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The vibrational excitation of CF3Br scattering from graphite has been studied using mixed quantum-classical
methods. A previously investigated 2D model for the intramolecular degrees of freedom [Ba¨ck, A.; Marković,
N. Chem. Phys.2002, 285, 233] has been extended to 3D including all vibrations ofa1 symmetry, improving
the dynamical description of the umbrella mode. We investigate the details of the excitation process for a
few selected initial conditions as well as the general effect of surface temperature for ensembles of randomly
sampled trajectories. Quantum results are obtained from 3D wave packet propagations and calculations based
on the time-dependent Gauss-Hermite discrete variable representation method. When the quantum data are
compared with classical results it is confirmed that quantization of the internal degrees of freedom does
indeed have a very small effect for the present system. Considering vibrational excitation from the ground
state, almost perfect agreement between quantum and classical calculations is found, provided that the classical
trajectories are initialized without vibrational energy.

1. Introduction

Classical molecular dynamics (MD) simulation is a very
powerful tool within the field of physical chemistry and chemical
physics. The technique can provide information about hard-to-
measure dynamical details as well as predictions of averaged
experimental quantities. Both these aspects are illustrated in our
previous work on the scattering of xenon atoms1 and large water
clusters2 from graphite. These calculations involve many atoms
and long propagation times and would be very hard to carry
out using more sophisticated dynamical methods. Fortunately,
we believe that a classical mechanical description is adequate
for the studied processes, which is also supported by the good
agreement with experimental results. We have also investigated
vibrational excitation of polyatomic molecules scattering from
hot graphite surfaces.3-5 Due to the large energy gaps between
vibrational energy levels one may expect quantum effects to
be important for such processes, in particular for systems with
high-frequency vibrations.

In ref 4 we obtained good agreement between experimental
and simulated results for vibrational excitation of CF3Br
scattering from graphite for collision energies between 0.6 and
3.5 eV and surface temperatures between 500 and 1200 K. Due
to the rather approximate potentials used and average character
of the experimental measurements the agreement only indicates
that a classical treatment is valid. The fact that the system is
heavy and the frequencies rather low supports the use of classical
mechanics. The observed sensitivity of the vibrational excitation
to the methods of initialization and analysis, on the other hand,
indicate that quantum effects still may play a role. In a recent
paper we studied the system using a reduced dimensionality
treatment including the C-Br stretch and the CF3 umbrella
motion.6 Within this 2D approximation we could afford to carry

out wave packet calculations to be compared with the corre-
sponding classical treatment. One of the main conclusions was
that the classical excitation of an initially nonvibrating molecule
was almost identical to the quantum dynamical excitation from
the vibrational ground state. Comparison of the 2D results with
full-dimensional trajectory results (and also with experimental
data) was, however, somewhat hampered by the artificial
dynamical constraints invoked.

In the present paper those constraints are relaxed. In addition
to the C-Br stretch (ν3) and the umbrella motion (ν2) we also
include the C-F stretch (ν1). Thus all three modes ofa1

symmetry are considered. The three modes have quite different
vibrational frequencies, 352(ν3), 762(ν2), and 1085(ν1) cm-1,
respectively, and quantum effects are therefore expected to
influence them differently. The effect of the previously used
constraints on the classical dynamics is investigated first. The
collisional dynamics for a few selected initial geometries are
studied in detail on a cold surface using both classical and wave
packet methods. Some of these orientations only excite thea1

vibrations due to symmetry reasons and therefore correspond
to a full-dimensional treatment of the intramolecular dynamics.
The quantum dynamical problem is also reformulated using the
time-dependent Gauss-Hermite discrete variable representation
method (TDGH-DVR), also known as quantum dressed classical
mechanics,7-16 replacing the reduced dimensionality treatment
with a mixed quantum/classical description of the intramolecular
dynamics. The wave packet and classical models are finally used
to compute the surface temperature dependence of the vibra-
tional excitation.

