Infrared Spectra and Density Functional Calculations for Three $\mathbf{P t}-\mathbf{C}_{2} \mathbf{H}_{\mathbf{2}}$ Reaction Product Isomers: $\mathbf{P t C C H}_{2}, \mathbf{H P t C C H}$, and $\mathbf{P t}-\boldsymbol{\eta}^{2}-\left(\mathbf{C}_{2} \mathbf{H}_{2}\right)$

Xuefeng Wang and Lester Andrews*
Department of Chemistry, P.O. Box 400319, University of Virginia, Charlottesville, Virginia 22904-4319
Received: February 20, 2004; In Final Form: March 22, 2004

Abstract

Laser-ablated Pt atoms react with $\mathrm{C}_{2} \mathrm{H}_{2}$ upon co-condensation in excess argon and neon to form the vinylidene PtCCH_{2}, the insertion product HPtCCH , and the strong complex or metallacyclopropene $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$. These species are identified through ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{D}_{2}$, and $\mathrm{C}_{2} \mathrm{HD}$ isotopic substitutions and density functional theory isotopic frequency calculations. The global energy minimum PtCCH_{2} is identified at $3022.4 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$ stretching), $1716.5 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{C}\right.$ stretching), and $707.9 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2}\right.$ deformation) in an argon matrix. The $\mathrm{C}-\mathrm{C}$ stretching modes for $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and HPtCCH are observed at 1653.7 and $2016.2 \mathrm{~cm}^{-1}$, respectively. In addition, the insertion product HPtCCH is identified by a $\mathrm{Pt}-\mathrm{H}$ stretching mode at $2350.8 \mathrm{~cm}^{-1}$ and a $\mathrm{C}-\mathrm{C}$ stretching mode at $2010.4 \mathrm{~cm}^{-1}$ in the neon matrix. The most stable PtCCH_{2} vinylidene isomer is the favored primary product. The strong complex $\mathrm{Pd}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ rearranges by 1,2 hydrogen atom migration to form the vinylidene PtCCH_{2} on $240-290 \mathrm{~nm}$ photolysis and on reaction during annealing solid neon to $10-12 \mathrm{~K}$. These products are analogous to species formed from the adsorption and rearrangement of $\mathrm{C}_{2} \mathrm{H}_{2}$ on the Pt(111) surface.

Introduction

The adsorption and associated rearrangement of $\mathrm{C}_{2} \mathrm{H}_{2}$ on platinum surfaces have been investigated extensively due to the importance of hydrocarbon hydrogenation and dehydrogenation. ${ }^{1-6}$ Using vibrational spectroscopy Somorjai and co-workers have characterized $\mathrm{C}_{2} \mathrm{H}_{2}$ adsorption on the $\mathrm{Pt}(111)$ surface, which leads to the formation of $\eta^{2}-\mu_{3}$-vinylidene at 125 K and upright bridge-bonded μ-vinylidene $\left(\mathrm{Pt}_{2}=\mathrm{C}=\mathrm{CH}_{2}\right)$ at $340 \mathrm{~K} .{ }^{5}$ Similar results were obtained by Avery on $\operatorname{Pt}(111)$ and King et al. on $\operatorname{Pt}(211) .{ }^{4,6}$ Vinylidene surface intermediates are involved in hydrogen atom reactions in the hydrogenation of acetylene. ${ }^{7}$

The mechanism of the important acetylene-vinylidene rearrangement has been considered in a variety of environments, including gas phase ${ }^{8-10}$ and transition metal complexes ${ }^{11-14}$ in addition to the metal surface, as described for the platinum example. ${ }^{1-6}$ Since the relative energies of the two isomers change markedly when a metal is involved, we wish to examine the effect of a single metal atom.

The matrix isolation technique has been used to investigate metal atom interactions with acetylene, and four bonding models, side-on $\mathrm{M}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Ni}, \mathrm{Al}, \mathrm{Li})$, vinyl form (Al, Au), inserted $\mathrm{HMCCH}(\mathrm{Be}, \mathrm{B}, \mathrm{Al}, \mathrm{Fe})$, and vinylidene $\mathrm{M}=\mathrm{C}=\mathrm{CH}_{2}(\mathrm{Ni}, \mathrm{Au}, \mathrm{Na})$ have been characterized by infrared and electron spin resonance spectroscopies. ${ }^{15-25}$ However the bonding and reaction mechanism have not been studied for a single Pt atom with $\mathrm{C}_{2} \mathrm{H}_{2}$ since Pt is difficult to evaporate.

Our group has employed laser ablation to evaporate highmelting transition metals, which are co-condensed with reactive molecules and noble gas to trap transient intermediates and reaction products. Recently side-bonded palladium acetylene complexes, $\mathrm{Pd}-\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\right)_{1,2}$ have been identified by matrix infrared spectroscopy. ${ }^{26}$ Analogous studies of transition metal reactions with dihydrogen have been investigated by this group,

[^0]which established the simplest model to understand hydrogen activation and oxidative addition reactions. ${ }^{27-31}$ It is significant that platinum inserts spontaneously into H_{2} to form the PtH_{2} dihydride.

In this paper we examine the reaction of laser-ablated Pt atoms with $\mathrm{C}_{2} \mathrm{H}_{2}$. The platinum vinylidene $\left(\mathrm{Pt}=\mathrm{C}=\mathrm{CH}_{2}\right)$, insertion product (HPtCCH), and strong platinum-acetylene complexes $\left(\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{1,2}\right)$ are all observed through matrix infrared spectra. The structures, vibrational frequencies, and infrared intensities are confirmed by isotopic substitution and density functional theory (DFT) frequency calculations. The thermally and photolytically induced rearrangements and reactions of Pt with $\mathrm{C}_{2} \mathrm{H}_{2}$ are discussed and compared to platinum surface chemistry.

Experimental and Theoretical Methods

Pulsed-laser ablation was employed to vaporize platinum atoms, ${ }^{27,32,33}$ which reacted with $\mathrm{C}_{2} \mathrm{H}_{2}$ in excess argon or neon, and reaction products were co-deposited onto a 7 or 4 K CsI cryogenic window with excess argon or neon. The Nd:YAG laser fundamental ($1064 \mathrm{~nm}, 10 \mathrm{~Hz}$ repetition rate with 10 ns pulse width) was focused onto a rotating platinum target, and a bright ablation plume was produced. Infrared spectra were recorded at $0.5 \mathrm{~cm}^{-1}$ resolution on a Nicolet 750 with $0.1 \mathrm{~cm}^{-1}$ accuracy using an MCTB detector. Isotopic substitution $\left({ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}\right.$, $\mathrm{C}_{2} \mathrm{D}_{2}$, and $\mathrm{C}_{2} \mathrm{HD}$) was used for band identification. Matrix samples were subjected to photolysis by UV-vis irradiation using a medium-pressure mercury arc lamp.

Density functional theory frequency calculations were done to reproduce the structures and frequencies of platinumacetylene complexes and radicals using the Gaussian 98 program. ${ }^{34}$ BPW91 and B3LYP density functionals ${ }^{35,36}$ with $6-311++\mathrm{G}(\mathrm{d}, \mathrm{p})$ basis sets for C and H atoms ${ }^{37}$ and the SDD pseudopotential for Pt atom were employed. ${ }^{38}$ Geometries were fully optimized, and the vibrational frequencies were calculated analytically from second derivatives.

Figure 1. Infrared spectra in the $1580-2030 \mathrm{~cm}^{-1}$ region for laserablated Pt co-deposited with $0.5 \% \mathrm{C}_{2} \mathrm{H}_{2}$ in argon at 7 K : (a) spectrum after sample deposited for 60 min , (b) after annealing to 25 K , (c) after $\lambda>240 \mathrm{~nm}$ photolysis, (d) after annealing to 30 K , and (e) after annealing to 35 K .

Figure 2. Infrared spectra in the $1560-1950 \mathrm{~cm}^{-1}$ region for laserablated Pt co-deposited with $0.5 \%{ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ in argon at 7 K : (a) spectrum after sample deposited for 60 min , (b) after annealing to 25 K , (c) after $\lambda>290 \mathrm{~nm}$ photolysis, (d) after annealing to 30 K , (e) after $\lambda>290$ nm photolysis, and (f) after annealing to 35 K .

Results

Infrared Spectra. Figures 1-3 show the infrared spectra of laser-ablated Pt atom reactions with $\mathrm{C}_{2} \mathrm{H}_{2}$ in excess argon at 7 K. The measured absorptions of various reaction products are listed in Table 1. Absorptions common to metal-acetylene experiments include acetylene, weak acetylene aggregates, and the intermediates CCH (1846.1, $2103.5 \mathrm{~cm}^{-1}$), $\mathrm{CCH}^{+}(1820.2$ $\left.\mathrm{cm}^{-1}\right), \mathrm{CCH}^{-}\left(1770.5 \mathrm{~cm}^{-1}\right), \mathrm{C}_{4} \mathrm{H}\left(2060.4 \mathrm{~cm}^{-1}\right), \mathrm{C}_{4}(1543.3$ $\left.\mathrm{cm}^{-1}\right), \mathrm{C}_{4} \mathrm{H}_{2}\left(627.7 \mathrm{~cm}^{-1}\right)$, and weak PtNN ($2168.5 \mathrm{~cm}^{-1}$), which have been reported previously. ${ }^{39-43}$ In addition PtH ($2280.4 \mathrm{~cm}^{-1}$) and $\mathrm{PtH}_{2}\left(2348.9 \mathrm{~cm}^{-1}\right)$ are observed as reaction products. ${ }^{27}$ These experiments have minimal oxygen impurity since no PtO_{2} is detected at $953.3 \mathrm{~cm}^{-1} .32$ The new product bands unique to Pt are grouped as $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D according to their behavior on sample annealing, wavelength-dependent photolysis, and isotopic substitution. Group A bands at 3022.4, 1716.5 , and $707.9 \mathrm{~cm}^{-1}$ appear on deposition, decrease by 10% on annealing to 25 K , but double their intensities on broadband photolysis and decrease again on further annealing to 30 and 35 K . With $\mathrm{C}_{2} \mathrm{D}_{2}$ three bands shift to $2218.9,1662.6$, and 566.5 cm^{-1}. Group B consists of 2016.2 and $577.5 \mathrm{~cm}^{-1}$ bands, which are unchanged on photolysis. Group C absorbs at 1653.7, 882.8, and $666.2 \mathrm{~cm}^{-1}$, which increase on annealing but decrease on

Figure 3. Infrared spectra in the $1650-1870 \mathrm{~cm}^{-1}$ region for laserablated Pt co-deposited with mixed $0.15 \% \mathrm{C}_{2} \mathrm{H}_{2}+0.25 \% \mathrm{C}_{2} \mathrm{HD}+$ $0.10 \% \mathrm{C}_{2} \mathrm{D}_{2}$ in argon at 7 K : (a) spectrum after sample deposited for 60 min , (b) after annealing to 25 K , (c) after $\lambda>240 \mathrm{~nm}$ photolysis, (d) after annealing to 30 K , and (e) after annealing to 35 K .

