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The fluorescence dynamics of perylene in the presence of tetracyanoethylene in acetonitrile was studied
experimentally and theoretically, taking into consideration that the quenching is carried out by remote electron
transfer in the Marcus inverted region. The initial stage was understood as a convolution of the pumping
pulse with the system response accounting for the fastest (kinetic) electron transfer accompanied by vibrational
relaxation. The subsequent development of the process was analyzed with differential encounter theory using
different models of transfer rates distinguished by their mean square values. The single channel transfer having
a bell-shaped rate with a maximum shifted far from the contact produces the ground state ion pair. It was
recognized as inappropriate for fitting the quenching kinetics at moderate and long times equally well. A
good fit was reached when an additional near contact quenching is switched on, to account for the parallel
electron transfer to the electronically excited state of the same pair. The concentration dependence of the
fluorescence quantum yield is well fitted using the same rates of distant transfer as for quenching kinetics
while the contact approximation applied to the same data was shown to be inadequate.

I. Introduction

Fluorescence quenching in solutions is often considered
within the classical theory of Smoluchowski1 and Collins &
Kimball,2 assuming that the reaction is carried out at the closest
approach distance between excited energy donor D* and
acceptor A. This popular contact model applied to numerous
systems3 is reasonable for proton transfer4 but bad for the long-
range energy transfer governed by multipole interactions.5-7 The
electron transfer is intermediate between these two extremes.
If the reaction occurs in the normal Marcus region, it can be
considered as contact at fast diffusion, but at slow diffusion
the effective quenching radius significantly exceeds the contact
distance.3,8,9In the inverted region, the electron transfer is remote
at any diffusion because the maximum of the Marcus rate is
shifted out of contact.3,10,11 In general, the ionization carried
out by the position dependent rateWI(r) is represented by the
following reaction scheme:8

The remote transfer in liquids assisted by the encounter diffusion
of partners is well described by the differential encounter theory
(DET)12-17 recently reviewed in ref 3. However, for a long time
the attempts to describe the reaction kinetics with either contact
theory or DET were either unsuccessful or led to the nonphysical
values of the electron-transfer parameters.

For instance, Fleming et al. studied the diffusion-influenced
quenching reaction between rhodamine B and ferrocyanide and
came to the conclusion that the Collins and Kimball contact

model cannot consistently explain both the rapid initial decay
(upconversion data) and the slower decay investigated with time-
correlated single photon counting.18 The fitting parameters of
the model which are good for short times are poor for long-
time decay and vice versa. This deficiency is inherent in the
contact approximation which completely ignores the static
quenching, preceding the diffusional one. Finally, it was widely
recognized that “as long as we adopt realistic values of diffusion
coefficients, the experimentally obtained decay curves...cannot
be satisfactorily reproduced by the Collins and Kimball model,
whatever values of the parameters are assumed”.19

Calculations of this sort were also done with the rectangu-
lar20,24and exponential21-23 models of the electron-transfer rate
WI(r). In the normal Marcus region, the rectangular model with
varying parameters is a bit better than the contact one, as well
as the exponential model,

which is the rough simplification of the single channel Marcus
rate:

HereV0 andL are the contact matrix element and the length of
the electron tunneling, whileλ(r) and∆GI(r) are the reorganiza-
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tion and free energies of ionization,T is the temperature in
energy units (kB ) 1), andσ is the closest approach distance.
Unfortunately, the very first fitting of the exponential model to
the transfer kinetics also led to confusion. It was done by
studying the quenching of excited pheophytina by toluquinone
in solvents of different viscosity.25 The best fit for these data
was obtained atWc ) 1.8× 1010 s-1, σ ) 4 Å, andl ) 5.4 Å.
This value ofl is abnormally large, not to mentionL that should
be even twice as large.8

The Marcus rate (1.3) was also used for fitting the entire
quenching kinetics, but the authors failed to find the unique
values of two fitting parameters,V0 and L, in low viscosity
solvents.19 Only for high viscosity ethylene glycol they were
able to fix reasonable values, but the choice of ethylene glycol
was inappropriate for the reasons presented in ref 26 and
confirmed later.8 To reduce the number of parameters,L was
arbitrarily put as 2 Å in ref 27 since this is “a value usually
admitted in the literature”. Such a choice allowed the authors
to fit closely the transient quenching kinetics with rather small
V0 ) 6 ÷ 7 meV.

However, the first successful attempt to estimatel from an
unconditional fitting of the theory with an exponential rate to
the real data was accomplished only recently.8 The progress in
experimental techniques made possible much more accurate
investigation of the electron transfer between excited rhodamine
3B in the excited state andN,N-dimethylaniline in the normal
Marcus region. It was studied in seven solvents of different
viscosities.28 The theoretical interpretation of the results was
based on the analysis of quenching kinetics that obeys the
universal asymptotic law:

where D is the coefficient of encounter diffusion,RQ is the
effective quenching radius, and

is the ratio of excitation populations with and without quench-
ers: N(t, c) andN(t, 0) ) N(0) exp(-t/τD). The last term in eq
1.4 contributes to the nonstationary (transient) kinetics, which
is not negligible over all times studied experimentally. The
significant overestimation ofRQ as well asl in ref 25 resulted
from ignoring this very term in the course of the fitting.

