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This paper discusses the finding of vertex to vertex distances in molecular graphs. Having found these distances,
one can obtain a method for canonical numbering of the atoms in a molecule, which depends on the atomic
properties and the distances between equivalence classes. This does not use the traditional Morgan algorithm.
Using distances one can also perceive rings. Finally, substructures of interest can be detected using distances
between the central atoms of various functional groups. The set of vertex distances are thus a kind of lens for
examination of the graph properties of molecules. Applications have thus far been only in organic chemistry.
Application to physical chemistry may appear wherever molecular graphs can be helpful, such as in calculations
concerning molecules of high symmetry.

1. Introduction

Ring perception in molecules, and graph classification of the
atoms therein, is of obvious importance in organic chemistry
applications. It is also useful in molecular modeling, where the
graph structure of molecules defines the force fields employed
for the molecular mechanics calculations underlying the models.
This paper describes an algorithm for finding vertex to vertex
distances in molecular graphs. This is then followed by the
canonical numbering of the atoms, which depends on the atomic
properties and the distances between equivalence classes.

The mathematical concept called a graph has only edges and
vertexes. Each edge connects two vertexes. There is no concept
of length or angle. We can describe any graph by means of a
connection table. In a connection table, after numbering the
vertexes of a graph, we can for each vertex list the numbers of
the vertexes to which it is connected to by edges. In the graph
representation of a molecule, a chemical bond is taken as an
edge, the atoms as vertexes. Equivalence classes of atoms under
graph automorphisms can be found, as well as rings. The
shortest path between atomx and atom y in the molecule is the
path with the fewest edges. The graph distance between any
two atomsx andy is the number of edges on the shortest path
connectingx and y. Conventionally, hydrogen atoms are not
mapped onto vertexes but rather are viewed as local properties
of the atom to which they are bonded. Also we assume that we
are dealing with a connected graph, i.e., a graph in which every
vertex is connected to every other vertex via a series of edges.
Herein we present new methods for canonically ordering the
atoms of a molecule and for perceiving the rings in a molecule,
both depending on the graph distance properties in the molecule.

2. Methods for Finding Atom-to-Atom Distances in a
Connected Graph

There are two such methods. Both of them find the distances
in ascending order of size. The atoms can be numbered

arbitrarily. The distance values of unity are already displayed
in the adjacency matrix, which lists the numbers of neighbors
of each atom.

We wish to findd(x,y), the distance in edges between atoms
x andy. The well-known method is the matrix multiplication
method. It is based on the powers of the adjacency matrix. The
latter is a symmetric square matrix,A, in which Ax,y ) Ay,x )
1 if x and y are neighbors in the molecule. OtherwiseAx,y )
Ay,x ) 0. A is of sizen × n, wheren is the number of atoms in
the molecule. Consider the equation

If Ax,j ) 1 andAx,y ) 0 andAj,y ) 1, thenAx,y
2 ) 1.

This is clear becausex-j-y form a string. Becausex is not
adjacent toy, x-j-y cannot form a three-membered ring. If
we consider what is involved in the matrix multiplication ofA
by A then we know that the sum

must be nonzero. This is so because there is at least one term
in the sum, i.e.,Ax,j Aj,k, which is nonzero. We conclude that
the distance fromx to y is 2. We can state more generally the
theorem that

For any powerp greater than 1, of the matrixA, if Ax,y
p is

nonzero for this value ofp but it was zero inAz for all values
of z from 1 to p - 1, then the distance fromx to y is p.

Proof: The elements ofAp are

Let us suppose the following:
Ax,y

z is zero for all values ofz from 1 to p - 1.
There exists an atomj that is a distance of unity fromy. The

theorem holds for the distancep - 1.
† Part of the special issue “Richard Bersohn Memorial Issue”.
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In other wordsAx,j
z is zero for all values ofz from 1 to p -

2 but it is nonzero forz ) p - 1.
Consider the productAx,j

p-1Aj,y. This is

which is Ax,y
p . BecauseAj,y is 1 andAx,j is nonzero then the

value ofAx,y
p must be nonzero. In this way we have a proof of

the theorem by induction. The theorem is true forp ) 2; hence,
it is proven. Unfortunately, this elegant algorithm requires many
multiplications hence it is slow.

