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Our concern is the spin sublevels of the first excited triplet state &fedetttron system in a cubic field. To

that end, we will construct exact analytic eigenvalues and eigenfunctions for these sublevels. The essential
point is that we formulate the total wave functions, space plus spin, so that they form bases for the irreducible
representations of the'Q@louble group. By virtue of such a choice, the matrix with respect to the total
Hamiltonian, which comprises both crystal field potential and sjpirbit coupling, is a priori diagonalized

for any triplet manifold. That is, the symmetry-adapted wave functions are eigenfunctions of the total
Hamiltonian. Configuration interaction among the sublevels of different triplet states may also be expressed
analytically, and the resulting eigenvalues and eigenfunctions may be obtained as a function of-the spin
orbit coupling parameter,g and the’T;—3T, energy gapAE (i.e., 8, whereB is the Racah parameter). The
sublevel energies obtained in this way are compared with the energies of the lowest three emitting levels
observed for KCo(CN). From the experimental energy separatiaasandB are obtained as 576 and 500
cm1, respectively. Since these are reasonable values, we conclude that the experimentally identified emitting
states are indeed the spin sublevels of the lowest triplet State,

1. Introduction A ———-500 cm"

Despite extensive investigation of the luminescence from the

lowest triplet state of @ligand field complexes, little is known Ty———3st8om’
about the spin sublevels of this state. Since luminescence
measurements are usually carried out in the vicinity of 4.2 K,
the only emissive sublevel will be the lowest one. Magnetic
resonance techniques that have been successful for organic
molecules are inapplicable for metal-localized dd transitions for ) ) ) )

Figure 1. Energies of the spin sublevels associated with the lowest

which SUbleve! Sp"tt.mg. Is usually n the. range-1000 cm ™ triplet state of KCo(CN) as determined by Hipps and Crosby

elect_romag_netlc radiation sources in this energy range are nOtsimilar analysis by Mazur and Hippgor a variety of alkali metal

readily available. complexes of Co(lll) found the energies of the second and the third
The lack of an electromagnetic radiation source to pump the emitting states to be 36 and 315 threspectively. Since both sets of

sublevels has been solved ingeniously by Hipps and Cfoshy results are quite similar, we use only the data of ref 1.

who used thermal energy to equilibrate the sublevel populations. ) ) )

They observed a vibrationally structured phosphorescence forand most probably associated with the spin sublevels ofithe

KsCo(CN) and identified it as the emission from several of State of an essentially octahedral complex. _

the spin sublevels of the lowest, metal-localized dd triplet state, ~1he absorption spectra were studied by Miskowski et al.,

3T,. A simulation of the temperature dependence of the and on this basis as well as energy considerations, these authors

phosphorescence lifetimes led to the energies shown in FigureSudgested that the emissive triplet state was tetragonally

1. Somewhat later, Mazur and Higpseasured the phospho- distorted. A FranckCondon analysis of the vibrationally
rescence of various alkali metal complexes of Co(lll). The Structured emission by Mazur and Higped these authors to

lifetime and quantum yield were found to be highly lattice favor an octahedral structure although, admittedly, they were

dependent. However, in all cases, the temperature dependencHna:)b_Ie fo ru'g O_Itljt &an distr(])rtiorrll. We will d:‘_srlczg_ard tg_is
of the phosphorescence could be fitted satisfactorily by a model ambiguity and will assume that the operative field is cubic.

in which the observed emission was supposed to be the sum of Att.empts to Iocate. triplet sublevels by reﬂectanpe spectro-
emissions from three Boltzmann equilibrated sublevels of scopic techniques exist, but they often encounter difficulty. The

degeneracies 2, 3, and 3, in agreement with the earlier Hippsltransitions to the sublevels are certainly spin-forbidden and often
Crosby assignrﬁeﬁt. In vi’ew of the general applicability of a ;patlally forbidden. These difficulties are nicely demonstrated
single model to all the lattice-dependent emissions, Mazur and in the reflectance spectra of the heavy-metal complexes reported

Hipps concluded that the emissive levels were all electronic by Eyring et af These authors not only identified the triplet .
sublevels of Rh, Ir, and Pt complexes, they also supported their
" - - assignments by extensive large-scale computations. However,
FaX,nggfsp%‘g'gg;“thor' E-mail: chspm@Isu.edu. Phone: 225-578-3392. thg gpectra are not very well resolved, leading to errors in peak
T Akita International University. E-mail: azumi@aiu.ac.jp. locations that fall in the range 100 cnt* and to the all-

* Louisiana State University. too-human inclination to assign an electronic transition to every
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inflection. In any event, it seems impossible to determine

sublevel energies to an accuracy of the order of 10'¢mhich

is what Crosby/Hipps obtained and what we have in mind.
As far as we are aware, no theoretical interpretation of the

experiments of Hipps and Crosbgnd of Mazur and Hippss

available. There seems to be no question that the emitting levels

are the triplet sublevels; however, further substantiation requires

the demonstration that the sublevel energy separations can be
interpreted using reasonable magnitudes of the spectroscopic

parameters.