The dynamical model, the potentials used, and the theoretical
methods are described in section 2. The results are presented
in section 3, and the main conclusions are finally summarized
in section 4.

2. Theory

The potential functions used in the present work are identical
to those described in ref 4. The interaction between the 150
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carbon atoms in one of the five graphite sheets is given by
Brenner’s empirical function,17 while the interlayer potential is
modeled as a sum of Morse potentials. The bottom layer is held
fixed, and the atoms in the next layer are subject to stochastic
and friction forces in order to keep the graphite at a specified
temperature. The gas-surface potential consists of a sum of
Lennard-Jones terms yielding a binding energy of 0.27 eV. The
intramolecular CF3Br potential is described in terms of Morse
stretch and attenuated harmonic bend and nonbonded interac-
tions. The intramolecular potential reproduces the experimental
normal mode frequencies:ν̃1 ) 1084.8,ν̃2 ) 762.0,ν̃3 ) 352.1,
ν̃4 ) 1208.8,ν̃5 ) 547.4,ν̃6 ) 302.7 cm-1, where the first three
modes are nondegenerate ofa1 symmetry and the last three are
doubly degenerate.

2.1. Reduced Dimensionality Wave Packet Calculations.
The present reduced dimensionality calculations are carried out
in terms of the distance between Br and the center of mass of
CF3 (z1), the distance between C and the plane of the F atoms
(z2), and the distance from the Br-C axis to the F atoms (y),
see Figure 1. As in our previous work with the umbrella model,6

C3V symmetry is preserved, but now also the C-F distance is
allowed to change.

The intramolecular Hamiltonian in these coordinates is given
by18

where

This Hamiltonian exactly reproduces the nondegenerate normal
mode frequencies, in contrast to the 2D Hamiltonian used in
our previous study6 which overestimated the umbrella frequency,
ν2, by ca. 7%. The translation and rotation of the molecule as
well as the motion of the surface atoms are treated classically.
The total Hamiltonian thus takes the form

whereM is the mass of the molecule,X, Y, Z specifies its center
of mass, andφ, θ, ø are Euler angles describing its orientation.
The gas-surface potential is denoted byVgs, and the classical

Hamiltonian for the surface atoms byHsurf. The rotational
Hamiltonian is expressed as

whereIRR are the principal moments of inertia which depend
on the quantum coordinatesz1, z2 andy. The body-fixed angular
momenta,LR, can be expressed in terms of the Euler angles
and conjugate momenta

The quantum part of the problem is solved by propagating the
solution to the time-dependent Schro¨dinger equation

where all terms with explicit dependence on the quantum
variables are included inĤQ

The simultaneous propagation of the classical equations of
motion for translation, rotation, and the motion of the surface
atoms is carried out using an effective (mean-field) Hamiltonian

The initial wave packet (corresponding to the vibrational ground
state in the present study) is an eigenfunction to the Hamiltonian
in eq 1 obtained by expanding the vibrational wave function in
a product of Morse eigenfunctions and solving the corresponding
eigenvalue problem. The solution to eq 8 is propagated in time
using the split-operator method19 with the kinetic energy
operators evaluated using the fast Fourier transform technique.20

A modest grid consisting of 28× 28 × 24 points for (z1, z2, y)
was found to be adequate for this problem. The classical degrees
of freedom were propagated using a time step of 0.3 fs, while
0.1 fs was used for the quantum propagation. The molecule was
placed with its center of mass 9.5 Å from the surface with the
initial velocity vector (usually corresponding to a translational
energy of 2.0 eV) in the negative normal direction.

The results of primary interest are the total vibrational energy

and its partitioning between the three vibrational modes (ν3,
ν2, ν1)

assuming approximate separability which makes an assignment
to different modes possible. The summations are over 100
projections onto vibrational eigenstates,Pi,j,k, and using the

Figure 1. Definition of the coordinates used in the reduced dimen-
sionality calculations.
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corresponding eigenvalues,Ei,j,k, up to a maximum energy of
689 meV. Due to vib-rot coupling it is necessary to compute
average vibrational energies before and after the scattering event,
i.e., when the molecule is approaching (leaving) the surface but
before (after) the gas-surface interaction is significant.