The proper extraction ofRQ from the experimental data, made
in ref 8, allowed authors to fit the quasicontact and exponential
models to the diffusional dependenceRQ(D) getting from it a
reasonable value ofl ) 0.85 Å.8 Later a similar asymptotic
analysis of transfer kinetics was employed to perylene quenched
by N,N′-dimethyl-aniline in a dimethyl sulfoxide (DMSO)-
glycerol mixture whose viscosity changes with composition.29

Varying only l it was found from the best fit:l ) 0.81 Å, Wc

) 29.12 ns-1. The transfer in this system also proceeds at
relatively small∆GI < λ, that is in the normal Marcus region.
ThereWI(r) monotonically decreases with distance and can be
modeled with the exponential function of eq 1.2.3

Here we at first turn to a reaction in the inverted region carried
out by a strong electron acceptor, tetracyanoethylene (TCNE).
The latter allowed Rehm and Weller to get the most exergonic
points of their famous plot, although with other fluorophores.30

The quenching of perylene (the lifetimeτD measured after argon
bubbling is 4.34 ns in our experiments) also occurs deeply in
the inverted Marcus region where∆GI(σ) > λ(σ). At so high
an exergonicity,WI(r) given by eq 1.3 passes through the
maximum shifted out of contact,3 so that even in the kinetic

limit the reaction is remote, not to mention the diffusion-
controlled ionization. However, we will demonstrate that the
fitting of the experimental data with only this bell-shaped rate
is impossible but becomes plausible if additional near contact
quenching is added.

The origin of such an additional quenching may be attributed
to parallel electron transfer to the excited state of a cation radical
as suggested in ref 30. This transfer is much less exergonic and
therefore occurs in the normal Marcus region, near the contact:

Alternatively, one can consider the multichannel transfer to
numerous vibronic sublevels of the ground electronic state of
the ion radicals. The total rate of their production through all
the vibronic channels is broader and located closer to the contact
than the rate (1.3):3,31,32

where S ) λq/pω, while ω is the frequency andλq is the
reorganization energy of the quantum vibration. Since there is
no straight evidence in favor of one of these two possibilities
we will sequentially consider both of them.

In fitting the real data, provision should be made for saturation
of the ionization rate at short distances. There the tunneling
can be so fast that the limiting stage becomes the diffusional
motion along the reaction coordinate to the crossing point.33,34

In polar solvents, this is the so-called “dynamical solvent effect”
limited by the longitudinal relaxation of polarization.35 Taking
into account this effect the single channel rate takes the
following form:36,37

The upper limit of the rate,τ-1, is different for activationless
(∆GI ) 0)33 and highly activated reactions (∆GI . T),35 but
we will use the interpolation, which is reasonable between these
two limits where most of our experimental data falls:38

Here τL is the longitudinal relaxation time of the solvent
polarization, which assists the electron transfer. For the mul-
tiphonon rate (1.7), the generalization is straightforward:

The saturation effect establishes the upper limit for the Arrhenius
pre-exponentW0, which is lower, the slower the dielectric
relaxation. In Figure 1 we demonstrate how this limit is reached
for a few solvents whose 1/τL values were tabulated in ref 39.
At the shortest interparticle distances all the curves are
significantly lower than the tunneling rate,U(r), especially those
with long τL. This difference strongly reduces the total rate of
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activated electron transferWI(r), which is monotonic in the
normal Marcus region (Figure 2A) and has the bell shape in
the inverted one (Figure 2B).

The outline of this article is as follows. In the next section,
the general formalism of DET will be briefly outlined. In section
III the short, moderate, and long-time kinetics will be fitted
sequentially with single-channel, double-channel, and multi-
channel models. In section IV, the experimental dependencies
of the product quantum yields on quencher concentration will
be compared with the theoretical ones specified with the transfer
parameters obtained from the best fit to the kinetic data. In
section V, we calculate with the same parameters the concentra-
tion dependence of the quantum yields of all the products of
ionization. The results obtained are summarized in Conclusions.

II. Differential Encounter Theory of the Phenomenon

In the DET developed in refs 12-17 and reviewed in ref 3
the quenching kinetics is given by the general expression

where the time dependent rate constant is

The pair correlation functionn(r, t) takes into account that the
remote transfer running with the rateWI(r) is accelerated by
the encounter diffusion represented by operatorL̂:

If there is no inter-reactant interaction then the diffusional
operatorL̂ ) D∆, while the initial and the boundary conditions
to eq 2.3 take the following form:

Over rather long times, the quenching is accelerated by
diffusion and the corresponding asymptotic expression for the
ionization rate constant acquires the following general form:

By substituting expression (2.1) with thiskI(t) into eq 1.5
one reproduces the asymptotic formula (1.4) successfully fitted
to the long time kinetics. But at shorter times this asymptote is
preceded by the static quenching with the rate constant followed
from eqs 2.2 and 2.3 atL̂ ) D ) 0:

The quenching always starts with the maximal (kinetic) rate
constant

but then develops with retardation, which is the sharper, the
higher is the mean square value

The asymptotic analysis based on eq 2.5 or (1.4) is determined
by the universal parameterRQ defined by the far periphery of
WI(r) exponentially decreasing with distance. It can be ap-
proximately found from the equation:40

which is not sensitive to that part ofWI(r) which is deeply inside
the quenching sphere of radiusRQ. On the contrary, the static
quenching starts from the maximal values ofWI(r) and lasts
until all the interior of the quenching sphere is burned. To
discriminate between the different models ofWI(r) the strategy
of fitting employed in refs 8 and 29 should be changed. Here
we will start by analyzing the static quenching and only after
that the late diffusional quenching, as well as the total effect
represented by the fluorescence and products quantum yields.