To this end, we have developed a theory of the sublevel
structure of a system of six d-electrons in a cubic field. We
will not engage large calculations; instead, we will demonstrate
a process to obtain exact, analytic eigenfunctions and eigen-
values. We are not aware of any such prior efforts for ahy d
electron systems.

2. Theory

The notations introduced by Griffi¢Hfor the five d-orbitals

will be used:
1
E=d,= \@wl +d.y)
1

n= dzx= _\/%(dl - dfl)
S z\/g(dz —d.)

0=d,=d,

1
€= dx27y2 = \/;(dz + d—z) (1)
The total Hamiltonian is expressed as
H=H,+ Vs + Hgg (2)

where Hy consists of the kinetic energies of electrons and
electron-electron repulsionsyc is the crystal field potential,
andHso is the spin-orbit coupling.Hsp is defined as the sum
of the one-electron operators:

Hso= zg(r)li S 3
whereg
1 zé€ 1
50 = Jrey ami (4)

The triplet excited states arising from theet configurations,
as given by the direct product

T,xE=T,+T, (5)

are3T; and3T,. When electron repulsions are considered, the
energies of these states are

ECT,) = 10Dq + 15A — 22B + 12C

6
E(T,) = 10Dq + 15A — 30B + 12C ©)
whereA, B, andC are Racah parameters. Since the parameter
B is positive, it is immediately clear thaT is the lower triplet
state.
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TABLE 1: Wave Functions (3T, M, 2) and y(3Ty, 7, 7)
Table 1a: Wave Functiong(3Ty, M, 2)2P

w(ngr M=1, Z) = |§§777_7g6‘

YT M=0,2= %{ \EBnce] + |EEnTzel}

YT, M = —1,2) = |E&yijce|
Table 1b: Wave Functiong(®Ty, 7, )¢

1/’(3T1| Ty V) = %{w(}rl' M=-1y)— 1/}(3T1, M= +1,y)}

(T 7,y) = izi{w(m M=—-1,7) + (T, M=+1,9)}

\/_
W(BTL Tz V) = UJ(BTL M = 0! V)

aThe notation|E&x7ce| denotes a Slater determinant including the
normalization factor of %/6!. b The six unlisteck andy components
of the wave functions are obtained from the above by appropriate cyclic
interchange ofx, y, 2), (£, 1, <), and (-(v/3/2) 6 — Yz, (v/312)6 —
M)e, €). Cy =%, Z

We now consider the spirorbit coupling. The Odouble
group representations for which the total wave functions, space
plus spin, constitute a basis are given by the direct product of
the space representation and the spin representation. Since the
triplet spin function transforms &g, the 3T, state yields the
sublevels

T, xT,=A+E+T,+T, @)
For the higher energ§T, state, the direct product
T, xT,=A,+E+T,+T, (8)

also implies a further splitting into four spin sublevets, E,
T1, and To.

The energies of the spin sublevels can be obtained by
diagonalizing the matrix of the total Hamiltonian. The procedure
is straightforward. However, whether diagonalization can be
carried out analytically depends on the choice of the basis
functions. Consequently, we intend to construct total wave
functions, space plus spin, that are fully symmetry-adapted in
the O double group. As far as we know, such a procedure has
not been carried out previously. Consequently, we may well be
a little prolix. However, the advantage is considerable: the
Hamiltonian matrix for any sublevel set will be a priori diagonal.

2.1.3T, State.In the conventional method, the spatial wave
functions are constructed so that they are bases for the
irreducible representatiom; of the single-group O. The spin
wave functions are constructed so that they are eigenfunctions
of the spin operatorS? andS,. These spin functions, as single
multipliers, are then used to modify the spatial parts, generating
a set of space/spin functions. Finally, the wave functions for
the % configuration are then constructed along methods
outlined, for example, by Sugano et®alhe essence of this
method consists of connecting the wave functions of thartd
e! configurations using the Clebselordan and Wigner
coefficients. Such a set of wave functions is shown in Table
la. The unique property of these wave functions is that they
are not only bases of the irreducible representafipaf the O
group, but more importantly, each wave function transforms
exactly as one of the functions y, or z. The wave functions
so constructed are labelegy, or z.

