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The spectrum of the Van Hove correlation function (CF) is calculated for liquid He(4) at 27 K and a density
of 0.25 g/cm3 by utilizing a recently proposed approximation to quantum CFs derived by combining an effective-
frequency Boltzmann-Wigner transform with a linearized path integral expression for CFs. For this anharmonic
system and highly nonlinear CF, we obtain excellent agreement with available accurate results. In particular,
the first, second, and third moments of the spectrum are in very good agreement with both experiment and
earlier theoretical results. Also, the calculated kinetic energy is in excellent agreement with accurate path
integral Monte Carlo results.

1. Introduction

During the past decade, significant progress has been made
in developing practical methods for calculating the dynamics
of many-body quantum systems. These methods can roughly
be divided into pure quantum methods and semi/quasiclassical
methods, the last group representing methods which utilize some
form of classical mechanics. In the first family we find, e.g.,
path integral Monte Carlo (PIMC) analytical continuation
approaches based on maximum entropy schemes4,28and a PIMC
quantum mechanical mode-coupling theory for liquids.29 The
last family includes a diverse set of simulation algorithms, such
as centroid molecular dynamics (CMD),17 the semiclassical
initial value representation (SC-IVR) of correlation functions
(CFs),23 forward-backward semiclassical dynamics,25,36and the
classical Wigner (CW) or, equivalently, the linearized semi-
classical initial value representation (LSC-IVR) of CFs.23,26

The accuracy, computational cost, and range of validity of
these methods differ substantially as one goes from one
algorithm to another. For example, the two PIMC schemes of
family one have been shown to accurately describe quantum
diffusion of liquid p-hydrogen at low temperatures.28,29 The
computational workload of these methods is, however, large:
The total number of PIMC beads is on the order of 10 000, and
the number of MC steps is one to several millions.28,29 Also,
these two methods have different ranges of validity: Maximum
entropy methods cannot resolve sharp peaks in quantum spectra,4

while the mode-coupling theory is a high-density theory. The
more economical but more approximate methods are found in
the second family. Here, the undoubtedly most accurate theory
is the SC-IVR method of Miller.23 SC-IVR and its forward-
backward analogue have been shown to nearly quantitatively
account for quantum interference effects in many contexts such
as diffraction and in the calculation of flux-side CFs, see ref
23, but the implementation is challenging due to the required
propagation of monodromy matrix elements and the existence

of rapidly oscillatory phases in the semiclassical propagator. It
appears that SC-IVR is still not practical for large systems such
as liquids.

Until recently, only CMD has been applied to realistic
condensed-phase systems, for instance, in the context of
vibrational energy relaxation (VER)16 and in the study of the
structure of water.21 CMD has been found to accurately describe
transport,6,18,37 but it is a specialized theory, being rigorously
formulated only for linear CFs.17 Very recently, Makri and co-
workers have reported forward-backward semiclassical calcula-
tions on argon36 and p-hydrogen25 liquids. Their forward-
backward approach was found to suffer slightly from a weakly
oscillatory integrand, thereby making the scheme practical for
either low-dimensional systems or moderate temperature, unless
additional approximations are adopted.25 The forward-backward
scheme was shown to accurately describe the quantum diffusion
of liquid p-hydrogen at temperatures over 20 K.25 Shi and Geva
also very recently reported on an implementation of the CW
method in a realistic condensed-phase context and successfully
applied it to the challenging problem of the VER of oxygen in
liquid oxygen.30,31These most recent developments are indeed
exciting since the underlying methods are computationally quite
practical and, perhaps most importantly, general. Their main
disadvantage is that they capture only short time-interference
effects. One may however argue that, for the determination of
CFs in liquids, this is not a serious problem due to decoher-
ence.11,14,26In this paper, we will explore further the ability of
one of these “low cost” methods, the CW method, to predict
the quantum dynamics of a real liquid.

The CW approach, the subject of this paper, requires the
Wigner transform of the Boltzmann operator when calculating
CFs in the canonical ensemble. The implementation of this
Wigner transform is a nontrivial problem for large systems
where basis-set methods cannot be applied. This is the main
reason the approach has not been explored in realistic condensed-
phase applications, except for the pioneering study of Shi and
Geva who used a novel harmonic approximation to the
Boltzmann operator.30 Quite recently, we suggested a different† Part of the “Gert D. Billing Memorial Issue”.
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route to the required Wigner transform of the exp(-âĤ)Â
operator.26 This approach combines the novel effective-
frequency variational theory, developed independently by Gia-
chetti and Tognetti12,13 and by Feynman and Kleinert,10 with
the quasidensity operator formalism of Jang and Voth.17 This
implementation of the Boltzmann-Wigner transform26 is practi-
cal for systems with up to hundreds of interacting atoms and
could therefore enable the simulation of many nontrivial systems
if the CW method is reliable. Comparisons between CW and
experiment are thus highly desirable to gain insight into its value
as a computational tool for quantum liquids.

