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Our concern is the spin sublevels of the first excited triplet state of a d6 electron system in a cubic field. To
that end, we will construct exact analytic eigenvalues and eigenfunctions for these sublevels. The essential
point is that we formulate the total wave functions, space plus spin, so that they form bases for the irreducible
representations of the O′ double group. By virtue of such a choice, the matrix with respect to the total
Hamiltonian, which comprises both crystal field potential and spin-orbit coupling, is a priori diagonalized
for any triplet manifold. That is, the symmetry-adapted wave functions are eigenfunctions of the total
Hamiltonian. Configuration interaction among the sublevels of different triplet states may also be expressed
analytically, and the resulting eigenvalues and eigenfunctions may be obtained as a function of the spin-
orbit coupling parameterςnd and the3T1-3T2 energy gap,∆E (i.e., 8B, whereB is the Racah parameter). The
sublevel energies obtained in this way are compared with the energies of the lowest three emitting levels
observed for K3Co(CN)6. From the experimental energy separations,ς3d andB are obtained as 576 and 500
cm-1, respectively. Since these are reasonable values, we conclude that the experimentally identified emitting
states are indeed the spin sublevels of the lowest triplet state,3T1.

1. Introduction

Despite extensive investigation of the luminescence from the
lowest triplet state of d6 ligand field complexes, little is known
about the spin sublevels of this state. Since luminescence
measurements are usually carried out in the vicinity of 4.2 K,
the only emissive sublevel will be the lowest one. Magnetic
resonance techniques that have been successful for organic
molecules are inapplicable for metal-localized dd transitions for
which sublevel splitting is usually in the range 10-100 cm-1:
electromagnetic radiation sources in this energy range are not
readily available.

The lack of an electromagnetic radiation source to pump the
sublevels has been solved ingeniously by Hipps and Crosby1

who used thermal energy to equilibrate the sublevel populations.
They observed a vibrationally structured phosphorescence for
K3Co(CN)6 and identified it as the emission from several of
the spin sublevels of the lowest, metal-localized dd triplet state,
3T1. A simulation of the temperature dependence of the
phosphorescence lifetimes led to the energies shown in Figure
1. Somewhat later, Mazur and Hipps2 measured the phospho-
rescence of various alkali metal complexes of Co(III). The
lifetime and quantum yield were found to be highly lattice
dependent. However, in all cases, the temperature dependence
of the phosphorescence could be fitted satisfactorily by a model
in which the observed emission was supposed to be the sum of
emissions from three Boltzmann equilibrated sublevels of
degeneracies 2, 3, and 3, in agreement with the earlier Hipps/
Crosby assignment. In view of the general applicability of a
single model to all the lattice-dependent emissions, Mazur and
Hipps concluded that the emissive levels were all electronic

and most probably associated with the spin sublevels of the3T1

state of an essentially octahedral complex.
The absorption spectra were studied by Miskowski et al.,3

and on this basis as well as energy considerations, these authors
suggested that the emissive triplet state was tetragonally
distorted. A Franck-Condon analysis of the vibrationally
structured emission by Mazur and Hipps4 led these authors to
favor an octahedral structure although, admittedly, they were
unable to rule out aD4h distortion. We will disregard this
ambiguity and will assume that the operative field is cubic.

Attempts to locate triplet sublevels by reflectance spectro-
scopic techniques exist, but they often encounter difficulty. The
transitions to the sublevels are certainly spin-forbidden and often
spatially forbidden. These difficulties are nicely demonstrated
in the reflectance spectra of the heavy-metal complexes reported
by Eyring et al.5 These authors not only identified the triplet
sublevels of Rh, Ir, and Pt complexes, they also supported their
assignments by extensive large-scale computations. However,
the spectra are not very well resolved, leading to errors in peak
locations that fall in the range 10-100 cm-1 and to the all-
too-human inclination to assign an electronic transition to every
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Figure 1. Energies of the spin sublevels associated with the lowest
triplet state of K3Co(CN)6 as determined by Hipps and Crosby.1 A
similar analysis by Mazur and Hipps2 for a variety of alkali metal
complexes of Co(III) found the energies of the second and the third
emitting states to be 36 and 315 cm-1, respectively. Since both sets of
results are quite similar, we use only the data of ref 1.
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inflection. In any event, it seems impossible to determine
sublevel energies to an accuracy of the order of 10 cm-1, which
is what Crosby/Hipps obtained and what we have in mind.

