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The generalized graph matrix is extended to consider three-dimensional (3D) interatomic distances between
pairs of atoms in molecules. It is used to (re)define some topographic descriptors, such as 3D-Wiener and
3D-Harary numbers. Harary numbers are generalized to a wide set of descriptors, and they are adapted for
considering only nonbonded pairs of atoms. These Harary numbers for nonboded pairs of atoms are identified
as repulsion potentials of the Mie type providing a physical interpretation to these descriptors. This formalism
is adopted for generalizing Lennard-Jones (LJ) potentials using topological parameters. LJ parameters of
three united-atom (UA) force fields, TIPS-UA, PRF-UA, and TraPPE-UA, are redefined using vertex degrees
of pseudoatoms. High correlation coefficients (>0.99) are obtained between original LJ parameters and those
derived from vertex degrees for linear and branched alkanes. These results make some links between some
graph theoretical parameters used in structure-property relations and well-known interatomic potentials used
in computational chemistry force fields.

Introduction

The use of graph theoretical concepts and methods is a
common practice in several branches of physics, chemistry, and
biology. Applications in statistical and theoretical physics1 and
the recent study of Anderson localization on graphs, i.e.,
quantum graphs,2 are a couple of examples of the fruitful use
of graph theory in physics. Many of the cheminformatics3 and
bioinformatics4 tools used for coding, storing, manipulating, and
analyzing molecular and macromolecular structures are also
based on graph theoretical algorithms. In physical chemistry,
the use of graph theory has played an important role in areas
ranging from the study of electronic properties of conjugated
systems,5 statistical thermodynamics,6 molecular spectroscopy,
and quantum chemistry.7

The generation of molecular descriptors using graph theoreti-
cal concepts has grown as a parallel area of research in physical
chemistry.8 Although these descriptors, known as topological
indices, characterize only two-dimensional (2D) molecular
attributes, they have been very useful in several real world
applications. They include the design of new biologically active
molecules9 and recent applications in chemical genomic profiling
of biological networks.10 In some cases, these indices have been
extended to three-dimensional (3D) descriptors, which are
known as topographic indices.11-15 However, most of these
descriptors, 2D and 3D, have been developed in an ad hoc way,
which have kept them elusive to physical interpretations. On
the other hand, most of these descriptors appear to be discon-
nected from each other, even from a mathematical point of view.
This lack of unity gives the false impression that these indices
are totally unrelated, which in many cases is not true, and
stimulate the proliferation of new descriptors, which in some
cases are unnecessary.

Recently, we have introduced a generalized graph matrix
which encompasses several of the mathematical formalisms used

in chemical graph theory into one unified scheme.16-18 We have
shown that the use of this generalized graph matrix has
implications to the study of conjugated systems,18 giving a
solution to the problem of isospectral (molecular) graphs, it is
useful for studying geometrical invariants associated with
(chemical) graphs18 and permits to define several of the well-
known topological indices using the same graph invariant.16-18

Among these descriptors, we can mention Wiener19 and Harary
numbers,20,21connectivity index,22 Balaban index,23 and Zagreb
indices,24 among others. One of the obvious advances of this
unified approach to the use of graph theory in physical chemistry
is related to the optimization and interpretation of these
molecular descriptors.

In this work, we will extend the generalized graph matrix to
consider 3D molecular features by using geometrical instead
of topological distances. However, we will keep topological
information at the same time as the geometrical one, which will
be useful for studying some “through bond” molecular inter-
actions. An obvious application of this new generalized 3D
matrix is in the (re)definition of some topographic descriptors,
such as 3D Wiener and Harary numbers. We will be concentrat-
ing on the Harary numbers25 as we will find some important
links between them and interatomic potentials of the Mie type,26

such as the Lennard-Jones (LJ) potential.27 Taking advantage
of this interrelation, we will give a physical interpretation of
the Harary numbers and we will introduce a generalized LJ
potential. In the last case, we will be able to present a LJ
potential for alkanes (linear and branched) based on the
combination of topological and geometrical information. By
using some topological parameters for defining LJ parameters,
such as size and well depth, we are able to reproduce some of
the LJ potentials used in well know united-atoms (UA) force
fields.