The quantum results obtained using the wave packet method
have been compared to the corresponding results from classical
trajectories using the same reduced dimensionality treatment.
The mode-resolved energies are in the classical case obtained
by projecting the vibrational velocity vector onto the normal
mode eigenvectors. The kinetic energy in the normal modes
are averaged over time, and the mode-resolved vibrational
energy is finally approximated as twice the kinetic average,
which is a good approximation for the small excitations typical
for the present system.

2.2. TDGH-DVR Calculations. The quantum dressed clas-
sical mechanics calculations are built around the full-dimen-
sional classical trajectory program used in ref 4. We will
sometimes refer to the full-dimensional calculations as “9D”
since all nine intramolecular vibrations are considered. The
propagation is carried out in terms of the Cartesian coordinates
for the atoms. At every time step the Euler angles describing
the orientation of the molecule are calculated, the normal mode
eigenvectors are rotated accordingly, and values for the normal
mode coordinates,Qk, and conjugate momenta,Pk, are obtained.
This procedure allows us to compute classical mode-resolved
vibrational energies, but in addition we can distribute grid points
around the classicalQk values and treat the normal coordinates
quantum mechanically within the time-dependent Gauss-
Hermite discrete variable representation method. The method
has been described in detail by Billing (see, e.g., refs 8-10).
Below follows a brief summary of the equations used in the
calculations.

For each degree of freedom,k, treated quantum mechanically
an odd number,nk, of points,Qk,i, are distributed around the
classical value,Qk(t) (the midpoint)

wherezi are the zeros of thenkth Hermite polynomial,Hnk(ê).
The rootszi are found using the algorithm suggested by Billing.8

The quantityAk is a parameter defining the width of the Gauss-
Hermite basis functions,ψn, which have the general form

where

The time dependence follows from the relation

The Gauss-Hermite functions are orthonormal if we require
that

Since the transition probabilities do not depend on the phase

factor, Reγk, its value is irrelevant. In our implementation we
will furthermore set ReA(t) ) 0 and keep it zero which implies
that also ImAk is kept constant.14,21

The total number of grid points is given by

whereN is the number of quantum degrees of freedom. The
amplitudes at the grid points att ) 0 are given by

wheregV(Q) is a vibrational eigenfunction andNi
k a normaliza-

tion factor

The amplitudes are propagated in time using the matrix equation

The potential matrixW is diagonal in the grid representation
and obtained by subtracting the first and second derivative terms,
evaluated at the classical trajectory, from the potential at the
specific grid point

where the derivative terms are given by (mk ) 1 in our case)

The first derivative in eq 25 is the classical force, and the
equation is simply one of the classical equations of motion. Since
we do not integrateQk andPk explicitly (the calculation proceeds
in Cartesian coordinates) we prefer to determine the derivative
from the time dependence ofPk using numerical differentiation.
The accuracy of the method has been checked by comparison
with explicit evaluation of the gradient of the potential with
respect to the normal coordinates using the chain rule. For simple
cases the explicit method is as easy to use as numerical
differentiation, but for more general cases (involving rotation)
the latter method is much simpler. The second derivative in eq
26 is not equal to the corresponding classical quantity. The
effective forces,V′ and V′′, are in principle arbitrary.10 The
particular choice ofV′′ (combined with the requirement that
ReAk(0) ) 0) guarantees that the width parameter ImAk is time-
independent, i.e., the grid points follow the classical trajectory
with constant separation between the points. The kinetic
coupling matrixT is sparse. The elements, which couples grid
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) -Ṗk(t) (25)

∂
2V

∂Qk
2

) 4(Im Ak)
2/mk (26)