In the more rapid method that we devised, we examine all
pairs of neighbors{x, y} such thatx < y. All neighborsj of y,
for which the distanced(j,x) is unknown must be separated from
x by a distance of 2.d[x][ j] must equald[j][x] in an undirected
graph; so they are both given the value 2. Similarly, all neighbors
k of x for which the distanced(k,y) is unknown, must have
corresponding distancesd(k,y) andd(y,k) equal to 2. We next
examine all pairs of atoms{x, y} such thatx < y and x andy
are separated by a distance of 2. The neighbors ofx andy will
similarly give us all distances of 3 that exist in the molecule.
We proceed in this way until all then(n - 1)/2 distances are
known. The underlying principle is that ifd(x,y) ) z, then any
neighborj of x the distance of which fromy is hitherto unknown
must have the valued(x,j) ) z + 1. This is analogously true
for any neighbork of y. Inevitably, we find the distances in
ascending order.

3. Distance Method for Numbering the Atoms of a
Molecule Canonically

Strictly speaking, a system for storing or manipulating
molecular structure does not need a uniform system for
numbering the atoms of a molecule. In principle, one can always
do an atom by atom comparison1,2 so that benzene with atoms
numbered from 1 to 6 in order around the ring can be mapped
onto benzene in which the neighbors of atom 1 are 2 and 3 and
the neighbors of 6, para to 1, are 4 and 5 (see Figure 1).

However, there is a saving of time if we have a representation
that is uniform by means of a set of rules. We can then more
quickly answer the question “Are these two isomers the same
molecule?” This is important for files such as those of Chemical
Abstracts Service, which contain computer representations of
the structures of more than 24,000,000 molecules. We can locate
a set of isomers using an index based on the exact molecular
weight. But a set of isomers may contain many molecules, the
rapid distinguishing of which presents a problem to be solved.
In our case, when our synthesis design program is searching
for efficient routes, we frequently generate the structure
representations of more than 2,000,000 molecules. It is a distinct
advantage to be able rapidly to decide whether a structure
previously generated with the same molecular formula is or is
not the same molecule as the current isomer.

In our method we first divide the atoms into equivalence
classes and next we decide the numbering of atoms within the

classes. The relationship between the current order of the atoms
and their original numbering is preserved separately. The
Morgan algorithm3 is not used. In the Morgan algorithm there
is a sum over properties of neighbors that is passed along step
by step. This means that at first two atoms with the same atomic
properties are differentiated if possible by the atomic properties
of their neighbors. If the neighbors of atom x have the same
atomic properties as the neighbors ofy, then we reach further
out to comparing the next nearest neighbors and so on until
either we reach a differentiating environment at some distance
d from the atomsx andy or we have explored the most distant
atoms and conclude that the atoms are equivalent. We can then
number the atoms according to a number derived from this
search. For example the first CH2 carbon in CH3CH2CHFCH2-
CH2CH3 is distinguished from all the other ones as it receives
information from the nearby fluorine atom sooner than the third
CH2 carbon. Similarly, it receives information from a methyl
carbon sooner than does the second CH2 carbon. The Morgan
algorithm has been criticized by Cieplak and Wisniewski4 as
being on occasion ambiguous so the same molecule can acquire
two or more registration numbers.

Our assignment of the atoms to equivalence classes begins
by dividing the atoms into various sets depending on their atomic
property values. These sets are not necessarily the ultimate
equivalence classes. We use an ad hoc “atomic property” based
on (1) atomic number, (2) unsaturation value, (3) the number
of attached hydrogen atoms, and (4) a functional group number.
We first sort and rank the atoms in descending order of their
atomic property values. The property value of an atom is the
sum of the following four quantities: (1) 10,000,000× atomic
number, (2) 100000× the unsaturation value, (3) 10000×
(4 - the number of attached hydrogen atoms, and (4) the
functional group number.

The unsaturation value is 0 for a saturated atom, 1 for an
atom in a six-membered aromatic ring, 2 for an atom in a
carbon-carbon double bond, 4 for an atom doubly bonded to
a heteroatom, 6 for an atom doubly bonded to two other atoms,
and 8 for an atom triply bonded to another atom. The reason
for using 4 minus the number of attached hydrogen atoms rather
than the number of attached hydrogen atoms directly is our wish
to give more substituted atoms a higher value. The atom with
the highest value of the atomic property is numbered 1 and so
on. The functional group number is not a strictly local property.
An aldehyde carbonyl carbon is given the arbitrary value of
112, an ester carbonyl carbon gets the functional group value
of 144, a ketone carbonyl carbon gets the functional group
number 136. These numbers differ even though the local
properties of the atoms are all the same. So the functional group
number depends on what neighbors are present. In most
functional groups only one atom gets the functional group
number. The other atoms in the functional group are usually
given the functional group number 0. For example, in triethyl-
amine, only the nitrogen has a nonzero functional group number,
i.e., 100. The other six non-hydrogen atoms all have the
functional group 0. An exception to this scheme is the pairing
of atoms with identical local properties, e.g., the oxygen atoms
in a peroxide, the carbons in a RCHx ) CHxR double bond
wherex is the same for both doubly bonded carbons, the doubly
bonded nitrogens in an azo compound RNdNR′, etc. These
functional group numbers, i.e., 100, 112, 136, and 144 are all
arbitrary and are only a device to save time when sorting the
atoms. Because they are arbitrary, they are of little general
importance for other canonicalization algorithms and it is
unnecessary to describe their assignment scheme in detail.