TABLE 1: Infrared Absorptions ($\mathbf{c m}^{-1}$) Observed for Pt + $\mathbf{C}_{2} \mathbf{H}_{\mathbf{2}}$ Reaction Products in Solid Argon at 7 K

$\mathrm{C}_{2} \mathrm{H}_{2}$	${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{C}_{2} \mathrm{D}_{2}$	assignment ${ }^{a}$
3104.5	3095.0	2311.5	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}$
3022.8	3013.4	2218.9	PtCCH_{2} (A)
2348.9	2348.9	1683.3	PtH_{2}
2280.4	2280.4	1634.0	PtH
2142.0	2080.0	2112.4	$\mathrm{CH}_{2} \mathrm{CO}$
2084.0	2005.7	2056.5	$\mathrm{C}_{x} \mathrm{H}_{y}$
2060.4	1981.5	2049.4	$\mathrm{C}_{4} \mathrm{H}$
2016.2	1944.3	1890.9	HPtCCH (B)
1920.5	1851.2	1825.2	PtCCH^{-}
1912.0	1843.4	1811.4	$\left[\mathrm{PtCCH}^{-}\right] \mathrm{X}$
1845.8	1785.5	1746.5	CCH
1820.2	1754.9	1724.4	CCH^{+}
1770.5	1711.8	1676.7	CCH^{-}
1716.5	1667.4, 1648.1	1662.6	PtCCH_{2} (A)
1688.6	1640.9	1574.2	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}(\mathrm{D})$
1653.7	1598.5	1550.9	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{C})$
1618.3	1566.2	1534.3	$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right] \mathrm{X}$
882.8	873.4	731.1	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{C})$
707.9	701.1	566.6	PtCCH_{2} (A)
666.2	663.2	499.9	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{C})$
627.7	622.4	495.6	$\mathrm{C}_{4} \mathrm{H}_{2}$
599.7	592.1	482.2	?
577.5	571.0	475.8	HPtCCH (B)
575.0	569.1	474.5	HPtCCH site

${ }^{a}$ Band group designation given in parentheses.
photolysis. These bands show larger isotopic shifts with both ${ }^{13} \mathrm{C}$ and deuterium substitutions than group A bands, suggesting a different bonding form. One broad band with sharp shoulder at $1688.6 \mathrm{~cm}^{-1}$ increases on annealing and forms the D group.

Complementary spectra from neon matrix experiments are illustrated in Figures 4 and 5, and the bands are listed in Table 2. The slower condensation rate of neon allows more precursor aggregation as attested by Pt_{2} electronic bands ${ }^{44}$ at 1942, 2143, and $2343 \mathrm{~cm}^{-1}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{n}$ clusters at $1970.4,1967.5 \mathrm{~cm}^{-1}$ just below the symmetric $\mathrm{C}-\mathrm{C}$ stretching fundamental of $\mathrm{C}_{2} \mathrm{H}_{2}$ at $1973.8 \mathrm{~cm}^{-1}$ in the gas phase. ${ }^{45}$ Group A bands are shifted to $3033.9,1712.6$, and $720.8 \mathrm{~cm}^{-1}$. Matrix shifts from $\mathrm{C}_{2} \mathrm{H}_{2}$ and CO_{2} make possible the observation of two new group B bands at 3317.5 and $2350.8 \mathrm{~cm}^{-1}$ plus counterparts at 2010.4 and $571.5 \mathrm{~cm}^{-1}$. Group C bands appeared at 1658.4, 878.6, and $665.9 \mathrm{~cm}^{-1}$ and gave way to the D band at $1693.5 \mathrm{~cm}^{-1}$ on annealing.

Calculations. The structures and frequencies of expected platinum acetylene complexes, isomers and radicals are calcu-

Figure 4. Infrared spectra in selected regions for laser-ablated Pt codeposited with $0.3 \% \mathrm{C}_{2} \mathrm{H}_{2}$ in neon at 4 K : (a) spectrum after sample deposited for 60 min , (b) after annealing to 10 K , (c) after $\lambda>240 \mathrm{~nm}$ photolysis, (d) after annealing to 12 K , and (e) after annealing to 14 K.

Figure 5. Infrared spectra in selected regions for laser-ablated Pt codeposited with $0.2 \% \mathrm{C}_{2} \mathrm{D}_{2}$ in neon at 4 K : (a) spectrum after sample deposited for 60 min , (b) after annealing to 10 K , (c) after $\lambda>240 \mathrm{~nm}$ photolysis, (d) after annealing to 12 K , and (e) after annealing to 14 K.
lated and the results are listed in Tables 3-7. Three isomers are located on the $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{H}_{2}$ singlet potential energy surface, namely, $\mathrm{Pt}-$ vinylidene, $\mathrm{Pt}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$, and the inserted HPtCCH molecule. Platinum vinylidene in the ${ }^{1} \mathrm{~A}_{1}$ ground state is the global energy minimum structure with both BPW91 and B3LYP functional calculations. The Pt atom bonds to the terminal C atom in vinylidene (shown in Figure 6), which is an important reaction intermediate. The calculated $\mathrm{Pt}-\mathrm{C}$ double bond length is $1.759 \AA$ (BPW91) and $1.766 \AA$ (B3LYP), which is much shorter than the $\mathrm{Pt}-\mathrm{C}$ bond length in $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{H}_{2}$ complexes. The $\mathrm{C}-\mathrm{C}$ distance, $1.313 \AA$ (BPW91) and $1.304 \AA$ (B3LYP), shows double CC bond character. The side-bound $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{H}_{2}$ complex, $\mathrm{Pt}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$, lies $3.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than groundstate $\mathrm{Pt}=\mathrm{CCH}_{2}$, and the CC bond is calculated to be $1.288 \AA$ (BPW91) and $1.271 \AA$ (B3LYP), respectively. This is $0.02 \AA$ longer than the CC bond in the $\mathrm{Pd}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$ complex, ${ }^{26}$ indicating a stronger interaction between $\mathrm{C}_{2} \mathrm{H}_{2}$ and Pt atom. It is interesting to note for free $\mathrm{C}_{2} \mathrm{H}_{2}$ and vinylidene $\left(\mathrm{CCH}_{2}\right)$ theoretical and experimental studies found that CCH_{2} is $44-$ $47 \mathrm{kcal} / \mathrm{mol}$ higher in energy than $\mathrm{C}_{2} \mathrm{H}_{2} \cdot{ }^{8-10}$ Here the relative energies are reversed when coordinated to a platinum atom. The third isomer, HPtCCH , is $10.6 \mathrm{kcal} / \mathrm{mol}$ higher in energy than ground-state $\mathrm{Pt}=\mathrm{CCH}_{2}$. For this molecule the Pt atom inserts into a $\mathrm{C}-\mathrm{H}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$ and the triple CC bond remains in contrast to the double bond in $\mathrm{Pt}=\mathrm{CCH}_{2}$. The calculated

TABLE 2: Infrared Absorptions ($\mathbf{c m}^{-1}$) Observed for Pt + $\mathrm{C}_{2} \mathrm{H}_{2}$ Reaction Products in Solid Neon at 4 K

$\mathrm{C}_{2} \mathrm{H}_{2}$	${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{C}_{2} \mathrm{D}_{2}$	assignment ${ }^{a}$
3332.9	3315.4	2597.6	$\mathrm{C}_{4} \mathrm{H}_{2}$
3317.5	3301.4	2577.8	$\mathrm{HPtCCH}(\mathrm{B})$
3159.2	3149.5	2351.4	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$
3157.7	3147.8	2350.1	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$
3156.0	3145.9	2348.8	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$
3134.7	3125.8	2327.2	$\mathrm{C}_{2} \mathrm{H}_{2}{ }^{+}$
3128.4	3119.3	2339.1	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$
3033.9		2221.1	PtCCH_{2} (A)
2355.2	2355.2	1688.2	PtH_{2}
2350.8	2350.8	1685.9	HPtCCH
2347.7	2347.7	2347.7	CO_{2}
2343	2343	2343	Pt_{2}
2143	2143	2143	Pt_{2}
2063.7	1984.7	2052.5	$\mathrm{C}_{4} \mathrm{H}$
2010.4	1938.6	1897.2	$\mathrm{HPtCCH}(\mathrm{B})$
1970.4		1759.0	$\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{n}$
1967.5	1904.3	1754.2	$\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{n}$
1942	1942	1942	Pt_{x}
1924.4		1830.2	PtCCH^{-}
1915.9	1847.2	1815.4	$\left[\mathrm{PtCCH}^{-}\right] \mathrm{X}$
1838.1	1778.7	1739.7	CCH
1835.2	1775.6	1737.2	CCH
1832.2	1767.6	1735.1	CCH^{+}
1773.0	1717.0	1675.7	CCH^{-}
1722.6		1677.9	PtCCH_{2} site
1720.3			PtCCH_{2} site
1712.6	1671.0, 1645.8	1673.4	PtCCH_{2} (A)
1693.5	1645.0	1577.6	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}(\mathrm{D})$
1658.4	1599.0	1571.2	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{C})$
1652.0		1566.5	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ site
1623.9	1573.5	1530.2	$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right] \mathrm{X}$
1620.8	1569.6	1527.8	$\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\right] \mathrm{X}$
878.6	869.5	724.4	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{C})$
872.6	863.6	717.7	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ site
720.8	717.6		PtCCH_{2} (A)
665.9	663.1	500.5	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)(\mathrm{C})$
664.2	661.3	498.3	$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ site
630.8	625.8	497.3	$\mathrm{C}_{4} \mathrm{H}_{2}$
596.7	592.3	454.8	
571.5	567.7	444.8	$\mathrm{HPtCCH}(\mathrm{B})$
514.6	512.0	-	HPtCCH (B)

$\mathrm{H}-\mathrm{Pt}-\mathrm{C}$ right angle is 90.3° (BPW91) and 90.5° (B3LYP), respectively, slightly larger than the $\mathrm{H}-\mathrm{Pt}-\mathrm{H}$ angle calculated at the same level. Figure 7 shows an energy profile for the $\mathrm{Pt}-$ $\mathrm{C}_{2} \mathrm{H}_{2}$ isomers.

