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The concept of quantum ergodicity and the degree of ergodic behavior reflected by the bound energy eigenstates
are studied for some vibrational systems in two and three dimensions. Different approaches are attempted in
order to be able to classify and quantify ergodicity in a given system by investigating the energy eigenfunctions.
It is argued that the concept of quantum ergodicity is fundamentally connected to the similarity between
eigenstates close in energy and to their globality. Previous investigations and definitions of quantum ergodicity
can be seen to connect to this theme; they provide different measures of similarity between eigenstates. Here
we propose two practical measures to investigate quantum ergodicity. The systems treated include the famous
two-dimensional Henon-Heiles and Barbanis systems, which have previously been investigated both classically
and quantum mechanically. As a more realistic three-dimensional example, we consider the vibrations of

nonrotating NQ close to dissociation.

1. Introduction statement is to hold for any wave function of the system, but a

In this report, we will address the question of the definition SimPple analysis shows that this is equivalent to saying that a
of quantum ergodicity and its relation to the classical concept duantum system is ergodic if and only if its eigenvalue spectrum
and to applications such as unimolecular reactions. Specifically, 'S Nondegenerate. However, it is clear that quantum ergodicity
we will relate the extent of ergodicity in a quantum system to Must have a deeper meaning in order to match the content and
the behavior of its energy eigenstates, which provides a more relevange of the class!cal_concept; a separable two-gllmensmnal
fundamental view of the concept as compared to the statistical "armonic oscillator with incommensurate frequencies has no
analysis of eigenvalues used today for a wide variety of systems.d€generate levels in its spectrum while being a clearly noner-

The concept of ergodicity is, together with the time scale godic system. Yet the fact that ergodic properties are somehow
under which ergodic relaxation takes place, one of the corner €flected in the spectrum of the system is to be expected. It
stones in modern theories of unimolecular reactions. The Wa&S_in nuclear physics that the interest in the statistical
calculation of unimolecular rate constants via the statistical distribution of energy levels was initiated. A review of these
RRKM theory:2 assumes fully ergodic relaxation of the developments is given by Port@ranq this book contaln_s many
vibrational dynamics after the (collisional) activation of the of th? equy papers, not'ably by Wigner, who mgde important
reactant molecule and also that the relaxation is fast comparedcontributions. In short, it was found that there is a repulsion
to the time scale of the reaction. However, for many reactions, P€tween neighboring energy levels if the dynamics is fully
especially over low reaction barriers, this assumption can F:oupled (ergodic), whereas a System_comppsed. of. seyeral
certainly be questioned, and many attempts have been made tdndependent parts will tend toward a Poisson like distribution,
develop models which account for an incomplete ergodic Where the energy levels are uncorrelated. _
relaxation at a finite rat&: Also, internal vibrational redistribu- The interest in ergodic manifestations 4°f spectra was intro-
tion and thus mode-selective chemistry relates to the time scaleduced to chemistry by PercivélPomphrey:* and by Nordholm
on which a system may show ergodic behavior. It is further and Rice'® Although Nordholm and Rice discussed the expected
interesting to note that chaotic dynamics (which is ergodic) does "€gularization of energy level spacing that accompanies ergod-
not prevent coherent contrdlFinally, the ergodic properties icity, the main statement_ of this work was tha_t the e|g_enstates
of quantum mechanical systems are of fundamental importancethemselves should contain more fundamental information about
for the foundations of statistical mechanics and its many the ergodic properties of the system. Following this, they
implementations in the form of simulation methods relying on investigated the overlap properties of the eigenstates with
the ergodic hypothesis which claims that time averages equa|swt§ble basis states and related a spread in this overlap over
ensemble averages. basis states of the same zeroth order energy to an ergodic

We begin by briefly reviewing previous suggestions that have behavior. This stu_dy concerned boun(_i states, butin a foI_Iowmg
been put forward as ways of analyzing quantum systems with work,16 also qua5|bqund states were investigated, bnnglng the
respect to ergodicity. The first to discuss quantum ergodicity CONcept closer to unimolecular decay theory. Here the imaginary
in the literature was apparently von NeumafHe suggested part of the eigenvalue, which is connected to the I|fet|me of.
that if the time averaged expectation value of any operator equalstn€ State, was compared for the states and large fluctuations in
the average over phases in the (complex) expansion coefficientdnese give large variations in dissociation rates and hence a

of the spectral basis then the system is quantum ergodic. Thisnonergodic behavior. o
Berry!” discussed classical approximations to the smoothed

T Part of the “Gert D. Billing Memorial Issue”. Wigner phase space distributi§rof eigenfunctions for inte-
*To whom correspondence should be addressed. E-mail: back@phc.gu.segrable and ergodic cases, paying special attention to the spatial
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behavior near the classical turning points. Furthermore, Berry contrast to Gaussian random eigenstates and random matrix
conjectured that an ergodic eigenfunction looks like a Gaussiantheory, relaxes the demand on the eigenstates by investigating
random function, which follows if it locally behaves like an them only with smooth operators. Aurich ef%analyzed the
isotropic random superposition of de Broglie waves. The maximum normI(*) of eigenstates for various billiard systems.
investigations of Berry were tested numerically for stadium The growth of maximum norm in configuration space with
billiard systems by McDonald and Kaufmé&hUnavoidable energy, as well as the distribution of maximum amplitude inside
nonergodicity for quantum systems with symmetries causing the billiard provide information about ergodicity.

degeneracies was pointed out by Heflebut it was also noted It must be emphasized that this introduction by no means
by Kosloff and Ricé! that the effect of the measuring process gives a full account of all developments in the vast field of
in quantum mechanics may reduce the impact of such nonclas-quantum ergodicity, but it serves nonetheless as a starting point
sical effects. for the following discussions. We shall return to some of these

The nodal structure of ergodic/nonergodic eigenstates wasStudies and discuss them in more detail later in this paper.
discussed by Stratt et Zwhere an irregular nodal pattern was
related to ergodic states and a regular, ordered, pattern which?: 1heery
assigns quantum numbers in different directions characterized 2.1. Classical Ergodicity and Unimolecular Reactions.
nonergodic states. They also discussed the power spectra ofvithin the confines of classical mechanics the concept of
energy eigenstates as an indication of ergodicity as well as ergodicity is clear and undisputed. It is also of obvious utility.
suggested an improvement of the NordhelRice method® Classical molecular dynamics is with few exceptions studied
based on the use of natural orbitals. Hutchinson and Watt by trajectory calculations. A trajectory is a nonstatistical pure
calculated the Wigner phase space distribdfiam a Poincare  state of the classical system evolving on an energy surface of
surface of section and compared it with results from classical dimension one less than the full dimension of the classical
trajectories. They obtained the expected trend toward moresystem. The concept of ergodicity deals with the qualitative
ergodic distributions as energy increased. Close agreementature of the dynamics on the energy surface. The trajectory is
between wave functions and classical states in phase space was one-dimensional sequence of pure phase space Stétgs,
also found by Ka$* within a time-dependent approach. An located on an energy surface. An ergodic system is defined to
interesting discussion of the effect of the nature of the initial have trajectories such that they cover the energy surface
state preparation upon observation of ergodic behavior took uniformly; that is, each measurable subsurface on the energy
place between Davis, Stechel, and Heller on one side andsurface is visited in proportion to its “area”. Any classical
Brumer and Shapiro on the oth@r. physical propertyA[I'] then evolves in time so as to satisfy the

By assuming that, for ergodic cases, the spatial pattern of ergodic hypothesis which says that the long time trajectory
bound state eigenfunctions of approximately the same energyaverage ofA equals its corresponding microcanonical average
look roughly the same (close to the classical microcanonical (Al for all but a set of initial trajectories of measure zero. This
density at that energy) PechuRamanaged, in the semiclassical means that we have
limit, to derive the correct statistical distribution of energy levels 1 .1
showing the postulated level repulsion. Feit and Fléck lim —ﬁ) dtAIT(t; T)] = AR forE=H[T] (1)
performed wave packet propagation and measured quantum T T
chaps in terms of the d(_acay_ of the a_utocorrelation function and Through the work of Birkhoft136we know that if the system
_the increase of uncertainty in coordinates and momenta. I_n anjs nonergodic at the chosen enerythen the trajectory will
important papef? Heller observed the phenomenon of scarring  gpan 5 subsurface which it samples uniformly and the entire
in wave functions of the cla_sswally chaotic stg_dlum bl!|lal’d energy surface is dynamically decomposable into subsurfaces
system. These scars are an increase of probability density neafyithout dynamical connections. The satisfaction of the ergodic
the periodic classical orbits. Peres, Feingold, and Mois€yev pynothesis is often assumed, sometimes only implicitly, in the
addressed the question of the classical limit of quantum chaosse of classical molecular dynamics to study the internal motions
and observed how certain quantum expectation values for thegt molecules and fluids. This then allows the calculation of
energy eigenstates were related to the corresponding classicalnicrocanonical property averages by the convenient trajectory
phase space average. method with its appealing dynamical character and often high