Scattering Dynamics of CF3Br J. Phys. Chem. A, Vol. 108, No. 41, 20048767



points (i,j) in modep are given by

wherek(q), l(q) denotes two grid points in modeq. An algorithm
for the evaluation of the action ofT on the vectord is given in
ref 16. We have tested our implementation of the algorithm in
two dimensions, where explicit expressions are easy to write
down.10 The solution to eq 23 can formally be written as

The fact that the matrix is diagonally dominant suggests the
splitting22

where the diagonal matrixE containsW and the diagonal part
of the kinetic couplingT, whereas the nondiagonal part of the
kinetic coupling is stored inC. The Lanczos method23 is then
used to propagate the vector

using the matrixC.
The classical trajectory is initialized without vibrational

energy which corresponds toQk ) 0 andPk ) 0. Grids are set
up for those modes (ν3, ν2, andν1 in the present study) treated
quantum mechanically, and initial quantum amplitudes are
calculated from eq 21 using harmonic oscillator eigenfunctions.
The classical equations of motion and the solution to the
quantum problem are propagated simultaneously. The vibra-
tional energy in the modes treated quantum mechanically is
obtained by projecting the wave function onto asymptotic
eigenstates. The amplitude corresponding to a final state
characterized by the quantum numbers{Vf} is obtained as

The probability is given byP{Vf} ) |a{Vf}|2, the total vibrational
energy is obtained as

and the mode-resolved energies, finally, are found using eqs
12-14.

We have tested our implementation of the TDGH-DVR
subroutines on the problem of rotational excitation in the He+
H2 system considered previously by Billing.9,22 The results are
not sensitive to the time step or the number of Lanczos
recursions. Values between 0.1 and 0.5 fs together with five
recursions using the split-Lanczos method is sufficient. We did,

however, notice that the maximum stable propagation time
seemed to be correlated with the number of grid points.
Following the transition probabilities as a function of time we
observed that reasonable values were obtained immediately after
the collision but that the probabilities started to behave erratically
if the propagation continued for too long. Increasing the number
of recursions or decreasing the time step did not improve the
situation. Adding grid points, however, removed the oscillations
in addition to improving the accuracy of the probabilities
obtained. The same behavior was observed for the CF3Br system
but did not pose a problem once we were aware of it. In all
calculations presented we used the width parameter ImAk )
0.0591 u2/fs (remember that the normal coordinates are mass-
weighted). A peculiarity of the CF3Br system is that for somes
but not allscollisions we observe small unphysical oscillations
in the transition probabilities. The oscillations were found to
coincide with high classical kinetic energy in the vibrations.
We therefore monitor this energy term and limit the projection
to times when the kinetic energy has a minimum.

3. Results and Discussion

3.1. Scattering from a Cold Surface.In this section classical
and quantum results obtained using the reduced dimensionality
formulation are compared for a few specific initial molecular
orientations. Three of these are particularly interesting since only
a1 vibrations are excited due to symmetry constraints. The results
obtained therefore correspond to a full-dimensional dynamical
treatment. For these cases we have also carried out calculations
using the TDGH-DVR method. A zero K graphite surface was
used in order to minimize the effects of thermal fluctuations.
The translational energy was 2.0 eV (corresponding to 1615
m/s) and the initial velocity vector was along the surface normal.
The initial orientations are the same as in ref 6 (Θ is the angle
between the C-Br vector and the surface normal):

(i) the Br and C atoms are centered above a six-membered
ring with the F atoms pointing down toward carbon atoms (Θ
) 0°);

(ii) the F atoms are approximately above the carbon atoms
with the C and Br atoms centered above a six-membered ring
and the Br atom turned downward (Θ ) 180°);

(iii) the Br and C atoms are centered above a surface carbon
atom with the Br atom closest to the surface (Θ ) 180°);

(iv) the molecule is positioned above a six-membered ring
and tilted 45° such that two F atoms are closest to the surface
(Θ ) 45°).