When two Pt atoms interact with $\mathrm{C}_{2} \mathrm{H}_{2}$, two isomers, $\mathrm{Pt}_{2}-$ CCH_{2} and $\mathrm{Pt}_{2}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$, are found with total energies very close to those of the present calculations. $\mathrm{The}_{2}-\mathrm{CCH}_{2}$ form is the global energy minimum, and $\mathrm{Pt}_{2}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$ lies $0.6 \mathrm{kcal} / \mathrm{mol}$ higher at the BPW91 level. Note the $\mathrm{C}-\mathrm{C}$ bond is lengthened to $1.337 \AA$ in $\mathrm{Pt}_{2}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$, inferring the $\mathrm{C}-\mathrm{C}$ triple bond is reduced to a double bond.

Finally the PtCCH and PtCCH^{-}species are calculated to reproduce the observed spectra. At the BPW91 level the C-C bonds are predicted to be $1.223 \AA$ for PtCCH and $1.241 \AA$ for PtCCH^{-}, which are essentially triple $\mathrm{C}-\mathrm{C}$ bonds.

Discussion

New product absorptions will be assigned on the basis of frequency shifts with ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{D}_{2}$ substitution, isotopic distributions with mixed $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{HD}+\mathrm{C}_{2} \mathrm{D}_{2}$, and DFT frequency calculations.
$\mathbf{P t}=\mathbf{C}=\mathbf{C H}_{\mathbf{2}}$. Group A bands double intensity on broad-band photolysis and are assigned to $\mathrm{Pt}=\mathrm{C}=\mathrm{CH}_{2}$. The diagnostic band for this identification is the $\mathrm{C}=\mathrm{C}$ double bond stretching mode

TABLE 3: Geometries and Frequencies Calculated at the BPW91/6-311++G(d,p)/ SDD Level of Theory for Platinum Acetylene Complexes

Molecule	state	rel energy, $\mathrm{kcal} / \mathrm{mol}$	geometries (length, \AA A; angle, deg)	frequencies, cm^{-1} (intensities, $\mathrm{km} / \mathrm{mol}$)
$\mathrm{C}_{2} \mathrm{H}_{2}$	${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$	-	CC, 1.209; CH, 1.070	$\begin{aligned} & 3463.2\left(0, \sigma_{\mathrm{g}}\right), 3363.9\left(84, \sigma_{\mathrm{u}}\right), 2005.4\left(0, \sigma_{\mathrm{g}}\right), \\ & \quad 742.0\left(109, \pi_{\mathrm{u}}\right), 584.4\left(0, \pi_{\mathrm{g}}\right) \end{aligned}$
$\mathrm{PtCCH}\left(C_{\infty \nu}\right)$	${ }^{2} \Sigma$	0.0a	CC, 1.223; CH, 1.069; PtC, 1.876	$\begin{aligned} & 3411.1(\sigma, 680), 2037.1(\sigma, 28), 597.4(\pi, 144) \\ & 594.8(\pi, 141 \times 2), 530.3(\sigma, 0), 269.3(\pi, 13 \times 2) \end{aligned}$
$\mathrm{PtCCH}^{-}\left(C_{\infty}\right.$)	${ }^{1} \Sigma$	-65.7	CC, 1.241; CH, 1,068; PtC, 1.841	$\begin{aligned} & 3407.5(\sigma, 50), 1942.5(\sigma, 388), \\ & 557.1(\sigma, 0), 355.7(\pi, 108 \times 2), 290.5(\pi, 22 \times 2) \end{aligned}$
$\mathrm{PtCCH}_{2}\left(\mathrm{C}_{2 v}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.0	$\begin{aligned} & \text { PtC, 1.759; CC, 1.313; CH, 1.092; } \\ & \text { PtCC, 180.0; HCH, 119.2 } \end{aligned}$	$\begin{gathered} 3160.1\left(\mathrm{~b}_{2}, 8\right), 3075.9\left(\mathrm{a}_{1}, 30\right), 1720.9\left(\mathrm{a}_{1}, 231\right), \\ 1281.8\left(\mathrm{a}_{1}, 3\right), 803.5\left(\mathrm{~b}_{2}, 6\right), 654.8\left(\mathrm{~b}_{1}, 92\right), \\ 612.3\left(\mathrm{a}_{1}, 2\right), 315.9\left(\mathrm{~b}_{1}, 22\right), 284.2\left(\mathrm{~b}_{2}, 15\right) \end{gathered}$
$\mathrm{Pt}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\left(C_{2 v}\right)$	${ }^{1} \mathrm{~A}_{1}$	3.6	$\begin{aligned} & \text { PdC, 1.993; CC, 1.288; CH, 1.081; } \\ & \quad \text { CPdC, } 37.7 ; \text { CCH, } 153.2 \end{aligned}$	$\begin{gathered} \left.3269.4\left(a_{1}, 3\right), 3213.9\left(\mathrm{~b}_{2}, 21\right), 1651.8 \mathrm{a}_{1}, 10\right), \\ 858.0\left(\mathrm{~b}_{2}, 76\right), 836.6\left(\mathrm{a}_{1}, 1\right), 651.9\left(\mathrm{~b}_{1}, 71\right), \\ 591.6\left(\mathrm{a}_{2}, 0\right), 549.2\left(\mathrm{a}_{1}, 7\right), 493.8\left(\mathrm{~b}_{2}, 2\right) \end{gathered}$
HPtCCH $\left(C_{\text {s }}\right)$	${ }^{1} \mathrm{~A}$	10.6	PtH, 1.526; PtC, 1.865; CC, 1.225; CH, 1.069; HPtC, 90.4; PtCC, 180.	$\begin{aligned} & 3410.3 \text { (74), 2421.1 (17), 2023.9 (12), } 626.1(32), \\ & 580.5(51), 546.31), 530.5(73), 277.1(10), \\ & 243.8(10) \end{aligned}$
$\mathrm{Pt}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\left(C_{2 v}\right)$	${ }^{3} \mathrm{~B}_{1}$	40.5	$\begin{aligned} & \text { PdC, 2.027; CC, 1.289; CH, 1.082; } \\ & \text { CPdC, } 37.1 \text {; CCH, 153.9 } \end{aligned}$	$\begin{gathered} 3275.2\left(\mathrm{a}_{1}, 11\right), 3217.2\left(\mathrm{~b}_{2}, 24\right), 1639.2\left(\mathrm{a}_{1}, 1\right), \\ 780.2\left(\mathrm{~b}_{2}, 26\right), 774.3\left(\mathrm{a}_{1}, 11\right), 712.7\left(\mathrm{a}_{2}, 0\right), \\ 687.2\left(\mathrm{~b}_{1}, 55\right), 449.3\left(\mathrm{a}_{1}, 3\right), 50.9\left(\mathrm{~b}_{2}, 19\right) \end{gathered}$
$\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}\left(D_{2 d}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.0	$\begin{aligned} & \text { PtC, 2.037; CC, 1.279; CH, 1.081; } \\ & \text { CPdC, 36.6; CCH, 153.0 } \end{aligned}$	
$\mathrm{Pt}_{2}-\mathrm{CCH}_{2}\left(C_{2 v}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.0	$\begin{aligned} & \text { PtC, 1.921; CC, 1.334; CH, 1.092; } \\ & \quad \text { PtPt, 2.558; PtCPt, 83.5; HCH, } 118.1 \end{aligned}$	$\begin{gathered} 3147.8\left(\mathrm{~b}_{2}, 0\right), 3063.9\left(\mathrm{a}_{1}, 2\right), 1595.6\left(\mathrm{a}_{1}, 129\right), \\ 1322.0\left(\mathrm{a}_{1}, 0\right), 934.4\left(\mathrm{~b}_{2}, 2\right), 715.8\left(\mathrm{~b}_{1}, 67\right), \\ 556.7\left(\mathrm{~b}_{2}, 8\right), 512.2\left(\mathrm{a}_{1}, 1\right), 347.4\left(\mathrm{a}_{2}, 0\right), \\ 338.2\left(\mathrm{~b}_{1}, 18\right), 205.1\left(\mathrm{~b}_{2}, 0\right), 171.8\left(\mathrm{a}_{1}, 0\right) \end{gathered}$
parallel $\mathrm{Pt}_{2}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\left(C_{2 \mathrm{v}}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.6	PtC, 1.944; CC, 1.337; CH, 1.095; PtPt, 2.557; PtCC, 108.3; CCH, 131.4	$\begin{gathered} 3094.6\left(\mathrm{a}_{1}, 0,3066.4\left(\mathrm{~b}_{2}, 0\right), 1491.8\left(\mathrm{a}_{1}, 43\right),\right. \\ 1090.5\left(\mathrm{~b}_{2}, 17\right), 953.6\left(\mathrm{a}_{1}, 13\right), 651.7\left(\mathrm{~b}_{2}, 8\right), \\ 630.0\left(\mathrm{a}_{1}, 2\right), 629.0\left(\mathrm{a}_{2}, 0\right), 585.9\left(\mathrm{~b}_{1}, 72\right), \\ 321.8\left(\mathrm{~b}_{2}, 0\right), 247.4\left(\mathrm{a}_{2}, 0\right), 171.5\left(\mathrm{a}_{1}, 0\right) \end{gathered}$