Theoretical Developments

Let G ) (V,E) be a molecular graph, whereV andE are the
vertex and edge sets representing atoms and covalent bonds,
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respectively. Let N be the number of atoms and M the number
of bonds in the molecule. We will start by giving the definition
of the generalized graph matrix, which was previously defined
by us.16

Definition 1. Let Γ(x,V) ) [gij(x,V)]N×N be the generalized
graph matrix, which is defined as a square symmetric matrix
with elementsgij:

wherex andV are not simultaneously equal to zero. According
to this formalism, several topological indices can be defined
using the same graph invariant.16-18 Here we will concentrate
mainly on those descriptors based on distances, such as Wiener19

and Harary indices,20,21 which are defined as

whereu is a unit vector anduT its transpose.
It is straightforward to generalize Harary indices to a series

of descriptors of the form

We are going to extend these indices to consider three-
dimensional interatomic distances instead of topological ones.
First, we will define the generalized graph matrix for the 3D
case.

Definition 2. Let Θ(x,V) ) [fij(x,V)]N×N be the generalized
3D graph matrix, which is defined as a square symmetric matrix
with elementsfij

where x and f(dij) are not simultaneously equal to zero and
f(dij) is a function of the topological distance, defined as the
shortest path between vertexes i and j. We have previously used
the simple functionf(dij) ) dij - 1 for the 2D case.

The 3D Wiener12 and Harary numbers are then written as
follows:

Harary Indices and Mie Potential

If we take the interatomic distances between bonded atoms
as constants or having small variations, we can consider the

generalized topographic matrix only for nonbonded atoms

The matrixΘNB considers all nonbonded pairs of atoms in a
molecule. However, it is common practice in the study of van
der Waals interatomic potentials to exclude interactions between
a pair of atoms separated not only by one but also by two (and
even by three) bonds. In these cases,ΘNB can be built by
considering thatx ) 0 for dij > 2 (or dij > 3) and x ) 1
otherwise in the second matrix of the right part of eq 7.

A topographic (3D) Harary number for non bonded atoms is
then defined as follows:

If we plot HNB(-m) as a function ofrij, we obtain a typical
graphic for an interatomic repulsion potential. In a similar way,
we can define another potential simulating the attractive
interaction between nonbonded pairs of atoms in the following
form:

where

Here again, in case that interactions between atoms separated
by two or three bonds are not considered, we have to takex )
0 for dij > 2 or dij > 3, respectively, in the first matrix of the
right part of eq 10. Note that here the matrices in the right part
of the equation are in a different order compared to those in eq
7, which introduces the minus sign in eq 9.

It is now straightforward to realize that the Mie potential26

for interatomic interactions is a particular case of the sum of
HNB(-m) andHNB(-n) whenm > n > 3

whereγ andµ are arbitrary constants. A particularly very well-
known case of this potential is the (12-6) LJ potential,27 which
will be considered later on in this work, where the arbitrary
constants are substituted by parameters with physical meaning.

Interpretation of Harary Numbers

According to the original definition of the Harary numbers,
these descriptors can be considered as the sum of two terms,
one consisting of the sum of powers of inverse distances
between bonded atoms and the other summing powers of inverse
distances between pairs of nonbonded atoms

It is evident that in the case of the 2D Harary indices the first
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term is simply the number of bonds,M, in the molecule

If we consider that in the 3D case (pseudo)atoms are connected
by bonds with a fixed lengthL, we will have

The second term in eqs 13 and 14 represents the energetic of
nonbonding interatomic repulsions in a molecule. In conse-
quence, we can consider that the first term represents the energy
of bonding interactions, which here are taken to be proportional
to the number of bonds in the molecule. Hence, Harary numbers
are a sort of repulsion potentials considering bonding and
nonbonding interatomic interactions in a molecule, the first being
proportional to the number of bonds and the second being
proportional to the sum of powers of inverse interatomic
distances without any differentiation between (pseudo)atom
types, e.g.,γ ) µ ) 1 for any pair of (pseudo)atoms in the Mie
potential.

