Theoretical Study of Oxygen Isotope Exchange and Quenching in the $\mathbf{O}\left({ }^{1} \mathbf{D}\right)+\mathbf{C O}_{\mathbf{2}}$ Reaction ${ }^{\dagger}$

A. M. Mebel, ${ }^{*, \hbar, \S}{ }^{\ell}$ M. Hayashi, ${ }^{\|}$V. V. Kislov, ${ }^{\S}$ and S. H. Lin*,§
Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10764, Taiwan, and Center for Condensed Matter Sciences, National Taiwan University, \#1 Roosevelt Rd. Sec. 4, Taipei 106, Taiwan

Received: February 15, 2004; In Final Form: March 31, 2004

Abstract

Ab initio multireference configuration interaction calculations have been carried out for the CO_{3} system in singlet and triplet electronic states to investigate the mechanism of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction. The reaction has been shown to occur through the formation of an $\mathrm{O}-\mathrm{CO}_{2}$ complex $\mathbf{s} \mathbf{0}$, which then isomerizes to a cyclic $\mathrm{O}=\left(\mathrm{CO}_{2}\right)$ structure $\mathbf{s 1}$ over a barrier at s-TS0 located $\sim 0.3 \mathrm{kcal} / \mathrm{mol}$ below the reactants. The cyclic isomer $\mathbf{s 1}, 48.8 \mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$, can in turn rearrange to a $D_{3 h}$ structure $\mathbf{~} \mathbf{2}$, only slightly higher in energy. The isomers $\mathbf{s} \mathbf{1}$ and $\mathbf{s} \mathbf{2}$ formed in the reaction possess high internal energy and can decompose into the initial reactants or undergo singlet-triplet intersystem crossing to form the triplet isomer $\mathbf{t 1}$, which can dissociate to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$. If the attacking oxygen atom is isotope-labeled, isotope exchange can occur due to symmetry properties of $\mathbf{s 1}$ and $\mathbf{s} \mathbf{2}$. The ab initio energies, molecular parameters, and spin-orbit coupling constants were employed in statistical calculations of various isomerization and dissociation reaction rates. For intersystem crossing rates, we used the theory of radiationless transitions, in which the rates are determined as a product of the overlap of electronic wave functions (spin-orbit coupling) and the overlap of vibrational wave functions (Franck-Condon factor). The calculated rate constants were then used to compute the product branching ratios both for the case of the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction and for the isotope-labeled ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+$ ${ }^{44} \mathrm{CO}_{2}$ reaction. For the latter, the calculated relative branching ratios of the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{46} \mathrm{CO}_{2}$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+$ ${ }^{46} \mathrm{CO}_{2}$ products at collision energies of 4.2 and $7.7 \mathrm{kcal} / \mathrm{mol}, 17 / 83$ and $42 / 58$, agree reasonably well with the experimental values of $16 / 84$ and $33 / 67$ (ref 4), respectively, and reproduce the qualitative trend with $E_{\text {col }}$. The overall relative yields computed for ${ }^{44} \mathrm{CO}_{2}$ and ${ }^{46} \mathrm{CO}_{2}$ show that the attacking $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ atom can be incorporated into the product CO_{2} molecule with a near-statistical probability of $2 / 3$.

