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The concept of quantum ergodicity and the degree of ergodic behavior reflected by the bound energy eigenstates
are studied for some vibrational systems in two and three dimensions. Different approaches are attempted in
order to be able to classify and quantify ergodicity in a given system by investigating the energy eigenfunctions.
It is argued that the concept of quantum ergodicity is fundamentally connected to the similarity between
eigenstates close in energy and to their globality. Previous investigations and definitions of quantum ergodicity
can be seen to connect to this theme; they provide different measures of similarity between eigenstates. Here
we propose two practical measures to investigate quantum ergodicity. The systems treated include the famous
two-dimensional Henon-Heiles and Barbanis systems, which have previously been investigated both classically
and quantum mechanically. As a more realistic three-dimensional example, we consider the vibrations of
nonrotating NO2 close to dissociation.

1. Introduction

In this report, we will address the question of the definition
of quantum ergodicity and its relation to the classical concept
and to applications such as unimolecular reactions. Specifically,
we will relate the extent of ergodicity in a quantum system to
the behavior of its energy eigenstates, which provides a more
fundamental view of the concept as compared to the statistical
analysis of eigenvalues used today for a wide variety of systems.

The concept of ergodicity is, together with the time scale
under which ergodic relaxation takes place, one of the corner
stones in modern theories of unimolecular reactions. The
calculation of unimolecular rate constants via the statistical
RRKM theory1,2 assumes fully ergodic relaxation of the
vibrational dynamics after the (collisional) activation of the
reactant molecule and also that the relaxation is fast compared
to the time scale of the reaction. However, for many reactions,
especially over low reaction barriers, this assumption can
certainly be questioned, and many attempts have been made to
develop models which account for an incomplete ergodic
relaxation at a finite rate.3-8 Also, internal vibrational redistribu-
tion and thus mode-selective chemistry relates to the time scale
on which a system may show ergodic behavior. It is further
interesting to note that chaotic dynamics (which is ergodic) does
not prevent coherent control.9 Finally, the ergodic properties
of quantum mechanical systems are of fundamental importance
for the foundations of statistical mechanics and its many
implementations in the form of simulation methods relying on
the ergodic hypothesis which claims that time averages equal
ensemble averages.

We begin by briefly reviewing previous suggestions that have
been put forward as ways of analyzing quantum systems with
respect to ergodicity. The first to discuss quantum ergodicity
in the literature was apparently von Neumann.10,11He suggested
that if the time averaged expectation value of any operator equals
the average over phases in the (complex) expansion coefficients
of the spectral basis then the system is quantum ergodic. This

statement is to hold for any wave function of the system, but a
simple analysis shows that this is equivalent to saying that a
quantum system is ergodic if and only if its eigenvalue spectrum
is nondegenerate. However, it is clear that quantum ergodicity
must have a deeper meaning in order to match the content and
relevance of the classical concept; a separable two-dimensional
harmonic oscillator with incommensurate frequencies has no
degenerate levels in its spectrum while being a clearly noner-
godic system. Yet the fact that ergodic properties are somehow
reflected in the spectrum of the system is to be expected. It
was in nuclear physics that the interest in the statistical
distribution of energy levels was initiated. A review of these
developments is given by Porter,12 and this book contains many
of the early papers, notably by Wigner, who made important
contributions. In short, it was found that there is a repulsion
between neighboring energy levels if the dynamics is fully
coupled (ergodic), whereas a system composed of several
independent parts will tend toward a Poisson like distribution,
where the energy levels are uncorrelated.

The interest in ergodic manifestations of spectra was intro-
duced to chemistry by Percival,13 Pomphrey,14 and by Nordholm
and Rice.15 Although Nordholm and Rice discussed the expected
regularization of energy level spacing that accompanies ergod-
icity, the main statement of this work was that the eigenstates
themselves should contain more fundamental information about
the ergodic properties of the system. Following this, they
investigated the overlap properties of the eigenstates with
suitable basis states and related a spread in this overlap over
basis states of the same zeroth order energy to an ergodic
behavior. This study concerned bound states, but in a following
work,16 also quasibound states were investigated, bringing the
concept closer to unimolecular decay theory. Here the imaginary
part of the eigenvalue, which is connected to the lifetime of
the state, was compared for the states and large fluctuations in
these give large variations in dissociation rates and hence a
nonergodic behavior.

Berry17 discussed classical approximations to the smoothed
Wigner phase space distribution18 of eigenfunctions for inte-
grable and ergodic cases, paying special attention to the spatial
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behavior near the classical turning points. Furthermore, Berry
conjectured that an ergodic eigenfunction looks like a Gaussian
random function, which follows if it locally behaves like an
isotropic random superposition of de Broglie waves. The
investigations of Berry were tested numerically for stadium
billiard systems by McDonald and Kaufman.19 Unavoidable
nonergodicity for quantum systems with symmetries causing
degeneracies was pointed out by Heller,20 but it was also noted
by Kosloff and Rice21 that the effect of the measuring process
in quantum mechanics may reduce the impact of such nonclas-
sical effects.

The nodal structure of ergodic/nonergodic eigenstates was
discussed by Stratt et al,22 where an irregular nodal pattern was
related to ergodic states and a regular, ordered, pattern which
assigns quantum numbers in different directions characterized
nonergodic states. They also discussed the power spectra of
energy eigenstates as an indication of ergodicity as well as
suggested an improvement of the Nordholm-Rice method15

based on the use of natural orbitals. Hutchinson and Wyatt23

calculated the Wigner phase space distribution18 on a Poincare´
surface of section and compared it with results from classical
trajectories. They obtained the expected trend toward more
ergodic distributions as energy increased. Close agreement
between wave functions and classical states in phase space was
also found by Kay24 within a time-dependent approach. An
interesting discussion of the effect of the nature of the initial
state preparation upon observation of ergodic behavior took
place between Davis, Stechel, and Heller on one side and
Brumer and Shapiro on the other.25

By assuming that, for ergodic cases, the spatial pattern of
bound state eigenfunctions of approximately the same energy
look roughly the same (close to the classical microcanonical
density at that energy) Pechukas26 managed, in the semiclassical
limit, to derive the correct statistical distribution of energy levels
showing the postulated level repulsion. Feit and Fleck27

performed wave packet propagation and measured quantum
chaos in terms of the decay of the autocorrelation function and
the increase of uncertainty in coordinates and momenta. In an
important paper,28 Heller observed the phenomenon of scarring
in wave functions of the classically chaotic stadium billiard
system. These scars are an increase of probability density near
the periodic classical orbits. Peres, Feingold, and Moiseyev29

addressed the question of the classical limit of quantum chaos
and observed how certain quantum expectation values for the
energy eigenstates were related to the corresponding classical
phase space average.

A measure of quantum ergodicity that is close to the classical
concept was developed and investigated by Kay and Ramachan-
dran.30 The classical correlation between functions on phase
space, which determine if the system is ergodic, was taken to
the quantum regime by replacement of phase space functions
with quantum mechanical traces of the corresponding operators.
Billing and Jolicard31 used adiabatic switching to see how
(zeroth order) eigenstates loose memory about the initial
separable situation as an anharmonic coupling is turned on
slowly in time. Close in spirit to the early suggestion of
Nordholm and Rice is the work of Benet et al32 where they
investigate the engagement of zeroth order states in the full
Hamiltonian within a perturbational approach. De Polavieja,
Borondo, and Benito33 used Husimi functions to transform
quantum mechanics to phase space and in this way found clear
localization properties (nonergodicity) of eigenstates in a
classically chaotic system. Kaplan and Heller and Zelditch34

discussed what they call weak quantum ergodicity which, in

contrast to Gaussian random eigenstates and random matrix
theory, relaxes the demand on the eigenstates by investigating
them only with smooth operators. Aurich et al35 analyzed the
maximum norm (L∞) of eigenstates for various billiard systems.
The growth of maximum norm in configuration space with
energy, as well as the distribution of maximum amplitude inside
the billiard provide information about ergodicity.