Generalized Lennard-Jones Potential

In the most general case in which atoms of different types
are considered, we need to substitute the termsγ andµ in the
Mie potential by parameters with physical meaning for the
different pairs of atoms interacting in the molecule. This kind
of potentials are known as LJ potentials and they can be written
for a pair of atoms as follows:

whereε is the well depth andσ is the distance at whichu(r) )
0. The LJ potential is used in simulating interatomic interactions
between nonbonded pairs of atoms. The most common case is
the (12-6) potential, i.e.,m ) 12 andn ) 6, which is used
in computational chemistry softwares such as CVFF,28

CHARMM,29 TRIPOS,30 SHAPES,31 UFF,32 ECEPP,33 AM-
BER,34 and OPLS.35 However, other variants of this potential
are also used in several force fields. For instance, CFF,36

QMFF,37 and ESFF38 use a (9-6) function. Also a (12-10) LJ
potential is used to simulate hydrogen bonding in ECEPP33 and
AMBER.34

To study LJ potentials, we introduce a change of variable in
Γ′(x,V) so thatx is substituted byy or z andV ) 1. Thus, we
obtain the following matrices:Γ′(y,1) andΓ′(z,1). Using these
matrices, two new graph-theoretical vectors are defined as
follows.16

Definition 3: Let y(w, y, q) andz(s, z, r) be two vectors of
orderN whose elementsyi andzi are defined as follows:

wherewi andsi are weights to be assigned to the corresponding
vertex.

Let us introduce the following change into the original
definition of they(w, y, q) andz(s, z, r) vectors by including a
new parameterb, which transforms the vectors given by eq 16

into y(w, y, b, q) andz(s, z, b, r)

whereA andC are constants that can be obtained by multiplying
Γ′(y,1) by A1/b andC1/b, respectively. The reason for this new
definition of they(w, y, b, q) andz(s, z, b, r) vectors will be
evident later on in this work. Using these vectors, we can
introduce a generalized interatomic repulsion potential applying
a vector-matrix-vector (VMV) multiplication procedure.39,40

For the sake of simplicity in the rest of this work, we will
consider thaty(w, y, b, q) ) z(s, z, b, r). Thus, a generalized
interatomic repulsion potential can be obtained as follows:

Here,yi andyj are the components of they vector for atomsi
andj, respectively. The termxf(dij) accounts for sort of “through-
bond” interactions,41 which can be useful in simulating some
interatomic effects transmitted through the molecular skeleton,
such as electronic effects. In those cases in which these effects
are not taken into consideration we will simply takexf(dij) ) 1.

In a similar way as in eq 18, we can introduce a generalized
attraction potential of the following form:

These expressions will be applied here for studying some LJ
potentials implemented in force fields currently in use in
computational chemistry.

Electrostatic Interactions

Let q ) (q1q2‚‚‚qN) be a vector whose elements are the atomic
charges for the different atoms in the molecule. Then the
electrostatic interaction potential for nonbonded pairs of atoms
is given by

