5468 J. Phys. Chem. R004,108,5468-5473

Three-Dimensional Generalized Graph Matrix, Harary Descriptors, and a Generalized
Interatomic Lennard-Jones Potential

Ernesto Estrada*

Molecular Informatics, X-rays Unit, RIAIDT, Edificio CACTUS, Weisity of Santiago de Compostela,
Santiago de Compostela 15782, Spain

Receied: February 26, 2004; In Final Form: April 26, 2004

The generalized graph matrix is extended to consider three-dimensional (3D) interatomic distances between
pairs of atoms in molecules. It is used to (re)define some topographic descriptors, such as 3D-Wiener and
3D-Harary numbers. Harary numbers are generalized to a wide set of descriptors, and they are adapted for
considering only nonbonded pairs of atoms. These Harary numbers for nonboded pairs of atoms are identified
as repulsion potentials of the Mie type providing a physical interpretation to these descriptors. This formalism
is adopted for generalizing Lennard-Jones (LJ) potentials using topological parameters. LJ parameters of
three united-atom (UA) force fields, TIPSJA, PRF—UA, and TraPPE-UA, are redefined using vertex degrees

of pseudoatoms. High correlation coefficientd)(99) are obtained between original LJ parameters and those
derived from vertex degrees for linear and branched alkanes. These results make some links between some
graph theoretical parameters used in structipr@perty relations and well-known interatomic potentials used

in computational chemistry force fields.

Introduction in chemical graph theory into one unified schelfidé We have
shown that the use of this generalized graph matrix has
implications to the study of conjugated systefhgiving a
solution to the problem of isospectral (molecular) graphs, it is
useful for studying geometrical invariants associated with
" (chemical) grapH$ and permits to define several of the well-
known topological indices using the same graph invariéri

d Among these descriptors, we can mention Wighand Harary
numberg%2Lconnectivity index? Balaban indexX? and Zagreb

indices?* among others. One of the obvious advances of this

The use of graph theoretical concepts and methods is a
common practice in several branches of physics, chemistry, and
biology. Applications in statistical and theoretical physiaad
the recent study of Anderson localization on graphs, i.e.
quantum graph3are a couple of examples of the fruitful use
of graph theory in physics. Many of the cheminformatiasd
bioinformatic$ tools used for coding, storing, manipulating, an
analyzing molecular and macromolecular structures are also
based on graph theoretical algorithms. In physical chemistry, "™’ ) c ,
the use ofggrapph theory has p?ayed an imppor¥ant role in are)a(s_un'f'ed approach to the use of graph theory in physical chemistry
ranging from the study of electronic properties of conjugated 'S related to the optimization and interpretation of these

systems, statistical thermodynamiésnolecular spectroscopy, m0|eChL{|ar dekscriptor_ﬁ. A . A _
and quantum chemistry. In this work, we will extend the generalized graph matrix to

The generation of molecular descriptors using graph theoreti- consider 3D molecular features by using geometrical instead

cal concepts has grown as a parallel area of research in physicaf! {oPological distances. However, we will keep topological

chemistry8 Although these descriptors, known as topological information at the same time as the geometrical one, whigh will
indices, characterize only two-dimensional (2D) molecular P& Useful for studying some “through bond” molecular inter-

attributes, they have been very useful in several real world 2Ctions. An obvious application of this new generalized 3D

applications. They include the design of new biologically active Matrix is in the (re)definition of some topographic descriptors,
molecule8 and recent applications in chemical genomic profiling SUch as 3D Wiener and Harary numbers. We will be concentrat-

of biological networkd? In some cases, these indices have been g On the Harary numbetsas we will find some important
extended to three-dimensional (3D) descriptors, which are links between them and interatomic potentials of the Mie 8fpe,

known as topographic indicé&:!5 However, most of these such as the Lennard-Jones (LJ) poterffialaking advantage

descriptors, 2D and 3D, have been developed in an ad hoc way'of this interrelation, we will give a physical interpretation of

which have kept them elusive to physical interpretations. On the Ha_1rary numbers and we will _|ntroduce a generalized LJ
the other hand, most of these descriptors appear to be disconpOtent!al' In the last case, we will be able to present a LJ
nected from each other, even from a mathematical point of view. Potential for alkanes (linear and branched) based on the
This lack of unity gives the false impression that these indices c0mpination of topological and geometrical information. By

are totally unrelated, which in many cases is not true, and using some topological parameters for defining LJ parameters,

stimulate the proliferation of new descriptors, which in some SUch as size and well depth, we are able to reproduce some of
cases are unnecessary. the LJ potentials used in well know united-atoms (UA) force