As far as we are aware, no theoretical interpretation of the
experiments of Hipps and Crosby1 and of Mazur and Hipps2 is
available. There seems to be no question that the emitting levels
are the triplet sublevels; however, further substantiation requires
the demonstration that the sublevel energy separations can be
interpreted using reasonable magnitudes of the spectroscopic
parameters.

To this end, we have developed a theory of the sublevel
structure of a system of six d-electrons in a cubic field. We
will not engage large calculations; instead, we will demonstrate
a process to obtain exact, analytic eigenfunctions and eigen-
values. We are not aware of any such prior efforts for any dn

electron systems.

2. Theory

The notations introduced by Griffith6 for the five d-orbitals
will be used:

The total Hamiltonian is expressed as

where H0 consists of the kinetic energies of electrons and
electron-electron repulsions,VC is the crystal field potential,
andHSO is the spin-orbit coupling.HSO is defined as the sum
of the one-electron operators:

where7

The triplet excited states arising from the t2
5e1 configurations,

as given by the direct product

are3T1 and3T2. When electron repulsions are considered, the
energies of these states are

whereA, B, andC are Racah parameters. Since the parameter
B is positive, it is immediately clear that3T1 is the lower triplet
state.

We now consider the spin-orbit coupling. The O′ double
group representations for which the total wave functions, space
plus spin, constitute a basis are given by the direct product of
the space representation and the spin representation. Since the
triplet spin function transforms asT1, the 3T1 state yields the
sublevels

For the higher energy3T2 state, the direct product

also implies a further splitting into four spin sublevels,A2, E,
T1, andT2.

The energies of the spin sublevels can be obtained by
diagonalizing the matrix of the total Hamiltonian. The procedure
is straightforward. However, whether diagonalization can be
carried out analytically depends on the choice of the basis
functions. Consequently, we intend to construct total wave
functions, space plus spin, that are fully symmetry-adapted in
the O′ double group. As far as we know, such a procedure has
not been carried out previously. Consequently, we may well be
a little prolix. However, the advantage is considerable: the
Hamiltonian matrix for any sublevel set will be a priori diagonal.

2.1. 3T1 State. In the conventional method, the spatial wave
functions are constructed so that they are bases for the
irreducible representationT1 of the single-group O. The spin
wave functions are constructed so that they are eigenfunctions
of the spin operatorsS2 andSz. These spin functions, as single
multipliers, are then used to modify the spatial parts, generating
a set of space/spin functions. Finally, the wave functions for
the t25e1 configuration are then constructed along methods
outlined, for example, by Sugano et al.8 The essence of this
method consists of connecting the wave functions of the t2

5 and
e1 configurations using the Clebsch-Gordan and Wigner
coefficients. Such a set of wave functions is shown in Table
1a. The unique property of these wave functions is that they
are not only bases of the irreducible representationT1 of the O
group, but more importantly, each wave function transforms
exactly as one of the functionsx, y, or z. The wave functions
so constructed are labeledx, y, or z.