In several force fields, the electrostatic interactions of atoms
separated by three bonds, “1-4 interactions” are reduced by a
multiplicative scale factor.34,42 These scaling factors are also
necessary for LJ interactions. For instance, OPLS and AMBER
force fields use scaling factors of1/2 and1/8, respectively.43 This
kind of 1-4 interaction can be expressed through the use of our
topological distance function as follows:

where we have to takex < 1 in order to simulate the reduction
of electrostatic interactions due to the “1-4 effect”.
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This multiplicative scale factor only appears for pairs of atoms
separated by three bonds. Consequently, we can use a Lorent-
zian-type function forf(dij) in such a way that it takes the value
of 1 if the pair of atoms is separated by three bonds or zero
otherwise

whered0 ) 3 is the number of bonds (topological distance) at
which the effect is transmitted,dij is the number of bonds
separating the pair of atoms, i.e., its topological distance, and
â . 1, e.g.,â ) 106. This function takes a value off(dij) ) 1
for atoms separated at topological distance of three or almost
zero (≈10-6 in this case) otherwise. This function can also be
used in eqs 18 and 19 for introducing the scaling multiplicative
factor in the LJ potential.

In united-atom approaches, such as those we will analyze
here, the electrostatic interaction potential is not taken into
account because the CHn groups are considered as neutral (qi

) 0).44 This is supported by ab initio calculations45 onn-alkanes
and by the negligible dipole moments in branched alkanes.46

United-Atoms LJ Potentials

Several united-atom (UA) force field models have been
introduced for the simulation of organic compound in liquid
phase. Most of them use optimized sets of LJ parameters for
describing interatomic interactions between nonbonded pairs of
atoms. In the particular case of UA description of normal and
branched alkanes, several sets of such parameters have been
introduced in the literature for force fields such as PRF-UA,47

OPLS,35 GK,48 TIPS-UA,49 UNICEPP,50 and TraPPE-UA,51,52

among others. The LJ potential in these cases has the following
appearance:

where interactions are computed using standard Lorentz-
Berthelot combining rules53,54

Our approach consists of substituting the LJ parameters used
for alkanes by expressions based on topological parameters such
as vertex degrees, giving formulas of the following form:

This is possible by using our generalized matrix approach with
the following set of parameters:

whereδi
AB ) B + A(δi)b with A, B, andb being obtained by

regression analysis. We first make the following approximation
to transform the Lorentz-Berthelot combining rules53,54 from
a sum to a multiplication

This approximation is valid when the difference betweenσii

and σjj is small, which is the case in most of the force fields
analyzed here. Then, we obtain the parametersA, B, andb by
regression analysis ofxσii versusδi. In general, correlation
coefficients higher than 0.99 were obtained as illustrated below.
In the case of the potential well depth, we can use the following
expression:

whereδi
CD ) D + C(δi)b and theC, D, andb parameters are

again obtained from regression analysis ofxεii versusδi.
The first force field potential we are going to analyze is the

TIPS-UA developed by Jorgensen.49 In this case, both LJ
parameters can be substituted by linear functions of the vertex
degrees. The corresponding equations are given below (σ in Å
andε in kcal/mol):

In Table 1, we give the values reported by Jorgensen for these
parameters49 and those calculated from the topological functions.
In both cases, the linear correlation coefficients are higher than
0.99 showing that TIPS-UA LJ parameters for alkanes can be
substituted by topological terms.

The second force field analyzed is that developed by Poncela,
Rubio, and Freire, (PRF-UA).47 In this case, the LJ size for
pairs of atoms increases from CH3 to C, which is contrary to
the trend observed in the TIPS-UA force field. In this case, the
LJ parameters are given by the following expressions (σ in Å
andε/kB in K, wherekB is the Boltzmann’s constant):

In Table 2, we give the values of LJ parameters calculated by
our approach and those originally reported by PRF.47

The last force field to be analyzed is the TraPPE-UA potential
developed by Martin and Siepmann.51,52 The LJ size and well
depth are approximated here by the following expressions in
terms of vertex degrees (σ in Å and ε/kB in K, wherekB is the
Boltzmann’s constant):

The correlation coefficient between TraPPE-UA parameters51,52
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AB ) xσii ) 1.9086+ 0.0494(δi) and

δi
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3 and
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and those obtained by our topological approach are 0.996 and
0.998 for the size and well depth, respectively (see Table 3).