Recently, we have introduced a generalized graph matrix f1€1dS-
which encompasses several of the mathematical formalisms usedheoretical Developments

* To whom correspondence should be addressed. E-mail: estradasé@ L€t G = (V.E) be a molecular graph, whekeandE are the
yahoo.com. Fax: 34-981-547 077. vertex and edge sets representing atoms and covalent bonds,
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respectively. Let N be the number of atoms and M the number generalized topographic matrix only for nonbonded atoms

of bonds in the molecule. We will start by giving the definition

of the generalized graph matrix, which was previously defined Op(l,—M=0X=1yv=—m - O(xx=0y=—m)

by usl® @)
Definition 1. Let T'(x,z) = [gijj(x.v)]nxn be the generalized

graph matrix, which is defined as a square symmetric matrix

with elementsy;:

The matrix®ng considers all nonbonded pairs of atoms in a
molecule. However, it is common practice in the study of van
der Waals interatomic potentials to exclude interactions between
1 ifd; =1 a pair of atoms separated not only by one but also by two (and

g = (d__Xdij—l)u ifi=jd >1 even by_three) bonds. In these cas€gss can be built by

L L ! considering tha = 0 for dj > 2 (ord; > 3) andx = 1
otherwise in the second matrix of the right part of eq 7.
wherex andw are not simultaneously equal to zero. According A topographic (3D) Harary number for non bonded atoms is

to this formalism, several topological indices can be defined then defined as follows:
using the same graph invaria§t'® Here we will concentrate 1 NB
mainly on those descriptors based on distances, such as Wiener B (—m) = E[UQNB(X =1lp=—mu']=5 — (8)

0 otherwise

and Harary indice3?2? which are defined as )"
i
W= E[ur(xz = l)uT] = zdij (1) If we plot Hye(—m) as a function ofrjj, we obtain a typical
2 5 graphic for an interatomic repulsion potential. In a similar way,
1 1 we can define another potential simulating the attractive
interaction between nonbonded pairs of atoms in the followin
Hy=ulx=1p=—1u"=% = @ o P g
2 1<) d“ )
1 1 1 T <
2 5 (d“)z 1<] (I’”)
where

whereu is a unit vector andi” its transpose.
It is straightforward to generalize Harary indices to a series A — _ o .
of descriptors of the form Onp(l, =) = O =02 m — Ox=1v r(nl)o)

(4) Here again, in case that interactions between atoms separated
= (dij)m by two or three bonds are not considered, we have toxake
0 fordy > 2 ord; > 3, respectively, in the first matrix of the

We are going to extend these indices to consider three-right part of eq 10. Note that here the matrices in the right part
dimensional interatomic distances instead of topological ones. of the equation are in a different order compared to those in eq
First, we will define the generalized graph matrix for the 3D 7, which introduces the minus sign in eq 9.
case. It is now straightforward to realize that the Mie poteriial

Definition 2. Let ©(x,v) = [fij(x,v)]nxn be the generalized  for interatomic interactions is a particular case of the sum of
3D graph matrix, which is defined as a square symmetric matrix Hys(—m) and Hyg(—n) whenm > n > 3
with elements;

1 T
H,= E[UF(XZ ly=—mu]=

NB

Y u
(ry)" ifdy=1 U(Nwie = ¥*Hye(—M) + u-Hyg(—n) = T
£ =1 (r.)X@ if d; > 1 =T ()" ()
' L >n>3 (11
0 otherwise m=n (11)

. wherey andu are arbitrary constants. A particularly very well-
wherex and f(d;) are not simultaneously equal to zero and known case of this potential is the (12-6) LJ poterdfakhich
f(d;) is a function of the topological distance, defined as the i pe considered later on in this work, where the arbitrary

shortest path between vertexes i and j. We have previously used;onstants are substituted by parameters with physical meaning.
the simple functiorf(d;) = d;j — 1 for the 2D case.