The wave functions of Table 1a are diagonal with respect to
H0 + VC. The diagonal term isE(3T1) of eq 6. If we takeE(3T1)
as the zero of energy, the matrix elements of the total

ê ) dyz ) x1
2
i(d1 + d-1)

η ) dzx ) -x1
2
(d1 - d-1)

ς )x1
2
i(d2 - d-2)

θ ) dz2 ) d0

ε ) dx2-y2 ) x1
2
(d2 + d-2) (1)

H ) H0 + VC + HSO (2)

HSO ) ∑
i

ê(r)l i Si (3)

ê(r) ) 1
4πε0

Ze2

2me
2c2

1

r3
(4)

T2 × E ) T1 + T2 (5)

E(3T2) ) 10Dq + 15A - 22B + 12C

E(3T1) ) 10Dq + 15A - 30B + 12C
(6)

TABLE 1: Wave Functions ψ(3T1, M, z) and ψ(3T1, τ, γ)

Table 1a: Wave Functionsψ(3T1, M, z)a,b

ψ(3T1, M ) 1, z) ) |êêhηηjςε|
ψ(3T1, M ) 0, z) ) 1

x2
{|êêhηηjςεj| + |êêhηηjςjε|}

ψ(3T1, M ) -1, z) ) |êêhηηjςjεj|
Table 1b: Wave Functionsψ(3T1, τ, γ)c

ψ(3T1, τx, γ) ) 1

x2
{ψ(3T1, M ) -1, γ) - ψ(3T1, M ) +1, γ)}

ψ(3T1, τy, γ) ) 1

x2
i{ψ(3T1, M ) -1, γ) + ψ(3T1, M ) +1, γ)}

ψ(3T1, τz, γ) ) ψ(3T1, M ) 0, γ)

a The notation|êêhηηjςε| denotes a Slater determinant including the
normalization factor of 1/x6!. b The six unlistedx andy components
of the wave functions are obtained from the above by appropriate cyclic
interchange of (x, y, z), (ê, η, ς), and (-(x3/2) θ - 1/2ε, (x3/2) θ -
(1/2)ε, ε). c γ ) x, y, z.

T1 × T1 ) A1 + E + T1 + T2 (7)

T2 × T1 ) A2 + E + T1 + T2 (8)
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Hamiltonian,H0 + VC + HSO, with respect to the nine basis
functions are

whereςnd, the spin-orbit coupling parameter6 for thend state,
is

This matrix is not diagonal because the functions of Table
1a are not symmetry-adapted in the O′ double group. The
diagonalization of this matrix can be carried out numerically;
however, diagonalization in an analytical form appears difficult,
if not impossible. This is unsatisfactory because it evades full
utilization of group theory. If the group theory is properly
applied, this nine-dimensional matrix will be a priori blocked
into one one-dimensional matrix (A1), one two-dimensional
matrix (E), and two three-dimensional matrices (T1 andT2).

The crucial point of the basis functions shown in Table 1a is
that even though they are bases of irreducible representations
of the O single group, they are not bases for irreducible
representations of the O′ double group. The crux lies in a choice
of spin functions that are symmetry-adapted in O′. Indeed, since
no external magnetic field is applied, there is little physical sense
in choosing spin functions to be eigenfunctions ofSz.

Consider the following linear combinations of the spin
functions:

These spin functions constitute a basis for theT1 irreducible
representation of O′. Furthermore,τx, τy, and τz transform in
the same way as the functionsx, y, andz, respectively, in the
O′ double group. In view of this property, we take the linear
combinations of Table 1b to be the new basis set of spin
functions.

If the group operations of O′ are applied to the space parts
of the wave functions of Table 1b, it is found that they transform
as the irreducible representationT1. Likewise, if the same
operations are applied to the spin parts, it is found that these
also transform as the irreducible representationT1. However, if

the O′ symmetry operations are applied simultaneously to both
space and spin parts, it is found that none of these wave
functions constitute bases for any irreducible representation of
O′. However, since both the space part and spin part of each
wave function transform identically to some one of the functions,
x, y, z, these parts may be combined using the Clebsch-Gordan
coefficients to yield wave functions that are bases for irreducible
representations of O′. The final basis set of wave functions
chosen in this way is summarized in Table 2 and, when
expressed in terms of Slater determinants, in Table 3.