A measure of quantum ergodicity that is close to the classical numerical efficiency. In reality, there is a question of whether
concept was developed and investigated by Kay and Ramachanthe system actually is ergodic. This focuses attention on the
dran® The classical correlation between functions on phase issue of the measure of ergodicity, which we shall consider here
space, which determine if the system is ergodic, was taken toin the case of quantum dynamics. Also in the study of chemical
the quantum regime by replacement of phase space functionsreaction rates, particularly unimolecular reaction rates, the
with quantum mechanical traces of the corresponding operators.question of ergodicity plays a central role. The old RRK theory
Billing and Jolicard* used adiabatic switching to see how assumed complete ergodicity and an internal vibrational energy
(zeroth order) eigenstates loose memory about the initial redistribution rate which is much faster than the isolated
separable situation as an anharmonic coupling is turned onmolecule reaction rates at the relevant energies. This assumption
slowly in time. Close in spirit to the early suggestion of was taken over by the modern RRKM theoriéslt is clear,
Nordholm and Rice is the work of Benet efZaivhere they however, from the early work of Slatéwyho created a harmonic
investigate the engagement of zeroth order states in the full theory of unimolecular reactions based on essentially complete
Hamiltonian within a perturbational approach. De Polavieja, nonergodicity, that this assumption is not at all justified in
Borondo, and Benif§ used Husimi functions to transform general although it may well serve as a good approximation in
quantum mechanics to phase space and in this way found cleamany cases. Recently Leitner and Wolyhasd ourselveéshave
localization properties (nonergodicity) of eigenstates in a suggested that reality must be expected to fall somewhere
classically chaotic system. Kaplan and Heller and Zeldftch between the Slater and RRKM assumptions showing incomplete
discussed what they call weak quantum ergodicity which, in ergodicity and perhaps internal vibrational redistribution rates
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which are comparable or even slower than the isolated moleculedefined by Shnirelman, the set of operators and the degree of
decay rates at relevant energies. For these reasons, we mustimilarity required will have to be properly relaxed.
clearly extend the concept of ergodicity to quantum dynamics Instead of discussing expectation values of operators one can
which applies far more accurately to the molecular vibrations at a more fundamental level discuss the globality of eigen-
in particular. states>22:32where an ergodic state must be global (maximally

In our attempt to resolve the meaning and the measure of délocalized) in all relevant basis sets. Two neighboring global
quantum ergodicity, we shall be guided by the classical concept €N€rgy eigenfunctions must be similar since the difference only
of ergodicity with its proven relevance for relaxation phenomena 2iS€s from the small energy difference. The globality also
and reaction rates. The correspondence principle suggests thaflPlies similarity in a way very close to the idea of democratic
we should be able to gain considerable insight by insisting that participation of eigenstates in any initial state, since th's of
the concept and measure of quantum ergodicity we propose andourse also means initial states that are precisely the basis states
explore here approach the correct classical limit. Nevertheless,olt |n|tet:e|§:. Infth_ls Wa}{” tS|m_|Iar|ty_|s an |mmed|fate consquui?ce
we face an immediate contradiction. The classical concept deals?! 9'oballly Of eigenstates in a given range of energy. Further-
with the way a trajectory samples a surface of equal energy more, detglled kno.vyledge.of the. globall_ty (ie., the dlgtrlbutlon
states. In the quantum case, we will not have such an energyOf expansion coefficients) in basis functions that are eigenstates
surfacé. There may be a set (;f degenerate eigenstates for a giv of an operator naturally contains richer information than just

- . . ®he expectation value of the operator (through all higher
energy level but quantum dynamics explicitly prohibits the flow momenF;s). Thus, globality is on egual footi(ng witgh the Shr?ire-

of probability between such degenerate energy eigenstates ang g qgestion of probing eigenstates through expectation
between any energy eigenstates. Thus, it would at first appear, | oo

as if a system showing degenerate energy levels would In time-dependent quantum dynamics, we find the real
automatically b_e honergodic, whereas_ a system W_ith no_nde_gen'motivation for the interest in ergodicity. Wé want to know the
erate. energy eigenstates would be tr|V|aIIy ergodic. This view qualitative behavior of the system, just as in the classical case
was indeed taken by von Neum&ii! but it would rob the  (section 2.1), and the division of phase space, reflected by the
concept of quantum ergodicity of all its relevance. Thus, we ergodicity of the system, is clearly one of the fundamental
must coqsipler the r_1ature of each quantum eigenstate to deCid‘Toroperties of the general dynamics. For a time-independent
whether it is ergodic and to what degree. We must also recall yamjitonian, the entire time development is known through the
that eigenstates are stationary states. To see dynamics, we Muginergy eigenstates, their energies, and the initial condition in

go to wave packets which are superpositions of many energyform of the expansion coefficients at= 0 via the spectral
eigenstates and recall that the nature of the motion of a waveexpression of time-dependence:

packet is related to both the energy eigenvalues and to the
physical nature of the energy eigenstates, which describe the w(t) = zan exp(iE th)y, 2)
final distribution toward which the system relaxes. o

2.2. Quantum Ergodicity and Its Relation to Energy
Eigenstates.At the outset of this wor? it was noted that ~ This motivates the study of the energy eigenstates alone when
quantum ergodicity was very closely related to the similarity the question of ergodicity is addressed. If we choose an initial
of eigenstates of nearly the same energy. Only then would a ¥(0) (often a Gaussian wave packet, or some other physically
preparation of any initial state include all eigenstates within its interesting state), we obtain the expansion coefficients through
energy dispersion in a “democratic” (maximally distributed) & = (W(0)lynlJand the subsequent time evolution will forever
way, rather than risk that only a subset of the energy eigenstatesP® colored by this results. It is precisely therefore we must
sharing some common feature with the initial state, excludes démand, in the case of ergodic dynamics, that these overlaps
other subsets with other properties. As it turned out there existed®® democratic so that no particular class of initial states
already since 1974 a theorem for classically ergodic billiard consequently prefers overlap W|th_some subset ofA® Th'.s
systems by Shnirelmati;3° proving that in the semiclassical subset then, must have some particular property (.g., a different
limit the eigenstates of the billiard system are uniformized in spatial probability distribution as in .Flgures—!z) that the
configuration space and that expectation values of pseudodif- complementary subset ack, or otherwise there would have been
ferential (phase space) operators go to their classical microca-"° feason for the d|fferen_ces in overlap in th_e first place. _Th|s
nonical average for almost all states. In a way, this means thatproperty will th_en for aII_tlmes_ pg reflected in the _d)_/r_1am|cs,
the states in a sufficiently small energy interval become equal due to.the particular choice of initial state. Anothgr initial state
in the “test-space of smooth pseudo-differential operators”. This would in turn show another set of properties, making the overall

. . system behavior dependent on initial preparation, which cor-
certainly supports the suggested equivalence between quantun?espond exactly to classical nonergodic behavior. The demo-

ehrgod|C|ty and dsmﬂsrllgl betwee_n enelrg)]: e|genftates, Wh'Ch. 'ﬁ cratic overlap of the energy eigenstates with (almost) any initial
then assumed to hold approximately for real systems With giarq g precisely the demand of similarity (or globality as

potential and f'n.'te value di. Thus, complete ergod|C|t_y Nan  mentioned previously), i.e., a set of eigenstates where no state
energy range will mean that the form of the energy eigenfunc- a4 out causing it to induce a particular type of dynamics.