${ }^{a}\left\langle S^{2}\right\rangle$ value is 0.7514 before annihilation.
at $1716.5 \mathrm{~cm}^{-1}$, which shows a much smaller deuterium shift than this mode in $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and HPtCCH . The $1716.5 \mathrm{~cm}^{-1}$ band shifts to $1662.6 \mathrm{~cm}^{-1}$ with $\mathrm{C}_{2} \mathrm{D}_{2}$, giving a $1.0324 \mathrm{H} / \mathrm{D}$ isotopic ratio frequency and showing coupling with $\mathrm{C}-\mathrm{H}(\mathrm{D})$ motion. Using a mixed $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{HD}+\mathrm{C}_{2} \mathrm{D}_{2}$ sample, a triplet distribution is observed at $1716.5,1679.8$, and $1662.6 \mathrm{~cm}^{-1}$ (Figure 2), indicating that two equivalent H atoms are involved in this molecule. With ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ this band splits into absorptions at 1671.5 and $1648.1 \mathrm{~cm}^{-1}$; based on DFT calculations, the inplane CH_{2} bending overtone for $\mathrm{Pt}=\mathrm{C}=\mathrm{CH}_{2}$ with ${ }^{13} \mathrm{C}$ substitution appears in this region and is responsible for a Fermi resonance splitting (Figure 3). The $3022.4 \mathrm{~cm}^{-1}$ absorption shifts to $3013.4 \mathrm{~cm}^{-1}$ with ${ }^{13} \mathrm{C}$ and to $2218.9 \mathrm{~cm}^{-1}$ with $\mathrm{D}(\mathrm{H} / \mathrm{D}=$ 1.362), and one new band is observed at $2259.7 \mathrm{~cm}^{-1}$ with the $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{HD}$ and $\mathrm{C}_{2} \mathrm{D}_{2}$ sample. The $3022.4 \mathrm{~cm}^{-1}$ band is appropriate for $\mathrm{C}-\mathrm{H}$ stretching in $\mathrm{Pt}=\mathrm{C}=\mathrm{CH}_{2}$, which is slightly lower than the $3033 \mathrm{~cm}^{-1}$ absorption of μ-vinylidene on Pt(111) but higher than absorptions of surface-adsorbed species, $\eta^{2}-\mu_{3}$-vinylidene, ethylidene, and di- σ-bonded ethylene. ${ }^{4-6} \mathrm{~A}$ band at $707.9 \mathrm{~cm}^{-1}$ tracks with the 3022.4 and $1716.5 \mathrm{~cm}^{-1}$ bands and shifts to 701.1 upon ${ }^{13} \mathrm{C}$ substitution. This mode is the deformation vibration for the CCH_{2} moiety. The deuterium counterpart shifted to $566.6 \mathrm{~cm}^{-1}$, and a sharp triplet is observed with $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{C}_{2} \mathrm{HD}+\mathrm{C}_{2} \mathrm{D}_{2}$ at $707.9,639.8$, and $566.6 \mathrm{~cm}^{-1}$.

Neon matrix counterparts were observed at 3033.9, 1712.6, and $720.8 \mathrm{~cm}^{-1}$ for PtCCH_{2}. This represents $11.5 \mathrm{~cm}^{-1}$ blue, $3.9 \mathrm{~cm}^{-1}$ red, and $12.9 \mathrm{~cm}^{-1}$ blue shifts. Neon matrix bands for PtCCD_{2} at 2221.1 and $1673.4 \mathrm{~cm}^{-1}$ exhibit 2.2 and 10.8 cm^{-1} blue shifts. Such small shifts are typical, ${ }^{46}$ but it appears that matrix interaction affects the $\mathrm{a}_{1} \mathrm{CH}_{2}, \mathrm{C}=\mathrm{C}$ mode mixing.

In contrast to argon, the PtCCH_{2} bands increase slightly on annealing in the softer neon matrix ($+25 \%$ for 12 K annealing).

DFT frequency calculations with BPW91 and B3LYP functionals for PtCCH_{2} are in excellent agreement with experimental values. At the BPW91 level the predicted $\mathrm{a}_{1} \mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ stretching modes are at 3075.9 and $1720.9 \mathrm{~cm}^{-1}$, respectively, only overestimated by 53.1 and $4.4 \mathrm{~cm}^{-1}$, respectively, but at the same level the out-of-plane deformation mode is underestimated by $53.1 \mathrm{~cm}^{-1}$. The B3LYP calculations give slightly higher frequencies for these three modes, but they still match the experiment very well. In particular the out-of-plane mode is described more accurately by B3LYP. Higher level calculations are needed for this important molecule.

Table 5 compares calculated and observed isotopic frequencies for PtCCH_{2}. The stronger observed $\mathrm{a}_{1} \mathrm{CH}_{2}$ stretching mode has calculated (observed) 6.2 (9.0) cm^{-1} and 839.5 (805.5) cm^{-1}
${ }^{13} \mathrm{C}$ and D shifts, respectively. The $\mathrm{C}-\mathrm{D}$ stretching mode for PtCCHD is predicted $46.5 \mathrm{~cm}^{-1}$ and observed $40.8 \mathrm{~cm}^{-1}$ above the a_{1} mode for PtCCD_{2}. The $\mathrm{C}=\mathrm{C}$ stretching mode has 66.7 (68.4) cm^{-1} and 35.9 (53.9) $\mathrm{cm}^{-1}{ }^{13} \mathrm{C}$ and D shifts, respectively. The out-of-plane deformation mode for PtCCHD is predicted 3.0 above the median for PtCCH_{2} and PtCCD_{2}, and the observed frequency is $2.6 \mathrm{~cm}^{-1}$ above the median observed value. The ${ }^{13} \mathrm{C}$ shifts are 7.2 (6.8) cm^{-1}. Finally, the calculated relative infrared intensities are in good agreement with the observed band absorbances except that the out-of-plane deformation is double the intensity predicted. This discrepancy may arise from anharmonicity in the observed mode.

HPtCCH. Group B bands at 2016.2 and $577.5 \mathrm{~cm}^{-1}$ show no change on photolysis but increase 25% on annealing to 30

TABLE 4: Geometries and Frequencies Calculated at the B3LYP/6-311++G(d,p)/ SDD Level of Theory for Platinum Acetylene Complexes

molecule	state	rel energy, $\mathrm{kcal} / \mathrm{mol}$	geometries (length, \AA A ; angle, deg)	frequencies, cm^{-1} (intensities, $\mathrm{km} / \mathrm{mol}$)
$\mathrm{C}_{2} \mathrm{H}_{2}$	${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$		CC, 1.209; CH, 1.070	$\begin{aligned} & 3463.2\left(0, \sigma_{\mathrm{g}}\right), 3363.9\left(84, \sigma_{\mathrm{u}}\right), 2005.4\left(0, \sigma_{\mathrm{g}}\right), \\ & 742.0\left(109, \pi_{\mathrm{u}}\right), 584.4\left(0, \pi_{\mathrm{g}}\right) \end{aligned}$
PtCCH ($C_{\infty \nu}$)	${ }^{2} \Sigma$	$0.0{ }^{\text {a }}$	CC, 1.212; CH, 1.063; PtC, 1.896	$\begin{aligned} & 3470.1 \text { (101), } 2099.9(38), 619.7(55), \\ & 605.9(36), 516.1(1), 269.0(20), 243.7(20) \end{aligned}$
$\mathrm{PtCCH}^{-}\left(C_{2 v}\right)$	${ }^{1} \Sigma$	-61.9	CC, 1.228; CH, 1.061; PtC, 1.858	$\begin{gathered} 3471.3(\sigma, 46), 2004.3(\sigma, 374), 537.8(\sigma, 1), \\ 442.6(\pi, 114 \times 2), 327.3(\pi, 11 \times 2) \end{gathered}$
$\mathrm{Pt}-\mathrm{CCH}_{2}\left(C_{2 v}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.0	PtC, 1.766; CC, 1.304; CH, 1.086; PtCC, 180.0; HCH, 119.3	$\begin{aligned} & 3211.8\left(\mathrm{~b}_{2}, 7\right), 3127.6\left(\mathrm{a}_{1}, 30\right), 1751.3\left(\mathrm{a}_{1}, 252\right), \\ & 1326.2\left(\mathrm{a}_{1}, 1\right), 828.3\left(\mathrm{~b}_{2}, 9\right), 725.6\left(\mathrm{~b}_{1}, 87\right), 603.6\left(\mathrm{a}_{1}, 3\right), \\ & 315.6\left(\mathrm{~b}_{1}, 25\right), 290.4\left(\mathrm{~b}_{2}, 16\right) \end{aligned}$
$\mathrm{Pt}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\left(C_{2 v}\right)$	${ }^{1} \mathrm{~A}_{1}$	2.7	$\begin{aligned} & \text { PtC, 2.009; CC, 1.271; CH, 1.074; } \\ & \quad \text { CPtC, 36.9; CCH, 153.5 } \end{aligned}$	$\begin{aligned} & 3341.4\left(\mathrm{a}_{1}, 4\right), 3282.7\left(\mathrm{~b}_{2}, 28\right), 1716.9\left(\mathrm{a}_{1}, 15\right), \\ & 877.7\left(\mathrm{~b}_{2}, 82\right), 848.4\left(\mathrm{a}_{1}, 3\right), 689.5\left(\mathrm{~b}_{1}, 74\right), 663.5\left(\mathrm{a}_{2}, 0\right), \\ & 525.9\left(\mathrm{a}_{1}, 7\right), 488.7\left(\mathrm{~b}_{2}, 3\right) \end{aligned}$
HPtCCH ($C s$)	${ }^{1} \mathrm{~A}$	9.0	PtH, 1.522; PtC, 1.880; CC, 1.213; CH, 1.063; HPtC, 90.5; PtCC, 180.	$\begin{aligned} & 3469.4 \text { (77), } 2436.6 \text { (13), } 2093.2 \text { (8), } 652.7 \text { (62), } \\ & 636.5 \text { (22), } 607.2 \text { (67), } 536.6 \text { (2), } 287.9 \text { (16), } 252.0 \text { (14) } \end{aligned}$
$\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}\left(D_{2 d}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.0	$\begin{aligned} & \text { PtC, 2.049; CC, 1.264; CH, 1.073; } \\ & \text { CPdC, 35.92; CCH, } 153.8 \end{aligned}$	$\begin{aligned} & 3347.1\left(\mathrm{~b}_{2}, 16\right), 3346.8\left(\mathrm{a}_{1}, 0\right), 3287.5(\mathrm{e}, 20 \times 2), \\ & 1767.9\left(\mathrm{~b}_{2}, 112\right), 1742.4\left(\mathrm{a}_{1}, 0\right), 867.0(\mathrm{e}, 45 \times 2), \\ & 833.4\left(\mathrm{~b}_{2}, 22\right), 814.6\left(\mathrm{a}_{1}, 0\right), 765.5\left(\mathrm{~b}_{1}, 0\right), \\ & 753.5\left(\mathrm{a}_{2}, 0\right), 750.2(\mathrm{e}, 42 \times 2), 565.9(\mathrm{e}, 2 \times 2), \\ & 485.3\left(\mathrm{~b}_{2}, 8\right), 476.2\left(\mathrm{a}_{1}, 0\right), 261.2\left(\mathrm{~b}_{1}, 0\right), \\ & 133.8(\mathrm{e}, 6 \times 2) \end{aligned}$
parallel $\mathrm{Pt}_{2}-\mathrm{C}_{2} \mathrm{H}_{2}\left(C_{2 v}\right)$	${ }^{1} \mathrm{~A}_{1}$	0.0	$\begin{aligned} & \text { PtC, 1.824; CC, 1.455; CH, 1.097; } \\ & \text { PtPt, 3.636; PtCC, 126.7; CCH, } 115.5 \end{aligned}$	$\begin{gathered} 3047.6\left(\mathrm{a}_{1}, 9\right), 3025.1\left(\mathrm{~b}_{2}, 2\right), 1316.4\left(\mathrm{a}_{1}, 12\right), \\ 1188.1\left(\mathrm{~b}_{2}, 18\right), 1098.6\left(\mathrm{a}_{1}, 23\right), 1071.5\left(\mathrm{~b}_{2}, 0\right), \\ 801.5\left(\mathrm{~b}_{1}, 1\right), 633.9\left(\mathrm{a}_{1}, 0\right), 601.7\left(\mathrm{~b}_{1}, 68\right), \\ 392.7\left(\mathrm{~b}_{2}, 2\right), 234.9\left(\mathrm{a}_{2}, 0\right), 52.3\left(\mathrm{a}_{1}, 0\right) \end{gathered}$
$\mathrm{Pt}_{2}-\mathrm{CCH}_{2}\left(\mathrm{C}_{2 \mathrm{v}}\right)$	${ }^{1} \mathrm{~A}_{1}$	14.9	PtC, 1.886; CC, 1.403; CH, 1.087; PtPt, 3.557; PtCPt, 125.8; HCH, 117.4	$\begin{gathered} 3209.3\left(\mathrm{~b}_{2}, 2\right), 3108.7\left(\mathrm{a}_{1}, 0\right), 1476.2\left(\mathrm{a}_{1}, 0\right), \\ 1237.6\left(\mathrm{a}_{1}, 77\right), 1075.2\left(\mathrm{~b}_{2}, 3\right), 997.6\left(\mathrm{~b}_{1}, 4\right), \\ 764.1\left(\mathrm{~b}_{2}, 0\right), 420.4\left(\mathrm{a}_{2}, 1\right), 401.3\left(\mathrm{a}_{1}, 10\right), \\ 237.9\left(\mathrm{~b}_{2}, 1\right), 96.6\left(\mathrm{a}_{1}, 0\right), 78.7\left(\mathrm{~b}_{1}, 4\right) \end{gathered}$