This paper reports the results of our CW implementation when
applied to the determination of the Van Hove spectrum,S(QB,ω),
of He(4) at 27 K and a density of 0.25 g/cm3. The experimental
inelastic X-ray spectrum (IXS) of the He(4) scattering function
at this thermodynamic point has been reported by Verbeni and
co-workers.34 There has been other related theoretical work.
CMD has previously been used by Kinugawa and co-workers
for the purpose of obtaining the Van Hove spectrum of
nonsuperfluid He(4)24 at 4 K and liquidp-hydrogen at 14.7 K.18

For small wave vectors,QB, the agreement was found to be good,
but as the magnitude increased, CMD performed increasingly
worse.24 This can be understood by observing that the non-
linearity of the Van Hove CF grows with increasing magnitude
of QB and that CMD only provides a meaningful approximation
to the Kubo transform oflinear CFs.17 The CW method, on the
other hand, is completely free of this limitation. Ciccotti and
co-workers9 have previously applied a version of the CW
method for obtaining the He(4) Van Hove spectrum at nearly
the same thermodynamic point as considered in this paper. Very
good agreement was observed between their calculated spectrum
and the measurements of Verbeni et al. Their approach involved
neglect of various oscillatory phase factors based on statistical
arguments.

This paper is structured as follows: In section 2, the basic
theory behind the CW method and our specific implementation
of it is described. Also, the Van Hove correlation function is
introduced as well as its spectral moments. In section 3, we
mention the details behind the molecular dynamics simulation,
and its predictions are presented in section 4. Finally, a short
discussion of the results is found in section 5.

2. Theory

In this section, we discuss each of the theoretical components
required for the present application.

2.1. The CW Method. The subject of this paper concerns
the application and implementation of probably the simplest
approach to the dynamics of large quantum systems, namely,
the so-called CW or, equivalently, the LSC-IVR approach.26,35

It can be summarized as follows. To obtain the CF〈Â(0)B̂(t)〉,
one makes use of the approximate CW expression

The interpretation/implementation of eq 1 goes as follows:
Phase-space points (q,p) are sampled from the Wigner transform
of exp(-âĤ)Â, the transform being defined for an arbitrary
operatorĈ by

(q,p) are evolved classically to (qt,pt), which serves as the phase-
space arguments of (B̂)W[qt,pt]. 3N is the dimensionality of the
problem. As opposed to forward-backward schemes,25 no

Herman-Kluk coherent state parameters need be determined/
optimized meaning that the CW method is parameter free.
Recently, it was pointed out26,32that eq 1 could also be obtained
by linearizing the exact path integral representation of the above
CF without intermediate passage to an IVR CF. Hence it was
suggested to term eq 1 a “linearized path integral (LPI)
representation of CFs”26 and not LSC-IVR. In the following,
the three names CW, LSC-IVR and the LPI representation of
CFs all refer to the identical approximation embodied in
eq 1.

2.2. The Feynman-Kleinert Linearized Path Integral
Implementation. Recently, we suggested a route to the Wigner
transform of the exp(-âĤ)Â operator, as required by LPI.26 This
approach was based on combining the novel effective-frequency
variational theory of Feynman and Kleinert (FK)10 with the
quasidensity operator formalism of Jang and Voth.17 The
resulting CF approach, called FK-LPI, can be summarized as
follows.