tions will change smoothly with energy. Rapid and random cjeariy, the democratic overlap discussed above is limited by
change between_n_elghborlng eigenfunctions will be a reliable {4 energy of the initial state relative to the energy of the
sign of nonergodicity. eigenstates. This energy criteria for the eigenstates depend on
In line with the Shnirelman theorem, some of the studies the exact energy dispersion of the initial state, and correspond
mentioned in the Introductih3034investigate quantum er-  to energy surfaces in the semiclassical limit where there are
godicity in terms of the behavior of suitable sets of operators, numerous states in a very small energy interval.
which give a coarse grained investigation of similarity in phase  In eq 2, not only the eigenfunctions appear but also their
space, where the exact features probed depend on the restrictionsnergies. The energies present themselves as angular velocities
on the operators. Outside the semiclassical billiard regime of the phase of the time-dependent expansion coefficients and
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relate directly to relaxation rates. We have already mentioned of expectation values for a very large number of operators or
in the Introduction that in an ergodic system the energy levels the globality properties in very many basis sets. If a good
will tend to repel each other, and this avoidance of near measure is designed by which to obtain similarity and globality
degeneracies will give a proper dephasing of the states. Theof energy eigenstates, then this would be the optimal measure
repulsive character of the levels is demonstrated in the semiclasfor quantum ergodicity.

sical limit by Pechuka%® where he obtains the statistics of 2.3. Practical Measures of Quantum Ergodicity.In the
regular eigenvalue spacings for ergodic systems by assumingprevious section, we saw that the globality of energy eigenstates
the spatial similarity of bound eigenstates of nearly the same and the corresponding similarity between states that are close
energy. The precise level spacing statistics obtained is calledin energy seem to be the quantum hallmarks of ergodicity. In
the Wigner distribution (not to be confused with the Wigner this section, we will suggest two measures of similarity/globality
transform of wave functions into phase space distributfjns  that should be able to indicate in a qualitative manner whether
and is given byp(S = (n/2)S exp(~xS/4), whereS is the a system is quantum ergodic or not. We will then use these
normalized spacing between two adjacent leveB[AELI Thus, measures in the following two sections to investigate ergodicity
we see that the probability for zero spacing (degeneracy) in vibrational systems of two and three dimensions.

between two levels is zero, and there is a peak probability at Our first measure is based on the investigation of an
somewhat less than the average level spacing. In other wordsgigenfunction in configuration space, and an analogous concept
the nowadays very popular investigations of energy level could be used to instead investigate the behavior in momentum
distributions, performed for a great variety of systems to space, by appropriately Fourier transforming the states. The
elucidate the chaotic behavior of quantum systems, follows from behavior in configuration space of ergodic states is, as revealed
the fact that eigenfunctions in an ergodic system must be similar, notably by Shnirelmai¥=°and Pechuka¥,equal to the classical
i.e., continuously varying with energy. If the states are not microcanonical density in the semiclassical limit. For firfite
similar in this sense, they are instead independent and generat&ve here interpret this to mean that with the proper coarse
a random distribution of energy levels, where the position of a graining and sufficiently high quantum numbers, each state
level does not depend on the position of nearby levels, hence,should not deviate very much from the classical density, nor
resulting in a Poisson type distribution. from the density of neighboring states or the density average

The eigenvalue statistics for ergodic systems above demandedf @ number of states close in energy. A nonergodic system on
similarity in configuration space, but in passing, Pechukas also the other hand can have states that are trapped in different
mentions an expected similarity of the Wigner phase space Minima o_f the_ potential or that lock kinetic energy to motion in
distributiort® of the eigenstates, as first suggested by Nordholm Certain directions, causing them to be confined in space. This
and Ricé® and by Berryt” and investigated numerically by then, is manifested as wide variations in the coarse grained
Hutchinson and Wyait for the Henon-Heiles system. The spatial density between different energy eigenstates and a high
suggestion is that, just as in the classical phase space of arflegree of (_jeV|at|on _from.the classical mlcrocanoni(;al density.
ergodic system, a state in the quantum case should in the'© P€ Precise, we will define the measutg, to be theL® norm
semiclassical limit uniformly cover the proper energy surface °f the difference between the coarse grained probability density
when Wigner transformed to phase space. Since the WignerOf ¥ and the coarse grained reference-dengitwhich is either

transform contains all possible information about the state, this € classical microcanonical density at a suitable energy or the

is clearly the same as saying that eigenstates very close in energfVe€"29€ density obtained from several individual eigenstates

are almost equal, which should hold approximately also when energetically close to the state under investigation (and including
we leave the semiclassical limit. this state itself). In mathematical terms this means

The labeling of ergodic and nonergodic states is also worthy

of a comment. On many occasions, mainly in the earlier studies, S ax (f, dulpyx +u)? = [, duo(x + u)?
the notations regular and irregular states are used to mean = 2
i : : : on i Jo, dx (f av du o(x + u))
nonergodic and ergodic states, respectively. This notation is v avau o
probably due to the chaotic (irregular) dynamics of classically ®3)

ergodic (chaotic) systems and the irregular nodal pattern of

ergodic eigenfunction®,22 but by now it should be clear that

when we speak of quantum states of ergodic or nonergodic 1

character the inverted notation is actually proper. An (quantum) o) ==Yy (x)|2 (4)

ergodic system has similar eigenfunctions and less variation in N Z !

energy level spacing, so that the term “regular” could be

appropriate to describe the fact that there are no surprises eitheand the sum runs over a small energy interval contaiMing

in the shape of the eigenstates or in the spacing between adjacerstates (of which the considered stateéis one). The coarse

levels. In a nonergodic system, on the other hand, the statesgraining domain is\V, andV is the entire space of dimension-

look very different in a disorderly way and the energies appear ality D. The denominator in eq 3 is the totia? norm of the

in a random (Poisson) distribution, hence earning the namereference density, which provides a kind of normalization to

“irregular” to reflect the independence of one state with respect the measure; an ergodic state should yield a valueApf

to a neighboring state. In this work, we will simply not use the considerably lower than unity (the exact requirement depends

terms regular or irregular due to their ambiguous interpretation, of course on the coarse graining domain size, etc.). As discussed

and indeed this labeling is no longer very common. above, the reference density, may also be the classical
With similarity as the fundamental feature, we have thus seen microcanonical density

that previous indicators of quantum ergodicity, obtained using

very different approaches, can be viewed as different measures o(x) O (E — V(x))®2"2 (5)

of the similarity/dissimilarity of energy eigenstates, all giving

important clues to what would strictly require the investigation which lets us investigate an individual state, without reference

where
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to nearby states but to the price that a classical picture is forced

upon a quantum description.

The second measure is obtained in a basis set approach where

the expansion coefficientsy;, of a particular basis are inves-

tigated. By choosing a few relevant basis sets and comparing

their corresponding outcomes with each other and with the
configuration space measure (and possibly also with the

corresponding momentum space measure), it should be possible

to get a good picture of the ergodic properties of the system.
By adding additional basis sets, we can also refine the
investigation. An ergodic state will tend to spread more globally
and uniformly in most basis sets than would a nonergodic state,
which is limited to some particular type of dynamics. A good
measure of uniform spread of probability is the Shannon entropy,
so that given our basis of interegf}, our precise measure of
globality, or spread, in this basis description is taken as

> leql” Inlc, )
=" (6)

z P, In(p)
]

wherep; is the average participation of basis-state jno.

1
i 12
B NZIQ,l

and the average is again over tNestates in a small energy
interval containing state. The denominator in eq 6 provides
also in this measure a kind of normalization.

)

3. Results and Discussion

3.1. Ergodicity in Two-Dimensional Systems: Henon
Heiles and Barbanis.Together with various billiard systems,
the two-dimensional system of Henon and Heflds by far
the most well investigated with respect to quantum ergod-
icity.15.16:20-23,27,29,30.31C| assically, this system shows an interest-
ing onset of ergodicity as its energy is increased toward the
dissociation limit, at which the particle can escape the 2D
potential well. Just before dissociation is reached, the portion

Back et al.
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Figure 1. Potential energy surface of the Henon-Heiles system. The
lowest contour is 0.005, and the increment between adjacent contours
is 0.02. Note that the potential is raised outside the bound region (see
text).
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of phase space occupied by ergodic trajectories is somewhergrigure 2. Example of four differently initiated trajectories of the

between 90 and 95%. Apart from the interesting transition
toward ergodicity the HenonHeiles system is of interest as a
fairly realistic 2D representation of a real molecular dissociation
process, and due to its low dimensionality it is readily handled
guantum mechanically.

3.1.1. Classical TrajectoriesNe will start by looking at a
few classical trajectories to get some feeling for the classical
ergodic properties of the Henon-Heiles system. The potential
defining the system is in Cartesian coordinates given by

Vix y) = 508+ + 2y ~ 3]

i.e., two isotropic harmonic vibrations, coupled by an anhar-
monic term of strength. If plane polar coordinates are used it
takes the form

8)

v(r, @) = %rz n %r3 sin(3y) ©)

As can be seen from the polar form, the Henofteiles potential

Henon-Heiles system, all aE = 0.166 which is very close to
dissociation. The sketched triangle is the potential contour for the
dissociation energy.

the dissociation points, we modify the potential so that any point
outside the bound region that has a potential energy less than
the dissociation energyep = A3%612) is instead assigned the
value Ep. This modification does of course not affect the
classical trajectories inside the well but is of practical aid in
the quantum calculations to prevent dissociative tunneling. In
the rest of this paper, we will refer to this potential simply as
the Henonr-Heiles potential despite this modification.