∑
j)1

n

Ax,j
p-1Aj,y

Figure 1.

8020 J. Phys. Chem. A, Vol. 108, No. 39, 2004 Katouda et al.



Let us take 3-methylbutanal as a specific example. Figure 2
shows the initial and final, canonical numbering. At the end of
the sorting, the oxygen atom, originally numbered 6, will have
successively exchanged values with atoms numbered 5, 4, 3, 2,
and 1. Similarly, the atom originally numbered 1 will have
exchanged values with atoms originally numbered 6, 5, 4, and
2. Atom number 3 will have successively exchanged values with
atoms originally numbered 6, 5, 4, and 2.

In this example, CH3, CH2, saturated CH, unsaturated CH,
and unsaturated oxygen constitute five sets. Four of these sets
have a unique atom and the methyl set has two equivalent
members. In handling a more general molecule, we have to go
further because there will be nonequivalent methyl groups, e.g.,
in cholesterol, and similarly more than one situation for saturated
CH2, etc. In other words, the sets may consist of multiple
equivalence classes.

The next task the algorithm prescribes at this point is the
delineation of the boundaries of the sets. In the case of
3-methylbutanal we have the following set boundaries:

When sets consist of a single atom, the atom is unique. The
set is now recognized as an equivalence class. When sets consist
of more than one atom, we have to find out if all the atoms in
the set are equivalent, i.e., if it is an equivalence class or if the
set has nonequivalent members.

The basic technique used here is to compare the distances of
the atoms of multiatom sets to the atoms of other sets. In the
case of 3-methylbutanal above, we find that the two methyl
carbon atoms are equidistant from the saturated CH, equidistant
from the methylene, in fact, equidistant from all the other atoms.
Hence, the methyl groups are judged to be equivalent. To define
it more generally, atomsx andy are equivalent if and only if
for all setsZ, the set of the distances ofx to the members of the
setZ is the same as the set of the distances ofy to the members
of the setZ.

If x andy are not equivalent by the above measure then the
atom numberedy must be removed from the set in whichx is
found. The atomy is now assigned to a new set.

At this point, the atoms are assigned to various atom sets.
Inside of each set, all the atoms must be equidistant from the
other sets. In other words, ifx and y are atoms in the same
atom set then the set of distances of atomx from any atom set
Z must be the same as the set of distances of atomy from the
same atom setZ. The precedence of the sets depends on their
distances from the other sets. Initially, one atom set will have
the highest ranking. If atoms in the same set are found to be
nonequivalent, then they are placed in different sets with new
boundaries for the old set and the new set. The process continues
until we cannot find any more nonequivalent atoms in any set.

We now conclude that the sets are equivalence classes. For
example, naphthalene initially looks like just two sets, the two
ring junction atoms and the other eight atoms. But the latter
have two different sets of distances from the ring junction atoms,
thus dividing them into the classes ofR atoms andâ atoms.

Graph distance has no relationship to geometry, hence none
to stereochemistry. Here we need to introduce some nongraph
distinctions for so far considered equivalent atoms. There are
two-dimensional distinctions. Atoms associated with a double
bond around which rotation is not possible, become nonequiva-
lent if one atom is associated with a double bond with theE
arrangement and the other atom is associated with a different
double bond of theZ arrangement. TheE arrangement atom is
given precedence. Similarly, in three dimensions, chiral centers
that are exchanged by a symmetry operation constitute an
equivalent clockwise and counterclockwise pair, and the atom
with clockwise arrangements of its ligands takes precedence.
Also in a molecule such as 1-chloro-2,2-dimethylcyclohexane
the methyl carbon that is on the same side of the ring as the
chlorine atom gets a higher priority than the other methyl carbon.
They are not in the same class.

Besides collecting the atoms into equivalence classes, we must
also sort the connection table so that the classes appear in the
connection table in monotonically descending order of prece-
dence. The sort is based on a comparison. If two classes have
different atomic properties, then they must be exchanged if the
one with higher values of the atomic properties happens to be
closer to the end of the connection table. If the two classes have
equal values of the atomic properties, then the precedence is
based on the sorted set of distances to the other classes. The
class with smaller value of this sorted set of distances must
have higher precedence. If the class with higher precedence
happens to be lower down in the connection table, then the
positions of the two classes in the connection table must be
exchanged. This comparison and exchange process continues
until the connection table contains the classes exactly in the
descending order of precedence.