The Hamiltonian matrix based on these functions is given in
Table 4. As shown in Table 4, the nine-dimensional matrix is
not only blocked out into one one-dimensional, one two-
dimensional, and two three-dimensional matrices, it is also
completely diagonal. This property is a result of the mode of
construction: each component transforms as either one of the
d-orbitals (ê, η, ς, θ, or ε) or one of p-orbitals (x, y, or z).

2.2. 3T2 State. Similar procedures may be applied to the
second excited triplet state,3T2. The Hamiltonian matrix based
on basis functions that were constructed so that only the space
part is a basis for the irreducible representationT2 is

〈H〉 )
ςnd

4x2[ 1x 1y 1z 0x 0y 0z -1x -1y -1z

0 x2i 0 0 0 -1 0 0 0

-x2i 0 0 0 0 i 0 0 0
0 0 0 1 -i 0 0 0 0
0 0 1 0 0 0 0 0 1
0 0 i 0 0 0 0 0 i

-1 -i 0 0 0 0 -1 -i 0
0 0 0 0 0 -1 0 -x2i 0

0 0 0 0 0 i x2i 0 0
0 0 0 1 -i 0 0 0 0

]
(9)

ςnd ) p2〈Rn2(r)|ê(r)|Rn2(r)〉

) p2∫0

∞
Rn2(r)ê(r)Rn2(r)r

2 dr

) p2

4πε0

Ze2

2me
2c2 ∫0

∞
Rn2(r)

1

r3
Rn2(r)r

2 dr (10)

τx ) 1

x2
{ψ(M ) -1) - ψ(M ) +1)}

τy ) 1

x2
i{ψ(M ) -1) + ψ(M ) +1)}

τz ) ψ(M ) 0) (11)

TABLE 2: Wave Functions of the Spin Sublevelsψ(3T1, Γ,
γ) that Are Bases for Irreducible Representations of the
Point Group O′

ψ(3T1, A1, e1) ) - 1

x3
ψ(3T1, τx, x) - 1

x3
ψ(3T1, τy, y) -

1

x3
ψ(3T1, τz, z)

ψ(3T1, E, θ) ) 1

x6
ψ(3T1, τx, x) + 1

x6
ψ(3T1, τy, y) - 2

x6
ψ(3T1, τz, z)

ψ(3T1, E, ε) ) - 1

x2
ψ(3T1, τx, x) + 1

x2
ψ(3T1, τy, y)

ψ(3T1, T1, x) ) - 1

x2
ψ(3T1, τy, z) + 1

x2
ψ(3T1, τz, y)

ψ(3T1, T1, y) ) 1

x2
ψ(3T1, τx, z) - 1

x2
ψ(3T1, τz, x)

ψ(3T1, T1, z) ) - 1

x2
ψ(3T1, τx, y) + 1

x2
ψ(3T1, τy, x)

ψ(3T1, T2, ê) ) - 1

x2
ψ(3T1, τy, z) - 1

x2
ψ(3T1, τz, y)

ψ(3T1, T2, η) ) - 1

x2
ψ(3T1, τx, z) - 1

x2
ψ(3T1, τz, x)

ψ(3T1, T2, ς) ) - 1

x2
ψ(3T1, τx, y) - 1

x2
ψ(3T1, τy, x)

〈H〉 )
ςnd

4x2
×

[ 1ê 1η 1ς 0ê 0η 0ς -1ê -1η -1ς

0 x2i 0 0 0 -1 0 0 0

-x2i 0 0 0 0 i 0 0 0
0 0 0 1 -i 0 0 0 0
0 0 1 0 0 0 0 0 -1
0 0 i 0 0 0 0 0 i

-1 -i 0 0 0 0 1 i 0
0 0 0 0 0 1 0 -x2i 0

0 0 0 0 0 -i x2i 0 0
0 0 0 -1 -i 0 0 0 0

] (12)
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where the zero of energy is defined asE(3T2). This matrix is
difficult to diagonalize analytically.