III. Experimental

The excited-state dynamics of perylene (Pe) has been
measured by fluorescence upconversion (FU), using a setup
already described in ref 41. Excitation was performed at 400
nm using the frequency-doubled output of a Kerr lens mode-
locked Ti:sapphire laser (Tsunami, Spectra-Physics). The full
width at half-maximum of the instrument response function was
210 fs.

Pe was recrystallized from benzene before use. TCNE was
recrystallized from chlorobenzene and sublimed twice. Aceto-
nitrile (acetonitrile, UV grade) was used as received. All the
chemicals were from Fluka. The sample solutions were placed
in a spinning cell with an optical path length of 0.4 mm. The
absorbance of the sample at 400 nm was around 0.1, corre-
sponding to a Pe concentration of the order of 10-4 M. All
sample solutions were bubbled with Ar for 15-20 min before
use. After the measurements, no significant sample degradation
was observed.

The fluorescence dynamics of Pe in acetonitrile was measured
with various TCNE concentrations: 0, 0.01, 0.08, 0.16, 0.32,
and 0.64 M. The fluorescence dynamics of each solution was
measured of five different time windows: 6, 35, 120, 300, and
1200 ps. To correct for any misalignment of the optical delay
line and to have a signal intensity proportional toP(t) from eq
1.5, the fluorescence time profiles at [TCNE]* 0 were divided
by the corresponding time profile at [TCNE]) 0. This
procedure was performed with the data acquired in all time
windows except the shortest one. The fluorescence dynamics

Figure 1. The Arrhenius pre-exponent as a function of distance for
four solvents with different 1/τL values: (1) acetonitrile (2.0 ps-1), (2)
acetone (1.2 ps-1), (3) methyl acetate (0.6 ps-1), (4) benzonitrile (0.21
ps-1). Other parameters:λ0 ) 1.15 eV;V0 ) 62 meV;σ ) 5 Å.
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was measured at 495 nm, where the effect of vibrational
relaxation is the smallest, as discussed in refs 42 and 43.

IV. Fitting Kinetics of Quenching after Pulse Excitation

From the system response to the short pulse excitation in the
presence and absence of quenchers, one can measure the
quenching kineticsP(t) given by eq 1.5. It is sharper the higher
the quencher concentration used (Figure 3A), but according to
the DET eq 2.1 the quantity

should be the same for all concentrations. In fact, when these
quantities are plotted against time all of them are practically
the same for any concentrations, until they decrease (Figure 3B).
However, each of them levels off approaching the level of noise.
The border time between the descending branch and horizontal
tail establishes the upper border of the credibility interval where
the data fit the theoretical dependence (4.1). These intervals
restricted by the vertical dashed lines are longer the smaller the
quencher concentration. At the lowest concentrations such
intervals are larger than that available for experimental study,
but the depth of the reaction within the latter is small. The most
suitable for fitting is the curve forc ) 0.16 M. It reaches the
same reaction depth at higher concentrations, but the integral
∫0

t kI(t′) dt′ is already as large as it is at lower concentrations.
Besides, it has the lowest noise-to-signal ratio.

A. Accumulation and Dissipation of Energy at the Shortest
Times.The pulse excitation to some vibrational sublevel of the
upper electronic state gives way to the fast vibrational relaxation,
simultaneous with the initial electron transfer. The latter
proceeds with the highest (kinetic) rate constant (2.7) that allows
it to compete with the vibrational relaxation. This competition
can be represented by the set of model kinetic equations:

where N1 and N are the populations of initial and final
(fluorescent) vibronic states, andτV is the vibrational relaxation
time in the sub-picosecond scale. As a result, we have the
following single equation for accumulation and dissipation of
fluorescent particles:

The solution to this equation,

describes both the ascending and descending branches of the
initial kinetics locating the maximum between them.

Figure 2. The ionization rates in acetonitrile with and without taking account for the transfer saturation (solid and dashed lines correspondingly).
(A) Transfer in the normal Marcus region,∆GI ) -0.6 eV. (B) Transfer in the inverted Marcus region,∆GI ) - 2.14 eV. The rest of the
parameters are the same as in the previous figure.

Figure 3. (A) The quenching kinetics at different concentrations of
electron acceptors given in molar (numbers above curves). (B) The
same but in an anamorphosis, extracting the universal time dependence
of ∫0

t kI(t′) dt′. The vertical dashed lines indicate the upper borders of
the credibility intervals for the highest concentrations.

ln P(t)
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In fact, the vibrational relaxation is not completely damped,
as seen from Figure 4 which shows the fluorescence decay
measured by the FU. Using the aperiodic model of vibrational
relaxation (4.4) for fitting to very short data (up to 6 ps) we are
looking mainly for the quenching parameterk0 and will return
back to the coherent vibrations afterward. The fitting was done
in two ways: with and without convolution with the instrumental
response function (IRF). They both gave similar results as shown
in Table 1.

An example of the fit to the highest concentration of
quenchers,c ) 0.64 M, is given in Figure 5. It is better to
include IRF in the fitting procedure, but the final values ofk0

are not affected too much. Since the further fitting of the longer
time behavior will be done without convolution we set for it

There is an approximately linear increase in the vibrational
relaxation rate 1/τV with quencher concentration that could be
attributed to the intermolecular contribution to this rate. It can
be ascribed to the vibrational energy transfer from Pe to TCNE
(see Supporting Information).