The 3D Wiene¥ and Harary numbers are then written as i
Interpretation of Harary Numbers

follows:
1 According to the original definition of the Harary numbers,
3 T 4 .
W= Jue(x=1y=1u'] = zrij (5) these descriptors can be considered as the sum of two terms,
2 <] one consisting of the sum of powers of inverse distances
1 between bonded atoms and the other summing powers of inverse
Y =JueKx=1yr=—mu'l = (6) distances between pairs of nonbonded atoms
m
2 =T (ry) AL q Bonded { 1

NB
Harary Indices and Mie Potential Him = Z m - Z m+ z m (12)
_ o =T (dy) =T (dy) =T (dy)
If we take the interatomic distances between bonded atoms
as constants or having small variations, we can consider thelt is evident that in the case of the 2D Harary indices the first
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term is simply the number of bonds}, in the molecule into y(w, y, b, g) andz(s, z b, r)

yi={w + Ay g;(y. DI} andz = {s + C[y g;(z )}’
J J
(17)

NB
=M+

H, (13)

= (dij)m

If we consider that in the 3D case (pseudo)atoms are connecte

dlivhereA andC are constants that can be obtained by multiplying
by bonds with a fixed length, we will have

"(y,1) by A and CP, respectively. The reason for this new
definition of they(w, y, b, ) andz(s, z, b, r) vectors will be

NB evident later on in this work. Using these vectors, we can
3DHm =LM+ (14) introduce a generalized interatomic repulsjon potential applying
= (rij)m a vector-matrix—vector (VMV) multiplication proceduré?4°

For the sake of simplicity in the rest of this work, we will
gonsider thay(w, y, b, q) = z(s, z b, r). Thus, a generalized

The second term in egs 13 and 14 represents the energetic of : _ - -
interatomic repulsion potential can be obtained as follows:

nonbonding interatomic repulsions in a molecule. In conse-
guence, we can consider that the first term represents the energy

of bonding interactions, which here are taken to be proportional ug(rep)= —[y(w y,b,0):Opg(X, — m)-yT(w,y,b,q)] =

to the number of bonds in the molecule. Hence, Harary numbers

are a sort of repulsion potentials considering bonding and NB (yy)q f(dj)
nonbonding interatomic interactions in a molecule, the first being z (18)
proportional to the number of bonds and the second being = (r”

proportional to the sum of powers of inverse interatomic

distances without any differentiation between (pseUdO)atom Here, yi andyj are the components of thevector for atoms

types, e.g.y = u = 1 for any pair of (pseudo)atoms in the Mie
potential.

Generalized Lennard-Jones Potential

In the most general case in which atoms of different types

are considered, we need to substitute the terraadu in the
Mie potential by parameters with physical meaning for the
different pairs of atoms interacting in the molecule. This kind

of potentials are known as LJ potentials and they can be written

for a pair of atoms as follows:

o =47~ 7]

wheree is the well depth and is the distance at whict(r) =
0. The LJ potential is used in simulating interatomic interaction

(15)

between nonbonded pairs of atoms. The most common case i

the (12-6) potential, i.e.xm = 12 andn = 6, which is used
in computational chemistry softwares such as CVEF,
CHARMM,?® TRIPOS?3® SHAPES?! UFF 32 ECEPP3 AM-
BER2* and OPLS® However, other variants of this potential
are also used in several force fields. For instance, €FF,
QMFF 3" and ESFF8 use a (9-6) function. Also a (12-10) LJ
potential is used to simulate hydrogen bonding in ECERBRd
AMBER.34

To study LJ potentials, we introduce a change of variable in
I"(x,v) so thatx is substituted by or zand» = 1. Thus, we
obtain the following matricesi”(y,1) andI(z1). Using these

matrices, two new graph-theoretical vectors are defined as

follows 16
Definition 3: Lety(w, y, q) andz(s, z r) be two vectors of
orderN whose elementg; andz are defined as follows:

yi= W + Zgij )Y z=(s+ Zgij (z1)) (16)
T T

wherew; ands are weights to be assigned to the corresponding

vertex.

Let us introduce the following change into the original
definition of they(w, y, g) andz(s, z r) vectors by including a
new parameteb, which transforms the vectors given by eq 16

andj, respectively. The termd@) accounts for sort of “through-
bond” interactiong! which can be useful in simulating some
interatomic effects transmitted through the molecular skeleton,
such as electronic effects. In those cases in which these effects
are not taken into consideration we will simply také) = 1.