The wave functions that are bases for the irreducible
representations3T2 of the O′ double group can be constructed
in a manner that is identical to that for3T1. These wave functions
are shown in Table 5. The Hamiltonian matrix based on the

wave functions of Table 5 is shown in Table 6. This matrix is
also a priori diagonal.

2.3. Configuration Interaction Between3T1 Sublevels and
3T2 Sublevels.The wave functions and energies of Tables 3, 4,
5, and 6 are exact eigenfunctions and eigenvalues of the total
Hamiltonian provided that configuration interaction between3T1

TABLE 3: Wave Functions of the Spin Sublevelsψ(3T1, Γ, γ) that Are Bases for Irreducible Representations of the Point
Group O′

ψ(3T1, A1, e1) ) - 1

2x2
|êηηjςςjθ| + 1

2x2
|êhηηjςςjθh| - 1

2x6
|êηηjςςjε| + 1

2x6
|êhηηjςςjεj| - 1

2x2
i|êêhηςςjθ| - 1

2x2
i|êêhηjςςjθh| + 1

2x6
i|êêhηςςjε| +

1

2x6
i|êêhηjςςjεj| - 1

x6
|êêhηηjςεj| - 1

x6
|êêhηηjςjε|

ψ(3T1, E, θ) ) 1
4
|êηηjςςjθ| - 1

4
|êhηηjςςjθh| + 1

4x3
|êηηjςςjε| - 1

4x3
|êhηηjςςjεj| + 1

4
i|êêhηςςjθ| + 1

4
i|êêhηjςςjθh| - 1

4x3
i|êêhηςςjε| - 1

4x3
i|êêhηjςςjεj| -

1

x3
|êêhηηjςεj| - 1

x3
|êêhηηjςjε|

ψ(3T1, E, ε) ) -
x3
4

|êηηjςςjθ| +
x3
4

|êhηηjςςjθh| - 1
4
|êηηjςςjε| + 1

4
|êhηηjςςjεj| +

x3
4

i|êêhηςςjθ| +
x3
4

i|êêhηjςςjθh| - 1
4
i|êêhηςςjε| - 1

4
i|êêhηjςςjεj|

ψ(3T1, T1, x) )
x3
4

|êêhηςςjθh| +
x3
4

|êêhηjςςjθ| - 1
4
|êêhηςςjεj| - 1

4
|êêhηjςςjε| - 1

2
i|êêhηηjςε| - 1

2
i|êêhηηjςjεj|

ψ(3T1, T1, y) )
x3
4

|êηηjςςjθh| +
x3
4

|êhηηjςςjθ| + 1
4
|êηηjςςjεj| + 1

4
|êhηηjςςjε| - 1

2
|êêhηηjςε| + 1

2
|êêhηηjςjεj|

ψ(3T1, T1, z) ) -
x3
4

i|êηηjςςjθ| -
x3
4

i|êhηηjςςjθh| - 1
4
i|êηηjςςjε| - 1

4
i|êhηηjςςjεj| +

x3
4

|êêhηςςhθ| -
x3
4

|êêhηjςςjθh| - 1
4
|êêhηςςjε| + 1

4
|êêhηjςςjεj|

ψ(3T1, T2, ê) ) -
x3
4

|êêhηςςjθh| -
x3
4

|êêhηjςςjθ| + 1
4
|êêhηςςjεj| + 1

4
|êêhηjςςjε| - 1

2
i|êêhηηjςε| - 1

2
i|êêhηηjςjεj|

ψ(3T1, T2, η) )
x3
4

|êηηjςςjθh| +
x3
4

|êhηηjςςjθ| + 1
4
|êηηjςςjεj| + 1

4
|êhηηjςςjε| + 1

2
|êêhηηjςε| - 1

2
|êêhηηjςjεj|

ψ(3T1, T2, ς) )
x3
4

i|êηηjςςjθ| +
x3
4

i|êhηηjςςjθh| + 1
4
i|êηηjςςjε| + 1

4
i|êhηηjςςjεj|+ x3

4
|êêhηςςjθ| -

x3
4

|êêhηjςςjθh| - 1
4
|êêhηςςjε| + 1

4
|êêhηjςςjεj|

TABLE 4: Hamiltonian Matrix Elements with Respect to the Basis Functionsψ(3T1, Γ, γ)