In one dimension, one may approximate the Boltzmann
operator by

whereFFK(xc,pc) is the FK approximation to the centroid density

and W1(xc) is the corresponding FK approximation to the
centroid potential. The operatorδ̂FK(xc,pc) is the effective-
frequency quasidensity operator

whereR is a function of the effective frequency,Ω(xc), through

Wigner transforming eq 3 amounts to transformingδ̂FK, eq 5,
which can be done analytically

If Â is a simple operator, also the transform of exp(-âĤ)Â can
be obtained. For details, we refer to ref 26. Before proceeding,
we note that eqs 3-5 not only facilitate the analytical evaluation
of the Boltzmann Wigner transform but equally well can be
used for obtaining algebraic expressions for other quantum
distribution functions such as, e.g., the Husimi distribution.15

Insertion of eq 7 into the Wigner transform of eq 3, followed
by an integration overpc, yields the alternative formula (cf. eq
48 in ref 26)

〈Â(0)B̂(t)〉 ≈
1

(2πp)3N

1
Z∫∫ dq dp (exp(-âĤ)Â)W[q,p](B̂)W[qt,pt] (1)

(Ĉ)W[x,p] ≡ ∫-∞

+∞
dη exp(-ipη/p)〈x + 1

2
η|Ĉ| x - 1

2
η〉 (2)

exp(-âĤ) = ∫∫ dxc dpc FFK(xc,pc)δ̂FK(xc,pc) (3)

FFK(xc,pc) ) 1
2πp

exp(-â
pc

2

M ) exp(-âW1(xc)) (4)

δ̂FK(xc,pc) ) ∫∫ dx dx′ (MΩ(xc)

πpR )1/2

|x′〉 〈x| ×

exp{i
pc

p
(x′ - x) -

MΩ(xc)

pR (x + x′
2

- xc)2
-

MΩ(xc)R
4p

(x′ - x)2} (5)

R ) coth(Ω(xc)pâ
2 ) - 2

Ω(xc)pâ
(6)

(δ̂FK(xc,pc))W[q,p] )

2
R

exp(-
MΩ(xc)

pR
(q - xc)

2 - 1
MΩ(xc)Rp

(p - pc)
2) (7)
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whereFFK(xc) ) exp(-âW1(xc)). The latter quantity allows for
a classical-like calculation of the quantum partition function20

The performance of the LPI approach to CFs has been
examined by Wang, Sun, and Miller in the context of obtaining
reaction rate constants for a double-well particle coupled to a
dissipative phonon bath.33,35They found that the LPI performed
well with a bath coupling35 but poorly without,33 i.e., when long-
time coherence effects become important. Essentially the same
conclusions were drawn by Poulsen and co-workers26 in their
study of various CFs derived from LPIs in an anharmonic helium
string study. The latter work further demonstrated the ability
of FK-LPI to include quantum mechanical effects such as zero-
point motion into a realistic simulation of liquid oxygen.

2.3. The Van Hove Correlation Function. For a simple
liquid composed ofN He(4) atoms, the Van Hove CF is given
by22

where〈...〉 denotes a canonical ensemble average. We note the
nonlinearity inQB that was pointed out earlier. For an isotropic
liquid, the CF depends only on||QB||. Its Fourier transform
defines the Van Hove spectrum,S(QB,ω), through22

Moments ofS(QB,ω) are defined by

the first of which has the well-known exact value

To compare with experiment, we furthermore define “normal-
ized” moments by

and thereducedsecond moment by

From eqs 14 and 15, it follows that the classical limit ofR̃2 is
unity.

2.4. FK-LPI Equations. Here we utilize the FK-LPI theory
developed in ref 26. In the following, we considerN He(4) atoms
whose collective position vector is denoted byr. Similarly, for
simplicity of notation,η, ηc, ν, νc, q, p, rc, andpc are all 3N
dimensional vectors. To evaluate the FK-LPI approximation to

the Van Hove CF, two Wigner transforms need to be evaluated,
cf. eq 1

and

In the following, since He(4) is isotropic, we have the liberty
of choosing the direction ofQB to be along thex axis. Hence,
we make the simplifications:Q ≡ ||QB|| and therj vector is
replaced by itsx-axis component,rx,j ≡ rj for particlej. Although
the evaluation of eq 16 is in principle straightforward, it is rather
lengthy, and an outline of its derivation is given in the Appendix.
Here we just report the result where

and

In eq 18, we have utilized the centroid-dependent normal modes
defined by

and

M is the 3N × 3N matrix containing atomic massesmi on the
diagonal. For the definition of the centroid-dependent effective-
frequency eigenvalues,Ωn(rc), and the real orthonormal matrix

(exp(-âĤ))W[q,p] )

∫ dxc

2πp
FFK(xc)

2
R ( MRπ

â
2

coth(pΩ(xc)â/2))1/2 ×

exp(-
MΩ(xc)

pR
(q - xc)

2 -
tanh(pΩ(xc)â/2)

MΩ(xc)p
p2) (8)

ZFK ) ∫ dxc ( M

2âp2π)1/2
FFK(xc) (9)