It must be emphasized that this introduction by no means
gives a full account of all developments in the vast field of
quantum ergodicity, but it serves nonetheless as a starting point
for the following discussions. We shall return to some of these
studies and discuss them in more detail later in this paper.

2. Theory

2.1. Classical Ergodicity and Unimolecular Reactions.
Within the confines of classical mechanics the concept of
ergodicity is clear and undisputed. It is also of obvious utility.
Classical molecular dynamics is with few exceptions studied
by trajectory calculations. A trajectory is a nonstatistical pure
state of the classical system evolving on an energy surface of
dimension one less than the full dimension of the classical
system. The concept of ergodicity deals with the qualitative
nature of the dynamics on the energy surface. The trajectory is
a one-dimensional sequence of pure phase space states,Γ(t),
located on an energy surface. An ergodic system is defined to
have trajectories such that they cover the energy surface
uniformly; that is, each measurable subsurface on the energy
surface is visited in proportion to its “area”. Any classical
physical propertyA[Γ] then evolves in time so as to satisfy the
ergodic hypothesis which says that the long time trajectory
average ofA equals its corresponding microcanonical average
〈A〉E for all but a set of initial trajectories of measure zero. This
means that we have

Through the work of Birkhoff,11,36 we know that if the system
is nonergodic at the chosen energyE then the trajectory will
span a subsurface which it samples uniformly and the entire
energy surface is dynamically decomposable into subsurfaces
without dynamical connections. The satisfaction of the ergodic
hypothesis is often assumed, sometimes only implicitly, in the
use of classical molecular dynamics to study the internal motions
of molecules and fluids. This then allows the calculation of
microcanonical property averages by the convenient trajectory
method with its appealing dynamical character and often high
numerical efficiency. In reality, there is a question of whether
the system actually is ergodic. This focuses attention on the
issue of the measure of ergodicity, which we shall consider here
in the case of quantum dynamics. Also in the study of chemical
reaction rates, particularly unimolecular reaction rates, the
question of ergodicity plays a central role. The old RRK theory
assumed complete ergodicity and an internal vibrational energy
redistribution rate which is much faster than the isolated
molecule reaction rates at the relevant energies. This assumption
was taken over by the modern RRKM theories.1,2 It is clear,
however, from the early work of Slater,3 who created a harmonic
theory of unimolecular reactions based on essentially complete
nonergodicity, that this assumption is not at all justified in
general although it may well serve as a good approximation in
many cases. Recently Leitner and Wolynes7 and ourselves8 have
suggested that reality must be expected to fall somewhere
between the Slater and RRKM assumptions showing incomplete
ergodicity and perhaps internal vibrational redistribution rates

lim
Tf∞

1
T∫0

T
dt A[Γ(t; Γ0)] ) 〈A〉E for E ) H[Γ0] (1)
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which are comparable or even slower than the isolated molecule
decay rates at relevant energies. For these reasons, we must
clearly extend the concept of ergodicity to quantum dynamics
which applies far more accurately to the molecular vibrations
in particular.

In our attempt to resolve the meaning and the measure of
quantum ergodicity, we shall be guided by the classical concept
of ergodicity with its proven relevance for relaxation phenomena
and reaction rates. The correspondence principle suggests that
we should be able to gain considerable insight by insisting that
the concept and measure of quantum ergodicity we propose and
explore here approach the correct classical limit. Nevertheless,
we face an immediate contradiction. The classical concept deals
with the way a trajectory samples a surface of equal energy
states. In the quantum case, we will not have such an energy
surface. There may be a set of degenerate eigenstates for a given
energy level but quantum dynamics explicitly prohibits the flow
of probability between such degenerate energy eigenstates and
between any energy eigenstates. Thus, it would at first appear
as if a system showing degenerate energy levels would
automatically be nonergodic, whereas a system with nondegen-
erate energy eigenstates would be trivially ergodic. This view
was indeed taken by von Neuman,10,11 but it would rob the
concept of quantum ergodicity of all its relevance. Thus, we
must consider the nature of each quantum eigenstate to decide
whether it is ergodic and to what degree. We must also recall
that eigenstates are stationary states. To see dynamics, we must
go to wave packets which are superpositions of many energy
eigenstates and recall that the nature of the motion of a wave
packet is related to both the energy eigenvalues and to the
physical nature of the energy eigenstates, which describe the
final distribution toward which the system relaxes.

2.2. Quantum Ergodicity and Its Relation to Energy
Eigenstates.At the outset of this work,37 it was noted that
quantum ergodicity was very closely related to the similarity
of eigenstates of nearly the same energy. Only then would a
preparation of any initial state include all eigenstates within its
energy dispersion in a “democratic” (maximally distributed)
way, rather than risk that only a subset of the energy eigenstates,
sharing some common feature with the initial state, excludes
other subsets with other properties. As it turned out there existed
already since 1974 a theorem for classically ergodic billiard
systems by Shnirelman,38,39 proving that in the semiclassical
limit the eigenstates of the billiard system are uniformized in
configuration space and that expectation values of pseudodif-
ferential (phase space) operators go to their classical microca-
nonical average for almost all states. In a way, this means that
the states in a sufficiently small energy interval become equal
in the “test-space of smooth pseudo-differential operators”. This
certainly supports the suggested equivalence between quantum
ergodicity and similarity between energy eigenstates, which is
then assumed to hold approximately for real systems with
potential and finite value ofp. Thus, complete ergodicity in an
energy range will mean that the form of the energy eigenfunc-
tions will change smoothly with energy. Rapid and random
change between neighboring eigenfunctions will be a reliable
sign of nonergodicity.

In line with the Shnirelman theorem, some of the studies
mentioned in the Introduction29,30,34 investigate quantum er-
godicity in terms of the behavior of suitable sets of operators,
which give a coarse grained investigation of similarity in phase
space, where the exact features probed depend on the restrictions
on the operators. Outside the semiclassical billiard regime

defined by Shnirelman, the set of operators and the degree of
similarity required will have to be properly relaxed.

Instead of discussing expectation values of operators one can
at a more fundamental level discuss the globality of eigen-
states,15,22,32where an ergodic state must be global (maximally
delocalized) in all relevant basis sets. Two neighboring global
energy eigenfunctions must be similar since the difference only
arises from the small energy difference. The globality also
implies similarity in a way very close to the idea of democratic
participation of eigenstates in any initial state, since this of
course also means initial states that are precisely the basis states
of interest. In this way, similarity is an immediate consequence
of globality of eigenstates in a given range of energy. Further-
more, detailed knowledge of the globality (i.e., the distribution
of expansion coefficients) in basis functions that are eigenstates
of an operator naturally contains richer information than just
the expectation value of the operator (through all higher
moments). Thus, globality is on equal footing with the Shnire-
lman suggestion of probing eigenstates through expectation
values.

