢y sing sin

22
V(¢ — cosé)(cosy — ¢)

o[al&)

~QQ+1
V'y -

(A.26)

C, — C;) COS

a&n) =

(A.27)
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and

cosg +p sinZ sin§ (A.28)

= + cos
b(¢n)=1+p" cos 5 5

2
This integrand has singularity, and the numerical convergence
is not guaranteed unless the singularity is handled properly.
However, the wave function fortunately does not approach this
point, because at this point two atoms- 1 andr + 2 coalesce.

Thus we can simply ignore this singularity and integrate the
function with use of the same equadratuég ;) as follows:

Ng N,
(A.26) = .led dQ“V

wherea(&;,n;) andb(&;,n;) are abbreviated te; andby.

Let us next consider the other integral in eq 48:
¢, 00t = E) (f(g) o j)‘(i)QHD
(G + 0y )|
(A.30)

whereb(&,n) is defined by eq A.28 and(&,5), fO(&,), and
f0N(&,,7) are defined as

(A.29)

b(& )

2\/ (c — cosé)(cosny — ¢)

aém) = G0y — COSE (A.31)
(e =p sins cos! — p* coss sinZ
&) =p sm20032 p c0323|n2 (A.32)
and
(g ) = ot sin® cos — p~ coss sin’l
fPEm =p sin3 cos; — p COS3 sin; (A.33)

We need the derivative andy derivative of @ at (&,;).

Noting thatz}(7)) =

d_ 2 S 1
— G =y [ x
ds TN 2YW; (7 — 2y)%?

Oyj(2yw;) "2, these can be evaluated as

Ng [ Ng dQ-HI.v _
Z Z ————— T2 g (2) (A.34)
"™1\"""y/cosn; — cosg, Ty
and
d_ 2 S 1
_(D1£/2+1(§i1']j) = 32 X
T\ (T = 2y)W (2y)
N, [N, d9+lv 77]
T |en ™ -] (A35)

”Z‘ 'Z«/ Cosy; — COS§; 2y

Finally, eq A.30 is evaluated as follows:

(A.30) = ZZM e —(f@ — () +

d_
iy —@?“(a,n,-)) (A:36)
dy
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wherew; represents the weight factor of tlie Gauss-Legendre
quadrature point out ol points andw; is the weight forjth
quadrature point out dfl,, respectively. The subscripts fgr

f®, andft? mean that these functions are evaluated at quadrature

points &, ;).

Appendix B. Definition of S Matrix

We introduce the following wave function of noninteracting
atom—diatom system:

wo =, / :_K &MY, (9,.4,) (B.1)
with
= \/2,Ex — E) (8.2)

whereu;, is the reduced mass of the atemliatom systemE; is
the rotational energy of the diatomic molecule, dagd is the
total energy of the system. The anglég,(¢r) and @, ¢r) are

defined with respect to the SF frame. The normalization factor

y/ (u/hk)) is introduced so that the wave functions have unit
probability flux density alondr direction. Because we concern
the definition of theS matrix here, we have ignored the
vibrational motion of the diatomic molecule.

By rotating thexyz frame according to the Euler angle

Kamisaka et al.

and
IM uk Zj J
ij wf,k,R) = - J‘L’h D—M—K(¢R19Rao) YJK(Q;!QS:‘) X
==j

xR
i
I=3i]

GmJ — mI0KJ — K|I00 (B.6)

The superscripM is equal tom, but we usedM to indicate that
this represents thecomponent of the total angular momentum.
The subscripts ofi™ and Op' represent their asymptotic

helicity quantum numbers:

R—o0 k . i I r
M (kR — P—‘ﬂrg iTIDY | (0rOR0) Y, (6100 X

—i{ KR—(J+)/2}
e 7T

xR B

and

R k i j r lJ
Oj]n"\lﬂ(ﬂz’k’R) —ﬂli.n% IJ+J+1DJ_M—m(¢R10R10) ij(0r1¢r) X

KR ()12}

KR (B.8)

The different signs ofnin I} and ;' reflect the flipping of

the BF frame that occurs even in the noninteracting atom
diatom systend? Note that the probability flux densities of these

(¢r, Or, 0), applying Rayleigh’s formufd with Pi(cosf) = two functions are normalized as unity when integrated over the
D'OO(O,G,O), expanding the original spherical harmonics with entire soljd gngle. These equation also indicate that K at
those in newkyzframe, and finally using the addition theorem asymptotic limit.

of Wigner functions and the symmetry properties of Clebsh The S matrix is defined according to the asymptotic behavior
Gordan coefficients, the BF representation of eq B.1 is derived Of the perturbed wave function as

ags

I+ ming.J)

Uy 2
ED \/;(J;m( )I=;‘|IJ|( R)m}%n(i,»( r

mJ — m{lOmm'J — mIOM? (¢ Or0) Vi (6;.¢7) (B.3)

where @;, 0;) is the direction of diatomic molecule with
respect to the BF frame (helicity representation).

Splitting the incoming and outgoing component, the wave
function can be rewritten as

‘7_[ 0
(B.1)= o 23+ 1)1, — o'}

J=Im|

(B.4)
where

K
(e kR = 4] — Kzz_jDiMwaR,eR,O) Y (0,07)

u kR
i

[jmJ — m|I0mKJ — K100 (B.5)
==l

[

7 M
Win—— ) (23 + {5 K.R) —

i J=Im|

%$mj—m Om(uk.R} (B.9)
]

Because of the invariance of the Hamiltonian under the parity
operationr — —r and R — —R, we can further decompose
the entire problem. Using the total parity of the system given
by j + I, let us introduce the parity-adapted incoming and
outgoing components as follows:

|IMp |
jm jm

IMp IM

with substitution

JH

1
R Y
|:;H /1+(§mo|: il e

The factor 1{/1+9,, is introduced to normalize the prob-
ability flux density. The parity-adapteésimatrix can be defined
for each fixedJ andp as

Jp _, JMp __ p
Yin I im ; "nrim
J

I+
(B.10)

oM} (m=0,m=0) (B.11)
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whereC is an arbitrary constant. Due to the symmetrylfif
and O;"® with respect tam,

NP = (—1)"PMP (B.12)

OnP= (B.13)

(—1y"PoMp

the original S matrix can be obtained from this parity-adapted
S matrix as

§1'me = Sl'fmj m=

Ju+d@u+ém)

(Smim T ) (B-14)
and

%]’—mim = Sl'rm'—m =

- nJu+d@u+ém)

(Swin — Smym) (B.15)

This definition of the parity-adapte8 matrix is the same as
that of ABC30
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