The wave functions of Table 1a are diagonal with respect to
Ho + Vc. The diagonal term i&(3T) of eq 6. If we takeE(3T)
as the zero of energy, the matrix elements of the total
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Hamiltonian,Ho + Vc + Hsp, with respect to the nine basis TABLE 2: Wave Functions of the Spin Sublevelsy(°T4, T,

functions ai—e | glg)omtatcﬁ\éﬁpBgs’es for Irreducible Representations of the
Ix 1y 1z Ox 0z —Ix -1y -1z
y » y VOTs Ay @) = —CTa ) — ZpCTury )~
0 V2100 0-1 0 0 O 71/)(3% 7,2)
3
—J/2i 0 0 0 0 i O 0 0 1 1 5
.| o oo0o1-i0o 0o o o0 wCTLE, 0):76¢(3le T x)+76w<3n, 7 y)—%w@n, 42
MH="9 0 0 1.0 0 O O 0 1
X 01 0 5 8 8 8 01 0 (') wCTLE, e>=—%2w( Ty % x)+%2w(3n, 7, )
- =i - =i
© 0000~ 0 -va 0 YT L0 == ==pCTu 1, )+ —=pCTy 7, )
0 0 000 i +2i 0 0 V2 V2
0 0O 01-i 0 O 0 0 . Tv) = LT _loer
I (d YT T y) ﬁW( 1% 2 \/51/)( 172 X)
yvheregnd, the spin-orbit coupling parametérfor the nd state, YT, T2 =— i¢(3T1, 7, Y) + iw(}rl, 7,, X)
is V2 V2
—_1.¢ _1
oo = HER (1) IE0)IR 1) VT T == 0 (Tan = oy (Tara)
=1 [TRo(NENR () dr YT Tpm) = — %zw@n, 702 - %wm %)
h’ 7€ e 1 1 1
ZHGOKFCZ 0 an(f);;an(f)r2 dr (10) WCTy Ta g)=—72w(3T1, Ty y)—ﬁw(sTl, 7, %)

This matrix is not diagonal because the functions of Table the O symmetry operations are applied simultaneously to both
la are not symmetry-adapted in thé @ouble group. The  space and spin parts, it is found that none of these wave
diagonalization of this matrix can be carried out numerically; functions constitute bases for any irreducible representation of
however, diagonalization in an analytical form appears difficult, o', However, since both the space part and spin part of each
if not impossible. This is unsatisfactory because it evades full wave function transform identically to some one of the functions,
utilization of group theory. If the group theory is properly x vy z these parts may be combined using the Clebsabrdan
applied, this nine-dimensional matrix will be a priori blocked  coefficients to yield wave functions that are bases for irreducible
into one one-dimensional matri¥\{), one two-dimensional  representations of ‘OThe final basis set of wave functions
matrix (E), and two three-dimensional matricel; @ndTo). chosen in this way is summarized in Table 2 and, when

The crucial pOint of the basis functions shown in Table 1a is expressed in terms of Slater determinantS, in Table 3.
that even though they are bases of irreducible representations The Hamiltonian matrix based on these functions is given in
of the O single group, they are not bases for irreducible Taple 4. As shown in Table 4, the nine-dimensional matrix is
representations of the’@ouble group. The crux lies in a choice  not only blocked out into one one-dimensional, one two-
of spin functions that are symmetry-adapted inl@deed, since  dimensional, and two three-dimensional matrices, it is also
no external magnetic field is applied, there is little physical sense completely diagonal. This property is a result of the mode of