S(QB,t) )
1

N
∑
j,k)1

N

〈exp(-iQB rbj(0)) exp(iQB rbk(t))〉 (10)

S(QB,ω) ) 1
2π ∫-∞

+∞
dt exp(-iωt)S(QB,t) (11)

〈ωn〉 ) ∫-∞

+∞
dω ωnS(QB,ω) (12)

〈ω〉 ) p||QB||2/2MHe(4) (13)

Rn )
pn〈ωn〉
p〈ω〉

) pn-2
2MHe(4)〈ω

n〉

||QB||2
(14)

R̃2 ) {R2 - p2||QB||2
2MHe(4)

}/2kBT (15)

(exp(-âĤ) ∑
j)1

N

exp(-iQBrj))W[q,p] =

∫∫ drc dpc FFK(rc,pc)(δ̂FK(rc,pc) ∑
j)1

N

exp(-iQBrj))W[q,p]

(16)

(∑
j)1

N

exp(iQBrj))W[qt,pt] ) ∑
j)1

N

exp(iQBqt,j) (17)

∫∫ drc dpc FFK(rc,pc)(δ̂FK(rc,pc) ∑
j)1

N

exp(-iQrj))W[q,p] )

∫ drc

FFK(rc)

(2πp)3N
∑
j)1

N

exp(-iQqj) det(M1/2) ∏
n)1

3N 2

Rn

( Rnπ

â

2
coth(pΩn(rc)â

2 ))1/2

exp(-
1

2
λn

-1(ηn - ηn,c)
2) ×

exp(-µnνn
2) exp(pνnQmj

-1/2U(rc)3(j-1)+1,nµn -

p2

4
µnQ

2mj
-1U2(rc)3(j-1)+1,n) (18)

λn )
kBT

Ωn
2(rc)

{pΩn(rc)

2kBT
coth(pΩn(rc)

2kBT ) - 1} (19)

µn )
tanh(pâΩn(rc)/2)

pΩn(rc)
Rn ) 2λnΩn(rc)/p (20)

η ) (η1, ...,η3N)T ) U†(rc)M
1/2q (21)

ηc ) (η1,c, ...,η3N,c)
T ) U†(rc)M

1/2rc (22)

ν ) (ν1, ...,ν3N)T ) U†(rc)M
-1/2p (23)

νc ) (ν1,c, ...,ν3N,c)
T ) U†(rc)M

-1/2pc (24)
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U(rc), see ref 26 and references therein. The practical scheme
for sampling phase-space points from the above Wigner
distribution then is: (i) Perform a Monte Carlo walk using the
centroid density,FFK(rc), thereby sampling positionsrc. (ii)
Given a sampled position, a sampling of (q,p) is done by
evaluating its corresponding weight factor defined by

which is normalized except for a factor of (2πp)-3N, canceling
the factor in front of eq 1. To evaluateW(q,p), eqs 21-23 are
utilized. The remaining part of eq 18 is multiplied together with
eq 17 to yield the CF to be averaged. In the actual simulation,
we implemented thecomplex conjugateof eq 10, which is just
eqs 17-18 with i replaced by-i. Before closing this section,
we mention, as shown in the Appendix, that the first moment
of S(QB,ω) (eq 13) is reproduced exactly by the FK-LPI theory.

3. FK-LPI Molecular Dynamics Simulation

To calculate the Van Hove CF atT ) 27 K (the actual
temperature used in the simulation was 26.65 K, which we will
refer to as 27 K) and a density of 0.25 g/cm3, we consider 64
He(4) atoms each with mass 7301 au in a cubic simulation box
of lengthL ) 22.562 bohr. This box is then replicated to produce
an infinite system using periodic boundary conditions.1 The
experimentalQ vector is: Q ) 1.64 Å-1 ) 0.87 bohr-1.34 For
a macroscopic liquid, one only gets a diffracted beam provided
the Laue equation is fulfilled19

for some integern. For our boxlength, the allowedQ values
are 0.28, 0.56, 0.84 bohr-1, etc. We have, however, utilizedQ
) 0.87 bohr-1 in our calculations. In a more ambitious study,
one should vary the number of particles and boxlength to exactly
match the Laue equation and density simultaneously. To model
the He(4)-He(4) interaction, the highly accurate HFD-B2 pair
potential of Aziz and co-workers3 was adopted together with
the standard minimum image convention and a potential cutoff
at half boxlength.1 To allow an analytical evaluation of certain
results (see eq 50 in ref 26), the Aziz pair potential was
represented accurately as a sum of three Gaussian functions