As shown in Figure 2 the agreement between the classical
trajectory (initialized without vibrational energy) and the
quantum wave packet (initially in the ground state) is indeed
very good. Case iv is an example where the molecule impacts
at an angled geometry, which is the generic case when we later
sample over initial orientations. Obviously, such an angle will
not only excite modes ofC3V symmetry. The TDGH-DVR
scheme, which includes also the other six modes (classically
treated), is no longer on equal footing with the 3D wave packet
treatment, and the corresponding energy transfer is therefore
not included in Figure 2. The TDGH-DVR results presented
are obtained using a very small grid: 15× 9 × 7 points forν3,
ν2, andν1, respectively. The results are still quite good, which
is also shown in Table 1 where the energy partitioning between
the modes is presented for case i. The excitation is unusually
large for this collision, and it is therefore a suitable test case.
The TDGH-DVR result presented is an average computed
between 0.65 and 1.00 ps.
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The quantum mechanical transition probabilities for excitation
of the dominatingν3 mode are shown in Table 2. The agreement
between the wave packet and the TDGH-DVR results is quite
good. Investigation of cases ii and iii shows that this is true for
these collisions also, provided that the probabilities are larger
than about 10-3.

The almost total lack of effects due to a quantum treatment
of the vibrations is in agreement with our previous 2D results.6

Using the TDGH-DVR scheme as reference method we have
investigated whether quantum effects become more pronounced
for molecules of lower mass. This was done by artificially
scaling the C, F, and Br masses with a factorf, first a factor of
2 (f ) 0.5) and in a second step a factor of 4 (f ) 0.25). The
collision velocity was now increased to 2798 m/s in all three
cases corresponding to translational energies equal to 6.0, 3.0,

and 1.5 eV, respectively. Lowering the masses increases the
normal mode frequencies by a factor ofx2 and 2, respec-
tively. For this study we used a grid consisting of 21× 21 ×
21 points in the TDGH-DVR calculations in order to improve
the accuracy of the projection. The classical results are obtained
using the full-dimensional molecular dynamics program, i.e.,
the classical and TDGH-DVR trajectories are identical in all
respects. The initial orientation of the molecule was given by
case i, and the three doubly degeneratee modes were therefore
not excited. The result is shown in Table 3. For this high
collision velocity the instantaneous excitation at impact is very
highsover 1.3 eV forf ) 1. Neither the classical nor the TDGH-
DVR estimates of the mode-resolved energy transfer are
expected to be very accurate for these collisions, but it should
be possible to see trends. Forf ) 1 quantum mechanics seems
to lower the excitation of theν1 mode. Decreasing the mass (f
) 0.5) changesν̃2 andν̃1 to 1078 and 1534 cm-1, respectively,
making them less accessible to excitation. The low-frequency
mode at 498 cm-1 now absorbs more energy yielding a total
excitation similar to the case off ) 1. A tendency to lower
excitation of the high-frequency modes in the quantum case is
observed. A further decrease of the mass (f ) 0.25) changes
the frequencies to 704, 1524, and 2170 cm-1, which has a strong
effect on the total energy transfer. The excitation of theν3 mode
decreases by a factor of 2.7 both in the classical and the quantum
cases, and the excitation of the high-frequency modes is
negligible.

Figure 2. Vibrational excitation energy as a function of time for initial molecular orientations (i), (ii), (iii), and (iv). Results are shown for different
dynamical treatments: 3D classical (solid line); 3D wave packet (dotted line); 3D TDGH-DVR (filled circles).