We believe that ours is the first working use of such a non-
Morgan algorithm in a large scale chemical information system.
We have not previously published this algorithm for canonically
numbering the atoms of a molecule. The synthesis design
program developed by the authors is in use by more than 100
users at the Sumitomo Chemical Corp.5

3.1. Numbering the Neighbors.Simply sorting the equiva-
lence classes is necessary but not always sufficient to provide
the canonical numbering. Consider for example a pyridine
molecule. We have a choice of two numberings, as shown in
Figure 3:

We choose the lexicographically minimal numbering, which
is that shown in the left structure above. This is easy enough
when there are only two choices. But in anthracene there are
3456 choices. To generate them all and then find the lexico-
graphically minimal one is more time-consuming than using
the following rules.

Figure 2. 3-Methylbutanal, with initial numbering on the left and final,
canonical, numbering on the right.

set no. beginning end

1 1 1 O unsaturated
2 2 2 CH doubly bonded to a heteroatom
3 3 3 CH saturated
4 4 4 CH2 saturated
5 5 6 CH3 methyl

Figure 3.
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3.2. Connections between Atoms.We wish to get the
lexicographically minimal representation of the molecule. For
example, in butane there is a two-membered set of CH2 carbons
and a two-membered set of CH3 carbons. We must have atom
number 1 connected to atoms numbered 2 and 3. Similarly, atom
number 2 must be connected to atoms 1 and 4. The adjacency
matrix, or connection table, is shown in Figure 4. The alterna-
tive, in Figure 5, is lexicographically larger than the first one.

How then should we obtain the lexicographically minimal
numbering in a far more complex situation? First we must find
out if there are rings in the molecule. The standard equation6 is

If the number of rings is zero, we have only to choose the
minimum unused number. For example, see the case of
triethylamine in Figure 6.

When we are choosing the neighbors of atom 2, we see that
the bond to atom 1 is already decided for it. It remains to choose
an atom of the set{5, 6, 7}. The smallest unused atom is 5 so
we use it. Similarly, atom 3 has already been assigned 1 as a
neighbor, and the smallest hitherto unused neighbor of the set
{5, 6, 7} is 6.

The case of a cyclic molecule is not so trivial. In this case
we first examine the rings using the noncanonicalized connection
table. The general rule is to select for the atom in an equivalence
class the smallest unused compatible number. The content of
the term compatibility will be explained later. Let us consider
cyclohexane. All the atoms are in the same equivalence class
{1, 2, 3, 4, 5, 6}. Clearly, pursuing our smallest unused number
principle atom 1 must be bonded to atoms 2 and 3. This gives
us the following partially complete connection table (Figure 7).

Now we decide on the neighbors of atom 2. Atom 1 has
already been chosen. We have a proviso that the smallest unused
number in the appropriate equivalence class must be used if by
so doing we do not form a ring that the original molecule lacked.
In detail, if a certain numbering implies a ring, then the ring
must be the same size as a ring known to be present in the
molecule and contain the same number of atoms of the same
equivalence classes arranged in the same order around the ring.
This is what we mean by the term compatible. Otherwise, we
must reject the numbering. For example, if we chose 3 as the
neighbor of 2, then we would get Figure 8.

This implies a three-membered ring that we know not to be
present from a previous examination of the rings in the non-
canonicalized connection table. Hence, instead of the smallest
unused number, we use the smallest unused compatible number.
In this case it is 4. With 4 as the neighbor of 2 we get Figure 9.

Now we consider the other neighbor of atom 3 besides atom
1. It cannot be atom 2 because atom 2 has both of its neighbors
assigned. So the smallest unused number is 4. However, 4 is
not compatible as the resulting connection table implies a four-
membered ring, 1-2-4-3 (Figure 10), and such a ring does

not exist in the molecule, by our previous examination. Using
the next smallest unused number, i.e., 5, we get Figure 11.

As above, atom 5 would not suit as a neighbor for atom 4
because that would imply a nonexistent five-membered ring.
We are forced to use the smallest remaining atom, the sole
remaining atom, 6, as the second neighbor of atom 4. Finally,
atom 5 must have a second neighbor and the only unused atom

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 4.

Figure 5.

number of rings) number of edges- number of nodes+ 1

Figure 6.

Figure 7.

8022 J. Phys. Chem. A, Vol. 108, No. 39, 2004 Katouda et al.



is 6, obtaining thus the canonicalized connection table as shown
in Figure 12.