Introduction

The quenching of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ by carbon dioxide, $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$, is relevant to the atmospheres of Earth and Mars. On Earth, photolysis of stratospheric ozone generates $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$, which in turn can collide with CO_{2} to form a carbon trioxide molecule. ${ }^{1,2}$ In the gas phase, the latter can fragment to carbon dioxide and atomic oxygen in the ground ${ }^{3} \mathrm{P}$ or excited ${ }^{1} \mathrm{D}$ electronic states. ${ }^{3,4}$ Thus, the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction can proceed either by an oxygen atom exchange mechanism, in which the products and reactants are equivalent, or by quenching of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$. The reaction is thought to be the source of ${ }^{1,2}$ the observed enrichment of stratospheric CO_{2} in the heavy isotopes ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$ relative to tropospheric $\mathrm{CO}_{2} .{ }^{5-11}$ Stratospheric ozone is also enriched ${ }^{10-14}$ in ${ }^{17} \mathrm{O}$ and ${ }^{18} \mathrm{O}$, and, for the case of CO_{2}, it was suggested ${ }^{1,2}$ that the anomalous oxygen isotopic composition of O_{3} could be transferred to carbon dioxide by photolysis of O_{3} to form $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ followed by a quenching collision of the latter with CO_{2}, which can be accompanied by isotope exchange. The isotope labeling results of Baulch and Breckenridge ${ }^{15}$ showed a near-statistical rate of isotope exchange for which the incoming $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ atom has an approximately $2 / 3$ chance of being incorporated into the product CO_{2} molecule, although the formation of O_{3} in their system and their assumption that quenching occurs

[^0]at all collisions may have influenced this result. If, however, the isotope exchange mechanisms can be understood in detail, observation of the anomalous isotopic composition of CO_{2} may provide a unique tracer of stratospheric chemistry and mass transport on annual time scales and a means to quantify gross carbon fluxes to and from the biosphere. ${ }^{11,16,17}$ In the Martian atmosphere, carbon dioxide is the major constituent ${ }^{18}$ (95.3 vol $\%$), and its photodissociation by solar photons ($\lambda<2050 \AA$) produces CO and atomic oxygen in the ground ${ }^{3} \mathrm{P}$ state near threshold, but shorter wavelengths also supply $\mathrm{O}\left({ }^{1} \mathrm{D}\right) .{ }^{19}$ The primary fate of electronically excited oxygen atoms is thought to be quenching to the ${ }^{3} \mathrm{P}$ state; the detailed process is not known and has been postulated to proceed via a carbon trioxide molecule. ${ }^{19-22}$

The kinetics of the quenching of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ by CO_{2} has received considerable attention, ${ }^{23-25}$ and the reaction has been shown to proceed at a nearly gas kinetic rate of $1.1 \times 10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ molecule ${ }^{-1} .25$ This order of magnitude suggests that the reaction has no or only little activation energy, proceeds with almost unit efficiency, and most likely involves a reaction intermediate. However, neither reaction products nor the nature of the intermediate were determined in the kinetic studies. For the first time, recent crossed molecular beam experiments ${ }^{3,4}$ showed that the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction can produce not only $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ but also $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and provided the $\mathrm{O}\left({ }^{1} \mathrm{D}\right) / \mathrm{O}\left({ }^{3} \mathrm{P}\right)$ branching ratios at several collision energies. As the measurements were carried out for the isotope-labeled ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction, they represented the first experimental evidence that the isotope
exchange can occur through a long-lived CO_{3} intermediate without crossing to the triplet surface., ${ }^{3,4}$

Although some calculations of the CO_{3} potential energy surface (PES) related to the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction have been reported in the literature, ${ }^{26}$ available theoretical data are not sufficient for quantitative prediction of the isotope exchange nonquenching/quenching branching ratio as a function of available energy. First, due to the fact that the wave function of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ has a strong multireference character, to provide accurate energies, the calculations of the CO_{3} PES, especially of its part related to the entrance channel of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction, must be performed using multireference methods of ab initio theory. Therefore, in the present work, we report the CO_{3} PESs calculated using the highly accurate multireference configuration interaction (MRCI) method with large and flexible basis sets.

Second, even when an accurate PES for the CO_{3} system is available, standard RRKM calculations of reaction rate constants are not sufficient to predict the product branching ratios because the quenching reaction channel leading to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ involves a change in electronic multiplicity. Therefore, in addition to rate constants for conventional isomerization and dissociation reaction steps, we must consider reaction rates for intersystem crossing (ISC) processes. Several approaches exist to address this problem, including nonadiabatic dynamical studies or nonadiabatic statistical rate theories. ${ }^{27-35}$ However, these approaches tend to significantly underestimate rate constants for the reactions with a multiplicity change. In the present work, we employ both nonadiabatic transition state theory and the theory of radiationless transitions ${ }^{36-44}$ to compute the ISC rate constants and demonstrate that the latter approach is critical to reproducing the experimental results. The ISC rate constants are then combined with the rates obtained using RRKM theory and are used to predict the relative yields of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ products at various collision energies. Such calculations are performed for both the ${ }^{16} \mathrm{O}$ and the ${ }^{18} \mathrm{O}$ isotopes of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$, and comparisons are made with the experimental branching ratios reported by Perri et al. ${ }^{4}$