In time-dependent quantum dynamics, we find the real
motivation for the interest in ergodicity. We want to know the
qualitative behavior of the system, just as in the classical case
(section 2.1), and the division of phase space, reflected by the
ergodicity of the system, is clearly one of the fundamental
properties of the general dynamics. For a time-independent
Hamiltonian, the entire time development is known through the
energy eigenstates, their energies, and the initial condition in
form of the expansion coefficients att ) 0 via the spectral
expression of time-dependence:

This motivates the study of the energy eigenstates alone when
the question of ergodicity is addressed. If we choose an initial
Ψ(0) (often a Gaussian wave packet, or some other physically
interesting state), we obtain the expansion coefficients through
an ) 〈Ψ(0)|ψn〉, and the subsequent time evolution will forever
be colored by this results. It is precisely therefore we must
demand, in the case of ergodic dynamics, that these overlaps
are democratic so that no particular class of initial states
consequently prefers overlap with some subset of theψn’s. This
subset then, must have some particular property (e.g., a different
spatial probability distribution as in Figures 5-7) that the
complementary subset lack, or otherwise there would have been
no reason for the differences in overlap in the first place. This
property will then for all times be reflected in the dynamics,
due to the particular choice of initial state. Another initial state
would in turn show another set of properties, making the overall
system behavior dependent on initial preparation, which cor-
respond exactly to classical nonergodic behavior. The demo-
cratic overlap of the energy eigenstates with (almost) any initial
state is precisely the demand of similarity (or globality as
mentioned previously), i.e., a set of eigenstates where no state
stands out causing it to induce a particular type of dynamics.
Clearly, the democratic overlap discussed above is limited by
the energy of the initial state relative to the energy of the
eigenstates. This energy criteria for the eigenstates depend on
the exact energy dispersion of the initial state, and correspond
to energy surfaces in the semiclassical limit where there are
numerous states in a very small energy interval.

In eq 2, not only the eigenfunctions appear but also their
energies. The energies present themselves as angular velocities
of the phase of the time-dependent expansion coefficients and

Ψ(t) ) ∑
n

an exp(-iEnt/p)ψn (2)
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relate directly to relaxation rates. We have already mentioned
in the Introduction that in an ergodic system the energy levels
will tend to repel each other, and this avoidance of near
degeneracies will give a proper dephasing of the states. The
repulsive character of the levels is demonstrated in the semiclas-
sical limit by Pechukas,26 where he obtains the statistics of
regular eigenvalue spacings for ergodic systems by assuming
the spatial similarity of bound eigenstates of nearly the same
energy. The precise level spacing statistics obtained is called
the Wigner distribution (not to be confused with the Wigner
transform of wave functions into phase space distributions18)
and is given byp(S) ) (π/2)S exp(-πS2/4), whereS is the
normalized spacing between two adjacent levels,∆E/〈∆E〉. Thus,
we see that the probability for zero spacing (degeneracy)
between two levels is zero, and there is a peak probability at
somewhat less than the average level spacing. In other words,
the nowadays very popular investigations of energy level
distributions, performed for a great variety of systems to
elucidate the chaotic behavior of quantum systems, follows from
the fact that eigenfunctions in an ergodic system must be similar,
i.e., continuously varying with energy. If the states are not
similar in this sense, they are instead independent and generate
a random distribution of energy levels, where the position of a
level does not depend on the position of nearby levels, hence,
resulting in a Poisson type distribution.

The eigenvalue statistics for ergodic systems above demanded
similarity in configuration space, but in passing, Pechukas also
mentions an expected similarity of the Wigner phase space
distribution18 of the eigenstates, as first suggested by Nordholm
and Rice15 and by Berry,17 and investigated numerically by
Hutchinson and Wyatt23 for the Henon-Heiles system. The
suggestion is that, just as in the classical phase space of an
ergodic system, a state in the quantum case should in the
semiclassical limit uniformly cover the proper energy surface
when Wigner transformed to phase space. Since the Wigner
transform contains all possible information about the state, this
is clearly the same as saying that eigenstates very close in energy
are almost equal, which should hold approximately also when
we leave the semiclassical limit.

The labeling of ergodic and nonergodic states is also worthy
of a comment. On many occasions, mainly in the earlier studies,
the notations regular and irregular states are used to mean
nonergodic and ergodic states, respectively. This notation is
probably due to the chaotic (irregular) dynamics of classically
ergodic (chaotic) systems and the irregular nodal pattern of
ergodic eigenfunctions,19,22 but by now it should be clear that
when we speak of quantum states of ergodic or nonergodic
character the inverted notation is actually proper. An (quantum)
ergodic system has similar eigenfunctions and less variation in
energy level spacing, so that the term “regular” could be
appropriate to describe the fact that there are no surprises either
in the shape of the eigenstates or in the spacing between adjacent
levels. In a nonergodic system, on the other hand, the states
look very different in a disorderly way and the energies appear
in a random (Poisson) distribution, hence earning the name
“irregular” to reflect the independence of one state with respect
to a neighboring state. In this work, we will simply not use the
terms regular or irregular due to their ambiguous interpretation,
and indeed this labeling is no longer very common.

With similarity as the fundamental feature, we have thus seen
that previous indicators of quantum ergodicity, obtained using
very different approaches, can be viewed as different measures
of the similarity/dissimilarity of energy eigenstates, all giving
important clues to what would strictly require the investigation

of expectation values for a very large number of operators or
the globality properties in very many basis sets. If a good
measure is designed by which to obtain similarity and globality
of energy eigenstates, then this would be the optimal measure
for quantum ergodicity.

2.3. Practical Measures of Quantum Ergodicity.In the
previous section, we saw that the globality of energy eigenstates
and the corresponding similarity between states that are close
in energy seem to be the quantum hallmarks of ergodicity. In
this section, we will suggest two measures of similarity/globality
that should be able to indicate in a qualitative manner whether
a system is quantum ergodic or not. We will then use these
measures in the following two sections to investigate ergodicity
in vibrational systems of two and three dimensions.

Our first measure is based on the investigation of an
eigenfunction in configuration space, and an analogous concept
could be used to instead investigate the behavior in momentum
space, by appropriately Fourier transforming the states. The
behavior in configuration space of ergodic states is, as revealed
notably by Shnirelman38,39and Pechukas,26 equal to the classical
microcanonical density in the semiclassical limit. For finitep,
we here interpret this to mean that with the proper coarse
graining and sufficiently high quantum numbers, each state
should not deviate very much from the classical density, nor
from the density of neighboring states or the density average
of a number of states close in energy. A nonergodic system on
the other hand can have states that are trapped in different
minima of the potential or that lock kinetic energy to motion in
certain directions, causing them to be confined in space. This
then, is manifested as wide variations in the coarse grained
spatial density between different energy eigenstates and a high
degree of deviation from the classical microcanonical density.
To be precise, we will define the measure,An, to be theL2 norm
of the difference between the coarse grained probability density
of ψn and the coarse grained reference-density,ρ, which is either
the classical microcanonical density at a suitable energy or the
average density obtained from several individual eigenstates
energetically close to the state under investigation (and including
this state itself). In mathematical terms this means

where

and the sum runs over a small energy interval containingN
states (of which the considered staten is one). The coarse
graining domain is∆V, andV is the entire space of dimension-
ality D. The denominator in eq 3 is the totalL2 norm of the
reference density, which provides a kind of normalization to
the measure; an ergodic state should yield a value ofAn

considerably lower than unity (the exact requirement depends
of course on the coarse graining domain size, etc.). As discussed
above, the reference density,ρ, may also be the classical
microcanonical density

which lets us investigate an individual state, without reference

An )
∫V

dx (∫∆V
du |ψn(x + u)|2 - ∫∆V

du ρ(x + u))2

∫V
dx (∫∆V du ρ(x + u))2

(3)

ρ(x) )
1

N
∑

l

|ψl(x)|2 (4)

ρ(x) ∝ (E - V(x))(D-2)/2 (5)
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to nearby states but to the price that a classical picture is forced
upon a quantum description.