${ }^{a}\left\langle S^{2}\right\rangle$ value is 0.7511 before annihilation.
TABLE 5: Comparison of Calculated (B3LYP) and Observed (Argon Matrix) Isotopic Frequencies (cm^{-1}) for $\mathbf{P t C C H}_{\mathbf{2}}$

PtCCH_{2}		$\mathrm{Pt}^{13} \mathrm{C}^{13} \mathrm{CH}_{2}$		PtCCHD		PtCCD_{2}	
calc	obs	calc	obs	calc	obs	calc	obs
$3211.8\left(\mathrm{~b}_{2}, 7\right)^{a}$	n.o. ${ }^{\text {b }}$	3198.9	n.o.	3172.3	n.o.	2388.1	n.o.
3127.6 ($\mathrm{a}_{1}, 30$)	3022.4 (0.0018) ${ }^{\text {c }}$	3121.4	3013.4	2334.6	2259.7	2288.1	2218.9
$1751.3\left(\mathrm{a}_{1}, 252\right)$	1716.5 (0.014)	1684.6	1648.1	1734.1	1679.8	1715.4	1662.6
725.6 ($\left.\mathrm{b}_{1}, 87\right)$	707.9 (0.0087)	718.4	701.1	655.1	639.8	578.7	566.6

${ }^{a}$ Mode symmetry, intensity (km/mol). ${ }^{b}$ Not observed. ${ }^{c}$ Intensity, absorbance units, after full-arc photolysis.

TABLE 6: Comparison of Calculated (BPW91) and Observed (Neon Matrix) Isotopic Frequencies $\left(\mathrm{cm}^{-1}\right)$ for HPtCCH

HPtCCH		$\mathrm{HPt}^{13} \mathrm{C}^{13} \mathrm{CH}$		DPtCCD	
calc	obs	calc	obs	calc	obs
3410.2 (74) ${ }^{a}$	$3317.5(0.018)^{b}$	3392.9	3301.4	2626.3	2577.8
2421.5 (17)	2350.8 (0.0030)	2421.4	2350.8	1905.3	1897.2
2023.7 (12)	2010.4 (0.0026	1950.5	1938.6	1715.7	1685.9
626.1 (32) ${ }^{\text {c }}$	n.o. ${ }^{\text {d }}$	623.7	n.o.	535.6	n.o.
$580.5(51)^{e}$	571.5 (0.015)	575.5	567.7	450.9	444.8
546.3 (1) ${ }^{f}$	n.o.	528.4	n.o.	471.2	n.o.
$530.5(73){ }^{\text {g }}$	514.6 (0.002)	527.5	512.0	404.9	n.o.

${ }^{a}$ Infrared intensity, km/mol. ${ }^{b}$ Intensity, absorbance units after 12 K annealing. ${ }^{c}$ Mostly in-plane $\mathrm{Pt}-\mathrm{H}$ deformation. ${ }^{d}$ Not observed. ${ }^{e}$ Mostly in-plane $\mathrm{C}-\mathrm{H}$ deformation. ${ }^{f}$ Mostly $\mathrm{Pt}-\mathrm{C}$ stretching mode.
${ }^{g}$ Mostly out-of-plane $\mathrm{C}-\mathrm{H}$ deformation.
K in solid argon. However, the softer neon matrix allows a 30% decrease in neon counterpart bands at 2010.4 and $571.5 \mathrm{~cm}^{-1}$ on photolysis and a 2 -fold increase on annealing to 12 K . In addition two other important fundamentals are observed at 3317.5 and $2350.8 \mathrm{~cm}^{-1}$.

The three highest bands are diagnostic bond-stretching fundamentals. The $3317.5 \mathrm{~cm}^{-1}$ band shifts $16.1 \mathrm{~cm}^{-1}$ with ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ and $739.7 \mathrm{~cm}^{-1}$ with $\mathrm{C}_{2} \mathrm{D}_{2}$. These shifts and appearance just above the $\sigma_{\mathrm{u}} \mathrm{C}-\mathrm{H}$ stretching mode of $\mathrm{C}_{2} \mathrm{H}_{2}$ characterize a

TABLE 7: Comparison of Calculated (BPW91) and Observed (Neon Matrix) Isotopic Frequencies (cm ${ }^{-1}$) for $\boldsymbol{P t}-\boldsymbol{\eta}^{2}-\left(\mathrm{C}_{2} \mathbf{H}_{2}\right)$

$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$		$\operatorname{Pt}\left({ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}\right)$		$\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{D}_{2}\right)$	
calc	obs	calc	obs	calc	obs
$3269.4\left(\mathrm{a}_{1}, 3\right)^{a}$	n.o. ${ }^{\text {b }}$	3252.4	n.o.	2509.2	n.o.
3213.9 ($\mathrm{b}_{2}, 21$)	3128.4 (0.0036) c_{c}	3204.6	3119.3	2358.4	2339.1
$1651.8\left(\mathrm{a}_{1}, 10\right)$	1658.4 (0.0038)	1594.5	1599.0	1531.6	1571.2
858.0 ($\mathrm{b}_{2}, 76$)	878.6 (0.0082)	849.6	869.5	692.6	724.4
$651.9\left(\mathrm{~b}_{1}, 71\right)$	665.9 (0.0072)	649.0	663.1	506.2	500.5

$\mathrm{CC}-\mathrm{H}$ stretching mode. The $2350.8 \mathrm{~cm}^{-1}$ band shows no ${ }^{13} \mathrm{C}$ shift but shifts to $1685.9 \mathrm{~cm}^{-1}$ with $\mathrm{C}_{2} \mathrm{D}_{2}$ giving a 1.394 ratio. These observations and absorptions of PtH_{2} at 2348.7 and 2365.7 cm^{-1} describe a $\mathrm{Pt}-\mathrm{H}$ stretching mode. ${ }^{27}$ The $2010.4 \mathrm{~cm}^{-1}$ band shifts $71.8 \mathrm{~cm}^{-1}$ with ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ and $113.4 \mathrm{~cm}^{-1}$ with $\mathrm{C}_{2} \mathrm{D}_{2}$, which characterizes a $\mathrm{C} \equiv \mathrm{C}$ stretching mode coupled to $\mathrm{C}-\mathrm{H}(\mathrm{D})$. Hence, we have described the HPtCCH molecule, and comparisons of calculated and observed isotopic frequencies (Table 6) confirm these assignments to HPtCCH. There is very good agreement in frequency positions and calculated isotopic shifts, remembering that anharmonicity in the $\mathrm{C}-\mathrm{H}$ motion is not taken into account in the harmonic calculation. In addition the inplane $\mathrm{C}-\mathrm{H}$ deformation mode at $571.5 \mathrm{~cm}^{-1}$ is predicted at

Figure 6. Converged structures (BPW91/6-311++G(d,p)/SDD) for Pt $\mathrm{C}_{2} \mathrm{H}_{2}$ isomers (lengths, angstroms; angles, degrees).