B. Fitting the Moderate and Long Times with a Single-
Channel Rate. If there is only the single channel of electron
transfer (to the ground state of the ion pair), then in highly polar
solutions ther-dependence of the ionization free energy is
insignificant and according to the energy scheme of Figure 6
we have:

The “outer-sphere” reorganization energy at contact is half at
infinite separation:3

It depends on the interparticle distance at contactσ and
contact reorganization energyλ0 ) λ(σ). In acetonitrile

is an average distance between the contacting Pe and TCNE.
In fact, it varies between 3.5 and 6.8 Å, depending on their
coordination, but the effects of chemical anisotropy will be
ignored here. Assuming a reasonable value for

we can find the remaining fitting parameterV0 from the kinetic
reaction constant (2.7), whose value is already fixed in eq 4.5.
In the case of a single channel and weak transfer proceeding
with the rate eq 1.3,V0

2 is directly proportional tok0:

Figure 4. The FU time profiles measured with the time increment
0.062 ps at the same quencher concentrations as in the previous figure.

TABLE 1

without convolution with convolution

c/M τV/ps k0/M-1 ps-1 τV/ps k0/M-1 ps-1

0.08 0.282 0.20 0.215 0.25
0.16 0.257 0.20 0.200 0.22
0.32 0.255 0.20 0.186 0.23
0.64 0.183 0.20 0.119 0.21

Figure 5. Fitting the very fast kinetics of accumulation and dissipation
of the excited electronic state with (middle) and without (bottom)
convolution with IRF. The residual of the former is shown at the top.

Figure 6. The energy diagram for the pair perylene+ TCNE before
(left) and after (right) the electron transfer.

λ0 ) 1.15 eV, andσ ) 5 Å (4.7)

L ) 1.24 Å (4.8)

V0
2 )

pk0/∫exp(-
2(r - σ)

L ) xπ

xλ(r)T
exp(-

[∆Gi + λ(r)]2

4λ(r)T ) d3r

k0 ) 0.2 M-1 ps-1 ) 322.6 Å3/ps (4.5)

∆GI(r) ≈ ∆GI(σ) ) ∆Gi ) -2.14 eV

λ(r) ) λ0(2 - σ/r) (4.6)
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It follows from this relationship that

This value ofU0 ) U(σ) greatly exceeds the upper limit of the
transfer rate established by

whereτL ) 500 fs (for acetonitrile). The inequality,Uτ|r)σ .
1, clearly indicates that the saturation of electron transfer near
the contact cannot be ignored.

Using the cropped transfer rate (1.8) instead of (1.3) in eq
2.7 one can find by a few iterations the appropriateV0

2 andU0.
They appear to be larger than the previous ones to provide the
same value ofk0:

Using this parametrization, we tried to fit the kinetic data at
moderate and long times having for our disposal only one fitting
parameter: the diffusional constantD. The best results obtained
for the solution with the smallest noise-to-signal ratio are shown
in Figure 7. At smallD, the quenching at moderate times is
fitted well, but at long times is greatly underestimated. At large
D, everything is quite the reverse: the quenching at long times
is well approximated, but overestimated at moderate times. This
is an alternative consistent with the conclusion made by Fleming
et al.18

However, it follows unambiguously from the comparison of
the short and long time results that the initial kinetic rate constant
k0 ) 322.6 Å3/ps is significantly larger than the final stationary
rate constant

which is approximately 31.4 Å3/ps. Such a nonstationarity of
transfer is the direct indication that the quenching is under
diffusion control andki ≈ 4πσD , k0. This finding is in conflict

with what was found when Tachiya and Murata fitted the free
energy Rehm-Weller dependence of the Stern-Volmer con-
stant that they identified withki.44 According to their Figure 2,
the transfer in the most exergonic systems is kinetic, that iski

≈ k0 at any time. Since our system is one of those it should be
expected thatk0 , kD which is not the case. Being free in
choosing the fitting parameters the authors made their conclusion
assuming that

Making this choice they greatly underestimate the kinetic rate
constantk0 which is in their work 42 Å3/ps, that is almost an
order of magnitude smaller than that in eq 4.5 obtained
experimentally.

Another possible cause of the discrepancy is the “closure
approximation” used in this work. It is not much better than
the primitive contact approximation and is especially bad in
the inverted region where the transfer is essentially remote.
Fortunately, this approximation is not obligatory and had been
ignored in the preceding work of Marcus and Siders,45 who
applied to the similar data analysis the regular encounter
theory.15-17 They also demonstrated in their Figure 1 that atV0

) 4.5 meV andλ0 ) 0.56 eV the reaction falls under kinetic
control when the exergonicity of the transfer exceeds 1.5 eV.
However, according to their Figure 2 the reaction remains
diffusional up to∆Gi ) - 2.2 eV if

This choice is much closer to our own although it is made for
another system studied in refs 46 and 47. Marcus and Siders
proposed also another way to make highly exergonic reactions
diffusional, by taking into consideration the parallel transfer to
the excited electronic state of the product. Until now this was
a dominant idea for how to explain the too wide diffusional
plateau obtained by Rehm and Weller.3 However, it will be
shown in the next subsection that the electronic excitation which
occurs near the contact is much less helpful if one accounts for
electron-transfer saturation which was ignored by Marcus and
Siders45 as well as by Tachiya and Murata.44