We now turn our interest to Figure 2, where four trajectories
(propagated using a GausRadau integrator) with different
initial conditions are shown for the cage= 1,1 = 1 at total
energyE = 0.166 (just below the dissociation energy). The
trajectories were initiated randomly from a small region
somewhat to the right of the origin with random direction of
the velocity vector. We obtain examples of the ergodic type of
trajectory (nos. 25 and 38) which are numerous, and we also

hasCs symmetry, and the three dissociation channels are locatedsee typical nonergodic trajectories (nos. 9 and 39), of which

at the corners of an equilateral triangle (Figure 1). To avoid the
unphysical effect of the potential going to minus infinity beyond

we get three or four out of 40 trajectories (but the true ratio
between ergodicity and nonergodicity of course demands a
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:
=13010°0 /R t=147-10°
08} N 1

i i 3.1.2. Quantum Mechanical Eigenfunctio8e now want

. to investigate the quantum mechanical ergodic properties of
some two-dimensional systems from the point of view of our
discussion about similarity and globality of energy eigenstates,
quantified by our suggested measures in section 2.3. We will
focus again mainly on the well-known HenoeHleiles system,
defined by the 2D Hamiltonian operator (in Cartesian coordi-
nates)

0.4

04t/

1=5.09-10°
08|

. 52 ( P 82)

H=—|—+—]t+t VXY (10)
2u\ox® 3y

04T JAND) SN ) whereV(x, y) is the Henor-Heiles potential in eq 8 and pictured

ey N\YAN . in its slightly modified form in Figure 1. Actually, the

or h fjf\ modification is only slight as far as the bound states are

/\\[ concerned, but the raising of the potential outside the bound

o4p/ region should also make it more physically relevant for quantum
08 04 dynamics reaching outside the well.

To obtain the energy eigenstates, we diagonalize the Hamil-
Figure 3. Progress of a trajectorfE(= 0.166) at four different times. ~ tonian in a basis of product sine-functions (i.e., eigenstates of
The at first one-dimensional oscillatory motion can be seen to escapethe 2D particle in a box, where we fit our triangle shaped
this behavior after some time and, thereafter, start to move in an ergodic potential conveniently inside the box), and we treat the states
way. The times are scaled to correspond to the mass 320 000, appearingvith even and odd parity with respect to reflectiorxis 0 in
in the quantum calculations. separate calculations. The present Cartesian approach is straight-
forward and has the advantage of an inherent check of the
proper sampling of the phase space). Strictly speaking, we numerical computation by the degeneracy of the energy eigen-
cannot make precise statements about ergodicity by just lookingstates of thee-symmetry group, which must be replicated by
at a trajectory in configuration space since the definition the two independent even and odd computations. We will now
concerns phase space. However, we can clearly rule outuse the same parameters in the potential as we did in the
ergodicity in trajectory nos. 9 and 39, whereas trajectory nos. previous section, i.eA = 1,1 = 1, which is the common case
25 and 38 are really in the ergodic regime as revealed by in previous studies, and also the version that Henon and Heiles
Poincafesurfaces of section and strongly suggested by their used in their original work. Furthermore, we #et= 1, so that
spatial behavior in Figure 2. We also issue a small warning We may interpret our results to be in atomic units, which yields
concerning the spatial density indicated by this kind of trajectory reasonable energies, sizes, etc., from a molecular dynamics point
plot; since the lines are drawn with constant thickness the eye Of view. At this time, we also note that the value of the mass,
overestimates the density in regions where the potential is low 4, is of no importance to the classical ergodic properties. It
and the particle moves with higher velocity. merely alters the time scale of the trajectories, not their shape
We shall also take a quick glance at a trajectory that at first in phase space (in fact in Figure 3, the times appearing are scaled
appears to be clearly nonergodic but after some time actually to represent the higher mass that will figure in the quantum
turns out to be in the ergodic part of phase space. In Figure 3,calculations). Hence, we may use the mass as a variable which
we see the progress of a trajectory (initiated near the origin andlets us vary the quantum effects and study their impact upon
with velocity nearly parallel to thg axis) at four different imes.  ergodicity (scaling the mass is equivalent to an inverse scaling
At the first instance, we see an almost one-dimensional Of /i%).
oscillation which is clearly not ergodic. However, at a slightly ~ The earlier studies have used the mass 6400 when transformed
longer time (about 20 oscillations in this case), it starts to deviate to our units, and in one casgea mass of 24 400 was used as
from its 1D motion, and soon it is clear that the trajectory has well. Unfortunately the interest in the Henon-Heiles system
begun to behave in an ergodic fashion, much like the first two seems to have decreased at the time when computer develop-
examples in Figure 2. As a matter of fact, we see the evidencements made it possible to investigate really high masses and
of a similar 1D trajectory in trajectory no. 38, this time turning pursue the classical limit. In this work we will investigate the
at the lower right corner and the left border of the triangle. This masses 160 000 and 320 000 (corresponding to 88 and 176 amu)
trajectory did not start in a 1D mode, but entered it after some for which the number of bound states of even symmetry are
time and left it after a number of oscillations, making it clear 1259 and 2508, respectively. The higher mass Hamiltonian was
that these 1D modes are in fact a quasi-stable part of the ergodiadiagonalized using 19350 product-sine basis functions (for each
regime, probably necessary to properly cover also the cornerssymmetry), and we will restrict ourselves to this mass when
of the triangle shaped accessible region. In contrast, the presenting the results. Notably, it turns out that the findings
nonergodic trajectories nos. 9 and 39 of Figure 2 seem to beare not very sensitive to which of the two masses that we
stable at any time, but it is clear that in practice, at some time investigate.
a decision about ergodicity must be made, although the We now apply the two ergodicity measures presented in
fundamental definitions of ergodicity do not concern the time section 2.3 to the highest bound energy eigenfunctions (even
aspect. As a last comment, it should be mentioned that the symmetry) of the HenonHeiles system. The result of the
behavior in Figure 3 is not a numerical artifact. A trajectory application of the measures is shown in Figure 4. In Figure 4a,
propagated at 6 orders of magnitude lower accuracy (in the we see thelL.? measure of similarity in configuration space,
relative energy conservation) showed no visible deviation from defined by eq 3. The first feature we can see is that the two
the present trajectory at= 1.47 x 1(P. curves, representing a (coarse grained) comparison of individual
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Figure 5. Henon-Heiles; coarse grained probability density for state
no. 2500 of even symmetry (coarse graining areAVd. This state
seems to represent a superposition of the three possible classical one-
dimensional oscillations.

State 2504; E=0.1664853

|wl*(coarse grained)

Basis entropy measure

086 11 | 111 ‘ 111 | 111 | 111 | 111l | 111 | 111 | L1l
2470 2475 2480 2485 2490 2495 2500 2505 2510
Eigenstate no.

Figure 4. Ergodicity measures for the 40 highest (even parity) states
of the Henonr-Heiles system. In a, we show the coarse grained
difference measure between individual eigenstates and the classical

microcanonical density (squares) and the average density of all 40 _. S . - .
eigenstates (diamonds). In b, the stars are the entropy measure for thé 1gure 6. Henon-Heiles; coarse grained PTObab'“W _denS|§y for state
no. 2504 of even symmetry (coarse graining areAVd. This state

sine basis, the triangles are for the DVR basigyrand circles represent fills th tire (triangle shaped ibl . formiv. h
the measure in the momentum DVR basis. Note the correlation between!'> € entre (triangle shaped) accessible region uniformly, hence

all curves in both parts a and b. implying an ergodic behavior.