Figure 7. Energy profile diagram (BPW91/6-311++G(d,p)/SDD) for $\mathrm{Pt} \mathrm{C}_{2} \mathrm{H}_{2}$ isomers (values in $\mathrm{kcal} / \mathrm{mol}$).
$580.5 \mathrm{~cm}^{-1}$, the out-of-plane $\mathrm{C}-\mathrm{H}$ deformation predicted at $530.5 \mathrm{~cm}^{-1}$ is found at $514.6 \mathrm{~cm}^{-1}$, and again the isotopic shifts match very well. The calculated intensities are qualitatively in agreement with the observed values. The lowest band at 514.6 cm^{-1} is weaker than predicted in part due to poor signal-tonoise in this region.
$\mathbf{P t}-\boldsymbol{\eta}^{\mathbf{2}}-\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2}}\right)$. Group C bands at 1653.7, 882.8, and 666.2 cm^{-1} are attributed to the strong complex or metallacyclopropene, $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$. These bands are weak on deposition, increase on annealing, decrease on broad-band photolysis, but restore on further annealing. The $1653.7 \mathrm{~cm}^{-1}$ band shifts to $1598.5 \mathrm{~cm}^{-1}$ with ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ (1.0345 ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ frequency ratio) and to $1550.9 \mathrm{~cm}^{-1}$ with $\mathrm{C}_{2} \mathrm{D}_{2}(1.0663 \mathrm{H} / \mathrm{D}$ frequency ratio), which are appropriate for the metallacyclopropene as observed for $\mathrm{Ni}-$ $\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)^{18,47}$ and $\mathrm{Pd}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) .{ }^{26}$ With the mixed ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}+$ ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ sample two bands at 1653.7 and $1598.5 \mathrm{~cm}^{-1}$ are observed, suggesting a single $\mathrm{C}_{2} \mathrm{H}_{2}$ molecule and the $\mathrm{Pt}-\eta^{2}$ $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ complex assignment. The 882.8 and $666.2 \mathrm{~cm}^{-1}$ bands reveal isotopic shifts for deformation modes. The mixed $\mathrm{C}_{2} \mathrm{H}_{2}$, $\mathrm{C}_{2} \mathrm{HD}$, and $\mathrm{C}_{2} \mathrm{D}_{2}$ experiment gives a sharp matching triplet at $882.8,867.6$, and $731.1 \mathrm{~cm}^{-1}$, which shows that a single acetylene molecule is involved here. An additional band observed at $3128.4 \mathrm{~cm}^{-1}$ in solid neon shifts $9.1 \mathrm{~cm}^{-1}$ with ${ }^{13} \mathrm{C}$ and $789.3 \mathrm{~cm}^{-1}$ with D , which is appropriate for a $\mathrm{C}-\mathrm{H}$ stretching mode. Small, neon matrix shifts are observed for the above argon matrix bands.

Excellent agreement is found between the DFT calculations and observations for $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$. With the BPW91 functional the $\mathrm{C}-\mathrm{C}$ stretching mode is predicted at $1651.8 \mathrm{~cm}^{-1}$, which is $2-6 \mathrm{~cm}^{-1}$ below the matrix values. However an overestima-
tion of $63.2 \mathrm{~cm}^{-1}$ is given by B3LYP for this mode. The predicted in-plane CCH deformation mode at $858.0 \mathrm{~cm}^{-1}$ (BPW91) and $877.7 \mathrm{~cm}^{-1}$ (B3LYP) and out-of-plane deformation at $651.9 \mathrm{~cm}^{-1}$ (BPW91) and $689.5 \mathrm{~cm}^{-1}$ (B3LYP) match experimental values very well. Table 7 compares calculated and observed neon matrix isotopic frequencies. The stronger $\mathrm{C}-\mathrm{H}$ stretching mode is antisymmetric and the calculated (observed) shifts are 9.3 (9.1) cm^{-1} and 855.5 (789.3) cm^{-1} for ${ }^{13} \mathrm{C}$ and D; the effect of anharmonicity is again obvious in the $C-H(D)$ stretching modes. The $\mathrm{C}-\mathrm{C}$ stretching mode shifts are 57.3 (59.4) cm^{-1} and 120.2 (87.2) cm^{-1} for ${ }^{13} \mathrm{C}$ and D . The in-plane 8.4 (9.1) cm^{-1} and 165.4 (154.2) cm^{-1} and out-of-plane 2.9 (2.8) cm^{-1} and 145.7 (165.4) cm^{-1} deformation shifts, respectively, characterize these modes. Finally, the calculated infrared intensities are in qualitative agreement with the observed values although the $\mathrm{C}-\mathrm{C}$ stretch is stronger than predicted, possibly due to underestimation of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}$ stretching interaction by the calculation.

The weak $1618.3 \mathrm{~cm}^{-1}$ band in argon and split 1623.9, 1620.8 cm^{-1} bands in neon remain to be assigned. These bands behave like the above $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ absorptions on annealing, photolysis, and isotopic substitution. These bands are probably due to $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ perturbed by another species.
$\mathbf{P t}-\boldsymbol{\eta}^{\mathbf{2}}-\left(\mathbf{C}_{2} \mathbf{H}_{2}\right)_{2}$. A broad band with sharp shoulder at 1688.6 cm^{-1} observed on deposition grows on annealing to 30 K , but decreased on 240-290 nm photolysis and increased again on further annealing at the expense of $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$. This band is slightly higher than the $\mathrm{C}-\mathrm{C}$ stretching mode in $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ but still located in the $\mathrm{C}-\mathrm{C}$ double bond stretching region. A smaller ${ }^{13} \mathrm{C}$ shift ($47.7 \mathrm{~cm}^{-1}$) and a larger deuterium shift (102.8 cm^{-1}) are observed for this band, which can be assigned to $\mathrm{Pt}-$ $\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$. The analogous molecule with two $\mathrm{C}_{2} \mathrm{H}_{2}$ ligands coordinated to the metal center was formed in the reaction of Pd with $\mathrm{C}_{2} \mathrm{H}_{2} \cdot{ }^{26}$

DFT calculations support this assignment, and the results are summarized in Tables 3 and 4. The strongest absorption is the antisymmetric $\mathrm{C}-\mathrm{C}$ stretching mode at $1708.0 \mathrm{~cm}^{-1}$ (BPW91) and $1767.9 \mathrm{~cm}^{-1}$ (B3LYP), respectively, which are in excellent agreement with the observed absorption. Again a slight overestimation is the systematic deviation.
$\mathbf{P t}-\mathbf{C C H}$ and $\mathbf{P t}-\mathbf{C C H}^{-}$. Since CCH radical and CCH^{-} anion are abundant in the laser-ablated metal reactions ${ }^{42}$ with $\mathrm{C}_{2} \mathrm{H}_{2}$, these intermediates may coordinate to metal atoms to form stable species. Sharp $1920.5 \mathrm{~cm}^{-1}$ and broader $1912.0 \mathrm{~cm}^{-1}$ absorptions are observed on deposition in solid argon: annealing and photolysis diminish the sharp in favor of the broader absorption. Neon matrix counterparts at 1924.4 and $1915.9 \mathrm{~cm}^{-1}$ favor the broader band more over the sharp absorption. These bands show the larger ${ }^{12} \mathrm{C} /{ }^{13} \mathrm{C}$ frequency ratio (1.0372) like HPtCCH in the triple bond region in contrast to $\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ (1.0345) in the double bond region. Doublet distributions are observed in both mixed ${ }^{12} \mathrm{C}_{2} \mathrm{H}_{2}+{ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{HD}+$ $\mathrm{C}_{2} \mathrm{D}_{2}$, experiments, which show that a single acetylene molecule is involved.

DFT calculations predict C-C stretching modes at 2037.1 cm^{-1} (BPW91) and $2099.9 \mathrm{~cm}^{-1}$ (B3LYP) for PtCCH, and at $1942.5 \mathrm{~cm}^{-1}$ (BPW91) and $2004.3 \mathrm{~cm}^{-1}$ (B3LYP) for $\mathrm{Pt}-$ CCH^{-}, and the anion modes are usually intense infrared absorbers. The sharp bands are assigned to the PdCCH^{-}anion and the broader bands to PdCCH^{-}aggregated with another molecule, presumably acetylene. We note that the calculated electron affinities for PdCCH ($65.7 \mathrm{kcal} / \mathrm{mol}$, BPW91 and 61.9 $\mathrm{kcal} / \mathrm{mol}, \mathrm{B} 3 \mathrm{LYP}$) are near the $66.9 \mathrm{kcal} / \mathrm{mol}$ experimental value for $\mathrm{CCH} .{ }^{47}$

Reaction Mechanisms and Comparison with Surface Chemistry. The initial bonding of Pt atom to $\mathrm{C}_{2} \mathrm{H}_{2}$ adopts two different modes: side-on to the $\mathrm{C}-\mathrm{C}$ triple bond forming a strong π-type complex, $\mathrm{Pd}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ (reaction 1$)$, or interaction with the $\mathrm{C}-\mathrm{H}$ bond forming the insertion product, HPtCCH (reaction 2). (The given energy differences are from BPW91 calculations.)

$$
\begin{align*}
& \operatorname{Pt}\left({ }^{3} \mathrm{D}_{3}\right)+\mathrm{C}_{2} \mathrm{H}_{2}\left({ }^{1} \Sigma_{\mathrm{g}}^{+}\right) \rightarrow\left[\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left({ }^{3} \mathrm{~B}_{1}\right)\right] \rightarrow \\
& \mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left({ }^{1} \mathrm{~A}_{1}\right) \quad \Delta E=-70.5 \mathrm{kcal} / \mathrm{mol} \tag{1}\\
& \operatorname{Pt}\left({ }^{3} \mathrm{D}_{3}\right)+\mathrm{C}_{2} \mathrm{H}_{2}\left({ }^{1} \Sigma_{\mathrm{g}}^{+}\right) \rightarrow \\
& \quad \mathrm{HPt}-\mathrm{CCH}\left({ }^{1} \mathrm{~A}^{\prime}\right) \quad \Delta E=-63.4 \mathrm{kcal} / \mathrm{mol} \tag{2}
\end{align*}
$$