The coefficient values are collected in Table 1. A Monte Carlo
(MC) walk of 300 000 steps in the centroid position,rc, was
generated using the centroid densityFFK(rc) employing an
average acceptance probability of 40%. For a description of how
to generate the FK centroid density and its associated effective
frequencies, we refer to the literature.7,26At each tenth MC step,
10 samples of phase-space points (q,p) were generated from
the sampling function in eq 25. These were then propagated
classically for 11.7 ps using velocity Verlet1 with a time step
of 11.4 fs. From these trajectories, the Van Hove correlation
function was constructed, as sketched in the previous section,
by utilizing the 64 He(4) atoms in the central simulation box.
The entire Van Hove calculation (Monte Carlo plus classical

dynamics) took approximately three weeks on a single PC with
a 2.0-GHz processor.

4. Results

4.1. Structural Properties. The semianalytical Wigner
transform contains all information on the structural properties
of the He(4) liquid. A sensible way of checking the quality of
the approximate transform is to compare with accurately known
structural properties of He(4). One is the kinetic energy of liquid
He(4). By utilizing the path integral Monte Carlo (PIMC) based
kinetic energy contour plot of Ceperley and co-workers,8 we
obtain an accurate theoretical value of the kinetic energy per
particle at our thermodynamic point. From the data of ref 8,
the value is seen to be 61-62 K. From our approximate
Boltzmann Wigner transform, we get 62.7( 0.3 K, which is
in very good accord with Ceperley et al., especially if one
compares with the classical value of 1.5× T ) 40.5 K. We
have also computed the radial distribution function,g(r), for
He(4) both by FK-LPI and classically, see Figure 1. We see a
substantial change in the structure of the liquid; indeed the
quantum particles are able to approach each other more closely
(as close as∼0.20 nm), which should be compared with the
classical minimum distance of∼0.23 nm. We have not been
able to find radial distribution functions from PIMC/experiment
at our thermodynamic point, but the lower limit of∼0.20 nm
is in quantitative agreement with PIMC-basedg(r)s at other low-
temperature thermodynamic points, see ref 8.

In Figure 2, the effective-frequency distribution is shown.
By convention, imaginary frequencies, associated with unstable
normal modes, are shown on the negative frequency axis. As
is clearly seen, they represent a significant part of the spectrum.

W(q,p) ) ∑
n)1

3N 2

Rn ( Rn

coth(pΩn(rc)â

2 ))1/2

×

exp(-
1

2
λn

-1(ηn - ηn,c)
2) exp(-µnνn

2) (25)

L × Q ) n2π (26)

VHe-He
Aziz (r) ) ∑

i)1

3

γi exp(-
1

2
r2/Ri) (27)

Figure 1. Radial distribution functions for He(4) atT ) 27 K and
density 0.25 g/cm3. Solid line, Wigner; dashed line, classical.

TABLE 1: Gaussian Parameters for the He(4)-He(4) Aziz
Interaction Potential

i Ri/bohr2 γi/Hartree

1 0.891553 0.615
2 9.1628 -0.000237363
3 1.62309 0.131044
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However, we note here that these imaginary frequencies do not
present a problem in the present context. As discussed in ref
26, the equations are well behaved as long asp|Ωn(rc)| < πkBT.
At 27 K, this cutoff occurs at 59 cm-1. Hence, it is evident
from the data in Figure 2 that there is only a very small
component of the imaginary wing outside this range. For large
magnitude imaginary frequencies, we use the convention26 that
the value ofνn (cf. eq 18) is chosen the same as that reached as
the cutoff is approached, namely,νn ) 0.

4.2. Van Hove Correlation Function.In Figure 3, we show
the calculated real and imaginary parts of the complex conju-
gated Van Hove CF. Also is shown a fit to the real part using
a sum of Gaussian functions. We note the relatively large
imaginary part of the CF, which vanishes classically, thereby
showing the true quantum character of the Helium liquid. Also
it is seen that the real part of the CF reaches a constant nonzero
plateau for long times; this is a direct consequence of the fact

that the Laue equation is not exactly fulfilled. The plateau value
(t large)

can be removed by considering the alternative CF

However, as is easily shown, the difference between the FK-
LPI implementations of eqs 10 and 29 is just an irrelevant
additive constant. This follows from the stationarity of
〈∑j)1