The second measure is obtained in a basis set approach where
the expansion coefficients,cnj, of a particular basis are inves-
tigated. By choosing a few relevant basis sets and comparing
their corresponding outcomes with each other and with the
configuration space measure (and possibly also with the
corresponding momentum space measure), it should be possible
to get a good picture of the ergodic properties of the system.
By adding additional basis sets, we can also refine the
investigation. An ergodic state will tend to spread more globally
and uniformly in most basis sets than would a nonergodic state,
which is limited to some particular type of dynamics. A good
measure of uniform spread of probability is the Shannon entropy,
so that given our basis of interest,{j}, our precise measure of
globality, or spread, in this basis description is taken as

wherepj is the average participation of basis-state no.j

and the average is again over theN states in a small energy
interval containing staten. The denominator in eq 6 provides
also in this measure a kind of normalization.

3. Results and Discussion

3.1. Ergodicity in Two-Dimensional Systems: Henon-
Heiles and Barbanis.Together with various billiard systems,
the two-dimensional system of Henon and Heiles40 is by far
the most well investigated with respect to quantum ergod-
icity.15,16,20-23,27,29,30,31Classically, this system shows an interest-
ing onset of ergodicity as its energy is increased toward the
dissociation limit, at which the particle can escape the 2D
potential well. Just before dissociation is reached, the portion
of phase space occupied by ergodic trajectories is somewhere
between 90 and 95%.40 Apart from the interesting transition
toward ergodicity the Henon-Heiles system is of interest as a
fairly realistic 2D representation of a real molecular dissociation
process, and due to its low dimensionality it is readily handled
quantum mechanically.

3.1.1. Classical Trajectories.We will start by looking at a
few classical trajectories to get some feeling for the classical
ergodic properties of the Henon-Heiles system. The potential
defining the system is in Cartesian coordinates given by

i.e., two isotropic harmonic vibrations, coupled by an anhar-
monic term of strengthλ. If plane polar coordinates are used it
takes the form

As can be seen from the polar form, the Henon-Heiles potential
hasC3 symmetry, and the three dissociation channels are located
at the corners of an equilateral triangle (Figure 1). To avoid the
unphysical effect of the potential going to minus infinity beyond

the dissociation points, we modify the potential so that any point
outside the bound region that has a potential energy less than
the dissociation energy (ED ) A3/6λ2) is instead assigned the
value ED. This modification does of course not affect the
classical trajectories inside the well but is of practical aid in
the quantum calculations to prevent dissociative tunneling. In
the rest of this paper, we will refer to this potential simply as
the Henon-Heiles potential despite this modification.

We now turn our interest to Figure 2, where four trajectories
(propagated using a Gauss-Radau integrator) with different
initial conditions are shown for the caseA ) 1, λ ) 1 at total
energyE ) 0.166 (just below the dissociation energy). The
trajectories were initiated randomly from a small region
somewhat to the right of the origin with random direction of
the velocity vector. We obtain examples of the ergodic type of
trajectory (nos. 25 and 38) which are numerous, and we also
see typical nonergodic trajectories (nos. 9 and 39), of which
we get three or four out of 40 trajectories (but the true ratio
between ergodicity and nonergodicity of course demands a

Figure 1. Potential energy surface of the Henon-Heiles system. The
lowest contour is 0.005, and the increment between adjacent contours
is 0.02. Note that the potential is raised outside the bound region (see
text).

Figure 2. Example of four differently initiated trajectories of the
Henon-Heiles system, all atE ) 0.166 which is very close to
dissociation. The sketched triangle is the potential contour for the
dissociation energy.

Sn )

∑
j

|cnj|2 ln(|cnj|2)

∑
j

pj ln(pj)

(6)

pj )
1

N
∑

l

|clj|2 (7)

V(x, y) ) A
2

(x2 + y2) + λ(x2y - 1
3

y3) (8)

V(r, æ) ) A
2

r2 + λ
3

r3 sin(3æ) (9)
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proper sampling of the phase space). Strictly speaking, we
cannot make precise statements about ergodicity by just looking
at a trajectory in configuration space since the definition
concerns phase space. However, we can clearly rule out
ergodicity in trajectory nos. 9 and 39, whereas trajectory nos.
25 and 38 are really in the ergodic regime as revealed by
Poincare´ surfaces of section and strongly suggested by their
spatial behavior in Figure 2. We also issue a small warning
concerning the spatial density indicated by this kind of trajectory
plot; since the lines are drawn with constant thickness the eye
overestimates the density in regions where the potential is low
and the particle moves with higher velocity.

We shall also take a quick glance at a trajectory that at first
appears to be clearly nonergodic but after some time actually
turns out to be in the ergodic part of phase space. In Figure 3,
we see the progress of a trajectory (initiated near the origin and
with velocity nearly parallel to they axis) at four different times.
At the first instance, we see an almost one-dimensional
oscillation which is clearly not ergodic. However, at a slightly
longer time (about 20 oscillations in this case), it starts to deviate
from its 1D motion, and soon it is clear that the trajectory has
begun to behave in an ergodic fashion, much like the first two
examples in Figure 2. As a matter of fact, we see the evidence
of a similar 1D trajectory in trajectory no. 38, this time turning
at the lower right corner and the left border of the triangle. This
trajectory did not start in a 1D mode, but entered it after some
time and left it after a number of oscillations, making it clear
that these 1D modes are in fact a quasi-stable part of the ergodic
regime, probably necessary to properly cover also the corners
of the triangle shaped accessible region. In contrast, the
nonergodic trajectories nos. 9 and 39 of Figure 2 seem to be
stable at any time, but it is clear that in practice, at some time
a decision about ergodicity must be made, although the
fundamental definitions of ergodicity do not concern the time
aspect. As a last comment, it should be mentioned that the
behavior in Figure 3 is not a numerical artifact. A trajectory
propagated at 6 orders of magnitude lower accuracy (in the
relative energy conservation) showed no visible deviation from
the present trajectory att ) 1.47× 105.

3.1.2. Quantum Mechanical Eigenfunctions.We now want
to investigate the quantum mechanical ergodic properties of
some two-dimensional systems from the point of view of our
discussion about similarity and globality of energy eigenstates,
quantified by our suggested measures in section 2.3. We will
focus again mainly on the well-known Henon-Heiles system,
defined by the 2D Hamiltonian operator (in Cartesian coordi-
nates)

whereV(x, y) is the Henon-Heiles potential in eq 8 and pictured
in its slightly modified form in Figure 1. Actually, the
modification is only slight as far as the bound states are
concerned, but the raising of the potential outside the bound
region should also make it more physically relevant for quantum
dynamics reaching outside the well.