TABLE 1: Excitation Energies of the a1 Modes for Initial
Orientation (i) Obtained Using a Full-Dimensional Classical
Trajectory (CM9D), Classical (CM3D) and Wave Packet
(WP3D) Reduced Dimensionality Treatments, and the
TDGH-DVR Method with the a1 Modes Described Quantum
Mechanically (GH3D)

∆Evib/meV

method ν3 ν2 ν1

CM9D 100.7 7.8 0.8
CM3D 100.8 7.9 0.8
WP3D 104.9 5.4 0.2
GH3D 103.0 5.5 0.9

TABLE 2: Excitation of the ν3 Mode for Initial
Orientation (i) a

n GH WP

0 8.11× 10-2 8.14× 10-2

1 2.03× 10-1 2.01× 10-1

2 2.48× 10-1 2.45× 10-1

3 2.00× 10-1 1.99× 10-1

4 1.18× 10-1 1.21× 10-1

5 5.40× 10-2 5.90× 10-2

6 2.01× 10-2 2.43× 10-2

7 6.21× 10-3 8.61× 10-3

a Transition probabilities from the ground state (0, 0, 0) to (n, 0, 0)
obtained using the TDGH-DVR (GH) and wave packet (WP) methods
are shown.

TABLE 3: Excitation Energies (in meV) of the a1 Modes for
Initial Orientation (i) a Obtained Using Classical Trajectories
(CM) and the TDGH-DVR Method with the a1 Modes
Described Quantum Mechanically (GH)

CM GH

f ν3 ν2 ν1 ν3 ν2 ν1

1.00 206 47 43 196 44 32
0.50 236 26 5 248 22 4
0.25 87 2 0 91 3 1

a The collision velocity was 2798 ms-1, and the C, F, and Br masses
were scaled by a factorf.
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3.2. Surface Temperature Dependence.In our previous
paper6 we also investigated the energy transfer to CF3Br
scattering from graphite at different temperatures. Comparison
between classical results obtained using full-dimensional and
reduced dimensional calculations showed differences regarding
the distribution of energy between theν3 andν2 modes. This is
an effect of the umbrella Hamiltonian used in our previous work.
The C-F stretches (ν1) are indeed stiff vibrations which are
excited to a very small extent, but by including the C-F motion
in the dynamical description, theν2 mode becomes more
accessible to excitation. The classical 2D results are compared
with the present 3D results in Figure 3 together with the
corresponding data from full-dimensional (9D) calculations. The
results are based on 2000 directly scattered trajectories per
temperature. The initial translational energy was 2.0 eV (normal
incidence), the initial rotational energy sampled from a 200 K
distribution (random initial orientation), and the trajectories were
initialized without any vibrational energy. Figure 3a shows that
the total energy transferred to theν2 and ν3 modes is almost
identical for the 2D and 3D calculations, whereas the corre-
sponding 9D result is somewhat lower. This is expected due to
the presence of seven other vibrations which act as shock
absorbers. The fraction of vibrational excitation energy going
into theν2 mode is for the 3D model in almost perfect agreement
with the 9D result, as shown in Figure 3b.

The above comparison shows that the 3D reduced dimen-
sionality model accurately describes the classical dynamics of
the a1 modes in CF3Br. The mode-resolved energy transfer is
compared to results from 3D wave packet calculations in Figure
4. The quantum results are averaged over 1000 wave packets
for each temperature. As expected from the results in section
3.1 the agreement between the quantum and classical results is
good. Excitation of theν3 mode dominates the energy transfer
process, and the quantum and classical results are almost
identical for this low-frequency mode, Figure 4a. The linear
dependence on the surface temperature is in agreement with
full-dimensional trajectory results and experimental data.4 The
energy transfer to the high-frequency modes is much smaller:
ν2 is a factor of 4-8 belowν3, and theν1 mode is a factor of
30-100 times smaller.

The present reduced dimensionality results can, of course,
not be directly compared to experimental data. The agreement
between classical and quantum mechanical energy transfer
(Figures 2 and 4 and Table 1) for frequencies in a range from
303 cm-1 to 1085 cm-1 strongly supports the use of classical
mechanics for the 3D reduced dimensionality model. Further-
more, as implied by Figure 3 and Table 4 this is likely to carry

Figure 3. Surface temperature dependence of the energy transfer. In
(a) the total vibrational excitation of theν2 andν3 modes is shown for
classical calculations in 2D (triangles); 3D (diamonds); and 9D
(squares). In (b) the ratio between the excitation ofν2 and the total
excitation of theν2 andν3 modes are shown. The error bars correspond
to 95% confidence intervals.