State 2506; E=0.1665746

states with the classical microcanonical density (squares) anduficoarse grained)
with the average density of several quantum states (diamonds),

look nearly identical. This indicates that the average density of
several states (here we have taken the average over all the 40
highest states shown in the figure) must be very close to the
classical ergodic microcanonical density (which according to

eq 5 is constant throughout the allowed region for a 2D system). -1
On the other hand, individual states show a great variation under

this measure which is a clearly nonergodic feature according

to our previous discussion about quantum ergodicity and
similarity of energy eigenstates close in energy. Clearly, such

an important feature of the states as their coarse grained spatial
distribution cannot be allowed such wide variations if the system

is to be termed quantum ergodic. Also the next analysis, namely 1

the globality measure of spread in expansion coefficients in _. . . . .
different basis sets (eq 6), shown in Figure 4b, is seen to vary Figure 7. Henon-Heiles; coarse gralngd.probabll_lty dens_lty for state
. A . no. 2506 of even symmetry (coarse graining are®\i$. Here it clearly

between the eigenstates. The most striking feature is the very|ooks fike we have the quantum version of the classical nonergodic
close correlation between all curves (measures) in both parts agrajectory, which is making a trefoil shaped rotational motion.
and b of the figure, making it probable that the measures indeed
are able to qualitatively classify individual states and give an namely nos. 2500, 2504, and 2506. The coarse grained prob-
approximate overall picture of the ergodic behavior of the ability densities of these three states are shown in Figurés 5
guantum system. and the coarse graining regioAY of eq 3) which is based on

To verify that the peaks shown in Figure 4 indeed detect somethe spatial extension of the vibrational groundstate is also
sort of nonergodicity, we take a closer look at three eigenstates,indicated in each figure. The states have nearly the same energy

i
b
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(exact energies are presented in the figures) but show threemore ergodic behavior. We still see quantum indications of
completely different types of spatial behavior. State 2504, nonergodic rotational character (which was not found classically
indicated to be very ergodic by the measures, has uniform for the anisotropic case), and also the 1D oscillations are present
coverage of the triangular energetically allowed region which as before (these are classically unstable for both the anisotropic
is exactly the result of a microcanonical density in a 2D system. and isotropic case).
This is what would be demanded of an ergodic state in the We will also take the opportunity to investigate another
semiclassical limit. State 2500 on the other hand, which showed famous two-dimensional system according to Barb&higich
up as a very high nonergodic peak for all measures, is seen tohas previously also been investigated in connection with
be clearly nonergodic by virtue of its nonuniform spatial quantum ergodicity®>16:22The potential is
distribution which clearly distinguishes it from the ergodic-like
state. In fact, state 2500 looks very much like three superposed _A _
one-dimensional oscillations of the quasi stable kind shown in Vy) 2 (X2 + yz) /1x2y (12)
classical mechanics if a trajectory is initiated in a proper
direction (Figure 3). The difference is that classically this kind With a dissociation energy dp = A¥842, which amounts to
of motion persist only for a limited time, but in the case of a 0.125 when we choos& = 1, 1 = 1. Despite its apparent
quantum energy eigenstate, this behavior will last forever similarity with the Henor-Heiles system, it turns out that
according to eq 2. A third kind of eigenstate is represented by classically the degree of ergodicity just below the dissociation
state 2506, which also gives large peaks when we apply ourlimit is only about 60942 as compared to almost 95% for the
measures. Looking at the coarse grained spatial density, we seélenon-Heiles system near its dissociation limit. In fact, when
a state which does not reach out to the corners of the triangleone considers the spatial appearance of the classical trajectories,
and has three depleted areas near the central region. We calt is questionable if any trajectory at all should be referred to as
see that this state should be the quantum equivalent of theergodic, since also the trajectories showing the most stochastic
classical nonergodic trajectories, pictured in Figure 2 (trajectories behavior lack large spatial regions (which other nonergodic
labeled 9 and 39), which rotate around the center of the potentialtrajectories occupy), hence, implying a quite severe division of
in a trefoil shaped pattern. Of our 40 eigenstates, there seem tgphase space.
be six of this kind, with more or less pronounced trefoil ~We again diagonalize the corresponding Hamiltonian and
behavior. This gives a ratio of 15% (admittedly not very good obtain 1388 energy eigenstates of even symmetry up to
statistics) to be compared with clearly less than 10% in the dissociation. The analysis of the states directly below dissocia-
classical case. In addition, we have perhaps five states whichtion yields a clearly more nonergodic impression than for the
can be assigned the one-dimensional nonergodic behavior (ofHenon-Heiles system. We also here get the one-dimensional
which our state 2500 is one of the most pronounced) which kind of wave functions (in somewhat larger number than in the
has no classical counterpart since these trajectories are unstablelenon-Heiles case), but it is important to note that in the less
classically. The three classes of eigenfunctions (one ergodic andergodic classical Barbanis system this kind of 1D trajectories
two nonergodic types) were also discussed by Hose‘teald are stable (as they would also be in the Henbigiles system
we shall revisit them later in this section. at E = 0.125). In the Barbanis system, the rotational kind of
We have also performed some calculations on an anisotropichonergodicity is more of a mix between a rotation and a 1D
version of the HenorHeiles system, where the two harmonic  motion, and we see evidence of eigenstates having this behavior
terms are not equal as well. Moreover, since the “ergodic” states are quite far from
occupying the entire phase space, we actually get a generally
_1 1 higher lowest level for our quantum measures, since no state is
Vi y) = E(AXZ +BY) + l()(zy B §y3) (1) very close to the average behavior.
We now summarize the situation found in our investigation
In order not to lower the dissociation energy too much we made of quantum ergodicity for our three 2D systems, Henbieiles,
a quite modest change compared with the isotropic case (eq 8)anisotropic HenonHeiles, and Barbanis. From our suggested
by choosingA = 1.0 andB = 0.95, while still keepingl = 1.0. measures and visual inspection of energy eigenstates, it clearly
This breaks th€; symmetry and adjusts the upper dissociation seems that quantum effects promote nonergodicity. This is most
channel toEp = 0.1429. Classically, at energies very close to profound in the isotropic and anisotropic Herdteiles systems
dissociation, we found this system to be more ergodic than the which classically are ergodic to a very large extent, whereas
unperturbed HenonHeiles system (section 3.1.1), and we did the Barbanis system which is clearly more nonergodic classically
not find the kind of nonergodic trajectories seen in Figure 2 shows less difference to its likewise very nonergodic quantum
(again we did not perform a complete phase space sampling).behavior. Intuitively, it seems reasonable that quantum mechan-
We then computed the energy eigenstates in the same way agcs should somehow support periodic motions due to the wave
for the Henor-Heiles system above and obtained 1871 even nature of the solutions benefiting from the possibility of
states below the classical dissociation limit. When analyzing constructive interference.
these states as above, we found that the behavior was quite close Amplification of nonstable classical periodic orbits in quan-
to the one observed for the isotropic case; that is, we saw bothtum mechanics was indeed demonstrated by Hélfer the
clear indications of one-dimensional oscillatory behavior and case of a stadium billiard. The unstable classical orbits showed
versions of the classical rotational character (here it looked up as clearly visible scars of high amplitude in the energy
somewhat more like a circular rotation instead of a trefoil shaped eigenstates. It would seem as if the Hentdfeiles eigenfunc-
one). Also it was noted that some states which looked mainly tions which display superimposed one-dimensional (classically
ergodic in configuration space (and by the basis measure)unstable) oscillatory motion are precisely a scarring phenomena.
seemed to have some superimposed nonergodic part in themAlso the fact that we seem to have a somewhat larger proportion
mainly of 1D oscillatory type. Thus, the anisotropic Heron  of states corresponding to the true classical periodic nonergod-
Heiles system, which showed a higher degree of ergodicity icity (the rotational trefoil shaped motion) could then be
classically, does not have energy eigenstates which indicate amotivated by similar arguments of quantum mechanics favoring
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a periodic behavior. Especially, the anisotropic Henon-Heiles  For this investigation, the initial state at= 0 is taken to be
system where this nonergodicity is more or less absent classi-of Gaussian shape and placed at the origin, where the Henon
cally, does still have about as many quantum “trefoil states” as Heiles potential has its minimum. Thus
the isotropic version.
We then expect that due to quantum effects we cannot hopeys(x, y, 0) = _1 g exp[—ikx — x¥/40,7] x
. .. v 2 X X
in general to reach the extent of ergodicity shown for the 210,
classical system unless the mass is very large. How large then? (

Since it is our belief that the correspondence principle will
eventually force any quantum system to mimic the classical
features, the most interesting question is whether it happens at . o
chemically relevant masses. If we interpret our 2D results as Whereox = gy = 0.0636, giving a narrow initial wave packet.
atomic units, we have a particle of mass 176 amu, corresponding ! e wavenumbersk, k) are related to the momenta py =

to the sixth period in the table of elements, and which is confined 7tk @ndpy = fik,, and we vary these to obtain different directions
in a two-dimensional region with a side on the ordéf d\ at of the momenta of the initial wave packet. The energy
an energy in the vicinity of 4 eV. These numbers would lead expectation value of the wave function will be 0.16, and with
us to suspect that classical mechanics is a rather good apihe chosen values afy,0y, we get an energy dispersion of
proximation, but still we have clear quantum effects in terms 0.008_7. Remembering that thg pl_lssomatlon th_reshqld_ls 0.1667,
of nonergodic behavior. We also note that, when calculations We Will clearly have the possibility of some dissociation.