To obtain the energy eigenstates, we diagonalize the Hamil-
tonian in a basis of product sine-functions (i.e., eigenstates of
the 2D particle in a box, where we fit our triangle shaped
potential conveniently inside the box), and we treat the states
with even and odd parity with respect to reflection inx ) 0 in
separate calculations. The present Cartesian approach is straight-
forward and has the advantage of an inherent check of the
numerical computation by the degeneracy of the energy eigen-
states of theE-symmetry group, which must be replicated by
the two independent even and odd computations. We will now
use the same parameters in the potential as we did in the
previous section, i.e.,A ) 1, λ ) 1, which is the common case
in previous studies, and also the version that Henon and Heiles
used in their original work. Furthermore, we setp ) 1, so that
we may interpret our results to be in atomic units, which yields
reasonable energies, sizes, etc., from a molecular dynamics point
of view. At this time, we also note that the value of the mass,
µ, is of no importance to the classical ergodic properties. It
merely alters the time scale of the trajectories, not their shape
in phase space (in fact in Figure 3, the times appearing are scaled
to represent the higher mass that will figure in the quantum
calculations). Hence, we may use the mass as a variable which
lets us vary the quantum effects and study their impact upon
ergodicity (scaling the mass is equivalent to an inverse scaling
of p2).

The earlier studies have used the mass 6400 when transformed
to our units, and in one case,30 a mass of 24 400 was used as
well. Unfortunately the interest in the Henon-Heiles system
seems to have decreased at the time when computer develop-
ments made it possible to investigate really high masses and
pursue the classical limit. In this work we will investigate the
masses 160 000 and 320 000 (corresponding to 88 and 176 amu)
for which the number of bound states of even symmetry are
1259 and 2508, respectively. The higher mass Hamiltonian was
diagonalized using 19350 product-sine basis functions (for each
symmetry), and we will restrict ourselves to this mass when
presenting the results. Notably, it turns out that the findings
are not very sensitive to which of the two masses that we
investigate.

We now apply the two ergodicity measures presented in
section 2.3 to the highest bound energy eigenfunctions (even
symmetry) of the Henon-Heiles system. The result of the
application of the measures is shown in Figure 4. In Figure 4a,
we see theL2 measure of similarity in configuration space,
defined by eq 3. The first feature we can see is that the two
curves, representing a (coarse grained) comparison of individual

Figure 3. Progress of a trajectory (E ) 0.166) at four different times.
The at first one-dimensional oscillatory motion can be seen to escape
this behavior after some time and, thereafter, start to move in an ergodic
way. The times are scaled to correspond to the mass 320 000, appearing
in the quantum calculations.

Ĥ ) - p2

2µ ( ∂
2

∂x2
+ ∂

2

∂y2) + V(x, y) (10)
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states with the classical microcanonical density (squares) and
with the average density of several quantum states (diamonds),
look nearly identical. This indicates that the average density of
several states (here we have taken the average over all the 40
highest states shown in the figure) must be very close to the
classical ergodic microcanonical density (which according to
eq 5 is constant throughout the allowed region for a 2D system).
On the other hand, individual states show a great variation under
this measure which is a clearly nonergodic feature according
to our previous discussion about quantum ergodicity and
similarity of energy eigenstates close in energy. Clearly, such
an important feature of the states as their coarse grained spatial
distribution cannot be allowed such wide variations if the system
is to be termed quantum ergodic. Also the next analysis, namely
the globality measure of spread in expansion coefficients in
different basis sets (eq 6), shown in Figure 4b, is seen to vary
between the eigenstates. The most striking feature is the very
close correlation between all curves (measures) in both parts a
and b of the figure, making it probable that the measures indeed
are able to qualitatively classify individual states and give an
approximate overall picture of the ergodic behavior of the
quantum system.

To verify that the peaks shown in Figure 4 indeed detect some
sort of nonergodicity, we take a closer look at three eigenstates,

namely nos. 2500, 2504, and 2506. The coarse grained prob-
ability densities of these three states are shown in Figures 5-7,
and the coarse graining region (∆V of eq 3) which is based on
the spatial extension of the vibrational groundstate is also
indicated in each figure. The states have nearly the same energy

Figure 4. Ergodicity measures for the 40 highest (even parity) states
of the Henon-Heiles system. In a, we show the coarse grained
difference measure between individual eigenstates and the classical
microcanonical density (squares) and the average density of all 40
eigenstates (diamonds). In b, the stars are the entropy measure for the
sine basis, the triangles are for the DVR basis inx,y and circles represent
the measure in the momentum DVR basis. Note the correlation between
all curves in both parts a and b.

Figure 5. Henon-Heiles; coarse grained probability density for state
no. 2500 of even symmetry (coarse graining area is∆V). This state
seems to represent a superposition of the three possible classical one-
dimensional oscillations.

Figure 6. Henon-Heiles; coarse grained probability density for state
no. 2504 of even symmetry (coarse graining area is∆V). This state
fills the entire (triangle shaped) accessible region uniformly, hence
implying an ergodic behavior.

Figure 7. Henon-Heiles; coarse grained probability density for state
no. 2506 of even symmetry (coarse graining area is∆V). Here it clearly
looks like we have the quantum version of the classical nonergodic
trajectory, which is making a trefoil shaped rotational motion.
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(exact energies are presented in the figures) but show three
completely different types of spatial behavior. State 2504,
indicated to be very ergodic by the measures, has uniform
coverage of the triangular energetically allowed region which
is exactly the result of a microcanonical density in a 2D system.
This is what would be demanded of an ergodic state in the
semiclassical limit. State 2500 on the other hand, which showed
up as a very high nonergodic peak for all measures, is seen to
be clearly nonergodic by virtue of its nonuniform spatial
distribution which clearly distinguishes it from the ergodic-like
state. In fact, state 2500 looks very much like three superposed
one-dimensional oscillations of the quasi stable kind shown in
classical mechanics if a trajectory is initiated in a proper
direction (Figure 3). The difference is that classically this kind
of motion persist only for a limited time, but in the case of a
quantum energy eigenstate, this behavior will last forever
according to eq 2. A third kind of eigenstate is represented by
state 2506, which also gives large peaks when we apply our
measures. Looking at the coarse grained spatial density, we see
a state which does not reach out to the corners of the triangle
and has three depleted areas near the central region. We can
see that this state should be the quantum equivalent of the
classical nonergodic trajectories, pictured in Figure 2 (trajectories
labeled 9 and 39), which rotate around the center of the potential
in a trefoil shaped pattern. Of our 40 eigenstates, there seem to
be six of this kind, with more or less pronounced trefoil
behavior. This gives a ratio of 15% (admittedly not very good
statistics) to be compared with clearly less than 10% in the
classical case. In addition, we have perhaps five states which
can be assigned the one-dimensional nonergodic behavior (of
which our state 2500 is one of the most pronounced) which
has no classical counterpart since these trajectories are unstable
classically. The three classes of eigenfunctions (one ergodic and
two nonergodic types) were also discussed by Hose et al,41 and
we shall revisit them later in this section.

We have also performed some calculations on an anisotropic
version of the Henon-Heiles system, where the two harmonic
terms are not equal

In order not to lower the dissociation energy too much we made
a quite modest change compared with the isotropic case (eq 8)
by choosingA ) 1.0 andB ) 0.95, while still keepingλ ) 1.0.
This breaks theC3 symmetry and adjusts the upper dissociation
channel toED ) 0.1429. Classically, at energies very close to
dissociation, we found this system to be more ergodic than the
unperturbed Henon-Heiles system (section 3.1.1), and we did
not find the kind of nonergodic trajectories seen in Figure 2
(again we did not perform a complete phase space sampling).
We then computed the energy eigenstates in the same way as
for the Henon-Heiles system above and obtained 1871 even
states below the classical dissociation limit. When analyzing
these states as above, we found that the behavior was quite close
to the one observed for the isotropic case; that is, we saw both
clear indications of one-dimensional oscillatory behavior and
versions of the classical rotational character (here it looked
somewhat more like a circular rotation instead of a trefoil shaped
one). Also it was noted that some states which looked mainly
ergodic in configuration space (and by the basis measure)
seemed to have some superimposed nonergodic part in them,
mainly of 1D oscillatory type. Thus, the anisotropic Henon-
Heiles system, which showed a higher degree of ergodicity
classically, does not have energy eigenstates which indicate a

more ergodic behavior. We still see quantum indications of
nonergodic rotational character (which was not found classically
for the anisotropic case), and also the 1D oscillations are present
as before (these are classically unstable for both the anisotropic
and isotropic case).