4. Simple Ring Perception Algorithm Using Atom-Atom
Graph Distances

We present a simple algorithm for finding the smallest set
of smallest rings of a molecular graph. Compared with
conventional methods, the algorithm reduces blind traversal of
the graph. It has an extra cost of a different kind, i.e., the time
spent in calculating the graph distance between each pair of
atoms in the molecule.

A monumental discussion of the problem of recognition of
rings in computer representations of molecular structure and a
summary of the literature on this subject prior to 1990 is in the
papers of Lynch et al.7-9 More recent advances are summarized
by Figueras.10

The algorithm to be described here finds the smallest set of
rings in a molecule such that in each ring of the set no proper
subset of the ring atoms constitute a ring. The earliest algorithms
for accomplishing the task of finding the smallest set of smallest
rings of a molecular structure representation may be described
as traversal algorithms. In one such algorithm, one travels on
paths branching out from a particular atom until one of the paths
meets the starting point again. Thus a ring is found. This might
be described as a wandering algorithm.2,3,4 The algorithm of
Balducci and Pearlman11 is distinguished from the previous ones
in that the traversal is concurrent. At each atom in the graph
one collects all possible paths from other atoms. When atom Y
has received a path message from atom X and atom X has
received a different path message from atom Y, then a ring is
found. In the Balducci-Pearlman algorithm there are as many
starting points as there are atoms in the molecule. Because the
“broadcast messages”, i.e., paths, have monotonically increasing
length, the smallest rings are found first. The work of Balducci
and Pearlman11 also established the exact complexity of their
algorithm, a unique feat in this area.

Later Figueras10 introduced the newest method for finding the
smallest set of smallest rings. It is the most efficient algorithm
devised so far. Like the Balducci-Pearlman it collects informa-
tion at each atom simultaneosly from all atoms in the molecule.

The algorithm we give here might be described as a “look
ahead” algorithm. We do not traverse until we are sure we have
discovered opposite atoms in a ring. In general, these opposite
atoms are found before establishing the identities of any
intervening atoms in the ring.

4.1. Outline of the Method for Finding Odd-Membered
Cycles. The odd-membered ring will consist of 2D + 1
members, whereD is some positive definite integer. For any
pair (x, y) of neighboring atoms, the requirement that they are
in a ring of size 2D+ 1 implies that there must exist some
atomz that is equidistant fromx andy. Furthermore, the distance
from z to x (and toy) must be exactlyD. The algorithm must
guarantee that the ring shared by atomsx, y, andz is one of the
smallest set of smallest rings. WhenD is 1, the search over all
pairs of neighboring atoms guarantees that we have found all

of the three-membered rings. Next we find, by an analogous
process for even-membered rings to be described below, all of
the four-membered rings. After that we seek five-membered
rings, etc. Throughout, we use the principle that we will not
reuse any pair of atoms (x, y) if the bond between them is
already present in a perceived ring.

For example, in Figure 13 the edgex - y has been used to
find ring II; therefore it cannot be used to find ring III. To find
ring III, we must start with a bond that has not yet been found
to be cyclic, e.g., the edgey-b. Hence we will never find the
compound ring consisting of the fusion of I and II. Ring III
must be found starting from another pair, e.g.,y and b.
Whenever there is no embedded ring in the molecule, each ring
of the smallest set of smallest rings must contain at least one
edge that is unique to it.

Let us look at the task of finding the odd-membered rings
such thatD is greater than 1. We scan through the atoms of the
molecule looking at all pairs of neighboring atoms, not
constituting a cyclic bond. Finally for the pair{x, a}, we find
an atomb such thatd(x,b) ) d(a,b) ) D. We suspect that atoms
x, a, andb lie on a hitherto undiscovered ring. However, we
have to rule out the case where b is on an acyclic chain
connecting two rings. To eliminate this possibility, we look for
a pair of neighbors of atomb, such that one of the neighbors,
bnbr1, is at a distanced - 1 from x, and the other neighbor,
bnbr2, is at a distanced - 1 from atoma. If this pair is found,
we have ruled out the case wherein atomz lies on an acyclic
chain. Ifd ) 2, we have found the ring. It consists of the atoms
x, bnbr1 which isy, z′, bnbr2 which isz′, anda.

If d is larger than 2, we have the general situation depicted
in Figure 14, where we find an odd-membered ring of size 2D

+ 1. Atomsx andy are known to be neighbors of each other
and their distance fromz is D in both cases. Here we still need
to collect theD - 1 intermediate ring atoms intervening between
znbr1 andx and those intervening betweenznbr2 andy. Thus,
we find the neighbor ofznbr1 nearest tox and add it to our
path. Then we find the neighbor of this atom nearest tox and
add it to our path, and so on until we reachx. Similarly, we

Figure 12.

Figure 13.