C. Fitting the Double-Channel Model. Looking for all
possible interpretations of our data, we should take into account
that the perylene cation has a number of low lying excited
electronic states and at least three of them are energetically
accessible from the excited reactant (Figure 6). Therefore, the
formation of the cation in one of these states can compete with
creation of the ground-state cation.48-50 There are also some
indications of excited ion generation in the course of highly
exergonic fluorescence quenching studied in other systems:
cyanoanthracene (A) and aromatic amines or aminobenzenes
(D).51,52In all such cases there are parallel channels of ionization,
to the ground state (i ) 0) and to the excited charged products
(i ) 1, 2, ...). In our system, the transfer is exergonic to only
three states. Taking them into account, one should represent
the total transfer rate as a sum over parallel channels:

All partial rates have the same form (1.3), but different∆GI ≡
∆Gi and tunneling matrix elementsVi. All of them contribute
to the kinetic rate constant

Figure 7. Fitting of single channel model to moderate (top) and long
time (bottom) quenching kinetics atc ) 0.16 M. Dashed lines obtained
choosingD ) 2.45× 10-5 cm2/s; solid lines represent the best fit with
D ) 2.95× 10-5 cm2/s (σ ) 5 Å).

V0 ) 89.8 meV and U0 )
V0

2

p

xπ

xλ0T
) 127 ps-1

1
τ(σ)

) 1
4τL

x λ0

πT
) 1.9 ps-1 (4.9)

V0 ) 138 meV and U0 ) 300 ps-1 (4.10)

ki ) kI(∞) ) 4πRQD (4.11)

V0 ) 12.4 meV

V0 ) 23 meV and λ0 ) 0.86 eV

WI(r) ) ∑
i)0

3

Wi(r) (4.12)
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Borrowing ∆Gi from the energetic scheme of Figure 6 we
reproduced thek0 value (4.5) with

Although tunneling to all the excited states was assumed to be
equally strong their contributions tok0 are different because of
the different exergonicity of transfer.

As seen from Table 2 even at relatively highVi the
contributions from the two upper states does not exceed 3%.
Therefore, they can be ignored in further investigation. Leaving
only the lowest excited-state, we arrive at the double-channel
model with the total rate

where

are given by the general Marcus formula (1.3) but with partial
arguments:

∆G1 is the free energy of transfer to the lowest excited level of
perylene cation (Figure 6).53

In the double-channel model onlyV0 and V1 should be
considered as fitting parameters. In fact, we have only a single
new parameter,V1/V0, provided

is kept equal to that in eq 4.5. After finding this ratio from the
best fit to the intermediate times, we adjusted alsoD to get the
right slope of the longest quenching. The last procedure does
not affect too much either the short or intermediate time
behaviors which are kinetic and quasistatic in nature, that is,
weakly sensitive to particle motion. At the same time, an
inclusion of the excited-state production facilitates the near
contact quenching, making the fitting much better, provided

The results shown in Figure 8 are actually much better than
those achieved in Figure 7 with a single channel model.

The results of such a successful fitting allow specifying the
time development ofkI(t) at all times, from its kinetic value,
k0, up to the stationary one,ki (Figure 9). The slope of thekI(t)
dependence att ) 0 is the quantitative characteristic of the ln
P(t) curvature. It is given by the mean square rate (2.8), which
is very sensitive to the shape of the particularWI(r) dependence.
For any remote transfer, it is finite but turns to∞ for the contact
kI(t) of Collins and Kimball:

where kD ) 4πσD is the diffusional rate constant,R )

x(D/σ2)(1 + (k0/kD)) and

As seen from Table 3 for the double-channel model the value
|k̇I(0)| ) 〈WI

2〉 is a bit smaller than for the single-channel model
that we failed to fit well. The latter can be considered as the
“zero-phonon” model (S ) 0). In the next subsection, we will
demonstrate that for the multiphonon rates (S) 1, 2, 3, ...) this
quantity even increases withS, to say nothing about the contact
model (〈WI

2〉 ) ∞). This hierarchy is marked in Figure 9.

The double-channel rate (4.15) is composed from two
components (Figure 10). The transfer saturation by the dynamic
solvent effect reduces mainly the near contact one, which is
responsible for the transfer to the excited state. The relative
contribution of this component into〈WI

2〉 is even smaller due
to the statistical weight 4πr2. Conversely, the role of another
component responsible for the transfer to the ground state is
dominant and more the further it is from the contact. At
relatively slow diffusion, the outer branch of this component

k0 ) ∑
i)0

3 ∫Wi(r) d3r ) ∑
i)0

3

Ki(∆Gi) (4.13)

V0 ) 123 meV and Vi ) 138 meV i ) 1, 2, 3 (4.14)

WI(r) ) W0(r) + W1(r) (4.15)

W0 ) W(∆G0, V0, L) and W1 ) W(∆G1, V1, L)

∆G0 ) - 2.14 eV and ∆G1 ) - 0.60 eV

k0 ) ∫[W0(r) + W1(r)] d3r (4.16)

V0 ) 123 meV V1/V0 ) 1.12 D ) 3.05× 105 cm2/s
(4.17)

kI(t) ) ki
con[1 +

k0

kD
eR2terfc(Rxt)] (4.18)

TABLE 2

channels 0 1 2 3

Ki [Å3/ps] 273 42.3 7.21 0.211
Ki/k0 [%] 84.6 13.1 2.23 0.07

Figure 8. The fitting of the double-channel model to the quenching
kinetics atc ) 0.16 with the parameters given in eq 4.17.