We will also take the opportunity to investigate another
famous two-dimensional system according to Barbanis,42 which
has previously also been investigated in connection with
quantum ergodicity.15,16,22The potential is

with a dissociation energy ofED ) A3/8λ2, which amounts to
0.125 when we chooseA ) 1, λ ) 1. Despite its apparent
similarity with the Henon-Heiles system, it turns out that
classically the degree of ergodicity just below the dissociation
limit is only about 60%,42 as compared to almost 95% for the
Henon-Heiles system near its dissociation limit. In fact, when
one considers the spatial appearance of the classical trajectories,
it is questionable if any trajectory at all should be referred to as
ergodic, since also the trajectories showing the most stochastic
behavior lack large spatial regions (which other nonergodic
trajectories occupy), hence, implying a quite severe division of
phase space.

We again diagonalize the corresponding Hamiltonian and
obtain 1388 energy eigenstates of even symmetry up to
dissociation. The analysis of the states directly below dissocia-
tion yields a clearly more nonergodic impression than for the
Henon-Heiles system. We also here get the one-dimensional
kind of wave functions (in somewhat larger number than in the
Henon-Heiles case), but it is important to note that in the less
ergodic classical Barbanis system this kind of 1D trajectories
are stable (as they would also be in the Henon-Heiles system
at E ) 0.125). In the Barbanis system, the rotational kind of
nonergodicity is more of a mix between a rotation and a 1D
motion, and we see evidence of eigenstates having this behavior
as well. Moreover, since the “ergodic” states are quite far from
occupying the entire phase space, we actually get a generally
higher lowest level for our quantum measures, since no state is
very close to the average behavior.

We now summarize the situation found in our investigation
of quantum ergodicity for our three 2D systems, Henon-Heiles,
anisotropic Henon-Heiles, and Barbanis. From our suggested
measures and visual inspection of energy eigenstates, it clearly
seems that quantum effects promote nonergodicity. This is most
profound in the isotropic and anisotropic Henon-Heiles systems
which classically are ergodic to a very large extent, whereas
the Barbanis system which is clearly more nonergodic classically
shows less difference to its likewise very nonergodic quantum
behavior. Intuitively, it seems reasonable that quantum mechan-
ics should somehow support periodic motions due to the wave
nature of the solutions benefiting from the possibility of
constructive interference.

Amplification of nonstable classical periodic orbits in quan-
tum mechanics was indeed demonstrated by Heller28 for the
case of a stadium billiard. The unstable classical orbits showed
up as clearly visible scars of high amplitude in the energy
eigenstates. It would seem as if the Henon-Heiles eigenfunc-
tions which display superimposed one-dimensional (classically
unstable) oscillatory motion are precisely a scarring phenomena.
Also the fact that we seem to have a somewhat larger proportion
of states corresponding to the true classical periodic nonergod-
icity (the rotational trefoil shaped motion) could then be
motivated by similar arguments of quantum mechanics favoring

V(x, y) ) A
2

(x2 + y2) - λx2y (12)

V(x, y) ) 1
2

(Ax2 + By2) + λ(x2y - 1
3

y3) (11)
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a periodic behavior. Especially, the anisotropic Henon-Heiles
system where this nonergodicity is more or less absent classi-
cally, does still have about as many quantum “trefoil states” as
the isotropic version.

We then expect that due to quantum effects we cannot hope
in general to reach the extent of ergodicity shown for the
classical system unless the mass is very large. How large then?
Since it is our belief that the correspondence principle will
eventually force any quantum system to mimic the classical
features, the most interesting question is whether it happens at
chemically relevant masses. If we interpret our 2D results as
atomic units, we have a particle of mass 176 amu, corresponding
to the sixth period in the table of elements, and which is confined
in a two-dimensional region with a side on the order of 1 Å at
an energy in the vicinity of 4 eV. These numbers would lead
us to suspect that classical mechanics is a rather good ap-
proximation, but still we have clear quantum effects in terms
of nonergodic behavior. We also note that, when calculations
were performed with half the mass for the Henon-Heiles
system, no qualitative change of the picture could be seen.
Instead it would be interesting to increase the mass to approach
the classical limit, but this would demand a more elaborate
approach for the diagonalization procedure and is outside the
scope of this work.

One possible explanation of the fact that we, despite the high
mass, have quantum effects causing nonergodicity is that the
mixing of the dynamics predominately take place near the
classical turning points where the kinetic energy is low. This
corresponds to long de Broglie wavelengths and thus sizable
quantum effects even for high masses. Classically, it is probably
the upper part of the potential that promotes ergodic behavior,
as mentioned already in the original work by Henon and
Heiles.40 This is to be expected since the coupling term goes as
r3, and indeed, we see for example stable classical nonergodic
1D oscillations at lower energies when the trajectories do not
reach as far out in the potential well. Thus, one could suspect
that the quantum effects causing nonergodicity would disappear
and allow an approach to the classical behavior at such high
masses (or small values ofp, etc.) that the eigenfunctions may
represent an advanced dynamics (many nodes and rich structure)
even near the classical turning points.

3.1.3. Quantum WaVe Packet Dynamics.In this section, it is
shown how the nonergodic character of the energy eigenstates
of the Henon-Heiles system is reflected in the quantum
dynamical wave packet propagation. We then want to solve the
time-dependent Schro¨dinger equation

whereĤ is defined by eqs 8 and 10, and we setµ ) 320 000.
We have added a smooth repulsive potential barrier (which goes
such asy5) beyond the dissociation limit in the upper dissociation
channel of the Henon-Heiles potential, to reflect the dissociative
components of the wave packet rather than letting them escape.
In the two lower dissociation channels, however, we allow
dissociation and hence utilize absorbing boundaries43 to allow
a finite grid size. The grid where we propagate our wave packet
corresponds to-1.60e x e 1.60 and-1.35e y e 1.85 with
840 grid points in both thex andy direction. The propagation
is done via the split operator method,44 with the kinetic part of
the propagator evaluated by Fourier transformation of the wave
function.45 The time step is 2.5, and we perform the damping
action of the absorbing boundaries at each time step.

For this investigation, the initial state att ) 0 is taken to be
of Gaussian shape and placed at the origin, where the Henon-
Heiles potential has its minimum. Thus

whereσx ) σy ) 0.0636, giving a narrow initial wave packet.
The wavenumbers (kx, ky) are related to the momenta bypx )
pkx andpy ) pky, and we vary these to obtain different directions
of the momenta of the initial wave packet. The energy
expectation value of the wave function will be 0.16, and with
the chosen values ofσx,σy, we get an energy dispersion of
0.0087. Remembering that the dissociation threshold is 0.1667,
we will clearly have the possibility of some dissociation.

We shall propagate three wave packets to an end-time oft )
2.0 × 106 (about 560 harmonic oscillations or 50 ps if
interpreted as atomic units), and they will differ by their initial
angle of the vector (px, py) relative to they axis. In case (i), this
angle is very small (1.4°), making the initial movement of the
wave packet nearly parallel to they axis. For cases (ii) and (iii),
we start with larger angles (16.7° and 26.6°, respectively). We
are interested in the time averaged behavior of the wave packet
at long times, so we form the quantity〈|Ψ|2〉 which is the
average of the spatial density|Ψ(t)|2 from t ) 1.8× 106 to the
end timet ) 2.0 × 106.