Figure 14.
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find the neighbor ofznbr2 nearest toy and then the neighbor
of that atom nearest toy, etc. until we reachy. We have thus
collected all the atoms of the ring. They arex, ...znbr1, z, znbr2,
... y. The chains represented by ... are of lengthD - 2.

4.2. Outline of the Method for Finding Even-Sized Cycles.
The even-sized rings are found somewhat similarly. Here,
instead of beginning with an edge, i.e., a pair of atoms, we start
with a triplet of atoms, two atomsx andy, separated by a graph
distance of two edges, and their common neighbor, atoma (see
Figure 15). Next we proceed as with the odd-sized rings; i.e.,

we seek an atomz, nota, that is equidistant fromx andy. This
distance isD. As in the odd-numbered ring case, there must be
2D + 1 atoms on the path fromx to z plus the path fromz to
y. The paths in question must be the shortest possible paths. In
this even-numbered ring case we must add atoma to complete
the ring, giving this ring a total size of 2D + 2. The initial
value ofD is 1, as 4 is the size of the smallest possible even-
numbered ring. TheD - 1 atoms intervening betweenx andz,
as well as those betweenz andy, can now easily be collected,
using the nearest neighbor principle.

Here again, the ring in question is automatically one of the
smallest set of smallest rings because we recognize the rings
from the smallest to the largest. For example, we would find
two six-membered rings in naphthalene and this exhausts the
number of rings in the smallest set that includes all the cyclic
atoms. We would thus never “see” the ten-membered ring. If
the naphthalene was connected to another ring system with a
twelve-membered ring, we still could not “see” the ten-
membered ring because our algorithm forbids under most
conditions the reuse of a known cyclic edge to begin a new
ring. Here we require that at least one of the pair (the edge
betweena andx, the edge betweena andy) must not appear in
any previously discovered ring.

Thus we find the other atoms of the ring that consists of atoms
a, x, ..., z, ..., y. We replace ... by atoms when we find the
neighbor ofx that is nearest toz, and the neighbor of that atom
which is nearest toz, etc.

4.3. Detailed Steps in the Procedure for Finding the
Cycles.A. Calculate the number of rings, in the smallest set of
smallest rings. Our symbols are: nrings, the number of rings
in the smallest set; nedges, the number of edges in the molecule;
nvertexes, the number of vertexes in the molecular graph. The
chemical meanings are, respectively, the number of rings in this
smallest set, the number of bonds (single, double, triple or
whatever), and the number of atoms in the molecule. A
universally known equation is that nrings) nedges+ 1 -
nvertexes. If nrings is zero we exit.

B. Prune away all atoms of local degree 1, i.e., terminal atoms.
Repeat this process until there is nothing left to prune. This
removes all acyclic structures attached to rings except chains
connecting rings. If nrings is unity, then we do procedure C. In
a multicyclic molecule there is the possibility of a ring assembly,
i.e., some rings connected by acyclic chains.

C. When there is a single ring in the molecule, start with an
arbitrary unpruned atom and make a list beginning with the

atom, then one of its neighbors, next a neighbor of this neighbor
that is not yet on the list and so on, until all the unpruned atoms
are on the list. This list comprises the atoms of the single ring
in order of traversal. We then exit.

D. When there are multiple rings, we do the following steps:
i. Calculate all the distances,d(i,j) as above.
ii. Find the three-membered rings as follows: Consider all

pairs of unpruned atomsx andy in the molecule, such thaty is
greater thanx. For each such pair look for a neighbor ofx among
the neighbors ofy. If we have found such an atom,z, then the
atomsx, y, and z constitute a three-membered ring. In this
algorithm, whenever we find a ring that has just one atom of
degree 3 and no other atoms of degree greater than 2, then we
prune away the entire ring. We next examine all the atoms of
degree 2 that intervene between an atoma and the nearest atom
of degree higher than 2, to be calledb. Having found such an
atom, we then delete atoma and all the atoms on the chain
betweena andb, not including atomb.

iii. Set an integer variable,currentSize, equal to 3.
iv. IncrementcurrentSizeby 1. If currentSizeis greater than

the number of unpruned atoms in the molecule, then we have
the case of multiple embedded rings, so we go to step xii. If
currentSizeis even, then we go to step ix for the even size ring
procedure. Otherwise, we go to step v for the odd size ring
procedure.

v. Begin the odd size procedure. SetD ) (currentSize-
1)/2. Scan for a pair of atomsx andz, not previously examined
in this step, which are separated by a distance ofD. When there
is no such pair remaining but we have found fewer rings than
the calculated number nrings, then return to step iv, deleting
the requirement that the starting edge should not be in a ring
that has previously been found. This is the case where we have
multiple surrounded rings.