ParametersB and D in the expressionsδi
AB ) B + A(δi)b

andδi
CD ) D + C(δi)b can be interpreted as the size and well

depth of the pseudoatom for which vertex degree is zero, i.e.,
CH4. In the case of TIPS-UA, there is no value reported for
these parameters for methane.49 In PRF-UA, the values of these
parameters areσ(CH4) ) 4.10 andε/kB(CH4) ) 140.46 Accord-
ing to expressions based on topological vertex degree, these
parameters areσ(CH4) ) 4.01 andε/kB(CH4) ) 146, which are
in very good agreement with the reported values. Note that
methane parameters were not used in the regression analysis

for deriving δi
AB and δi

CD. In the case of TraPPE-UA, these
parameters are51 σ(CH4) ) 3.73 andε/kB(CH4) ) 148. Here
there is more disagreement with the parameters obtained from
the topological approach, which exaggerate the value ofε/kB-
(CH4): σ(CH4) ) 3.67 andε/kB(CH4) ) 167. Using these
relations, we can rewrite the expressions for the size and well
depth in our topological approach as follows:

Other empirical descriptions of the LJ parameters have also been
reported in the literature. For instance, in the PRF-UA force
field, the authors have proposed the following empirical rules
for such parameters:47

wherenHH, nHC, andnCC are the number of interactions between
the given atoms belonging to the two different sites. For
instance,nHH ) 0, 1, 4, and 9 for the CC, CHCH, CH2CH2,
and CH3CH3 interactions.εHH, εHC, andεCC are the empirical
atomic contributions. In the case of theσ parameter, it is
estimated as47

where ni is the number ofi atoms in the site andσi is an
empirical diameter contribution and the sum is carried out over
all H and C atoms in the site.

Conclusions

The generalized graph matrix has allowed us to bring some
links between apparently disconnected formalisms used in
physical chemistry. Here, an extension of this matrix to consider
3D distances between atoms in molecules has allowed us to
relate some topological/topographic descriptors, i.e., Harary
indices, with well-known interatomic potentials, such as Mie
and LJ potentials. The finding of these interconnections
represents advances for both fields. In the first place, it allows
us to provide some physical interpretation to known molecular
descriptors, which are used in modeling and predicting physi-
cochemical and biological properties. These descriptors can also
be optimized to describe some physicochemical or biological
properties in an efficient way using these interconnections.

On the other hand, the use of vertex degrees in the expression
of the LJ potential constitutes a simplification of the site
parameters and represents a useful way of deriving them in a
general form. We have previously shown that the use of the
3D generalized graph matrix has permitted to obtain these
parameters in a simple way for different force fields. It is
straightforward to realize that this approach permits us to express
the LJ potentials used in the different force fields studied here
as particular cases of the generalized topological one. More
developments based on this generalized 3D graph matrix can
also be found by approaching the methods previously developed
to show the interplays between graph theory and three-
dimensional geometry.54

On the other hand, our formulas for LJ sizes and well depths
using vertex degrees are in agreement with physical intuition
as this topological parameter is related to the size of the
corresponding pseudoatom.55 In a previous work, we have
shown that vertex degrees are proportional to the accessibility

TABLE 1: Values of Lennard-Jones (LJ) Size and Well
Depth Parameters for Different Pairs of Pseudoatoms as
Defined by TIPS-UA Force Field and Derived from the
Generalized Topological LJ Potential

UA-pair σij δi
AB δj

AB
εij δi

CD δj
CD

CH3...CH3 3.86 3.83 0.18 0.174
CH3...CH2 3.92 3.93 0.141 0.138
CH3...CH 4.055 4.03 0.095 0.102
CH3...C 4.15 4.12 0.073 0.067
CH2...CH2 3.98 4.03 0.11 0.110
CH2...CH 4.115 4.13 0.074 0.081
CH2...C 4.21 4.228 0.057 0.053
CH...CH 4.25 4.23 0.05 0.060
CH...C 4.345 4.33 0.039 0.039
C...C 4.44 4.44 0.03 0.025
Ra 0.991 0.992

a Correlation coefficient for the linear regression betweenσij vs
δi

AB δj
AB andεij vs δi

CD δj
CD. See text forA, B, C, andD parameters.