N exp(iQrj(t))〉 in the FK-LPI simulation due to the uni-
form single-particle position probability density. The plateau
value adds to the zero-frequency Fourier mode of the Van Hove
spectrum, and we have chosen to remove it when computing
the spectrum via eq 11 or eq 30. We have calculated the
spectrum in two different ways. The first is the “direct” way,
based on eq 11, where one utilizes the full CF (real plus
imaginary part) depicted in Figure 3. The other way is less direct
but numerically more appealing. One makes use of the analytical
Gaussian fit to the real part of the CF and computes the Van
Hove spectrum analytically by exploiting the formal identity
(derived from detailed balance) employing the real part of the
CF only

The spectrum computed via eq 30 with a Gaussian fit will
predictably produce a smooth result. In Figure 4, we show the
calculated spectrum using eqs 11 and 30. Very good agreement
is clearly observed, indicating that the FK-LPI method, for this
system, works consistently and that detailed balance is fulfilled
when utilizing the “direct” method based solely on eq 11.

The calculated spectrum from eq 30 should be convoluted
with the experimental instrument response, thereby yielding a
spectrum which could be compared with experiment.34 Such a
convolution however turns out to only have a negligible effect

Figure 2. Effective-frequency distribution for He(4) atT ) 27 K and
density 0.25 g/cm3.

Figure 3. Complex conjugated Van Hove CF atT ) 27 K and density
0.25 g/cm3. Solid line, FK-LPI CF (real part); dashed line, FK-LPI CF
(imaginary part);0, Gaussian fit.

Figure 4. Normalized Van Hove spectrum for He(4) atT ) 27 K and
density 0.25 g/cm3. Solid line, FK-LPI (eq 30); dashed line, FK-LPI
(eq 11).

S(QB,t) )
1

N
〈∑

j)1

N

exp(-iQrj)〉 〈∑
j)1

N

exp(iQrj)〉 ≡
〈Σ〉2

N
(28)

S̃(QB,t) )
1

N
∑
j,k)1

N 〈[exp(-iQB rbj(0)) -
1

N
〈Σ〉] ×

[exp(iQB rbk(t)) -
1

N
〈Σ〉]〉 (29)

S(QB,ω) )
1

2π
2

1 + exp(-âpω)
∫-∞

+∞
dt exp(-iωt)Real{S(QB,t)} (30)
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(A. Cunsolo, private communication) and is not included in
Figure 5, which shows the experimental and theoretical spectra.
Good agreement is clearly observed, especially for the widths
of the two spectra.

On the basis of a viscoelastic model, Verbeni and co-
workers34 calculated the second (reduced) and third moments
of S(QB,ω). In Table 2, we compare these experimental moments
with those derived from eq 30. Some comments are appropri-
ate: First, the exact first moment is calculated from eq 13.
Moreover, the value of the experimental reduced second moment
is obtained by interpolating the data of Figure 5 in ref 34. The
value given for the accurate third moment was calculated by
Verbeni and co-workers34 by utilizing an expression forR3 that
is exact for a purely pairwise additive potential.27 The expression
requires the He(4)-He(4) radial distribution function, pair
potential, and liquid kinetic energy. To evaluate this expression,
Verbeni and co-workers employed experimental radial distribu-
tion functions, the Aziz potential2 and the accurate kinetic
energies of Ceperley and co-workers.8 From Table 2, one
observes a very good agreement between the FK-LPI first and
second moments and those derived from theory or experiment.
In fact our reduced second moment is in better agreement with
experiment than a reduced second moment derived from a
truncatedp expression (see Figure 6 of ref 34), yielding a
reduced second moment of= 2.25. When comparing the third
moments, we see a somewhat larger disagreement between
experiment and FK-LPI. However, as is obvious from Figure 7
of ref 34, there is a considerable amount of uncertainty in the
determination of cubic moments forQ values above∼15 nm-1.
The good agreement between FK-LPI and the accurate theoreti-
cal result evident in Table 2 suggests that the current value is
indeed reasonable.

5. Discussion and Conclusion

We have applied the semiclassical linearized path integral
methodology to the problem of determining the Van Hove
correlation function for liquid He(4) at 27 K and a density of
0.25 g/cm3. Also the He(4) kinetic energy was calculated. As
this system is anharmonic and the CF considered is highly

nonlinear, this is a challenging test. All of these quantities were
found to be in very good agreement with experiment and
accurate theory. In particular, the close agreement between the
accurate PIMC-based kinetic energy and the energy predicted
by FK-LPI is a direct verification of the accuracy of the
approximate Wigner transform of ref 26, for this system.