vi. Scan the neighbors ofx. If one of them, to be calledy, is
also at a distance ofD from j and the edge betweenx andy is
not known to be cyclic, then we go to step vii. Otherwise, we
return to step v.

vii. Becausey is such thatd(x,z) ) d(y,z) ) D, we look at
the neighbors ofz to see if there is one that isD - 1 edges
away fromx and another neighbor that isD - 1 edges away
from y. If such two neighbors of atomz are found, then we
have located a ring. WhenD is 2, we have a five-membered
ring. This is the set of atoms{x, y, znbr2, z, znbr1}. More
generally, the ring found has length 2D + 1. It will initially
contain the five atomsx, y, z, the neighbor ofz that isD - 1
edges fromx, namelyznbr1, andznbr2, the neighbor ofzwhich
is D - 1 edges away fromy. Then we generate the path from
x to znbr1, without any blind traversal, by finding the nearest
neighbor ofx to znbr1 and then the nearest neighbor of that
atom toznbr1 and so on, until the latest found is a neighbor of
znbr1. By the same method of successive nearest neighbor
location, we complete the last part of the ring, the string of
atoms betweeny and znbr2. When we have found all these
atoms, we have found a ring of the smallest set having length
2D + 1 or currentSize. If the ring has only one atom that in the
pruned structure is of degree 3 (i.e., it has three neighbors) and
no other atoms that have a degree higher than 2, then we prune
away the ring and any attached acyclic chain leading to another
ring. Return to the beginning of step vii.

viii. Having finished the scan over the unpruned atoms, we
have found all rings of lengthcurrentSizeand go back to step iv.

ix. Scan all the unpruned atomsA. For each such atom we
scan its unpruned neighbors to find a pair of atomsx and y
such that this pair has not previously been examined in this

Figure 15.
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step, with the current values ofcurrentSizeand A. Either the
edge betweenA andx or the edge betweenA andy must not be
in a previously discovered ring. If there is no such pairx andy
for any unpruned atomA, then go back to step viii.

x. Select an atomz, other thana, x, andy, which has not
previously been used in this step with the current values of
currentSize, a, x andy. Atom z must be equidistant fromx and
y and the distanced(x,z) ) d(y,z) ) D. If there is no suchz,
then go back to step ix.

xi. If z is not equidistant fromx andy, the distance beingD,
then go back to step ix. Next findznbr1 andznbr2, being a
distance ofD - 1 edges away from, respectively,x andy. We
now have discovered an even-membered ring of length 2D +
2. If we have finished the scan that began in step ix, and the
number of rings found is less than the calculated smallest
number of smallest rings, then return to step iv.

xii. The Embedded Ring Case. Usually at this point we have
found all the rings of the molecule that are in the smallest set
of smallest rings. Consequently, all atoms not found to be cyclic
and not pruned must lie on chains connecting rings. An
exception is the case where the graph has multiple surrounded
(embedded) rings which are such that each of their edges are
part of another ring. An example is shown in Figure 16.

Ring V is embedded in the other rings. It has no unique edge.
Assume that we have first found rings I, II, III, and IV. At this
point there are no acyclic edges left with which to begin a new
ring. There remains ring V, which is an embedded ring of the
smallest set. All of its edges are in other rings. The situation is
detected by the program from the fact that the number of rings
found is less than the calculated size of the smallest set of
smallest rings and yet there are no more edges still considered
to be acyclic. In this case we drop the requirement that the
starting edge must not be a part of a ring that has already been
discovered and resume the discovery process. This algorithm
is thus slower in finding embedded rings than it is in finding
nonembedded rings.

4.4. Some Differences of This Algorithm from That of
Figueras. The breadth of the first algorithm of Figueras10

depends on the generation of paths, and the examination of the
intersections of the paths, when the trail down one path reaches
an atom that itself has a path leading up to it. A ring has been
found when there is only one atom that lies on both paths. In
his words, the intersection of the paths is a singleton. In our
algorithm, e.g., in the odd size rings situation, we must first
spend a considerable time searching for a set of three atoms as
described above, i.e, an adjacent pair and a lone atom that is
equidistant from the that pair. Then we must seek a pair of
neighbors of the lone atom such that each are the same distance
from one of the starting pair of atoms. However, unless there
is an intervening acyclic chain, we are now sure that a new
ring has been found. Essentially, like the algorithm of Figueras,
our algorithm looks ahead and does not find meeting paths that
have larger than a singleton intersection. “Looking ahead” also
takes time, as we scan for a suitable pair or triple. Even after
optimizing our code, the algorithm of Figueras is about twice
as fast as ours for typical cases. We hope in the future to explore

the properties of an algorithm which will combine the Figueras
algorithm and ours.