The time average,〈|Ψ|2〉, of the wave packets is shown in
Figures 8-10, for cases (i), (ii), and (iii), respectively. We
clearly see that the nonergodic features of the quantum me-
chanical Henon-Heiles system discussed in the previous section
are reflected in the dynamics, since the average behavior of the
three different initial conditions at long times show completely
different properties. As could be suspected, case (i), which had
its initial momentum nearly parallel to they axis, has picked
up much of the one-dimensional oscillatory character via
eigenstates of the type shown in Figure 5. This then means that
such a wave packet will evolve in time in a manner that is
always affected by this nonergodicity, as is so clearly shown in
Figure 8. At the maximum time,t ) 2.0 × 106, this particular
wave packet had a norm of 0.897, which means that about 10%
of it has escaped through the two open dissociation channels at

ip
∂Ψ(x, y, t)

∂t
) ĤΨ(x, y, t) (13)

Ψ(x, y, 0) ) ( 1

2πσx
2)1/4

exp[-ikxx - x2/4σx
2] ×

( 1

2πσy
2)1/4

exp[-ikyy - y2/4σy
2] (14)

Figure 8. Henon-Heiles; time average of the spatial probability
density for case (i), where the initial wave packet at the origin was
launched at an angle of 1.4° relative they axis and with total energy
E ) 0.16. The cutoff on thez axis is at 0.3.
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the lower corners of the potential surface. Case (ii), which was
initiated in a direction of about 17° relative to they axis, shows
instead a quite even spread of spatial probability, indicating a
more ergodic behavior. Comparing the wave packet average in
Figure 9 with the ergodic type of wave function, exemplified
by Figure 6, it seems likely that we have a large proportion of
such eigenstates in the wave packet expansion. The norm of
the wave packet at the maximum time was 0.879, so the high
energy components have found their way out from the bound
region. In the last example, case (iii), we start with a still larger
angle (27°) with respect to they axis and with this choice it
turns out, as indicated by Figure 10, that we to a large extent
get stuck in the trefoil-shaped rotational behavior supported by
eigenfunctions of the shape shown in Figure 7. This is the type
of nonergodicity presented also by classical mechanics at high
energies as two of the trajectories in Figure 2 demonstrate. This
behavior of the wave packet also prevents a proper dissociation,
and the norm of the wave packet att ) 2.0× 106 is as high as
0.940.

To summarize we have seen different types of long time
behavior of the wave packet dynamics depending on initial
conditions, which is the very essence of nonergodicity. We also

understand how the ergodic properties of the eigenfunctions have
a direct and profound impact on the quantum dynamics of the
system.

3.2. Three-Dimensional System: Vibration of NO2 at Zero
Total Angular Momentum. 3.2.1. Quantum Mechanical Rep-
resentation.After discussing two-dimensional model systems
in the previous section, we now turn to a more realistic case in
three dimensions, namely the high lying vibrational states of
the NO2 molecule in its adiabatic electronic groundstate as given
by a slightly modified46-48 version of the ab initio surface of
Leonardi, Petrongolo, Hirsch, and Buenker.49 We restrict
ourselves to the case of zero total angular momentum,J ) 0,
for which the Hamiltonian of a triatomic molecule in hyper-
spherical coordinates takes the following form47,48

whereL̂2(θ,φ) is the grand angular operator

µ is the reduced mass

andM is the total mass of the molecule

The volume element is given by

These hyperspherical coordinates47,48are such that 0e θ e π,
0 e φ e 2π, and for the present potential theF range 3.0 bohr
e F e 6.8 bohr is suitable when we limit our calculations to
bound states. Furthermore, since we have the symmetry of two
identical oxygen atoms, aφ range of 0 toπ will suffice, and
we may perform the calculations for even and odd states with
respect toφ independently.

We work in a mixed DVR-FBR basis47,48 where the
hyperradius,F, is described as a DVR-grid,|FR〉, and (for each
discrete value of the hyperradius) the hyperangles (θ, φ) are
treated in a basis of the (analytical) eigenstates,|jm〉, of the
grand angular operatorL̂2. In this way, the application of the
L̂2 part of the Hamiltonian is only a multiplication with the
corresponding eigenvalue, and the derivatives with respect toF
are computed via FFT. When it comes to the potential part, we
transform the|jm〉 basis to a grid representation,|θâφγ〉, within
a global quadrature scheme, and after multiplication with the
potential, we transform back to the mixed DVR-FBR basis.

The basis used isNF × Nθ × Nφ ) 168 × 115 × 105 )
2 028 600, which means that a direct diagonalization is out of
the question. Since we will only need a few states near
dissociation, we use instead the same method as in ref 48, i.e.,
a restarted spectral filtering method, where repeated application
of the Hamiltonian is used to generate a sharp energy envelope
(the spectral filter). By restarting the sequence with sharper and
sharper filters, a pure state may be obtained. The computational
efficiency of this method is not very high, but it gives access
to individual states (and corresponding energies) and by
continuing the iterations it is easy to adjust to the requested
accuracy. We used the method to calculate the 20 highest

Figure 9. Henon-Heiles; time average of the spatial probability
density for case (ii), where the initial wave packet at the origin was
launched at an angle of 16.7° relative they axis and with total energy
E ) 0.16. The cutoff on thez axis is at 0.3.

Figure 10. Henon-Heiles; time average of the spatial probability
density for case (iii), where the initial wave packet at the origin was
launched at an angle of 26.6° relative they axis and with total energy
E ) 0.16. The cutoff on thez axis is at 0.3.
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vibrational states of even parity, directly below the quantum
mechanical dissociation limit. The energies of the obtained states
are presented in Table 1. The numbering of the levels is
according to ref 47, where all bound energy eigenvalues were
calculated. In Table 1, one of the states, no. 1818, was actually
found (by the ergodicity criteria) to be an artificial state due to
a flaw in the potential energy surface. Further investigations
led to the conclusion that this state lives in an unphysical well
atθ, φ, close toπ (corresponding to very small distance between
the oxygen atoms). Since this well is clearly separated from
the interesting part of the potential, it is easy to lift the well to
remedy the deficiency. We do not know if this problem with
the potential is original,49 or if it is due to the modifications,46

but we issue a warning that a small part of previously calculated
levels of this potential may be artificial.

3.2.2. Ergodic Analysis.For the ergodic analysis of NO2, we
use the two kinds of measure discussed in section 2.3 and tested
successfully on the Henon-Heiles system in section 3.1.2. We
point out again that this approach gave good indications (and
good mutual correlation) of the ergodic/nonergodic behavior
suggested by visual inspection of the eigenstates in configuration
space for all three 2D systems investigated above. Thus, we
have good hope that it will now give good indications of ergodic
character also for the NO2 system, where visual inspection is a
cumbersome procedure due to the three-dimensional nature of
the problem.