Figure 9. The double-channel “rate constant”kI(t) (red line) approach-
ing its stationary value,ki, shown by the dotted red line. The red dashed
line indicates the tangent to this curve att ) 0 whose absolute value
is -k̇I(0) ) 〈WI

2(r)〉. This value for the multiphonon transfer (dashed-
dotted blue lines) increases withS ) 0, 1, 3, and turns to∞ in the
contact approximation. The latter is shown by the black line approaching
its stationary value,ki

con (dotted line).

ki
con )

k0kD

k0 + kD
(4.19)
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determines the quenching radiusRQ, as well as the long-time
asymptote of the rate constant (2.5) expressed through it.

It is of interest to compare the true value ofki ) kI(∞) with
its contact estimate (4.19). UsingkD from Table 3 we have

These results clearly indicate that the ionization is very close
to the diffusional limit and rather far from the kinetic limit. In
the latter case,k(t) ≡ k0 should be the horizontal line shown in
the same plot. The deep reduction of the rate constant with time
is the clear manifestation of diffusional control over ionization.
On the other hand, under diffusional control one always has
RQ > σ and ki > ki

con. According to Table 3,RQ and ki are
almost twice as much asσ andki

con.
D. Fitting the Multiphonon Model. There are at least four

candidates for assistance of the electron transfer: two modes
of Pe: 800 and 3100 cm-1, and two of TCNE: 1100 and 2200
cm-1 (see Figure 2S, Supporting Information). Choosing the
low-frequency ones, we compared in Figure 11 their shapes at
different electron-phonon interaction measured by parameter
Sof the multiphonon rate (1.10). All of them are normalized to
k0 ) ∫WI(r) d3r. This value is fixed by eq. 4.5 while the rest of
characteristics change withS. The general conclusion is that
with growing S the rate maximum increases and shifts toward
the contact. Approaching the contact is faster at a larger
frequency of the assisting mode. Atω ) 1100 cm-1 the rate
maximum disappears atS ) 3 and the quenching, proceeding
with quasiexponentialWI(r), is maximal at the contact. Figure
12 demonstrates that〈WI

2〉 monotonically increases withSand
the sharper, the higher the frequency of the assisting mode. For
the lowest two modes〈WI

2〉 grows almost linearly withS.
At S ) 0 any multiphonon rate reduces to a single-channel

one which has the minimal〈WI
2〉 ) 32 Å3/ps2. At largerS the

multiphonon rates are placed between the latter and the contact
one which has〈WI

2〉 ) ∞ (see Figure 9). Therefore, in fitting
our data all multiphonon models are worse than the single-
channel one, let alone the double-channel model whose〈WI

2〉
) 29.6 Å3/ps2 due to the most uniform rate distribution between
σ and RQ. Judging from this criterion, we conclude that the
double-channel model provides the ultimate explanation of the
transient kinetics obtained in our system.

Nonetheless, it is worthy of notice that the first experimental
evidence of the diffusional transfer at high exergonicity was
obtained by direct study of transient effects54 fitted with the
multiphonon model. The obtained kinetic rate constantsk0 ≈
1011-1012 M-1s-1 were shown to be much larger than diffu-
sional ones (2× 1010 M-1 s-1) all over the Rehm-Weller
plateau, up to∆Gi ) - 2.2 eV. The attempts to explain this
fact theoretically were undertaken using the Collins and Kimball
contact approximation.54,55Since〈WI

2〉 ) ∞ in this approxima-
tion, the transient kinetics could not be well reproduced. This
was not recognized as a significant drawback because the
measurements on the nanosecond time scale did not allow one
to study the kinetics in all the details, as we did. The
disadvantage of the contact approximation manifested itself only
in the diffusion control limit. There the stationary rate constants
calculated with eq 4.19 were systematically smaller than the
real ones:kD ) 4πσD < 4πRQD.

Although both the transfer kinetics and the stationary rate
constantki were fitted in refs 54 and 55 with the classical contact
model, the single parameter of this model,k0, was calculated
using in eq 2.7 an essentially noncontactWI(r).55 In this way,
the authors carefully accounted for not only multiphonon
transfer, but also for the dynamic solvent effect taking

The upper limit for the rate (1/τ) as well asω are almost the
same as ours whileS is surprisingly large. Since the authors
did not care about the〈WI

2〉 values they admitted this choice.
But the most important difference results from the intention

to stretch the region wherek0 is larger thankD, up to the highest
exergonicity of transfer. To do this Kakitani et al. revised the
common definition of the reorganization energy space depen-
dence, presenting it in the following form:

ConsideringΛ andΣ as fitting parameters they found for them
the following values:

Both of them are noticeably larger than their analogues (4.7)
obtained from the available experimental data. Especially
surprising is thatΣ > σ. This relationship allowsλ(r) to vary
from 0.49 eV at contact, to 2.7 eV at infinite separation, while
the conventional formula (4.6) allows one only to double the
minimal value.