In a similar way as in eq 18, we can introduce a generalized
attraction potential of the following form:

1
uG(attr) = E[y(W!yvb!q')'GNB(Xli - n)'yT(vavbvq,)] = -
N8 ()X
(rq)n

These expressions will be applied here for studying some LJ

(19)

1<)

s potentials implemented in force fields currently in use in
é:omputatlonal chemistry.

Electrostatic Interactions

Letq = (n0gz°--qn) be a vector whose elements are the atomic
charges for the different atoms in the molecule. Then the
electrostatic interaction potential for nonbonded pairs of atoms
is given by

a9

[q®(><—1v——1)q]—z

= T

(20)

elec

In several force fields, the electrostatic interactions of atoms
separated by three bonds, “1-4 interactions” are reduced by a
multiplicative scale facto#**2 These scaling factors are also
necessary for LJ interactions. For instance, OPLS and AMBER
force fields use scaling factors 8§ and'/s, respectively? This

kind of 1-4 interaction can be expressed through the use of our
topological distance function as follows:

Z

1<)

BVICH)

Ugjoe = g[q®(x <lyp=- 1)q (22)

elec

where we have to take < 1 in order to simulate the reduction
of electrostatic interactions due to the “1-4 effect”.
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This multiplicative scale factor only appears for pairs of atoms 1 -
separated by three bonds. Consequently, we can use a LorentUs(attr) = E[y(Broib!n)'@)NB(l! —n)y (BObn)] =
zian-type function fof(d;) in such a way that it takes the value

of 1 if the pair of atoms is separated by three bonds or zero NB 5iAB(3'AB "

I

otherwise - ; (27)
= i
f(d;) = ;2 (22) wheredi"B = B + A(d;)P with A, B, andb being obtained by
1+ p(dy — dij) regression analysis. We first make the following approximation

to transform the LorentzBerthelot combining ruléd >4 from
whered, = 3 is the number of bonds (topological distance) at a sum to a multiplication
which the effect is transmitted}; is the number of bonds
separating the pair of atoms, i.e., its topological distance, and 0. = 1(0,, + o)~ \/ﬁ (28)
B> 1, e.g. = 10°. This function takes a value dd;) = 1 AN "“
for atoms separated at topological distance of three or almost
zero (1078 in this case) otherwise. This function can also be
used in egs 18 and 19 for introducing the scaling multiplicative
factor in the LJ potential.

This approximation is valid when the difference betwegn
andgj is small, which is the case in most of the force fields
analyzed here. Then, we obtain the paramefeiB, andb by

. . regression analysis of/gii versusd;. In general, correlation

In united-atom approaches, such as those we will analyze ., eficients higher than 0.99 were obtained as illustrated below.

here, the electrostatic interaction potential is not taken into |, ihe case of the potential well depth, we can use the following
account because the Gigroups are considered as neutr@l ( expression: '

= 0).44This is supported by ab initio calculaticfi®n n-alkanes
and by the negligible dipole moments in branched alkdfes. 2(Z®NB(1,O)ZT) — 4zéiCDéjCD (29)
1<)

United-Atoms LJ Potentials
whered;°P = D + C(;)° and theC, D, andb parameters are

Several united-atom (UA) force field models have been again obtained from regression analysisvaf; versuso;.
introduced for the simulation of organic compound in liquid The first force field potential we are going to analyze is the
phase. Most of them use optimized sets of LJ parameters forTIPS-UA developed by Jorgensé&hln this case, both LJ
describing interatomic interactions between nonbonded pairs of parameters can be substituted by linear functions of the vertex
atoms. In the particular case of UA description of normal and degrees. The corresponding equations are given betdw A
branched alkanes, several sets of such parameters have beemnde in kcal/mol):
introduced in the literature for force fields such as PRFUA,

OPLS3 GK,“8 TIPS—UA,* UNICEPP® and TraPPE-U&L52 "= /o, = 1.9086+ 0.0494¢,) and
among others. The LJ potential in these cases has the followin
aope oo P 9 6,°° = /e, = 0.5036— 0.0860),)

23) parameter$ and those calculated from the topological functions.
In both cases, the linear correlation coefficients are higher than
0.99 showing that TIPS-UA LJ parameters for alkanes can be
substituted by topological terms.
The second force field analyzed is that developed by Poncela,

u(ry) = Z4€ij

1<)

(0 )12 (a ) In Table 1, we give the values reported by Jorgensen for these
ij ij 1

r.