A1, e1 E, θ E, ε T1, x T1, y T1, z T2, ê T2, η T2, ς

A1, e1

E(3T1)

+1
2
ςnd

0 0 0 0 0 0 0 0

E, θ 0
E(3T1)

- 1
4
ςnd

0 0 0 0 0 0 0

E, ε 0 0
E(3T1)

- 1
4
ςnd

0 0 0 0 0 0

T1, x 0 0 0
E(3T1)

+ 1
4
ςnd

0 0 0 0 0

T1, y 0 0 0 0
E(3T1)

+ 1
4
ςnd

0 0 0 0

T1, z 0 0 0 0 0
E(3T1)

+ 1
4
ςnd

0 0 0

T2, ê 0 0 0 0 0 0
E(3T1)

- 1
4
ςnd

0 0

T2, η 0 0 0 0 0 0 0
E(3T1)

- 1
4
ςnd

0

T2, ς 0 0 0 0 0 0 0 0
E(3T1)

- 1
4
ςnd
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and3T2 is neglected. However, if the3T1-3T2 energy separation
is small, configuration interaction may become significant.
Nonetheless, since interaction between these two states by either
electron repulsion or the crystal field potential is zero, we need
only focus on the spin-orbit coupling.

It is particularly important to direct attention to the two lowest
sublevels associated with the lowest triplet state,3T1. As is
shown in Table 4, two of these sublevels,E and T2, are
accidentally degenerate. Thus, it is of some interest to find out
if spin-orbit interactions removes this degeneracy. The con-

TABLE 5: Wavefunctions of the Spin Sublevelsψ(3T2, Γ, γ) that Are Bases for Irreducible Representations of the Point Group
O′