Methods of Ab Initio Calculations

Geometries of various intermediates and transition states on the singlet and triplet PESs of CO_{3} have been optimized using the multireference complete active space self-consistent field (CASSCF) method ${ }^{46}$ with the $6-311 \mathrm{G}(\mathrm{d})$ basis set. The active space in CASSCF calculations consisted of 16 electrons distributed on 13 orbitals, $(16,13)$. These include all valence orbitals except three occupied orbitals corresponding to the 2 s lone pairs of oxygen atoms. For the key intermediates $\mathbf{s} \mathbf{1}$ and s2, we have also performed geometry optimization at the full-valence-active-space $\operatorname{CASSCF}(22,16) / 6-311 \mathrm{G}(\mathrm{d})$ level. The optimized geometric parameters appeared to be very close to those obtained with the smaller $(16,13)$ active space. Calculations of vibrational frequencies with the full-valence $(22,16)$ active space were beyond our computational facilities. Hence, only $\operatorname{CASSCF}(16,13)$ calculations were performed for other species, assuming that a relative contribution of the 2 s orbitals of O atoms into electronic correlation is not significant. Vibrational frequencies of various structures have been computed at the $\operatorname{CASSCF}(16,13) / 6-311 \mathrm{G}(\mathrm{d})$ level of theory. For comparison, we have also carried out hybrid density functional B3LYP/6-311G(d) ${ }^{46}$ geometry optimization and calculations of vibrational frequencies.

Energies of various structures were then refined by singlepoint calculations at the $\operatorname{CASSCF}(16,13) / 6-311 \mathrm{G}(\mathrm{d})$ optimized geometries using higher levels of theory. For instance, we
employed the internally contracted multireference configuration (MRCI) method ${ }^{47}$ with larger $6-311+G(3 d f)$ and Dunning's correlation-consistent pvtz ${ }^{48}$ basis sets. MRCI calculations were performed with the $(16,13)$ active space, that is, the full-valence active space excluding 2 s lone pairs of oxygens. However, initial wave functions for the MRCI calculations were obtained at the full-valence-active-space $\operatorname{CASSCF}(22,16)$ level. We have also included Davidson corrections for quadruple excitations into MRCI energies (MRCI +Q). In addition, for various intermediates and transition states on the lowest in energy triplet and singlet PESs, we carried out coupled cluster ${ }^{49} \mathrm{CCSD}(\mathrm{T})$ singlepoint energy calculations with the $6-311+\mathrm{G}(3 \mathrm{df})$ basis set.

The ab initio calculations described in this paper were performed using the DALTON, ${ }^{50}$ MOLPRO 2002, ${ }^{51}$ and Gaussian 98^{52} program packages.