4.5. Discussion: Certain Rings Outside the Smallest Set
of Smallest Rings.Any practical algorithm for finding the
synthetically important rings of a molecule has to find other
rings besides those in the smallest set of smallest rings, e.g., all
the rings in a bridged system. When two rings have a chain of
more than two atoms in common, this chain is recognized as a
bridge. The two terminal atoms in this chain are recognized as
bridgeheads. There is a third ring that includes the two rings
and the bridgehead atoms minus the other atoms of the bridge.
The two smallest of the three rings are sufficient to define the
system and the smallest number of smallest rings in a bridge
system is calculated to be 2. Consequently, the third ring is not
in this smallest set. Our ring-finding program, which is part of
an organic synthesis design system, finds such additional rings
after finding the smallest set of smallest rings and subsequently
recognizing the presence of bridge(s).

It is also true that in the case of embedded rings some
molecular graphs do not have a unique smallest set of the
smallest rings. In a complicated example cited by Lynch,8 there
are many three-membered rings and four four-membered rings.
The four four-membered rings are not equivalent. The cardinality
of the smallest set of smallest rings of the graph is one more
than the number of three-membered rings. Hence an algorithm
for finding the smallest set of smallest rings would find all the
three-membered rings but just one of the four-membered rings,
the final result therefore being ambiguous. For an infallible
retrieval system, one must obtain all of the four-membered rings
in this case. Lynch refers to this as the extended set of smallest
rings. Because such molecules are not practically synthesizable,
and in light of expected costs and benefits, we therefore confine
our attention to the smallest set of smallest rings, accepting
nonuniqueness in these extremely rare cases, thereby simplifying
the algorithm for synthetically practical cases.

4.6. Efficiency Considerations.The scheme adapts to parallel
execution. For each connected pair of atoms a separate processor
can examine a particular one of the remaining atoms to see if
it is equidistant from the pair with the particular distanceD.
As for efficiency, throughout we are looking for an atomX and
for another atomZ at a certain distance fromX. Evidently, the
algorithm has complexity at least of orderO(n2). In addition,
in the odd-membered ring case we search the neighbors of atom
X for an atomY that is also at this distance fromZ. So, for an
odd-membered ring the algorithm is of orderO(n2) and, in fact,
will increase withL(n2), whereL is the average local degree of
the vertexes of the graph. In chemical terms,L is the average
number of atoms bonded to an atom, the average number of
nearest neighbors. For an even-numbered ring the complexity is
alsoO(n2) and part of the proportionality constant isL(L - 1).
The proportionality constant will be larger for the even-sized
rings because we are required to find two atoms among the
neighbors ofX such that they are both a distance ofD from Z.

Figueras’s algorithm10 finds the later rings more rapidly than
it finds the first rings. This is because of the deletion of certain
cyclic atoms. We use this feature only for rings that cannot share
atoms with other rings because all but one of the atoms in the
ring are of degree 2 and the remaining atom has degree 3. In
this case there can be an acyclic chain connecting this unique
atom to another ring. If such a chain exists, it too is deleted.

We have used the present algorithm as a tool inside of a
synthesis design program for the last fourteen years. Millions
of chemical structures have been examined with our implemen-
tation of this algorithm. We have not detected failure to

Figure 16.
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recognize the correct rings. Such failures would from time to
time give rise to chemical mistakes. For example, if four of the
atoms in a naphthalene structure were considered to be in a
ten-membered ring but not in a six-membered ring, then
relationships such as meta and para, which presume membership
in a six-membered ring, would not be noted properly and the
situation would produce errors.

5. Application of Atom-Atom Distances to the
Perception of Molecular Substructures of Interest in
Organic Synthesis

Synthetically interesting substructures include those that are
the produced substructure of some known synthetic reaction.
For example, we cite the case of molecules with two ketone
carbonyl groups, CdO. When the distance between the two
carbonyl carbons is 1, i.e., they are adjacent, we have the
associated reactions of 1,2-diketones. Amplifiying this, we can
make a table as follows:

There are often many reactions corresponding to a single
produced substructure. We cite the above merely as examples.
It is evident that a recognizing apparatus for produced sub-
structures of known reactions must make extensive use of the
distance properties of functional atoms and other significant
atoms of the molecule (such as ring junctions, etc.).
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distance
name of

substructure a corresponding reaction

1 R-diketone RuO2 oxidation of an alkyne
2 â-diketone γ-alkylation with NaNH2 + RX
3 γ-diketone ketone+ R-bromoketone, via enamine
4 δ-diketone R,â unsaturated ketone+ enol silyl ether,

Ti catalyst
5 1,6 diketone ring opening of 1,2-diacyl cyclobutane
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