IFij ij

where interactions are computed using standard Lorentz

Berthelot combining rulé$>* Rubio, and Freire, (PRF-UAY. In this case, the LJ size for
pairs of atoms increases from glkb C, which is contrary to
0y = 1-(0“ + C’jj) andeij = /6”6"_ (24) the trend observed in the TIPS-UA forge field. In this case, the
2 LJ parameters are given by the following expressians (A

ande/kg in K, wherekg is the Boltzmann’s constant):
Our approach consists of substituting the LJ parameters used

for alkanes by expressions based on topological parameters suclaiAB = Jg_” = 2.0029— 0-0068603 and
as vertex degrees, giving formulas of the following form: b
0,0 = \Je; = 12.073— 2.19430)

AB¢ AB\12 AB ¢ AB\ 6
_ - coscoy|[ ] o 00, In Table 2, we give the values of LJ parameters calculated by
U(r.0) = z(éi ") i B r (25) our approach and those originally reported by PRF.
o ! I The last force field to be analyzed is the TraPPE-UA potential
. . . ) . . developed by Martin and Siepmap#e2 The LJ size and well
This is possible by using our generalized matrix approach with depth are approximated here by the following expressions in

the following set of parameters: terms of vertex degrees (n A ande/kg in K, wherekg is the
1 Boltzmann’s constant):
— _ . — T =
U(rep) = “TY(B.ODM):Opg(l, — m)-y (B.0bm) 58 = [0, = 1.9165+ 0.00951)° and

NB [ 5,480 AB|™ 0P = Je; = 12.937— 3.11976)

S r’ (26)

=] i The correlation coefficient between TraPPE-UA parametéts
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TABLE 1: Values of Lennard-Jones (LJ) Size and Well for deriving 6B and 5;°P. In the case of TraPPE-UA, these
Depth Parameters for Different Pairs of Pseudoatoms as parameters afé o(CH;) = 3.73 ande/ks(CH,) = 148. Here
Defined by TIPS-UA Force Field and Derived from the there is more disagreement with the parameters obtained from
Generalized Topological LJ Potential . .
_ e - the topological approach, which exaggerate the valuglef
UA-pair Oj 0" 0] i 0 0 (CHy): o(CHj) = 3.67 andelkg(CH4) = 167. Using these
CHs...CHs 3.86 3.83 0.18 0.174 relations, we can rewrite the expressions for the size and well
CHs...CH 3.92 3.93 0.141 0.138 depth in our topological approach as follows:
CHs...CH 4.055 4.03 0.095 0.102
CHs...C 4.15 4.12 0.073 0.067 AB _ b
CH,...CH 3.98 4.03 0.11 0.110 0/ = \Jo,= \Jo(CH,) + A6)" and
CH,...CH 4.115 4.13 0.074 0.081 cD _ _ b
CH,..C 421 4.228 0.057 0.053 6= e =\/o(CH) + C(6)
CH...CH 4.25 4.23 0.05 0.060 N o
CH...C 4.345 4.33 0.039 0.039 Other empirical descriptions of the LJ parameters have also been
cC.C 4.44 4.44 0.03 0.025 reported in the literature. For instance, in the PRF-UA force
A 0.991 0.992 field, the authors have proposed the following empirical rules
aCorrelation coefficient for the linear regression betwegnvs for such parameters:
o1 07 ande; vs 6" 6°. See text forA, B, C, andD parameters.
, €siter—site2 — MHEHH T Mucenc + Neceee (30)
TABLE 2: Values of Lennard-Jones (LJ) Size and Well
Depth Parameters for Different Pairs of Pseudoatoms as : :
Defined by PRF-UA Force Field and Derived from the wherenuy, Mk, andncc are the number of interactions between
Generalized Topological LJ Potential the given atoms belonging to the two different sites. For

instancenyy = 0, 1, 4, and 9 for the CC, CHCH, GBH,,

H AB AB CD <CD
UA-pair o %9 €i o 9 and CHCH; interactions.eu, enc, andecc are the empirical
g:e,gtt gg; g.gg 9732 o 5;75-2 atomic contributions. In the case of the parameter, it is