TABLE 2: Values of Lennard-Jones (LJ) Size and Well
Depth Parameters for Different Pairs of Pseudoatoms as
Defined by PRF-UA Force Field and Derived from the
Generalized Topological LJ Potential

UA-pair σij δi
AB δj

AB
εij δi

CD δj
CD

CH3...CH3 4.02 3.98 96 97.6
CH3...CH2 3.87 3.89 73.96 75.9
CH3...CH 3.69 3.63 58.79 54.2
CH3...C 3.23 3.13 29.39 32.6
CH2...CH2 3.72 3.80 57 59.0
CH2...CH 3.54 3.54 45.3 42.2
CH2...C 3.08 3.05 22.65 25.3
CH...CH 3.36 3.31 36 30.1
CH...C 2.90 2.85 18 18.1
C...C 2.44 2.45 9 10.9
Ra 0.995 0.993

a Correlation coefficient for the linear regression betweenσij vs
δi

AB δj
AB andεij vs δi

CD δj
CD. See text forA, B, C, andD parameters.

TABLE 3: Values of Lennard-Jones (LJ) Size and Well
Depth Parameters for Different Pairs of Pseudoatoms as
Defined by TraPPE-UA Force Field and Derived from the
Generalized Topological LJ Potential

UA-pair σij δi
AB δj

AB
εij δi

CD δj
CD

CH3...CH3 3.75 3.710 98.00 96.4
CH3...CH2 3.85 3.838 67.14 65.8
CH3...CH 4.215 4.186 31.30 35.1
CH3...C 5.075 4.863 7.00 4.5
CH2...CH2 3.95 3.970 46.00 44.9
CH2...CH 4.315 4.330 21.45 23.9
CH2...C 5.175 5.032 4.80 3.1
CH...CH 4.68 4.723 10.00 12.8
CH...C 5.54 5.488 2.24 1.65
C...C 6.1 6.376 0.50 0.21
Ra 0.996 0.998

a Correlation coefficient for the linear regression betweenσij vs
δi

AB δj
AB andεij vs δi

CD δj
CD. See text forA, B, C, andD parameters.

δi
AB ) xσi ) xσ(CH4) + A(δi)

b and

δi
CD ) xεi ) xσ(CH4) + C(δi)

b

εsite1-site2) nHHεHH + nHCεHC + nCCεCC (30)

σsite
3 ) ∑

i

niσi
3 (31)
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perimeter of atoms in a molecule, which can be computed from
the van der Waals and covalent radii of the atom and the
overlapping angle between the van der Waals circumferences
of bonded atoms.55
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299.
(13) Diudea, M. V.; Horvath, D.; Graovac, A.J. Chem. Inf. Comput.

Sci. 1995, 35, 129.
(14) Estrada, E.J. Chem. Inf. Comput. Sci. 1995, 35, 708.
(15) Randic´, M.; Razinger, M.J. Chem. Inf. Comput. Sci. 1995, 35,

140.
(16) Estrada, E.Chem. Phys. Lett. 2001, 336, 248.
(17) Estrada, E. InTopology in Chemistry; Rouvray, D., King, B. R.,

Eds.; Horwood Pub. Ltd.: Chichester, U.K., 2002.
(18) Estrada, E.J. Phys. Chem. A2003, 107, 7482.
(19) Wiener, H.J. Am. Chem. Soc. 1947, 69, 17. For review, see:
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Acta 2002, 75, 847.