were performed with half the mass for the Hendteiles We shall propagate three wave packets to an end-tirhe=of
system, no qualitative change of the picture could be seen.2:0 x 10° (about 560 harmonic oscillations or 50 ps if
Instead it would be interesting to increase the mass to approacHntérpreted as atomic units), and they will differ by their initial
the classical limit, but this would demand a more elaborate ngle of the vector, py) relative to they axis. In case (i), this

approach for the diagonalization procedure and is outside the@ndle is very small (13, making the initial movement of the
scope of this work. wave packet nearly parallel to tlyeaxis. For cases (ii) and (iii),

we start with larger angles (16.and 26.8, respectively). We

are interested in the time averaged behavior of the wave packet
at long times, so we form the quantiffd’|2Owhich is the
average of the spatial density/(t)|2 fromt = 1.8 x 10° to the

end timet = 2.0 x 1%

The time averageJW|20) of the wave packets is shown in
gures 8-10, for cases (i), (ii), and (iii), respectively. We
clearly see that the nonergodic features of the quantum me-

L 2)”4 expl—ik,y — y/40,] (14)
0,
y

One possible explanation of the fact that we, despite the high
mass, have quantum effects causing nonergodicity is that the
mixing of the dynamics predominately take place near the
classical turning points where the kinetic energy is low. This
corresponds to long de Broglie wavelengths and thus sizable
guantum effects even for high masses. Classically, it is probably Fi
the upper part of the potential that promotes ergodic behavior,

as mentioned already in the original work by Henon and . ) . ; h .
y g y chanical HenorHeiles system discussed in the previous section

Heiles® This is to be expected since the coupling term goes as are reflected in the dynamics, since the average behavior of the
r3, and indeed, we see for example stable classical nonergodic y ' 9

1D oscillations at lower energies when the trajectories do not gr;;fZ$e(::Ife;§nteL2'é':| Xgnc(i;ﬂ?dnE:;:?sngegtnggscse?sogv(igovrvr?ifrﬁerllg d
reach as far out in the potential well. Thus, one could suspect prop : P ' ’

that the quantum effects causing nonergodicity would disappear'ljs ":];tl'f(‘:lhmgfm ,ﬁ]r:u:)nng_edai‘;%r?;ﬁg tg)sgifa?élr& Eﬁ:\rggﬁdvi a
and allow an approach to the classical behavior at such higheip enstates of the type shown in Figure 5 Thigthen means that
masses (or small values bf etc.) that the eigenfunctions may 9 yp 9 '

represent an advanced dynamics (many nodes and rich structure m:g 2;}’%\'C?ez?kte;igg:)ﬁgfl\éii'c?t tlrgse ilsnsi greﬁre;r;[g@tn';
even near the classical turning points. y Y 9 Y, Y

K . hi . . Figure 8. At the maximum time,= 2.0 x 10, this particular
3.1.3. Quantum Wz Packet Dynamicsn this section, itis 5.6 packet had a norm of 0.897, which means that about 10%
shown how the nonergodic character of the energy eigenstate

Sf it has escaped through the two open dissociation channels at
of the Henon-Heiles system is reflected in the quantum P g P

dynamical wave packet propagation. We then want to solve the WP-Average; Initial condition (i)
time-dependent Schdinger equation
<|¥)>
o WXy, t
i MWy, 0 _

2 = Aw(x,y, b (13 s

Ao

whereH is defined by egs 8 and 10, and we get 320 000.

We have added a smooth repulsive potential barrier (which goes
such agP) beyond the dissociation limit in the upper dissociation -1
channel of the HenonHeiles potential, to reflect the dissociative
components of the wave packet rather than letting them escape.
In the two lower dissociation channels, however, we allow
dissociation and hence utilize absorbing boundétiesallow

a finite grid size. The grid where we propagate our wave packet
corresponds te-1.60< x < 1.60 and—1.35=< y < 1.85 with

840 grid points in both th& andy direction. The propagation

is done via the split operator methﬂ)‘b\Nlth the kln_etlc part of Figure 8. Henon-Heiles; time average of the spatial probability
the propagator evaluated by Fourier transformation of the wave density for case (i), where the initial wave packet at the origin was

function?® The time step is 2.5, and we perform the damping |aunched at an angle of F.4elative they axis and with total energy
action of the absorbing boundaries at each time step. E = 0.16. The cutoff on the axis is at 0.3.
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WP-Average; Initial condition (ii) understand how the ergodic properties of the eigenfunctions have
a direct and profound impact on the quantum dynamics of the
system.
3.2. Three-Dimensional System: Vibration of NQ at Zero
Total Angular Momentum. 3.2.1. Quantum Mechanical Rep-
resentation. After discussing two-dimensional model systems
in the previous section, we now turn to a more realistic case in
three dimensions, namely the high lying vibrational states of
the NG, molecule in its adiabatic electronic groundstate as given
by a slightly modified®48 version of the ab initio surface of
Leonardi, Petrongolo, Hirsch, and Buenk&rWe restrict
ourselves to the case of zero total angular momentlim,0,
for which the Hamiltonian of a triatomic molecule in hyper-
spherical coordinates takes the following fdfit#
2f 2
H= _h_{a_ + 1—6£2(0,¢)} +
2u 8p2 p2
Figure 9. Henon-Heiles; time average of the spatial probability

density for case (ii), where the initial wave packet at the origin was where[2(0,¢) is the grand angular operator
launched at an angle of 16.7elative they axis and with total energy

1577
8up’

+ V(p.0,9) (15)

E = 0.16. The cutoff on the axis is at 0.3. <y 1 9 . 9 1 52
L(0.¢) = —| = 7,5IN0O) 7, + —— ———| (16)
WP-Average; Initial condition (ii) sin(©) 9¢ 90 4 sirf(0/2) o¢
<|¥f> u is the reduced mass
= (Mmymeimg, /M)*2 17)
andM is the total mass of the molecule
M= (my +m, + my) (18)
The volume element is given by
dr = 3—12dp sin()dode (19)

These hyperspherical coordindt&®are such that & 0 < ,
0 < ¢ = 27, and for the present potential therange 3.0 bohr
< p =< 6.8 bohr is suitable when we limit our calculations to
Figure 10. Henon-Heiles; time average of the spatial probability _boun_d states. Furthermore, since we have the symmetry of two
density for case (iii), where the initial wave packet at the origin was identical oxygen atoms, & range of 0 tar will suffice, and .
launched at an angle of 26.6elative they axis and with total energy ~ We may perform the calculations for even and odd states with
E = 0.16. The cutoff on the axis is at 0.3. respect top independently.
We work in a mixed DVR-FBR basi4’*8 where the

the lower corners of the potential surface. Case (ii), which was hyperradiusp, is described as a DVR-gridlp,[] and (for each
initiated in a direction of about F#elative to they axis, shows discrete value of the hyperradius) the hyperangtesp] are
instead a quite even spread of spatial probability, indicating a treated in a basis of the (analytical) eigenstatgsl) of the
more ergodic behavior. Comparing the wave packet average ingrand angular operatdr?. In this way, the application of the
Figure 9 with the ergodic type of wave function, exemplified L2 part of the Hamiltonian is only a multiplication with the
by Figure 6, it seems likely that we have a large proportion of corresponding eigenvalue, and the derivatives with respect to
such eigenstates in the wave packet expansion. The norm ofare computed via FFT. When it comes to the potential part, we
the wave packet at the maximum time was 0.879, so the high transform thegjmCbasis to a grid representatiofe, L] within
energy components have found their way out from the bound a global quadrature scheme, and after multiplication with the
region. In the last example, case (iii), we start with a still larger potential, we transform back to the mixed DW¥RRBR basis.
angle (27) with respect to they axis and with this choice it The basis used ibl, x Ny x N, = 168 x 115 x 105 =
turns out, as indicated by Figure 10, that we to a large extent 2 028 600, which means that a direct diagonalization is out of
get stuck in the trefoil-shaped rotational behavior supported by the question. Since we will only need a few states near
eigenfunctions of the shape shown in Figure 7. This is the type dissociation, we use instead the same method as in ref 48, i.e.,
of nonergodicity presented also by classical mechanics at higha restarted spectral filtering method, where repeated application
energies as two of the trajectories in Figure 2 demonstrate. Thisof the Hamiltonian is used to generate a sharp energy envelope
behavior of the wave packet also prevents a proper dissociation,(the spectral filter). By restarting the sequence with sharper and
and the norm of the wave packettat 2.0 x 1(° is as high as sharper filters, a pure state may be obtained. The computational
0.940. efficiency of this method is not very high, but it gives access