Laser ablation produces ground-state ${ }^{3} \mathrm{D}_{3} \mathrm{Pt}$ atom as well as excited singlet states; however, collisions with argon atoms during deposition relaxes most of excited Pt atoms. Reaction 1 most likely first forms the triplet intermediate, $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ $\left({ }^{3} \mathrm{~B}_{1}\right)$, which is $33.6 \mathrm{kcal} / \mathrm{mol}$ exothermic. Then the ${ }^{3} \mathrm{~B}_{1}$ state is relaxed by the cold argon matrix to the $36.9 \mathrm{kcal} / \mathrm{mol}$ lower energy ${ }^{1} \mathrm{~A}_{1}$ ground state. If Pt atom directly encounters the $\mathrm{C}-\mathrm{H}$ bond instead of the $\mathrm{C}-\mathrm{C}$ bond, the insertion reaction is spontaneous on the basis of the growth of $\mathrm{HPt}-\mathrm{CCH}$ absorptions on annealing to $25-30 \mathrm{~K}$ in solid argon. In this reaction spin-orbit coupling plays an important role, and triplet Pt crosses the mixed region of the triplet-singlet potential energy curve. Recall the reactions of thermal and laser-ablated Pt atoms with H_{2} in low-temperature matrixes, where ground-state Pt reacts with H_{2} spontaneously to form the insertion product, PtH_{2}, in the ${ }^{1} \mathrm{~A}_{1}$ state. ${ }^{27}$

Adsorption and dehydrogenation of acetylene on the $\operatorname{Pt}(111)$ surface have been investigated extensively. ${ }^{1-6}$ The thermally induced rearrangements and reactions of acetylene on the Pt surface produce first vinylidene $\left(\mathrm{Pt}_{x}-\mathrm{CCH}_{2}\right)$ and then ethylidyne $\left(\mathrm{Pt}_{x}-\mathrm{CCH}_{3}\right)$, suggesting a disproportionation reaction of acetylene to ethynyl $\left(\mathrm{Pt}_{x}-\mathrm{CCH}\right)$ also occurs. Here a hydrogen-poor ethynyl simultaneously formed on the surface provides a hydrogen atom to produce ethylidyne. As observed in the lowtemperature matrix, the spontaneously formed insertion product HPtCCH is the first step in generating a hydrogen atom in this process. During the surface annealing, the weak $\mathrm{Pt}-\mathrm{H}$ bond is broken and the hydrogen atom migrates to adsorbed vinylidene to form ethylidyne $\left(\mathrm{Pt}_{x}-\mathrm{CCH}_{3}\right)$.

The most interesting reaction product observed in this system is $\mathrm{Pt}=\mathrm{CCH}_{2}$, which is the lowest energy on the $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{H}_{2}$ potential energy surface. Upon $240-290 \mathrm{~nm}$ photolysis $\mathrm{Pt}-$ $\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ rearranges directly by 1,2-hydrogen migration to form $\mathrm{Pt}=\mathrm{CCH}_{2}$, which is observed after deposition and increased on ultraviolet photolysis (Figure 1) in solid argon. This rearrangement also occurs in the softer neon matrix on annealing to 1012 K as absorptions for both products increase. Apparently reaction 1 is sufficiently exothermic to activate the rearrangement in reaction 3.

$$
\begin{equation*}
\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right) \xrightarrow{240-290 \mathrm{~nm}} \mathrm{Pt}=\mathrm{CCH}_{2} \tag{3}
\end{equation*}
$$

We find no evidence for 1,3-rearrangement from HPtCCH to $\mathrm{Pt}=\mathrm{CCH}_{2}$ because the absorptions of HPtCCH increase on annealing and photolysis. In transition metal complex chemistry the hydrido metal intermediate ($\mathrm{L}_{n} \mathrm{MH}-\mathrm{CCH}$) might convert to the corresponding vinylidene through 1,3-rearragement. However, theoretical calculations indicate that 1,3-rearrangement has a higher activation energy barrier than direct 1,2-rearragement. ${ }^{13}$ Wakatsuki et al. found that formation of the vinylidene
complex from the hydrido intermediate should occur via an intermolecular process rather than an intramolecular 1,3rearrangement, which is much higher in energy.

In contrast to the $\mathrm{Pd} / \mathrm{C}_{2} \mathrm{H}_{2}$ system where $\mathrm{Pd}_{2}-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}$ was observed as a secondary reaction product, ${ }^{28}$ no evidence was found here for analogous diplatinum species computed in complex and vinylidene isomeric forms to assist in their identification. This is probably due to a large energy barrier for reaction of $\mathrm{Pt}\left({ }^{3} \mathrm{D}\right)+\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left({ }^{1} \mathrm{~A}_{1}\right)$ because of forbidden symmetry. However, reactions of $\mathrm{Pd}\left({ }^{1} \mathrm{~S}\right)+\mathrm{Pd}-\eta^{2}$ $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left({ }^{1} \mathrm{~A}_{1}\right)$ gave $\mathrm{Pd}_{2}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)\left({ }^{1} \mathrm{~A}_{1}\right)$ with a very low energy barrier; although the reaction of Pt_{2} with $\mathrm{C}_{2} \mathrm{H}_{2}$ is feasible on the basis of theoretical calculations and surface studies, ${ }^{1,2}$ this reaction is not observed here because very little Pt_{2} dimer was generated in our experiment (the Pt_{2} absorptions in the IR are electronic transitions ${ }^{44}$).

The vinylidene species is also observed on the $\operatorname{Pt}(111)$ surface on annealing to 125 K during acetylene thermal rearrangement, which is stabilized to μ-vinylidene on much higher temperature annealing (>300 K). ${ }^{4-6}$ However, in solid argon the vinylidene species is not produced by thermal annealing ($25-40 \mathrm{~K}$), even though $\mathrm{Pt}=\mathrm{CCH}_{2}$ is lower in energy, but ultraviolet photolysis does affect the rearrangement. By contrast, on annealing solid neon to $10-12 \mathrm{~K}$ allowing reagent diffusion, some of the reaction proceeds through $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ to $\mathrm{Pt}=\mathrm{CCH}_{2}$.

Bonding in $\mathrm{M}-\boldsymbol{\eta}^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ and $\mathrm{M}=\mathrm{CCH}_{\mathbf{2}}(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$, Pt). The $\mathrm{C}=\mathrm{C}$ stretching frequencies for $\mathrm{M}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ complexes are observed at $1634.8 \mathrm{~cm}^{-1}(\mathrm{Ni}),{ }^{18,47} 1709.6 \mathrm{~cm}^{-1}(\mathrm{Pd}),{ }^{26}$ and $1653.7 \mathrm{~cm}^{-1}(\mathrm{Pt})$, showing a difference in interaction between the metal atoms and acetylene. This difference is also revealed in the $\mathrm{C}-\mathrm{H}$ deformation frequencies as well: 843.2, $655.0 \mathrm{~cm}^{-1}(\mathrm{Ni}), 765.8,674.5 \mathrm{~cm}^{-1}(\mathrm{Pd})$, and $882.8,662.2 \mathrm{~cm}^{-1}$ (Pt), where the reference for $\mathrm{C}_{2} \mathrm{H}_{2}$ in solid argon is $736.9 \mathrm{~cm}^{-1} .^{49}$ On the basis of the DFT calculation, the $\mathrm{C}=\mathrm{C}$ bond length in $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is $1.288 \AA$ and the Ni complex is the same (BPW91), but this bond is $0.02 \AA$ shorter in $\mathrm{Pd}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$. Furthermore the distances from metal to carbon are shorter for Ni and Pt than Pd . These pieces of evidence suggest stronger interactions between Ni, Pt, and $\mathrm{C}_{2} \mathrm{H}_{2}$ than between Pd and $\mathrm{C}_{2} \mathrm{H}_{2}$. The calculation of the CC bond gives $1.209 \AA$ for $\mathrm{C}_{2} \mathrm{H}_{2}$. The binding energies in the $\mathrm{M}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ complexes are calculated to be $41 \mathrm{kcal} / \mathrm{mol}(\mathrm{Ni}), 40 \mathrm{kcal} / \mathrm{mol}(\mathrm{Pd})$, and 70 $\mathrm{kcal} / \mathrm{mol}(\mathrm{Pt})$, showing the very strong $\mathrm{Pt}-\mathrm{C}_{2} \mathrm{H}_{2}$ bond.

For the metal-vinylidene complexes $\mathrm{Pt}=\mathrm{CCH}_{2}$ shows some unique properties: a very short $\mathrm{Pt}-\mathrm{C}$ double bond ($116 \mathrm{kcal} /$ mol) and global minimum energy structure in contrast to Ni^{47} and $\mathrm{Pd},{ }^{26}$ and Pt withdraws charge (-0.06) from CCH_{2} in contrast to $\mathrm{Pd}(+0.10)$ and $\mathrm{Ni}(+0.20)$, which donate charge to CCH_{2}. In the valence approximation the main contribution to double bonding is from the σ bond of $6 \mathrm{~s}^{1}(\mathrm{Pt})$ and sp hybridized orbital $\left(: \mathrm{CCH}_{2}\right)$ and the π bond of $\mathrm{d}_{\pi}^{1}(\mathrm{Pt})$ and $\mathrm{p}^{1}\left(: \mathrm{CCH}_{2}\right)$, which gives an energetically stabilized vinylidene. However, for palladium the ground state is $5 \mathrm{~s}^{0} 4 \mathrm{~d}^{10}$, which favors the π-type complex instead of the vinylidene complex.