It is interesting to speculate on why the LPI approximation,
or equivalently, the CW model, works so well for He(4) at this
thermodynamic point. Why is classical dynamics good enough
for propagating the Wigner-transformed free-particle Heisenberg
operator? One could speculate that the high density (equivalent
to a pressure of 3-4 kbar)34 makes the liquid solidlike and
henceforth harmonic. Since the CW model is exact for harmonic
potentials, this would explain matters. This argument can
however be ruled out by observing the large fraction of unstable
modes in Figure 2, and noting that the presence of these
discriminates a liquid from a solid. Hence, He(4) at our
thermodynamic point is not at all solidlike. As noted in ref 26,
if decoherence is strong enough, classical equations of motion
suffice for the evolution of the Wigner transformed operators.
We are confident that decoherenceis of key importance for the
accuracy of the FK-LPI approach to the dynamics in the He(4)
liquid. However, lacking a quantitative measure of decoherence,
we are limited to a qualitative discussion at this point. In this
respect, it is interesting to notice that, for harmonic models,
the decoherence functional5,11 can be explicitly constructed,
thereby opening up the possibility of a quantitative measure of
decoherence. One could produce an approximate decoherence
functional for general liquids based on the effective frequencies
and their associated normal modes.

Another issue is how harmonic/anharmonic is the dynamics
that are being probed? For example, the value of a diffusion
coefficient, which monitors motion over barriers, depends
strongly on anharmonic effects and is in fact zero for a strictly
harmonic model (e.g., a solid). On the other hand, the Van Hove
CF measures density fluctuations which are present also in a
harmonic solid and one concludes that this CF, for such a
system, is completely dominated by harmonic motion. To what
extent the liquid He(4) Van Hove CF is harmonic in character
requires a separate investigation but on qualitative grounds, we
should expect the CW/LPI approach to be more suitable for
determining Van Hove CFs than, e.g., diffusion coefficients.

To summarize, the FK-LPI theory has been shown to work
extremely well for determining the Van Hove spectrum of liquid
He(4). Further studies are clearly needed to gain a more
complete knowledge of its range of validity.
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TABLE 2: Moments of S(QB,ω) for ||QB|| ) 1.64 Å-1, T ) 27 K and Density 0.25 g/cm3 a

exp34 FK-LPI exact/accurate theory34 classical

p〈ω〉/cm-1 (eq 13) 10.4( 0.4 11.37 0.
R̃2 (eq 15) 1.8 1.71( 0.05 1.
R3/meV2 (eq 14) 165 (Q ) 1.67 Å-1) 106( 7 123 (Q ) 1.63 Å-1)

a Column numbers 2-5 refer to moments derived from: (2) experiment, (3) FK-LPI theory, (4) accurate theory, and (5) classical dynamics,
respectively.

Figure 5. Experimental and theoretical IXS spectra for He(4) atT )
27 K and density 0.25 g/cm3. Dotted Line, FK-LPI; solid line,
experimental.
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a preliminary theoretical IXS spectrum and for making their
experimental data accessible to the authors.

Appendix A

Here we derive eq 18 and show that the first moment of
S(QB,ω) is exactly given by FK-LPI theory. First, we derive the
multidimensional version of the Feynman-Kleinert quasidensity
operator (QDO) in eq 5

To proceed, we first transform eq 31 to a mass-weighted normal-
mode representation, via eqs 21-24

Equation 32 is the QDO of a harmonic oscillator of frequency
Ω(rc).17 It is easily generalized to the multidimensional case,
where it simply becomes the direct product of 3N one-
dimensional normal-mode QDOs each one in a form identical
to eq 32. As in section 2.4,η, λ, q, p, rc, pc, ηc, andνc will in
the following denote 3N dimensional vectors. The multidimen-
sional QDO expressed in mass-weighted normal modes is
accordingly

Next, we write the general many-dimensional Wigner transform,
defined in eq 2, also in mass-weighted normal modes. Using
eqs 21-24, we obtain

whereλ is a mass-weighted normal-mode coordinate vector and
(q̃,p̃) is the normal mode analogues of the sampled position and
momentum vectors (q,p)

and

To derive eq 18, we rewrite the free particle operator (QB is
chosen along thex axis)

whereQ is the norm ofQB, rj is the x-coordinate operator of
atomj, andηi is theith mass-weighted normal-mode coordinate,
see eq 21. We may now write