To summarize we have seen different types of long time to individual states (and corresponding energies) and by
behavior of the wave packet dynamics depending on initial continuing the iterations it is easy to adjust to the requested
conditions, which is the very essence of nonergodicity. We also accuracy. We used the method to calculate the 20 highest
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TABLE 1: Energies? for the NO, Vibrational States 1.0 " T
Obtained by the Restarted Spectral Filtering Procedure ()
number Elev number EleV —08f i
1815 3.334908 1825 3.339759 E
1816 3.335418 1826 3.340283 = 06k |
1817 3.335916 1827 3.341007 g9 _
1818 3.336697 1828 3.341313 _u;a i
1819 3.336955 1829 3.341673 o4l I i
1820 3.337063 1830 3.342051 -
1821 3.337919 1831 3.342385 -‘-;
1822 3.338610 1832 3.342979 o _
1823 3.339191 1833 3.343626
1824 3.339299 1834 3.343663 e
aAll digits shown are significant? False state supported by the 0'03 ' 4 ' 5 ‘ I 7
artificial potential well (see text). p [bohr]

Figure 11. NO,; probability density in the hyperradiys The full
vibrational states of even parity, directly below the quantum line is the classical microcanonical density at an energy precisely below

mechanical dissociation limit. The energies of the obtained stateste classical dissociation limit, which can be seen to agree very well

) . . with the average quantum density represented by the fat dashed line.
are prt_esented in Table 1. The numbering C_)f the levels is The short-dashed and dotted lines represent the individual states nos.
according to ref 47, where all bound energy eigenvalues were 1851 and 1828, respectively.

calculated. In Table 1, one of the states, no. 1818, was actually
found (by the ergodicity criteria) to be an artificial state due to 120
a flaw in the potential energy surface. Further investigations L @
led to the conclusion that this state lives in an unphysical well | ;L
até, ¢, close tar (corresponding to very small distance between
the oxygen atoms). Since this well is clearly separated from
the interesting part of the potential, it is easy to lift the well to
remedy the deficiency. We do not know if this problem with
the potential is originat? or if it is due to the modification&®
but we issue a warning that a small part of previously calculated
levels of this potential may be artificial.

3.2.2. Ergodic Analysigd-or the ergodic analysis of NOwe
use the two kinds of measure discussed in section 2.3 and teste
successfully on the HenerHeiles system in section 3.1.2. We 020
point out again that this approach gave good indications (and
good mutual correlation) of the ergodic/nonergodic behavior
suggested by visual inspection of the eigenstates in configuration %
space for all three 2D systems investigated above. Thus, we
have good hope that it will now give good indications of ergodic (96
character also for the NGystem, where visual inspection is a
cumbersome procedure due to the three-dimensional nature ofg

0.80 —

0.60 —

10n-space measure

0.40

(Snfigurat

the problem. % 094
First we investigate the spatial behavior of eigenfunctions &
through a comparison of individual probability distributions with § 0.92 -
the averaged distribution of several eigenstates and the classicag L
microcanonical density, respectively. As in the case of the -
Henon-Heiles system, the measure is tfenorm of the coarse & [~

—
T

grained difference, and care has been taken to somewhat adap
the coarse graining volume to the local wavelength. Concerning  o.3s |-
the classical microcanonical density, it was obtained for each

hyperspherical grid point as described in the Appendix. The 056 I |

result is that the classical microcanonical densitl &t 3.2263 RETIT] 1820 1825 1830 1835

eV (the classical dissociation limit) is very similar to the average Eigenstate no.

density of our 19 states as indicated by Figure 11, where We gjgyre 12, Ergodicity measures for the 19 highest (of even parity)
have integrated out the hyperangles and show the probability vibrational states of NgatJ = 0 (the artificial state no. 1818 is deleted).
density as function of the hyperradius (no coarse graining is In a, we show the coarse grained difference measure between individual
performed in this figure). Also the density of two individual —eigenstates ar_1d the classipal microcan(_)nical density (squares) and the
states are seen to be quite similar to the quantum and classicafVerage density of all 19 eigenstates (diamonds). In b, the stars are the

. : ntropy measure for the FBR basis, the triangles represent the DVR
reference densities. In Figure 12a, we see the results for the 2(ﬁasis, and the circles correspond to the measure in the mixed-DVR

(19) highest bound states of NQt is seen that the measure is  £gR pasis.

not varying nearly as much as in the Herdtieiles case (Figure

4a), suggesting a mainly ergodic behavior, at least with respectto behave reasonably with respect to its probability density in
to configuration space. The state no. 1821 is somewhat higherp according to Figure 11).

than the rest, so we keep an extra eye on it when applying the Now we apply the basis-entropy criterion to the same
next analysis method (but we note that this state at least seemeigenstates. We have two natural basis sets to investigate,
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namely the FBR basis (eigenstatesl&fin 6, ¢, and Fourier packets show a clearly nonergodic behavior, and the time
states inp) and the DVR basis (hyperspherical configuration average of the spatial density may conform to any of the
space) described above. Also, we will include the mixed DVR- different types of eigenfunctions depending on initial condi-
(p)-FBR(®,¢) basis in which the wave function is normally tions.
stored during the calculations. The result of the measure is (7) By applying our measures to the vibrational states 0§ NO
shown in Figure 12b, where we see that there is hardly any near dissociation we showed that the eigenstates present a high
correlations between the curves, nor with the measure in Figuredegree of similarity implying an ergodic behavior. This is in
12a. This further supports the indications that the states of NO accord with previously performed energy level statistics (see,
are indeed to a large part ergodic near the dissociation limit. e.g., ref 47), which is the standard way to get an indication of
This is in accord with a previously performed eigenvalue the ergodic nature of a system. The measure is also more
analysis?” where the nearest neighbor spacing distribution was convenient than the common investigations of the nodal behavior
calculated (for the 218 highest levels) showing the level of a wave function, since this becomes a cumbersome task in
repulsion to conform to Wigner statistics rather than to the more than two dimensions.
nonergodic Poisson distribution.
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We have investigated the concept of quantum ergodicity with the field of molecular quantum dynamics will continue to inspire
emphasis on its connection to the behavior of the energy us. The research presented in this work was supported by the
eigenstates and, therefore, also the qualitative impact on theSwedish Research Council (VR).
quantum dynamics of the system. The following points are of
special interest in this study. Appendix

(1) By taking the standpoint that a fundamental characteristic
of an ergodic quantum dynamical motion is the similarity of
eigenfunctions close in energy, we arrive at a concept of
guantum ergodicity closely adhering to the classical meaning.
It naturally include previous studies as different ways of
measuring the similarity of eigenfunctions. Similarity means that
all of the energy eigenstates are global and that all states in
small energy interval will have equal statistical weight in the
expansion of an arbitrary (initial) state.

(2) Quantum effects are seen to amplify nonergodic behavior.
By investigation of the HenonHeiles system near dissociation,
we observe a fraction of clearly nonergodic eigenfunctions of
about 25%. This is to be compared to less than 10% nonergodic f s 1,90 ]
portion of the classical phase space. In particular eigenfunctions 'no = > dop” [1 + sin(0/2) cosp + xno)]
of one-dimensional oscillatory character are especially profound.
Su_ch oscillations are not stable classically but can prevail for rooz _1 szz [1 + sin@/2) cose)]
quite long times. 2

(3) The nonergodicity of the quantum HenoiHeiles system , 1
described above persists even to the highest masses that we were o = >
able to treat numerically, and actually the degree of nonergod- \
icity was approximately the same when two different masses
(factor of 2) were investigated. One possible explanation is that where the channel angles are givenjay = 2 tarm{(mo/u)
the classical mixing of phase space mostly takes place near theandyno = 2 tam(mo/), and the scaling parameter for each
turning points, where the kinetic energy is so low that sizable species igh? = (mdu)(1 — mJ/M) with « andM defined in eqs
quantum effects are present even for very high masses. 17 and 18. The four points now obtained in internal coordinates

(4) Points 2 and 3 above are also qualitatively valid for the define three vectorsa(b,c) in this space. It is assumed that the
anisotropic (perturbed) HenerHeiles system and the Barbanis volume corresponding to each box in the hyperspherical
system. For the anisotropic HeneHeiles system, the difference ~ coordinates is proportional 8= |(a x b)-c|, which would be
between classical and quantum mechanics is even moreexact for an infinitesimally small box.
pronounced, since this system has a higher degree of ergodicity Second, we transform each grid point to internal coordinates
classically, whereas the Barbanis system which is quite noner-and calculate the corresponding angular momentum resolved
godic classically gives better correspondence to the likewise classical densify}
nonergodic behavior of the eigenfunctions.