Conclusion

Platinum atoms react with acetylene on condensation in excess argon and neon to form the vinylidene $\mathrm{Pt}=\mathrm{CCH}_{2}$, a strong π-type complex $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$, and the insertion product HPtCCH , which are identified by ${ }^{13} \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{D}_{2}$, and $\mathrm{C}_{2} \mathrm{HD}$ isotopic substitution on the observed fundamental frequencies. DFT calculations (BPW91 and B3LYP functionals) are performed to optimize the stable structures and produce the isotopic vibrational frequencies. The PtCCH_{2} vinylidene, which is the
global minimum on the potential energy surface, absorbs at $3022.8 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{H}$ stretching), $1716.5 \mathrm{~cm}^{-1}$ ($\mathrm{C}-\mathrm{C}$ stretching), and $707.9 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2}\right.$ deformation) in the argon matrix. The HPtCCH molecule is characterized by a $\mathrm{C}-\mathrm{C}$ stretching mode at $2016.2 \mathrm{~cm}^{-1}$. DFT calculations give a $90^{\circ} \mathrm{H}-\mathrm{Pt}-\mathrm{C}$ bond angle for HPtCCH , which is sd hybridized at Pt , and $9-10 \mathrm{kcal} /$ mol higher energy. The absorptions of the $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ complex, which is $3-4 \mathrm{kcal} / \mathrm{mol}$ higher in energy than PtCCH_{2}, are observed at $1653.7,882.8$, and $666.2 \mathrm{~cm}^{-1}$. The $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex is identified by $\mathrm{C}-\mathrm{C}$ stretching at $1688.6 \mathrm{~cm}^{-1}$. Finally the PtCCH^{-}anion is also assigned in this study.

The initial bonding of Pt atom to $\mathrm{C}_{2} \mathrm{H}_{2}$ adopts two different modes: side-on to $\mathrm{C}-\mathrm{C}$ triple bond, involving π-interactions and forming the metallacyclopropene $\mathrm{Pd}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$, or interaction with the $\mathrm{C}-\mathrm{H}$ bond, forming the insertion product, HPtCCH . The Pt atom insertion reaction with $\mathrm{C}_{2} \mathrm{H}_{2}$ is spontaneous on the basis of the growth of absorption of $\mathrm{HPt}-\mathrm{CCH}$ on annealing to $10-12 \mathrm{~K}$ in solid neon or to $25-30 \mathrm{~K}$ in solid argon. In this reaction spin-orbit coupling plays an important role and triplet Pt crosses the mixed region of the triplet-singlet potential energy surface. Upon $240-290 \mathrm{~nm}$ photolysis $\mathrm{P}-\eta^{2}$ $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ rearranges directly by 1,2-hydrogen migration to form $\mathrm{Pt}=\mathrm{CCH}_{2}$. This rearrangement also occurs on annealing to 12 K in solid neon as both product absorptions increase: the formation of $\mathrm{Pt}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ is sufficiently exothermic to activate rearrangement to the more stable $\mathrm{Pt}=\mathrm{CCH}_{2}$ form.

Acknowledgment. We gratefully acknowledge support for this work from N.S.F. Grant CHE 00-78836.

References and Notes

(1) Megiris, C. E.; Berlowitz, P.; Butt, J. B.; Kung, H. H. Surf. Sci. 1985, 159, 184.
(2) Rashidi, M.; Puddephatt, R. J. J. Am. Chem. Soc. 1986, 108, 7111.
(3) Abon, M.; Billy, J.; Bertolini, J. C. Surf. Sci. 1986, 171, L387.
(4) Avery, N. R. Langmuir 1988, 4, 445.
(5) Cremer, P. S.; Su, X. C.; Shen, Y. R.; Somorjai, G. A. J. Phys. Chem. B 1997, 101, 6474.
(6) Kose, R.; Brown, W. A.; King, D. A. J. Am. Chem. Soc. 1999, 121, 4845.
(7) Azad, S.; Kaltchev, M.; Stacchiola, D.; Wee, G.; Tysoe, W. T. J. Phys. Chem. B 2000, 104, 3107, and references therein. See also the early work of: Gates, J. A.; Kesmodel, L. L. J. Chem. Phys. 1982, 76, 4281. Gates, J. A.; Kesmodel, L. L. Surf. Sci. 1983, 123, 68.
(8) (a) Gallo, M. M.; Hamilton, T. P.; Schaefer, H. F., III. J. Am. Chem. Soc. 1990, 112, 8714. (b) Jensen, J. H.; Morokuma, K.; Gordon, M. S. J. Chem. Phys. 1994, 100, 1981.
(9) (a) Chen, W.-C.; Yu, C.-H. Chem. Phys. Lett. 1997, 227, 245. (b) Hayes, R. L.; Fattal, E.; Govind, N.; Carter, E. A. J. Am. Chem. Soc. 2001, 123, 641.
(10) (a) Chen, Y.; Jonas, D. M.; Kinsey, J. L.; Field, R. W. J. Chem. Phys. 1989, 91, 3976. (b) Ervin, K. M.; Ho, J.; Lineberger, W. C. J. Chem. Phys. 1989, 91, 5974.
(11) (a) Bruce, M. I. Chem. Rev. 1991, 91, 197. (b) Werner, H. Angew. Chem. 1990, 102, 1109; Angew. Chem., Int. Ed. Engl. 1990, 29, 1077.
(12) Stegmann, R.; Frenking, G. Organometallics 1998, 17, 2089.
(13) Wakatsuki, Y.; Koga, N.; Werner, H.; Morokuma, K. J. Am. Chem. Soc. 1997, 119, 360, and references therein.
(14) Glendening, E. D.; Strang, M. L. J. Phys. Chem. A, in press.
(15) Ozin, G. A.; McIntosh, D. F.; Power, W. J.; Messmer, R. P. Inorg. Chem. 1981, 20, 1782.
(16) Kasai, P. H. J. Am. Chem. Soc. 1982, 104, 1165.
(17) Kasai, P. H. J. Am. Chem. Soc. 1983, 105, 6704.
(18) Kline, E. S.; Kafafi, Z. H.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1987, 109, 2402.
(19) (a) Burkholder, T. R.; Andrews, L. Inorg. Chem. 1993, 32, 2491 (Al, Ga, In $+\mathrm{C}_{2} \mathrm{H}_{2}$). (b) Chertihin, G. V.; Andrews, L.; Taylor, P. R. J. Am. Chem. Soc. 1994, 116, $3513\left(\mathrm{Al}+\mathrm{C}_{2} \mathrm{H}_{2}\right)$.
(20) Manceron, L.; Andrews, L. J. Am. Chem. Soc. 1985, 107, 563.
(21) (a) Martin, J. M. L.; Taylor, P. R.; Hassanzadeh, P.; Andrews, L. J. Am. Chem. Soc. 1993, 115, 2510. (b) Andrews, L.; Hassanzadeh, P.; Martin, J. M. L.; Taylor, P. R. J. Phys. Chem. 1993, 97, 5839 (B + C ${ }_{2} \mathrm{H}_{2}$).
(22) Thompson, C. A.; Andrews, L. J. Am. Chem. Soc. 1996, 118, 10242 ($\mathrm{Be}, \mathrm{Mg}+\mathrm{C}_{2} \mathrm{H}_{2}$).
(23) Kline, E. S.; Kafafi, Z. H.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1985, 107, 7559.
(24) Chenier, J. H. B.; Howard, J. A.; Mile, B.; Sutcliffe, R. J. Am. Chem. Soc. 1983, 105, 788.
(25) Kasai, P. H. J. Phys. Chem. 1982, 86, 4092, J. Am. Chem. Soc. 1992, 114, 3299.
(26) Wang, X.; Andrews, L. J. Phys. Chem. A 2003, 107, 337 (Pd + $\mathrm{C}_{2} \mathrm{H}_{2}$).
(27) Andrews, L.; Wang, X.; Manceron, L. J. Chem. Phys. 2001, 114, $1559\left(\mathrm{Pt}+\mathrm{H}_{2}\right)$.
(28) Andrews, L.; Wang, X.; Alikhani, M. E.; Manceron, L. J. Phys. Chem. A 2001, 105, $3052\left(\mathrm{Pd}+\mathrm{H}_{2}\right)$.
(29) Wang, X.; Andrews, L. J. Am. Chem. Soc. 2002, 124, 5636 (W + H_{2}).
(30) Wang, X.; Andrews, L. J. Am. Chem. Soc. 2001, 123, 12899 (Au $+\mathrm{H}_{2}$).
(31) Wang, X.; Andrews, L. J. Phys. Chem. A 2002, 106, 3706 (Rh + H_{2})
(32) Bare, W. D.; Citra, A.; Chertihin, G. V.; Andrews, L. J. Phys. Chem. A 1999, 103, 5456.
(33) Wang, X.; Andrews, L. J. Phys. Chem. A 2001, 105, 5812.
(34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
(35) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(36) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
(37) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (b) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
(38) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123.
(39) Jacox, M. E.; Olson, W. B.; J. Chem. Phys. 1987, 86, 3141.
(40) Jacox, M. E.; J. Phys. Chem. Ref. Data 1994, 3, 32, and references therein.
(41) Forney, D.; Jacox, M. E.; Thompson, W. E. J. Mol. Spectrosc. 1995, 170, 178.
(42) Andrews, L.; Kushto, G. P.; Zhou, M.; Willson, S. P.; Souter, P. F. J. Chem. Phys. 1999, 110, 4457.
(43) Wang, X.; Andrews, L. J. Phys. Chem. A 2001, 105, 7799.
(44) Li, S.; Weimer, H. A.; VanZee, R. J.; Weltner, W., Jr. J. Chem. Phys. 1997, 106, 2583.
(45) Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules; Van Nostrand: New York, 1945.
(46) Jacox, M. E. Chem. Phys. 1994, 189, 149.
(47) Similar laser-ablation experiments with Ni and DFT calculations confirm the $\mathrm{C}=\mathrm{C}$ stretching and $\mathrm{C}-\mathrm{H}$ deformation assignments of the Rice group ${ }^{18}$ to $\mathrm{Ni}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ but the bands assigned to NiCCH_{2} are most likely due to $\mathrm{Ni}-\eta^{2}-\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ in a different matrix site.
(48) Ervin, K. M.; Lineberger, W. C. J. Chem. Phys. 1991, 95, 1167.
(49) Andrews, L.; Johnson, G. L.; Kelsall, B. J. J. Phys. Chem. 1982, 86, 3374.
(50) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88 , 899.

[^0]: * To whom correspondence should be addressed. E-mail: 1sa@ virginia.edu.