By inserting the expression forδ̂FK(rc,pc) in eq 33, we obtain

By performing the integral over theλ vector, we further get

Next we consider the expression

From the formula forFFK(rc,pc) in eq 4, we see that eq 42 is
quadratic inpc, or equivalently,νc. Integrating this vector out
in eq 42 yields

δ̂FK(rc,pc) )

∫∫ dx dx′ (MΩ(rc)

πpR )1/2

|x′〉 〈x|exp(ipc

p
(x′ - x) -

MΩ(rc)

pR (x + x′
2

- rc)2
-

MΩ(rc)R
4p

(x′ - x)2) (31)

δ̂FK(rc,pc) )

∫∫ dη dη′ (Ω(rc)

πpR )1/2

|η′〉 〈η|exp(i νc

p
(η′ - η) -

Ω(rc)

pR (η + η′
2

- ηc)2
-

Ω(rc)R
4p

(η′ - η)2) (32)

δ̂FK(rc,pc) )

∏
k)1

3N ∫∫ dηk dη′k (Ωk(rc)

πpRk
)1/2

|ηk′〉 〈ηk|exp(i νc,k

p
(η′k - ηk) -

Ωk(rc)

pRk
(ηk + η′k

2
- ηc,k)2

-
Ωk(rc)Rk

4p
(η′k - ηk)

2) (33)

(Ĉ)W[q,p] ≡ ∫-∞

+∞
dλ exp(ip̃λ/p)〈q̃ + 1

2
λ|Ĉ|q̃ - 1

2
λ〉 (34)

q̃ ) U†(rc)M
1/2q (35)

p̃ ) U†(rc)M
-1/2p (36)

∑
j)1

N

exp(-iQB rbj) ) ∑
j)1

N

exp(-iQrj) )

∑
j)1

N

exp(-iQ[M-1/2U(rc)η]3(j-1)+1) (37)

(δ̂FK(rc,pc) ∑
j)1

N

exp(-iQrj))W[q,p]

) ∫-∞

+∞
dλ exp(-ip̃λ/p) ∑

j)1

N 〈q̃ +
1

2
λ| δ̂FK(rc,pc) ×

exp(-iQ[M-1/2U(rc)η]3(j-1)+1)|q̃ -
1

2
λ〉 (38)

) ∫-∞

+∞
dλ exp(-ip̃λ/p)〈q̃ +

1

2
λ| δ̂FK(rc, pc)| q̃ -

1

2
λ〉 ∑

j)1

N

exp( i

2
Q[M-1/2U(rc)λ]3(j-1)+1) exp(-iQqj) (39)

(δ̂FK(rc,pc) ∑
j)1

N

exp(-iQrj))W[q,p] )

∫-∞

+∞
dλ exp(-ip̃λ/p) ∑

j)1

N

exp( i

2
Q[M-1/2U(rc)λ]3(j-1)+1) ×

exp(-iQqj) ∏
k)1

3N (Ωk(rc)

πpRk
)1/2

×

exp(iνc,k

p
λk -

Ωk(rc)

pRk

(q̃k - ηc,k)
2 -

Ωk(rc)Rk

4p
λk

2) (40)

(δ̂FK(rc,pc) ∑
j)1

N

exp(-iQrj))W[q,p] )

∑
j)1

N

exp(-iQqj) ∏
k)1

3N 2

Rk

exp(-
Ωj(rc)

pRj

(q̃j - ηc,k)
2) ×

exp(-
1

pΩk(rc)Rk
(νc,k - p̃k +

p

2
Qmj

-1/2U(rc)3(j-1)+1,k)2)
(41)

∫∫ drc dpc FFK(rc,pc)(δ̂FK(rc,pc) ∑
j)1

N

exp(-iQrj))W[q,p]

(42)
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or

This completes the proof of eq 18.
Next we proceed to derive the first moment rule in eq 13.

Again, theQB vector lies along thex axis. We start by observing
that from the inverse of eq 11

we obtain

or from eq 12

From eq 1, the FK-LPI approximation to eq 47 is

where pi is the x component of the sampled momentum

pertaining to particlei. Utilizing eq 43, we obtain

Next, transform thep variable into the mass-weighted momen-
tum vector,p̃, using eq 36. After integrating this vector out, eq
49 becomes

SinceU-1(rc) ) U†(rc), we have

and accordingly, we may impose the restrictioni ) j. The
remaining integrations overq andrc cancel the partition function
ZFK, leaving us with

as was to be proved.
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