3... . . . . im

CHs...CH 3.69 3.63 58.79 54.2 estimated &3
CHs...C 3.23 3.13 29.39 32.6 3 3
CH..CH, 372 3.80 57 59.0 Oie = » Mo, (31)
CH,...CH 3.54 3.54 453 42.2 .
CH....C 3.08 3.05 22.65 253
CH...CH 3.36 331 36 30.1 where n; is the number ofi atoms in the site andi is an
gH'éC 3-22 g-ig 18 %g-é empirical diameter contribution and the sum is carried out over
R : 0.995 0.993 all H and C atoms in the site.
aCorrelation coefficient for the linear regression betwegnvs Conclusions

0" 0% ande; vs 0P 0°°. See text forA, B, C, andD parameters. . ) )
o € v P The generalized graph matrix has allowed us to bring some

TABLE 3: Values of Lennard-Jones (LJ) Size and Well links between apparently disconnected formalisms used in
Depth Parameters for Different Pairs of Pseudoatoms as physical chemistry. Here, an extension of this matrix to consider
CD;gfr']';fg”% dT!r%PzE-L'JA |F|?5C|§ 't:'9|td ?nd Derived from the 3D distances between atoms in molecules has allowed us to

pologica otentia relate some topological/topographic descriptors, i.e., Harary

UA-pair oj o8 of® & 670 o indices, with well-known interatomic potentials, such as Mie
CHs...CHs 3.75 3.710 98.00 96.4 and LJ potentials. The finding of these interconnections
CHs...CH 3.85 3.838 67.14 65.8 represents advances for both fields. In the first place, it allows
CHs...CH 4.215 4.186 31.30 351 us to provide some physical interpretation to known molecular
8:3---&'2 5-3575 ;-5763 4;88 42-3 descriptors, which are used in modeling and predicting physi-
CHZ"'CH 4315 4.330 21.45 539 cochemical and biological properties. These descriptors can also
CH,..C 5.175 5.032 4.80 31 be optimized to describe some physicochemical or biological
CH...CH 4.68 4.723 10.00 12.8 properties in an efficient way using these interconnections.
CH..C 5.54 5.488 2.24 1.65 On the other hand, the use of vertex degrees in the expression
¢.C 6.1 6.376 0.50 0.21 of the LJ potential constitutes a simplification of the site
R 0.996 0.998 parameters and represents a useful way of deriving them in a
2 Correlation coefficient for the linear regression betwegnvs general form. We have previously shown that the use of the

1% %% ande; vs 0°° 5°°. See text forA, B, C, andD parameters. 3D generalized graph matrix has permitted to obtain these

parameters in a simple way for different force fields. It is

and those obtained by our topological approach are 0.996 andstraightforward to realize that this approach permits us to express
0.998 for the size and well depth, respectively (see Table 3). the LJ potentials used in the different force fields studied here

Parameter® and D in the expression$i"® = B + A(5)P as particular cases of the generalized topological one. More
and ;P = D + C(4;)° can be interpreted as the size and well developments based on this generalized 3D graph matrix can
depth of the pseudoatom for which vertex degree is zero, i.e., also be found by approaching the methods previously developed
CHa. In the case of TIPS-UA, there is no value reported for to show the interplays between graph theory and three-
these parameters for methafién PRF-UA, the values of these  dimensional geomet3f
parameters are(CHs) = 4.10 ande/kg(CH4) = 14026 Accord- On the other hand, our formulas for LJ sizes and well depths
ing to expressions based on topological vertex degree, theseusing vertex degrees are in agreement with physical intuition
parameters are(CH4) = 4.01 ande/kg(CH4) = 146, which are as this topological parameter is related to the size of the
in very good agreement with the reported values. Note that corresponding pseudoatdthin a previous work, we have
methane parameters were not used in the regression analysishown that vertex degrees are proportional to the accessibility
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perimeter of atoms in a molecule, which can be computed from

J. Phys. Chem. A, Vol. 108, No. 25, 2008473

(25) Ludg, B.; Milicevic, A.; Nikoli¢, S.; Trinajstic N. Croat. Chem.

the van der Waals and covalent radii of the atom and the Acta2002 75, 847.

overlapping angle between the van der Waals circumferences

of bonded atom&
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