First we investigate the spatial behavior of eigenfunctions
through a comparison of individual probability distributions with
the averaged distribution of several eigenstates and the classical
microcanonical density, respectively. As in the case of the
Henon-Heiles system, the measure is theL2 norm of the coarse
grained difference, and care has been taken to somewhat adapt
the coarse graining volume to the local wavelength. Concerning
the classical microcanonical density, it was obtained for each
hyperspherical grid point as described in the Appendix. The
result is that the classical microcanonical density atE ) 3.2263
eV (the classical dissociation limit) is very similar to the average
density of our 19 states as indicated by Figure 11, where we
have integrated out the hyperangles and show the probability
density as function of the hyperradius (no coarse graining is
performed in this figure). Also the density of two individual
states are seen to be quite similar to the quantum and classical
reference densities. In Figure 12a, we see the results for the 20
(19) highest bound states of NO2. It is seen that the measure is
not varying nearly as much as in the Henon-Heiles case (Figure
4a), suggesting a mainly ergodic behavior, at least with respect
to configuration space. The state no. 1821 is somewhat higher
than the rest, so we keep an extra eye on it when applying the
next analysis method (but we note that this state at least seems

to behave reasonably with respect to its probability density in
F according to Figure 11).

Now we apply the basis-entropy criterion to the same
eigenstates. We have two natural basis sets to investigate,

TABLE 1: Energiesa for the NO2 Vibrational States
Obtained by the Restarted Spectral Filtering Procedure

number E/eV number E/eV

1815 3.334908 1825 3.339759
1816 3.335418 1826 3.340283
1817 3.335916 1827 3.341007
1818b 3.336697 1828 3.341313
1819 3.336955 1829 3.341673
1820 3.337063 1830 3.342051
1821 3.337919 1831 3.342385
1822 3.338610 1832 3.342979
1823 3.339191 1833 3.343626
1824 3.339299 1834 3.343663

a All digits shown are significant.b False state supported by the
artificial potential well (see text).

Figure 11. NO2; probability density in the hyperradiusF. The full
line is the classical microcanonical density at an energy precisely below
the classical dissociation limit, which can be seen to agree very well
with the average quantum density represented by the fat dashed line.
The short-dashed and dotted lines represent the individual states nos.
1821 and 1828, respectively.

Figure 12. Ergodicity measures for the 19 highest (of even parity)
vibrational states of NO2 atJ ) 0 (the artificial state no. 1818 is deleted).
In a, we show the coarse grained difference measure between individual
eigenstates and the classical microcanonical density (squares) and the
average density of all 19 eigenstates (diamonds). In b, the stars are the
entropy measure for the FBR basis, the triangles represent the DVR
basis, and the circles correspond to the measure in the mixed DVR-
FBR basis.
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namely the FBR basis (eigenstates ofL̂2 in θ, φ, and Fourier
states inF) and the DVR basis (hyperspherical configuration
space) described above. Also, we will include the mixed DVR-
(F)-FBR(θ,φ) basis in which the wave function is normally
stored during the calculations. The result of the measure is
shown in Figure 12b, where we see that there is hardly any
correlations between the curves, nor with the measure in Figure
12a. This further supports the indications that the states of NO2

are indeed to a large part ergodic near the dissociation limit.
This is in accord with a previously performed eigenvalue
analysis,47 where the nearest neighbor spacing distribution was
calculated (for the 218 highest levels) showing the level
repulsion to conform to Wigner statistics rather than to the
nonergodic Poisson distribution.

4. Conclusions
We have investigated the concept of quantum ergodicity with

emphasis on its connection to the behavior of the energy
eigenstates and, therefore, also the qualitative impact on the
quantum dynamics of the system. The following points are of
special interest in this study.

(1) By taking the standpoint that a fundamental characteristic
of an ergodic quantum dynamical motion is the similarity of
eigenfunctions close in energy, we arrive at a concept of
quantum ergodicity closely adhering to the classical meaning.
It naturally include previous studies as different ways of
measuring the similarity of eigenfunctions. Similarity means that
all of the energy eigenstates are global and that all states in a
small energy interval will have equal statistical weight in the
expansion of an arbitrary (initial) state.

(2) Quantum effects are seen to amplify nonergodic behavior.
By investigation of the Henon-Heiles system near dissociation,
we observe a fraction of clearly nonergodic eigenfunctions of
about 25%. This is to be compared to less than 10% nonergodic
portion of the classical phase space. In particular eigenfunctions
of one-dimensional oscillatory character are especially profound.
Such oscillations are not stable classically but can prevail for
quite long times.

(3) The nonergodicity of the quantum Henon-Heiles system
described above persists even to the highest masses that we were
able to treat numerically, and actually the degree of nonergod-
icity was approximately the same when two different masses
(factor of 2) were investigated. One possible explanation is that
the classical mixing of phase space mostly takes place near the
turning points, where the kinetic energy is so low that sizable
quantum effects are present even for very high masses.

(4) Points 2 and 3 above are also qualitatively valid for the
anisotropic (perturbed) Henon-Heiles system and the Barbanis
system. For the anisotropic Henon-Heiles system, the difference
between classical and quantum mechanics is even more
pronounced, since this system has a higher degree of ergodicity
classically, whereas the Barbanis system which is quite noner-
godic classically gives better correspondence to the likewise
nonergodic behavior of the eigenfunctions.

(5) A way to partially automate the analysis of ergodic
behavior is suggested by our two measures, based on globality
in terms of basis functions and coarse grained similarity in
configuration space, respectively. These measures are easy to
apply, and by investigating their correlation, it seems that one
can get a reasonably accurate indication of ergodicity. By
including additional basis sets in the analysis the picture can
be gradually refined.

(6) As expected, it is seen that the different properties of the
energy eigenfunctions of the Henon-Heiles system has a direct
impact on the quantum dynamics. The time propagation of wave

packets show a clearly nonergodic behavior, and the time
average of the spatial density may conform to any of the
different types of eigenfunctions depending on initial condi-
tions.

(7) By applying our measures to the vibrational states of NO2

near dissociation we showed that the eigenstates present a high
degree of similarity implying an ergodic behavior. This is in
accord with previously performed energy level statistics (see,
e.g., ref 47), which is the standard way to get an indication of
the ergodic nature of a system. The measure is also more
convenient than the common investigations of the nodal behavior
of a wave function, since this becomes a cumbersome task in
more than two dimensions.
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Appendix

The quantum mechanical probability density is obtained on
the hyperspherical grid (FR,θâ,φγ) by squaring the corresponding
value of theJ ) 0 wave function and including the volume
element and quadrature weights. To assign classical probabilities
to these grid points we proceed in two steps as follows.

First, a volume is assigned to each hyperspherical grid point
by enclosing it by a box centered on the grid point. Together
the boxes fill all space between the grid points. Each box is
spanned by three vectors, defined by four corners of the box.
A coordinate transformation to internal coordinates is performed
for each of the four corners using the equations50

where the channel angles are given byøNO ) 2 tan-1(mO′/µ)
andøNO′ ) 2 tan-1(mO/µ), and the scaling parameter for each
species isdk

2 ) (mk/µ)(1 - mk/M) with µ andM defined in eqs
17 and 18. The four points now obtained in internal coordinates
define three vectors (a,b,c) in this space. It is assumed that the
volume corresponding to each box in the hyperspherical
coordinates is proportional toV ) |(a × b)‚c|, which would be
exact for an infinitesimally small box.

Second, we transform each grid point to internal coordinates
and calculate the corresponding angular momentum resolved
classical density51

where η is the O-N-O′ angle, I1, I2, I3 are the principal
moments of inertia, and the rotational energy,εr, is zero forJ
) 0. Finally, the classical weightρ ) Vw is assigned to each
hyperspherical grid point. The weights for all grid points are
summed and normalized to unity, giving probabilities for each
grid point that are directly comparable with the quantum
mechanical probability obtained from theJ ) 0 wave function.
Special care was taken in defining the boxes at the edges of the
hyperspherical grid.
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