in choosing spin functions to be eigenfunctionsSpf construction: each component transforms as either one of the
Consider the following linear combinations of the spin d-orbitals €, #, ¢, 6, or €) or one of p-orbitalsX, y, or 2).
functions: 2.2. 3T, State. Similar procedures may be applied to the
1 second excited triplet stat&[,. The Hamiltonian matrix based
,=——H{yM=-1)—yp(M=+1)} on basis functions that were constructed so that only the space
V2 part is a basis for the irreducible representafians
7,= %l{w(M = —1)+ (M= +1)} B S
| 42 I
,=yM=0) (11) 18 1y 15 05 Op O —1& -1y —Ig
These spin functions constitute a basis for Therreducible 0 V220 0 0 -1 0 0 0
representation of O Furthermoregy, 7y, andz; transform in . ;
the same way as the functiorsy, andz, respectively, in the —va2i 0 0 0 0 ! 0 0 0
O' double group. In view of this property, we take the linear 0 0 0 1 -0 0 0 0
combinations of Table 1b to be the new basis set of spin c 0 10 0 0 0 0 -1|qa2
functions. 06 0 i 0 0 0 O 0 i
If the group operations of ‘Care applied to the space parts -1 —-i 0 0 0 0 1 i 0
of the wave functions of Table 1b, it is found that they transform 0 0 0001 0 -2 O
as the irreducible representatidn. Likewise, if the same . .
operations are applied to the spin parts, it is found that these 0 0 00 0 SURL. 0 0
also transform as the irreducible representalioprHowever, if | 0 0 0-1-i 0 0 0 0 |
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TABLE 3: Wave Functions of the Spin Sublevelsy(®T4, T, ) that Are Bases for Irreducible Representations of the Point

Group O'
WCTL Ay &) = — ——|Eniicz0] + —=|Eynceh| — ——=|Ennczel + —=|Eniczel — —=ilEEncz0] — —=ilEEnceh| + —zi|EEnczel +
232 232 26 26 232 22 26
1. e 11
——i|8EncCe| — —=|&Ennce|l — —=IE&EnTGe|
N NV

1. 1- _ - 1 1 - 1 1 .- - 1. .- 1. .-
YTy, E, 0) = 1Enncg0| — S1Enicch| + ——I|Enfictel — ——=|Enicge| + Fi1EEnsT0| + i|EENGE0| — ——=i|EEncTe| — ——i|EERGTe| —
4 4 43 3 4 4 3 3

4V3 43 43
S
\/éléénngel —ﬁ\éénngel

V3. o NB: oo 1. 1o N3 o VB o 1o 1.
YCTLE @ =— 4 16m6T0| + —=1EncTO| — 718nTcTe| + 71EnneTel + —F1EECTO] + —,=i18EnSTO| — 5ilEEncTe| — 5ilEENSTE

1/’(3T1« T,X) =

V3

08, ceyccdl + L3ieEnceo) — Yikccel — Deknceel — Silchneel — Hickicel

V3. o N8Bz 1. le 1o 1o
YT, Ty = 4 16m6C0| + = =|Enncco| + 718nTcTe| + 715nnctel — S|EEnice| + ZIEEnTce|

N L N TR T e (< WS W I
WCTL T2 =— 2 160701 — —i18n7<TO| — Fil8nictel — ZilSninctel + —=I88ngc0] — —FIESHCTO| — Z188nsTe| + Z1E5nCTE

'/’(31—17 T, 8=

V3

-

Y

: =z 3:c gl 1o 1o Loz
E6mST0| — —18EnSCO| + 158n<Tel + Z188ncTe| — SilEEnTgel — SiI5EniCE]

VA P/ T W N WE . W,
WCTy T m) = 4 16mSE01 + = =1EnTcS0] + Z1EnTcTel + Z18nTcTe| + S1EEnTgel — S15EniCE]

N N P e V3. o N3 oo Lo o Llio
YTy Toe) = 4 116mST01 + = =i18nieTO| + Zil8nicTel + ZilSnictel+ —7188ncT0] — —FIE8HCTO] — Z168nsTe| + 718857 <Te

TABLE 4: Hamiltonian Matrix Elements with Respect to the Basis Functionsy(°Ty, I, 7)

Al, e E, 0 E, € Tl, X Tl, y T1, Z T2, .S T2, n T2, [«

ECTy)
A e 1 0 0 0 0 0 0 0

56

ECT)
E, 0 1 0 0 0 0 0 0 0
- Zgnd
ECT)
E e 0 0 1 0 0 0 0 0
- Zgnd
ECT)
Ty, X 0 0 1 0 0 0 0 0
+ 45na
ECT)
Tuy 0 0 0 0 1 0 0 0 0
+ 45nd
ECTy)
Ty, 2 0 0 0 0 1 0 0 0
T 45nd
ECT)
To & 0 0 0 0 0 0 1 0 0
- Z_gnd
ECTy
To 0 0 0 0 0 0 1
- Z_gnd
ECT)
LENS 0 0 0 0 0 0 0 1
- Zgnd

where the zero of energy is defined BET,). This matrix is
difficult to diagonalize analytically.