Figure 4. Average energy transfer as a function of surface temperature
obtained using the 3D reduced dimensionality model. Classical results
as open diamonds and wave packet results as filled diamonds for the
ν3 mode (a); theν2 mode (b); and theν1 mode (c). The error bars
correspond to 95% confidence intervals.
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over to the full 9D treatment which is in fair agreement with
experimental results.4,6 Out of the nine vibrations the three with
frequencies below 353 cm-1 account for 74% of the excitation
(evenly distributed with ca. 28 meV per vibration). According
to the analysis of theν3 mode, Figure 4, these should behave
very classically. About 19% of the energy ends up in theν5

vibrations which we also expect to be well described classically.
Judging from Figure 4,ν2 andν1 may show a small quantum
effect, but these modes only account 6% of the total vibrational
excitation. Only 1% of the energy ends up in the highest
frequency vibrations (ν4).

4. Conclusions

The vibrational excitation of CF3Br in collisions with graphite
has been studied using mixed quantum-classical methods. A
previously investigated reduced dimensionality treatment of the
CF3Br intramolecular dynamics has been extended to include
all three totally symmetric vibrations. Addition of the high-
frequencyν1 mode (C-F stretch) has a small effect on the total
excitation, which is dominated by energy transfer to theν3 mode
(C-Br stretch). Removing the constraint of fixed C-F bond
lengths significantly affects the excitation of theν2 (umbrella)
mode.

Mixed quantum-classical calculations employing the reduced
dimensionality model has been carried out using a 3D wave
packet approach within a mean-field approximation. Compari-
sons of the quantum energy transfer with the corresponding
results from classical trajectories initialized without vibrational
energy show a remarkable agreement, in particular for the low-
frequency mode, but the agreement is quite good even for the
two higher frequencies. The present results reinforce our earlier
conclusion that vibrational excitation of polyatomic molecules
in their vibrational ground state can be well described using
classical mechanics.

In this work we have also considered an alternative approachs
the TDGH-DVR, or quantum dressed classical mechanics

method. Using rather modest basis sets (few DVR points) we
obtained values for the energy transfer in good agreement with
the wave packet results. We also used the TDGH-DVR method
to investigate how lower molecular mass affected the agreement
between quantum and classical mechanics. No significant
quantum effects were observed even for vibrational frequencies
in the range of 704-2170 cm-1 indicating that classical MD
may suffice also for lighter molecules.

When the TDGH-DVR method is used, all degrees of
freedom are included, treated either classically or quantum
mechanically. The artificial dynamical constraints connected
with reduced dimensionality methods are not needed, and the
quality of the quantum mechanical treatment of a particular
degree of freedom can be adjusted for optimum efficiency. For
bound systems the number of grid points required to obtain
reasonably accurate results is surprisingly small due to the fact
that the points follow the classical trajectory. These are very
attractive features which deserve to be investigated in more
detail.
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TABLE 4: Mode-Resolved Vibrational Excitation of CF3Br
Colliding with an 800 K Graphite Surface at 2.0 eVa

∆Evib/meV

mode ν̃/cm-1 CM9D CM3D WP3D

ν6(e) 302.7 55.3
ν3(a1) 352.1 29.5 34.6 38.1
ν5(e) 547.4 21.9
ν2(a1) 762.0 6.1 6.8 5.8
ν1(a1) 1084.8 0.9 0.7 0.6
ν4(e) 1208.8 1.4

a Comparison of full-dimensional classical calculations (CM9D) with
classical (CM3D) and wave packet (WP3D) results including thea1

modes.
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