(26) Mie, G.Ann. Phys. Leipzig1903, 11, 657.
(27) Lennard-Jones, J. E.Physica1937, 4, 941.
(28) Lifson, S.; Haggler, A. T.; Dauber, P.J. Am. Chem. Soc. 1979,

101, 5111.
(29) Brooks, S.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;

Swaminathan, S.; Karplus, M.J. Comput. Chem. 1983, 4, 187.
(30) Clark, M.; Cramer, R. D., III.; van Opdenbosch, N.J. Comput.

Chem. 1989, 10, 982.
(31) Allured, V. S.; Kelly, C. M.; Landis, C. R.;J. Am. Chem. Soc.

1991, 113, 1.
(32) Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., III.;

Skiff, W. M. J. Am. Chem. Soc.1992, 114, 10024.
(33) Nemethy, G.; Gibsen, K. D.; Palmer, K. A.; Yoon, C. N.; Paterlini,

G.; Zgari, A.; Rumsey, S.; Scheraga, H. A.J. Phys. Chem. 1992, 96, 6472.
(34) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K.

M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.;
Kollman, P.J. Am. Chem. Soc. 1995, 117, 5179.

(35) Damm, W.; Frontera, A.; Tirado-Rives, J.; Jorgensen, W. L.J.
Comput. Chem. 1997, 18, 1955.

(36) Hwang, M. J.; Stockfisch, T. P.; Hagler, A. T.J. Am. Chem. Soc.
1994, 116, 2515.

(37) Maple, J. R.; Hwang, M. J.; Stockfisch, T. P.; Dinur, U.; Waldman,
M.; Ewig, C. S.; Haggler, A. T.J. Comput. Chem. 1994, 15, 162.

(38) Barlow, S.; Rohl, A. L.; Shi, S.; Freeman, C. M.; O’Hare, D.J.
Am. Chem. Soc. 1996, 118, 7579.

(39) Estrada, E.; Rodrı´guez, L.; Gutierrez, A.Comm. Math. Comput.
Chem. (MATCH) 1997, 35, 145.

(40) Estrada, E.; Rodrı´guez, L.Comm. Math. Comput. Chem. (MATCH)
1997, 35, 157.

(41) Hoffmann, R.; Imamura, A.; Hehre, W. J.J. Am. Chem. Soc.1984,
106, 6638.

(42) Smith, J. C.; Karplus, M.J. Am. Chem. Soc. 1992, 114, 801.
(43) Jorgensen, W. L.; Madura, J. D.; Swenson, C. J.J. Am. Chem.

Soc.1984, 106, 6638.
(44) Jorgensen, W. L.; Tirado-Rives, J.J. Am. Chem. Soc.1988, 110,

1657.
(45) Jorgensen, W. L.J. Phys. Chem. 1983, 87, 5304.
(46) Durig, J. R.; Compton, D. A. C. J. Phys. Chem. 1979, 83, 265.
(47) Poncela, A.; Rubio, A. M.; Freire, J. J.Mol. Phys. 1997, 91, 189.
(48) Gelin, B. R.; Karplus, M.Biochemistry1979, 18, 1256.
(49) Jorgensen, W. L.J. Am. Chem. Soc. 1981, 103, 335.
(50) Dunfield, L. G.; Burgess, A. W.; Scheraga, H. A.J. Phys. Chem.

1978, 82, 2609.
(51) Martin, M. G.; Siepmann, J. I.J. Phys. Chem. B1998, 102, 2569.
(52) Martin, M. G.; Siepmann, J. I.J. Phys. Chem. B1999, 103, 4508.
(53) Lorentz, H. A.Ann. Phys. 1881, 12, 127.
(54) Berthelot, D. C. R.Hebd. Se´ans. Acad. Sci., Paris1898, 126, 1703.
(55) From Chemical Topology to Three-Dimensional Geometry; Balaban,

A. T., Ed.; Plenum Press: New York, 1997.
(56) Estrada, E.J. Phys. Chem. A2002, 106, 9085.

Generalized Graph Matrix for 3D Atomic Distances J. Phys. Chem. A, Vol. 108, No. 25, 20045473