The wave functions that are bases for the irreducible
representationdT, of the O double group can be constructed
in a manner that is identical to that fF,. These wave functions

wave functions of Table 5 is shown in Table 6. This matrix is
also a priori diagonal.

2.3. Configuration Interaction Between3T; Sublevels and
3T, Sublevels.The wave functions and energies of Tables 3, 4,
5, and 6 are exact eigenfunctions and eigenvalues of the total

are shown in Table 5. The Hamiltonian matrix based on the Hamiltonian provided that configuration interaction betw&en
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TABLE 5: Wavefunctions of the Spin Sublevelsy(®T,, T, y) that Are Bases for Irreducible Representations of the Point Group
OI

T, Ay &) = — —|Enicgl] + ——|EniceB| + ——|Enficte| — ——|Eniicge| + —mi|EEncTh] + —i|EETCZO] + —i|EEncEe] +

YT Ay e) Zﬁlénngg | Z%ISnngg \ zﬁlénnggel 2ﬁ|§nngg€| 2\/61|§§ng§ | zﬁllééngg | 2ﬁlléénggel
1 .= 1 = - 1 -
— - 0] — — 0
5 ﬁllffﬂggél \/élé&mg | \/élff&nng |

VT, E )= ~ Senccol + Snnccd + Lamncee - Lenceel  Higtnecol - digenecd) - L3ietncee - L3 ctnecel

1, 1= - 1. 1- 1. .= 1. = = 1 .= L=
Y(°T, E, ) = — ——|&nncg) + —3|§7777§g9| + Zlérmgge\ - Zlénnggel + —3! 1EEnsgo| + —3! |EEnscO| + 7 |E&nste| + L |E&ncTe| +

43 43 43 43

1 = _ = 1,2
— 0 + — 0
\/§|§§7777§ | \/§|§§7777€ |

DT, T = — igtnced) — icgnceo) — Yeknezel - Yeknece + SiEsnnco) + Jieknncd
VET, Ty =~ Senicedl  Yinnccol + Lognnccel + L3eniccel — Hetnicol + Yekncd
VT, T = — Sieniccol — Signce) + Yinceel + Y\Enceel + ienezol — Hekneed + Lieinceel — LRz
VT, T 8 = — Setncedl - Ykucco) — L bnceel - ctnceel — Syl - Sickyicd

1. = L1z _ . 3. . V3-__ 1. _ . 1. __
YT Tom) = 216106T01 + 718nn<TO| — —718nicTel — —71Enicte| — S|EEnnco] + Sl E8nTco|

Lo, 0 Lo o N3 /3o 1. 1o o 3o o V3.
YTy Tp0)=— 21151801 = Zi1Emnco] + —F1Enn el + = F11EnnTel — 18EnscO| + Z18EmTO] — 571580 cTe] + I8N STe|

TABLE 6: Hamiltonian Matrix Elements with Respect to the Wavefunctions (3T, I, y)

A, e E, 6 E e Ty, X Ty T,z T, & Ta, Ta g

ECT)
A, & 1 0 0 0 0 0 0 0 0

56

ECT)
E, 0 0 1 0 0 0 0 0 0 0
- Zgnd
ECT)
E, e 0 1 0 0 0 0 0 0
- Zgnd
ECT,)
Ty, X 0 0 0 1 0 0 0 0 0
- Zgnd
ECT)
Ty 0 0 0 0 1 0 0 0 0
- Zgnd
ECT,)
Tz 0 0 0 0 0 1 0 0 0
- Zgnd
ECT,)
To, & 0 0 0 0 0 0 1 0 0
T 45nd
ECT,)
Ta, 0 0 0 0 0 0 0 1
+ Z_gnd
ECT,)
To ¢ 0 0 0 0 0 0 0 0 1
+ 4ond
and®T, is neglected. However, if thel ;—3T, energy separation It is particularly important to direct attention to the two lowest

is small, configuration interaction may become significant. sublevels associated with the lowest triplet st&fe, As is
Nonetheless, since interaction between these two states by eitheshown in Table 4, two of these sublevels, and T,, are
electron repulsion or the crystal field potential is zero, we need accidentally degenerate. Thus, it is of some interest to find out
only focus on the spinorbit coupling. if spin—orbit interactions removes this degeneracy. The con-
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TABLE 7: Matrix Elements for Configuration Interactions