Such an unphysical stretching ofλ(r) was taken but not for
the best fit of the high exergonicity transfer. As we ensured, it
can be done without any variation of the conventional space
dependence ofλ, eq 4.6. The stretching was necessary to fit
with the same theory, the ascending branch of the Rehm-Weller
free energy dependence, where the transfer is endergonic (∆Gi

> 0). In fact, the same objective was also pursued by other
authors cited above.44,45 Unfortunately, it is unattainable. DET
used by all of them does not hold at∆Gi J 0. DET is good for

TABLE 3

c ) 0.16 M double-channel single-channel
V0 (meV) 123 138
V1/V0 1.12 0
〈WI

2〉 (Å3/ps2) 29.6 32
D × 105 (cm2/s) 3.05 2.45÷ 2.95
RQ (Å) 8.25
ki ) 4πRQD (Å3/ps) 31.6
kD ) 4πσD (Å3/ps) 19.2

Figure 10. The rates of double-channel electron transfer with (red)
and without (blue) tunneling saturation (“dynamic solvent effect”). Their
components (the rates of tunneling to the ground and excited ion states)
are shown by the dashed lines. The vertical dotted line indicates the
quenching radii,RQ.

ki
con ) 18.1 Å3/ps) 0.94kD ) 0.056k0 (4.20)

1
τ

) 5 ps-1 ω ) 800 cm-1 S) 3

λ(r) ) Λ(2 - Σ/r) at r > σ ) 4.4 Å (4.21)

Λ ) 1.35 eV and Σ ) 7.2 Å (4.22)
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high exergonicity (-∆Gi . T) when the backward transfer from
ion pair to initial excited state is negligible, but DET is incapable
of accounting for the reversible electron transfer between the
excited reactants.56 Accounting for the backward transfer
requires a fundamentally different technique known as integral
encounter theory (IET). It was employed for the ascending
(endergonic) branch of Rehm-Weller dependence in a few
recent works.57,58 As was shown, not only the shape but the
very position of the ascending branch depends on the relative
strength of the radical ion pair recombination (after spin
conversion in the cage or in the bulk) to either the starting
excitation or excited triplet product. The rate of the latter
determines the position of the ascending branch which is
different for different families of the reactants. This was called
the “multiple Rehm-Weller plot” in ref 59 where it was
observed experimentally. At least “two different plots were
clearly observed corresponding to the aromatic and olefinic
compounds”. This proves that fitting the data for particular
systems, endergonic or exergonic, is preferable to trying to find
a unique explanation for all of them together.

V. Concentration Dependence of the Stern-Volmer
Constant. The relative quantum yield of the fluorescence is
generally defined through the system response to instantaneous
excitation (1.5) and presented in the form of the Stern-Volmer
law:3

Its “constant” is in fact the concentration-dependent function
κ(c), but in the limit of small concentration it follows from the
concentration expansion of eq 5.1 withR(t) from eq 2.1 that

where

is an “ideal” Stern-Volmer constant. As long asκ ) κ0 ) const
the original Stern-Volmer law

is linear in concentration of quenchers.
However, the factual nonlinearity of eq 5.3 resulting from

the κ(c) dependence was many times demonstrated experi-
mentally.60-64 We also illustrate it by Figure 13. To getη one
can either use the Laplace transformation of the experimental
quenching kineticsR(t) in eq 5.1, or employ the conventional
stationary methods for the straightforward measuring of this
quantity. Using both these ways, we obtained the results which
are in conformity with each other and with those resulting from
the best theoreticalP(t) obtained with the double-channel model
and integrated in eq 5.1.

Unfortunately, such a conformity is just an illusion: the
presentation of data in these coordinates masks the problem. It
is visualized ifκ is extracted fromη and plotted as a function
of c. As seen from Figure 14 there is a pronounced difference
between the data obtained from the time-resolved (b) and the
stationary (f) experiments, not to mention the accuracy of the
latter which leaves much to be desired at smallc. The
coincidence is satisfactory only at the highest concentration
where the quenching is accomplished within the credibility time
interval and conversely it is the worst at the lowest concentration
when the long tail remains out of the interval available
experimentally (see Figure 3A). The integration within such a
limited time interval is equivalent to the sudden quenching of
all donors survived to the end of it. Therefore, the quenching

Figure 11. The rates of transfer accompanied by the vibrational excitation of Pe (left) or TCNE (right) at differentS) 0, 0.3, 1, 2, 3 in comparison
with single channel rate (S ) 0).

Figure 12. The S-dependence of〈WI
2〉 for the quantum modes of Pe

(b, 800 cm-1 andf, 3100 cm-1), and TCNE, (9, 1100 cm-1 and[,
2200 cm-1).

η )
∫0

∞
N(t, c) dt

∫0

∞
N(t, 0) dt

) 1
τD
∫0

∞
P(t) e-t/τD dt )

R̃(0)
τD

) 1
1 + cκτD

(5.1)

η ≈ 1 - cκ0τD

κ0 ) 1
τD
∫0

∞
e-t/τD k(t) dt (5.2)

1/η ) 1 + cκτD (5.3)
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constant at low concentrations is greatly overestimated ifP(t)
measured in an experimentally restricted time interval is
integrated in eq 5.1.

The same is true for the theoreticalκ if the integration of the
model P(t) in eq 5.1 is performed within the credibility time
intervals (0). The coincidence of theoretical and experimental
results is good for low concentration and a bit worse for the
higher ones where the data are more noisy. However, it is in
the range of the low concentration that the overestimation ofκ

takes place due to incomplete quenching within limited time
interval. Fortunately, the integration of the theoreticalP(t) in
eq 5.1 can be extended to infinity and this provides the most
reliable estimate of the quantity under study (red line in Figure
14). We see that this estimate made with the double-channel
model is in rather good agreement with the experimental results,
unlike the contact estimate ofκ (black line) obtained in the same
way with the Collins-KimballkI(t) from eq 4.18. As has been
already demonstrated with Stevens data (see Figure 4 in ref 65),
the contact approximation greatly underestimates the Stern-

Volmer constant, and this effect increases with growing
concentration. In fact, the popular contact approximation is
inapplicable to electron-transfer reactions especially in the
inverted region.