ψ(3T2, A2, e2) ) - 1

2x6
|êηηjςςjθ| + 1

2x6
|êhηηjςςjθh| + 1

2x2
|êηηjςςjε| - 1

2x2
|êhηηjςςjεj| + 1

2x6
i|êêhηςςjθh| + 1

2x6
i|êêhηjςςjθh| + 1

2x2
i|êêhηςςjε| +

1

2x2
i|êêhηjςςjεj| - 1

x6
|êêhηηjςθh| - 1

x6
|êêhηηjςjθ|

ψ(3T2, E, θ) ) - 1
4
|êηηjςςjθ| + 1

4
|êhηηjςςjθh| +

x3
4

|êηηjςςjε| -
x3
4

|êhηηjςςjεj| - 1
4
i|êêhηςςjθ| - 1

4
i|êêhηjςςjθh| -

x3
4

i|êêhηςςjε| -
x3
4

i|êêhηjςςjεj|

ψ(3T2, E, ε) ) - 1

4x3
|êηηjςςjθ| + 1

4x3
|êhηηjςςjθh| + 1

4
|êηηjςςjε| - 1

4
|êhηηjςςjεj| + 1

4x3
i|êêhηςςjθ| + 1

4x3
i|êêhηjςςjθh| + 1

4
i|êêhηςςjε| + 1

4
i|êêhηjςςjεj| +

1

x3
|êêhηηjςθh| + 1

x3
|êêhηηjςjθ|

ψ(3T2, T1, x) ) - 1
4
|êêhηςςjθh| - 1

4
|êêhηjςςjθ| -

x3
4

|êêhηςςjεj| -
x3
4

|êêhηjςςjε| + 1
2
i|êhêηηjςθ| + 1

2
i|êêhηηjςjθh|

ψ(3T2, T1, y) ) - 1
4
|êηηjςςjθh| - 1

4
|êhηηjςςjθ| +

x3
4

|êηηjςςjεj| +
x3
4

|êhηηjςςjε| - 1
2
|êêhηηjςθ| + 1

2
|êêhηηjςjθh|

ψ(3T2, T1, z) ) - 1
4
i|êηηjςςjθ| - 1

4
i|êhηηjςςjθh| +

x3
4

i|êηηjςςjε| +
x3
4

i|êhηηjςςjεj| + 1
4
|êêhηςςjθ| - 1

4
|êêhηjςςjθh| +

x3
4

|êêhηςςjε| -
x3
4

|êêhηjςςjεj|

ψ(3T2, T2, ê) ) - 1
4
|êêhηςςjθh| - 1

4
|êêhηjςςjθ| -

x3
4

|êêhηςςjεj| -
x3
4

|êêhηjςςjε| - 1
2
i|êêhηηjςθ| - 1

2
i|êêhηηjςjθh|

ψ(3T2, T2, η) ) 1
4
|êηηjςςjθh| + 1

4
|êhηηjςςjθ| -

x3
4

|êηηjςςjεj| -
x3
4

|êhηηjςςjε| - 1
2
|êêhηηjςθ| + 1

2
|êêhηηjςjθh|

ψ(3T2, T2, ς) ) - 1
4
i|êηηjςςjθ| - 1

4
i|êhηηjςςjθh| +

x3
4

i|êηηjςςjε| +
x3
4

i|êhηηjςςjεj| - 1
4
|êêhηςςjθ| + 1

4
|êêhηjςςjθh| -

x3
4

|êêhηςςjε| +
x3
4

|êêhηjςςjεj|

TABLE 6: Hamiltonian Matrix Elements with Respect to the Wavefunctions ψ(3T2, Γ, γ)

A2, e2 E, θ E, ε T1, x T1, y T1, z T2, ê T2, η T2, ς

A2, e2

E(3T2)

+1
2
ςnd

0 0 0 0 0 0 0 0

E, θ 0
E(3T2)

- 1
4
ςnd

0 0 0 0 0 0 0

E, ε 0 0
E(3T2)

- 1
4
ςnd

0 0 0 0 0 0

T1, x 0 0 0
E(3T2)

- 1
4
ςnd

0 0 0 0 0

T1, y 0 0 0 0
E(3T2)

- 1
4
ςnd

0 0 0 0

T1, z 0 0 0 0 0
E(3T2)

- 1
4
ςnd

0 0 0

T2, ê 0 0 0 0 0 0
E(3T2)

+ 1
4
ςnd

0 0

T2, η 0 0 0 0 0 0 0
E(3T2)

+ 1
4
ςnd

0

T2, ς 0 0 0 0 0 0 0 0
E(3T2)

+ 1
4
ςnd

6972 J. Phys. Chem. A, Vol. 108, No. 34, 2004 Azumi and McGlynn



figuration interaction matrix elements for theE, T2, andT1 states
based on the wave functions of Tables 3 and 5 are shown in
Table 7. Since all the matrices are two-dimensional, the energies
can be solved analytically. They are as follows:

where

These results are exact; however, approximate energies in
the limit of large∆E may be obtained by expanding the square
root. The approximate energies obtained in this limit are
indicated in the schematic diagram shown in Figure 2.

3. Comparison with Experiment

We are now ready to compare theory with the experimental
results of Hipps and Crosby.1 First, the assignments and
energetic ordering of the sublevels cited by Hipps and Crosby1

are shown in Figure 1 and are congruent with the theoretical
results of Figure 2. Second, the small splitting of the two lowest
lying sublevels,T2 andE, is in accord with prediction. In view
of this qualitative agreement we now become more quantitative.
If the energy separation between the second (T2) and third (T1)
sublevels and the energy separation between the lowest two

sublevels (E and T2) are equated to the experimental results,
we find

which yields

The ς3d andB parameters for the neutral Co atom given by
Griffith6 are 517 and 798 cm-1, respectively, and are fairly close
to the magnitudes obtained above for Co(III). In view of this
comparison, we can say that the spectroscopic parameters
obtained on the basis of comparison of theory with the Hipps/
Crosby experiments are quite reasonable.