(5) A way to partially automate the analysis of ergodic w0 rNOZrNO.2 Sin(n)(lllzla)fllz[E— € — V(r'yor 'nos 77)]1’2
behavior is suggested by our two measures, based on globality
in terms of basis functions and coarse grained similarity in where 5 is the O-N—O' angle, I3, 15, I3 are the principal
configuration space, respectively. These measures are easy tonoments of inertia, and the rotational energy,is zero forJ
apply, and by investigating their correlation, it seems that one = 0. Finally, the classical weight = Vw is assigned to each
can get a reasonably accurate indication of ergodicity. By hyperspherical grid point. The weights for all grid points are
including additional basis sets in the analysis the picture can summed and normalized to unity, giving probabilities for each
be gradually refined. grid point that are directly comparable with the quantum

(6) As expected, it is seen that the different properties of the mechanical probability obtained from tlle= 0 wave function.
energy eigenfunctions of the HeneHleiles system has a direct ~ Special care was taken in defining the boxes at the edges of the
impact on the quantum dynamics. The time propagation of wave hyperspherical grid.

The quantum mechanical probability density is obtained on
the hyperspherical gricog,05,¢,) by squaring the corresponding
value of theJ = 0 wave function and including the volume
element and quadrature weights. To assign classical probabilities
to these grid points we proceed in two steps as follows.

First, a volume is assigned to each hyperspherical grid point
aby enclosing it by a box centered on the grid point. Together
the boxes fill all space between the grid points. Each box is
spanned by three vectors, defined by four corners of the box.
A coordinate transformation to internal coordinates is performed
for each of the four corners using the equatf8ns

do’0? [1 + sin(/2) cost — yyo)]




8794 J. Phys. Chem. A, Vol. 108, No. 41, 2004

References and Notes

(1) Marcus, R. A.; Rice, O. KJ. Phys. Chem195], 55, 894.

(2) Baer, T.; Hase, W. LUnimolecular Reaction Dynamic©xford:
New York, 1996.

(3) Slater, N. BTheory of Unimolecular Reactionslethuen: London,
1959.

4) éplc, M. Mol. Phys.1967, 12, 101. Slater, N. BMol. Phys.1967,
12, 107. Dlc, M. Chem. Phys. Lettl967 1, 160.

(5) Gray, S. K.; Rice, S. A.; Davis J. Phys. Cheml986 90, 3470.

(6) Nordholm S.Chem. Phys1989 137, 109.

(7) Leitner, D. M.; Wolynes P. GChem. Phys. Lettl997 280 411.

(8) Nordholm, S.; Bek, A. Phys. Chem. Chem. Phyz001 3, 2289.

(9) Shapiro, M.; Brumer, PPrinciples of the Quantum Control of
Molecular ProcessesWViley: Hoboken, NJ, 2003.

(10) von Neumann, Z. Phys.1929 57, 30 (in German).

(11) Jancel, R.Foundations of Classical and Quantum Statistical
Mechanics Pergamon: London, 1969.

(12) Porter, C. EStatistical Theories of Spectra: Fluctuatiorica-
demic: New York, 1965.

(13) Percival, I. CJ. Phys. B1973 6, L229.

(14) Pomphrey, NJ. Phys. B1974 7, 1909.

(15) Nordholm, S.; Rice, S. Al. Chem. Physl974 61, 203. Nordholm,
S.; Rice, S. AJ. Chem. Physl974 61, 768.

(16) Nordholm, S.; Rice, S. Al. Chem. Physl975 62, 157.

(17) Berry, M. V.J. Phys. A1977, 10, 2083.

(18) Wigner, E.Phys. Re. 1932 40, 749.

(19) McDonald, S. W.; Kaufman, A. Nehys. Re. Lett.1979 42, 1189.

(20) Heller, E. JChem. Phys. Lettl979 60, 338.

(21) Kosloff, R.; Rice, S. AChem. Phys. Lett198Q 69, 209.

(22) stratt, R. M.; Handy, N. C.; Miller, W. HJ. Chem. Phys1979
71, 3311.

(23) Hutchinson, J. S.; Wyatt, R. Ehem. Phys. Lettl98Q 72, 378.

(24) Kay, K. G.J. Chem. Phys198Q 72, 5955.

(25) Brumer, P.; Shapiro, MChem. Phys. Lettl98Q 72, 528. Davis,
M. J.; Stechel, E. B.; Heller, E. €hem. Phys. Letfl98Q 76, 21. Shapiro,
M.; Brumer, P.Chem. Phys. Lettl982 90, 481. Heller, E. J.; Stechel, E.
B. Chem. Phys. Lettl982 90, 484.

(26) Pechukas, FPhys. Re. Lett. 1983 51, 943.

(27) Feit, M. D.; Fleck, J. A., JrJ. Chem. Phys1984 80, 2578.

Back et al.

(28) Heller, E. JPhys. Re. Lett. 1984 53, 1515.

(29) Peres, APhys. Re. A1984 30, 504. Feingold, M.; Moiseyev, N.;
Peres, APhys. Re. A 1984 30, 509. Feingold, M.; Moiseyev, N.; Peres,
A. Chem. Phys. Lettl985 117, 344.

(30) Kay, K. G.J. Chem. Phys1983 79, 3026. Ramachandran, B.;
Kay, K. G.J. Chem. Physl985 83, 6316. Ramachandran, B.; Kay, K. G.
J. Chem. Phys1987, 86, 4628.

(31) Billing, G. D.; Jolicard, GChem. Phys. Lettl989 155, 521.

(32) Benet, L.; Seligman, T. H.; Weideritter, H. A. Phys. Re. Lett.
1993 71, 529.

(33) De Polavieja, G. G.; Borondo, F.; Benito, R. Mt. J. Quantum
Chem.1994 51, 555.

(34) Kaplan, L.; Heller, E. JPhysica D1998 121, 1. Zelditch, S.
Physica D1998 121, 19.

(35) Aurich, R.; Baker, A.; Schubert, R.; Taglieber, Mhysica D1999
129 1.

(36) Birkhof, G. D.Proc. Natl. Acad. Sci. U.S.A931, 17, 650. Birkhof,
G. D. Proc. Natl. Acad. Sci. U.S.A93], 17, 656.

(37) B&k, A. Licentiate Thesis, Geborg University, Gteborg, Sweden,
2002.

(38) Shnirelman, A. IUsp. Mat. NaukL974 29, 181 (in Russian).

(39) Shnirelman, A. I. IKAM Theory and Semiclassical Approximations
to EigenfunctionsLazutkin, V. F., Ed.; Springer: Berlin, 1993; p 313.

(40) Henon, M.; Heiles, CAstron. J.1964 69, 73.

(41) Hose, G.; Taylor, H. S.; Bai, Y. Yd. Chem. Physl984 80, 4363.

(42) Barbanis, BAstron. J.1966 71, 415.

(43) Vibok, A.; Balint-Kurti, G. G.J. Phys. Chem1992 96, 8712.

(44) Feit, M. D.; Fleck, J. A.; Steiger, Al. Comput. Phys1982 47,
412.

(45) Kosloff, D.; Kosloff, R.J. Comput. Phys1983 52, 35.

(46) Salzgeber, R. F.; Mandelshtam, V.; Schlier, Ch; Taylor, HJ.S.
Chem. Phys1998 109, 937.

(47) Yu, H.-G.; Nyman, GJ. Chem. Phys1999 110, 11133.

(48) Bk, A. J. Chem. Phys2002 117, 8314.

(49) Leonardi, E.; Petrongolo, C.; Hirsch, G.; Buenker, R1.Xhem.
Phys.1996 105, 9051.

(50) Varandas, A. J. C.; Yu, H.-@. Chem. Soc., Faraday Trank997,
93, 819;1997, 93, 3599 (corrigendum).

(51) Nyman, G.; Nordholm, S.; Schranz, H. \l[.Chem. Phys1990
93, 6767.