(1) E Representatiory, = 6, €

J. Phys. Chem. A, Vol. 108, No. 34, 2008973

’ i . h ETH{t2K

T
T, L BT eRE

YCTLE y) YT, E ) o
WCTLE, y) 1 3 B ETypeeie
ECT) 46nd 46nd BT AT T
3 3 1
V(T2 E) — 5na ECT) — Jon
(2) T, Representatiory, = &, 1, ¢ A —
w(STlv T2r V) 1/1(3T27 T2| V) T1 . e
3 1 _ ! ¥ e
YET, T2 y) ECT,) — ond ?gnd 5 i T 81 2AE
ET
¥(T2, Tz, 7) \@g ECT,) — lgnd — T T
4 nd 4 .
(3) T1 Representatiory = X, Y, z £ T
! p3 H=XY 5 Figure 2. Schematic representation of the theoretically determined
YT, Ty, ) Y(CT2 Tw y) energies of the spin sublevels associated with the two triplet excited
YETy T y) 3 1 3 states of a system of six d-electrons in a cubic field. Left: soirbit
piny ECTY + 45nd {gnd coupling is not considered. Center: spiorbit coupling is considered
5 1 to first order. Right: spir-orbit coupling is fully considerede(°T5)
YTz, Ty, y) «@g g E(3T2) + andE(®T,) are defined in eq & is the spir-orbit coupling parameter,
4" 4 ¢na, defined in eq 10 of the text\AE is defined in eq 16. The energies

shown in the figure are approximate values obtained in the limit of

figuration interaction matrix elements for tBe T, andT; states large AE. The exact energies are given in the text.

based on the wave functions of Tables 3 and 5 are shown in
Table 7. Since all the matrices are two-dimensional, the energiessuplevels E and T,) are equated to the experimental results,

can be solved analytically. They are as follows: we find
11,1 9( 5na? 1 35
' I SN 1 1 9| 5nd i _ =1, o>°nd ~1
E'.(BE)=E(CT) Z6nd + 2AE + 2AE 1+ 4(AE) 55nd 288 cm 5 8B 30 cm a7)
(13)
A P which yields
1 E+ Snd

EL(T)=ECT) — Yt ——5 = T ]

= (T = E(TY) ~ Z5ng 2 G=586cm’; B=518cm*’ (18)

AE + gnd/2 3 Snd 2
2 1+ 2\AE + Coal2 (14) The ¢3¢ andB parameters for the neutral Co atom given by
Griffith® are 517 and 798 cm, respectively, and are fairly close
to the magnitudes obtained above for Co(lll). In view of this
1 c o+ AE —¢q/2 + comparison, we can say that the spectroscopic parameters
4>nd 2 obtained on the basis of comparison of theory with the Hipps/

AE — ¢ 412 N 3 Cr 2 1) Crosby experiments are quite reasonable.
2 ANAE — 6 4/2

E.(T)=ECTy) +

Pierloot et aP have calculated th&r,—3T, energy gap by a
variety of computational quantum approaches. In all instances,
this gap turned out to be about 0.5 eV. Since the magnitude of
this gap is also B, one findsB to be approximately 500 cm,
in good accord with the value of 518 cfobtained here.

We have no theoretical basis to judge which triplet state
geometry, that of Hipps and Crosbgr Miskowski et aP is
the more trustworthy. However, we can state that the existing

These results are exact; however, approximate energies inassignments do not contradict theory with regard to either an
the limit of largeAE may be obtained by expanding the square octahedral symmetry or the required magnitudes of the spec-
root. The approximate energies obtained in this limit are troscopic parameters.
indicated in the schematic diagram shown in Figure 2.

where

AE =E(T,) — ECT) (16)

4., Conclusion

3. Comparison with Experiment . . . .
P P While this work does pay some attention to experiment, that

We are now ready to compare theory with the experimental is not its primary purpose. We merely want to draw attention
results of Hipps and Crosby.First, the assignments and to the fact that fully symmetry-adapted space/spin wave
energetic ordering of the sublevels cited by Hipps and Crosby functions can be constructed and that this leads to considerable
are shown in Figure 1 and are congruent with the theoretical simplification of the Hamiltonian matrices. In specific, closed
results of Figure 2. Second, the small splitting of the two lowest analytical expressions for energies become available and, if
lying sublevelsT, andE, is in accord with prediction. In view limited, even for the effects of configuration interaction. The
of this qualitative agreement we now become more quantitative. procedure is general and may be applied to ahyf®... or
If the energy separation between the secdnil énd third {[T;) mixed electronic configuration. It may become tedious, but it
sublevels and the energy separation between the lowest twois elegant.
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