Pierloot et al.9 have calculated the3T1-3T2 energy gap by a
variety of computational quantum approaches. In all instances,
this gap turned out to be about 0.5 eV. Since the magnitude of
this gap is also 8B, one findsB to be approximately 500 cm-1,
in good accord with the value of 518 cm-1 obtained here.

We have no theoretical basis to judge which triplet state
geometry, that of Hipps and Crosby1 or Miskowski et al.3 is
the more trustworthy. However, we can state that the existing
assignments do not contradict theory with regard to either an
octahedral symmetry or the required magnitudes of the spec-
troscopic parameters.

4. Conclusion

While this work does pay some attention to experiment, that
is not its primary purpose. We merely want to draw attention
to the fact that fully symmetry-adapted space/spin wave
functions can be constructed and that this leads to considerable
simplification of the Hamiltonian matrices. In specific, closed
analytical expressions for energies become available and, if
limited, even for the effects of configuration interaction. The
procedure is general and may be applied to any dn, fm ... or
mixed electronic configuration. It may become tedious, but it
is elegant.

TABLE 7: Matrix Elements for Configuration Interactions

(1) E Representation,γ ) θ, ε

ψ(3T1, E, γ) ψ(3T1, E, γ)

ψ(3T1, E, γ) E(3T1) - 1
4
ςnd - 3

4
ςnd

ψ(3T2, E, γ) - 3
4
ςnd E(3T2) - 1

4
ςnd

(2) T2 Representation,γ ) ê, η, ς

ψ(3T1, T2, γ) ψ(3T2, T2, γ)

ψ(3T1, T2, γ) E(3T1) - 1
4
ςnd

x3
4

ςnd

ψ(3T2, T2, γ) x3
4

ςnd
E(3T2) - 1

4
ςnd

(3) T1 Representation,γ ) x, y, z

ψ(3T1, T1, γ) ψ(3T2, T1, γ)

ψ(3T1, T1, γ) E(3T1) + 1
4
ςnd

x3
4

ςnd

ψ(3T2, T1, γ) x3
4

ςnd
E(3T2) + 1

4
ςnd

E′( (E) ) E(3T1) - 1
4
ςnd + 1

2
∆E ( 1

2
∆Ex1 + 9

4(ςnd

∆E)2

(13)

E′( (T2) ) E(3T1) - 1
4
ςnd +

∆E + ςnd /2

2
(

∆E + ςnd/2

2 x1 + 3
4( ςnd

∆E + ςnd /2)2

(14)

E′( (T1) ) E(3T1) + 1
4
ςnd +

∆E - ςnd /2

2
(

∆E - ςnd /2

2 x1 + 3
4( ςnd

∆E - ςnd /2)2

(15)

∆E ) E(3T2) - E(3T1) (16)

Figure 2. Schematic representation of the theoretically determined
energies of the spin sublevels associated with the two triplet excited
states of a system of six d-electrons in a cubic field. Left: spin-orbit
coupling is not considered. Center: spin-orbit coupling is considered
to first order. Right: spin-orbit coupling is fully considered.E(3T2)
andE(3T2) are defined in eq 6;ς is the spin-orbit coupling parameter,
ςnd, defined in eq 10 of the text;∆E is defined in eq 16. The energies
shown in the figure are approximate values obtained in the limit of
large∆E. The exact energies are given in the text.

1
2

ςnd ) 288 cm-1;
3
8

ςnd
2

8B
) 30 cm-1 (17)

ς3d ) 586 cm-1; B ) 518 cm-1 (18)
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