Potential Energy Surfaces of CO_{3}

In this study, we consider two singlet PESs correlated to the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ asymptote. The ${ }^{1} \mathrm{D}$ electronic state of the oxygen atom is five-fold degenerate, so when $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and CO_{2} approach each other from infinity, the asymptote splits into five PESs. However, only two of them are attractive at long separations; the other three exhibit a repulsive character and will not be considered thereafter, as they are not expected to play a role in the reaction, at least at low and moderate collision energies (below $10-15 \mathrm{kcal} / \mathrm{mol}$). The two surfaces included into our study are ${ }^{1} \mathrm{~A}_{1}$ and ${ }^{1} \mathrm{~A}_{2}$ within $C_{2 v}$ symmetry or ${ }^{1} \mathrm{~A}^{\prime}$ and ${ }^{1} \mathrm{~A}^{\prime \prime}$ if the symmetry is lowered to C_{s}. Similar to the previous study, ${ }^{26}$ we have found two deep local minima on the lowest singlet PES. One of them has a cyclic structure with a CO_{2} ring and the third O atom connected with the central carbon by a double $\mathrm{C}=\mathrm{O}$ bond (see Figure 1). The isomer $\mathbf{s} \mathbf{1}\left(C_{2 v},{ }^{1} \mathrm{~A}_{1}\right)$ resides 47.2 $\mathrm{kcal} / \mathrm{mol}$ below $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ at the $\mathrm{MRCI}+\mathrm{Q}(16,13) / 6-311+\mathrm{G}-$ (3df) level (Figure 1 and Table 1). The second isomer $\mathbf{s 2}$ has a $D_{3 h}$-symmetric geometry, ${ }^{1} \mathrm{~A}_{1}$ electronic state, and lies only 0.1 $\mathrm{kcal} / \mathrm{mol}$ higher in energy than s1. As seen in Table 1, at different theoretical levels, the energy gap between $\mathbf{s} \mathbf{2}$ and $\mathbf{s} \mathbf{1}$ varies from $0.1 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{MRCI}+\mathrm{Q}(16,13) / 6-311+\mathrm{G}(3 \mathrm{df})$ to 1.1 and $3.3 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{MRCI}+\mathrm{Q}(16,13) / \mathrm{pvtz}$ and $\operatorname{CCSD}(\mathrm{T}) /$ $6-311+G(3 d f)$, respectively.

Let us consider now how $\mathbf{s} 1$ and $\mathbf{s 2}$ can be produced from the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reactants. A transition state search for the approach of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ toward carbon dioxide showed that, along the minimum energy reaction path (MEP), the attacking oxygen atom draws near both the central carbon and one of the terminal oxygens. We have studied the MEP at the CASSCF/6-311G(d) level by scanning the PES at fixed values of the $\mathrm{O}-\mathrm{C}$ distance corresponding to the newly formed $\mathrm{O}-\mathrm{C}$ bond, which were varied from 3.0 to $1.3 \AA$ with a $0.1 \AA$ step, allowing other geometric parameters to be optimized. According to the results of this scan, the MEP connects the reactants with the cyclic s1 intermediate. Saddle-point optimization at this level of theory gave a structure where the $\mathrm{O}-\mathrm{C}$ distance is about $2.07 \AA$ and the $\mathrm{O}-\mathrm{O}$ distance for the forming $\mathrm{O}-\mathrm{O}$ bond is $1.72 \AA$. The reaction barrier obtained at CASSCF/6-311G(d) with ZPE corrections is $5.4 \mathrm{kcal} / \mathrm{mol}$ with respect to the initial reactants. However, recalculation of the single-point energy for this CASSCF-optimized transition state at the MRCI+Q/6$311+G(3 d f)$ level significantly decreases its relative energy, to $-4.8 \mathrm{kcal} / \mathrm{mol}$. Because dynamic correlation seems to be important for the transition state geometry and energy, geometry optimization of its structure has to be redone at a level of theory higher than CASSCF. As analytical gradients are not available for the MRCI method, we carried out single-point energy

Figure 1. Potential energy diagram of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction calculated at the $\mathrm{MRCI}+\mathrm{Q}(16,13) / 6-311+\mathrm{G}(3 \mathrm{df}) / / \mathrm{CASSCF}(16,13) / 6-311 \mathrm{G}(\mathrm{d})+$ ZPE[CASSCF $(16,13) / 6-311 G(d)]$ level of theory. All energies are given in $\mathrm{kcal} / \mathrm{mol}$. Bold numbers give best estimates for the relative energies of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$, intermediate $\mathbf{s 1}$, and transition state s-TS0 (see text for detail). Geometric structures of various intermediates and transition states are also shown with bond lengths given in angstroms and bond angles given in degrees.