The main tendency established in ref 65 and seen in Figure
14 is an increase ofκ(c) from its “ideal” valueκ0 ) κ(0) to the
maximal one: κ(∞) ) k0. This conclusion is sustained by a
number of different theoretical methods compared in ref 65.
All of them except DET deal with the contact approximation
(L f 0). In this approximation, the ideal Stern-Volmer constant
was shown to be given by the following analytic expression:
66,68

Substituting into this relationship the correspondingk0 andD
values we obtain:

where

was found from Figure 14 by extrapolation of the theoretical
curve toc ) 0. It was known for very long that in some systems
even the ideal Stern-Volmer constant measured experimentally
can be twice as large as its contact estimate.67 Admitting the
quenching radiusR to be twiceσ, the discrepancy could be
understood in the framework of the extended contact theory.67

The latter differs from the original Collins-Kimball model only
by substitution ofR) σ/µ for σ, where the numerical parameter
µ can be rigorously defined throughWI(r), but only near the
kinetic limit (1 - µ , µ).8 However, such a phenomenological
extension of the contact model completely ignores the static
quenching and is not applicable to true diffusional quenching
(R - σ J σ), especially at high concentrations.

On the contrary, the present theory accounts for remote
transfer as it is. Some uncertainty is left only for the value of
the tunneling lengthL. It may be a bit larger or smaller thanL
) 1.24 Å yet employed. The best way to eliminate such an
uncertainty is to repeat the investigation in a number of solvents
of different viscosities as has been done already a few times.8,29

Varying the encounter diffusion coefficientD one can specify
the RQ(D) dependence which is sensitive to the model of the
transfer rate and especially to theL value.

As follows from comparison of eqs 5.4 and 4.19κ0
con > ki

con

in the diffusional limit, because the Stern-Volmer constant
accounts for nonstationary quenching whileki does not. The
same is true for the noncontact values of the same constants:
κ0 > ki (compare eqs 5.2 and 4.11). Sinceκ(c) > κ0 > ki > ki

con

the fitting of the Rehm-Weller κ(∆Gi), with the theoretically
calculatedki(∆Gi) and especially withki

con(∆Gi) dependence is
inconsistent. Although performed in almost all published works
it is incorrect in principle, but especially bad in the region of
the diffusional plateau. On the other hand, the values ofκ(∆Gi)
obtained and plotted without experimental control on quencher
concentrations can differ noticeably from what they are expected
to be, that is, from the idealκ0(∆Gi) dependence.

VI. Conclusions

We present the first successful fitting of the entire kinetics
of fluorescence quenching carried out by remote electron transfer

Figure 13. The nonlinear Stern-Volmer law for the quantum yield
obtained by integration of the experimental quenching kinetics within
the credibility intervals (b) and from the stationary measurements of
the quantum yield (f). The theoretical approximation of this law with
the double-channel (red line) and contact (black line) models.

Figure 14. The Stern-Volmer constants obtained from the stationary
(f) and time-resolved data (b) in comparison with the theoretical
predictions, following from the double-channel quenching kinetics
integrated over the credibility intervals (0) and up to infinite time (red
line). Black line: the similar result but for the contact kinetics integrated
over all times. Triangles (red and black): the ideal Stern-Volmer
constants for the double-channel and contact models.

κ0
con )

k0kD

kD + k0/(1 + xσ2/DτD)
(5.4)

κ0
con ) 20.4 Å3/ps) 0.527κ0 (5.5)

κ0 ) 38.8 Å3/ps
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in the inverted region. Our study covers three different time
scales studied with the appropriate techniques. It starts from
the initial accumulation of excitations during the action of the
light pulse, extends to a quasistatic electron transfer, and ends
by the final quasistationary quenching.

We proved that the simplest single-channel Marcus rate, as
well as its multiphonon analogues, do not allow fitting
satisfactorily both the initial and the final stages of quenching.
This can be done only with the double-channel model of transfer
(to the ground and excited electronic state of charged products).
Taking into account the saturation of the tunneling due to the
dynamical solvent effect and having in hand an additional fitting
parameter (the relative strength of the two channels), we fitted
satisfactorily the whole kinetics of quenching. Besides, the
experimentally found concentration dependence of the Stern-
Volmer constant was well fitted with the same double-channel
model and the same fitting parameters. Using this model, the
quantum yields of the ground and excited-state products of
transfer were also specified.

Two important conclusions follow from this investigation:
(i) The energy quenching by TCNE in liquid solutions is

controlled by diffusion.
(ii) This is essentially distant, noncontact quenching.
These conclusions provide the unambiguous answer to the

long standing question: Why is the TCNE Stern-Volmer
constant placed on the diffusional plateau of the famous free
energy gap law of Rehm and Weller,30 instead of being far below
it as was expected? In addition, the true value of the TCNE
Stern-Volmer constant is at least twice as large as obtained in
the contact approximation and this difference increases with
concentration. These facts show that the contact approximation
is just a convenient method of analytic calculations, but not a
proper tool for fitting to the real experimental data on transfer
kinetics, especially under diffusion control and at high concen-
trations of quenchers.
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