TABLE 1: Relative Energies ($E_{\text {rel }}$, $\mathrm{kcal} / \mathrm{mol}$) and Zero-Point Energies (ZPE, kcal/mol) of the Reactants, Products, Intermediates, and Transition States on the Singlet and Triplet Potential Energy Surfaces of the $\mathbf{O}\left({ }^{1} \mathrm{D}\right)+\mathbf{C O}_{2} \leftrightarrows \mathbf{C O}_{3} \rightarrow \mathbf{O}\left({ }^{3} \mathbf{P}\right)$ $+\mathrm{CO}_{2}$ Reactions Calculated at Various Levels of Theory

method	B3LY P/6- 311 G(d)		$\begin{gathered} \text { CASSC F/6- } \\ 311 \mathrm{G} \text { (d) } \end{gathered}$		$\begin{gathered} \text { MRCI/6- } \\ 311+G(3 \mathrm{df}) \end{gathered}$	$\begin{aligned} & \mathrm{MRCI}+\mathrm{Q} / 6- \\ & 311+\mathrm{G}(3 \mathrm{df}) \end{aligned}$	$\begin{aligned} & \text { CCS D(T) /6- } \\ & 311+\mathrm{G}(3 \mathrm{df}) \end{aligned}$	$\begin{gathered} \text { CASS CF/ } \\ \text { pvtz } \end{gathered}$	MR CI/ pvtz	$\mathrm{MRCI}+\mathrm{Q} /$ pvtz
species	ZPE	$E_{\text {rel }}$	ZPE	$E_{\text {rel }}$						
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$	7.35	0.00	7.35	0.00	0.00	0.00	0.00	0.00	0.00	0.00
s0			7.44	-1.84	-6.24	-6.59	-0.88	-0.60	-0.60	-0.64
s-TS0			7.62	5.44	$2.27{ }^{\text {a }}$	$1.33{ }^{a}$	-0.15^{a}	8.09	$2.69{ }^{\text {a }}$	$1.82{ }^{\text {a }}$
s1	8.69	-13.52	8.54	-30.19	-44.97	-47.18	-51.41	-30.26	-45.15	-47.35
s-TS1	7.68	-2.68	7.36	-24.11	-40.10	-42.76	-47.10	-23.69	-39.56	-42.12
s2	7.99	-3.32	7.37	-25.62	-43.88	-47.08	-48.12	-25.16	-43.23	-46.29
s3	7.47	-1.08	7.43	-1.85	-6.24	-6.59		-1.88	-6.75	-7.17
s-TS2	7.16	12.17	6.87	27.61	14.15	11.06		27.55	14.18	11.26
s4	6.40	-2.80	6.07	-6.12	-24.02	-27.14		-6.27	-23.89	-26.92
$\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$	7.35	-16.71	7.35	-50.45	-47.90	-47.67	-51.01	-50.55	-48.00	-47.75
t-TS1	6.60	2.30	5.90	3.23		$-11.45{ }^{\text {b }}$	-15.73			
t1	6.89	-7.90	7.69	-8.10	-22.26	-24.72	-29.00	-7.87	-22.07	-24.49
t2			7.03	32.63		$15.54{ }^{\text {b }}$	11.26			

${ }^{a}$ The barrier height is obtained using the search of the maximal point along the MEP energy profile calculated at the level of theory given in the column caption with geometries of MEP structures optimized at CASSCF/6-311G(d) (see text for detail). ${ }^{b}$ For \mathbf{t}-TS1 and $\mathbf{t 2}$, which have a low C_{s} symmetry, $\operatorname{MRCI}(16,13)$ calculations were beyond our computing facilities. The relative energies shown in the table are computed on the basis of the relative energy of $\mathbf{t 1}$ at the MRCI $+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df})$ level $(-24.72 \mathrm{kcal} / \mathrm{mol})$ and the energies of $\mathrm{t}-\mathrm{TS} 1$ and $\mathbf{t 2}$ with respect to $\mathbf{t 1}$ obtained at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 \mathrm{df})$ level (13.27 and $40.26 \mathrm{kcal} / \mathrm{mol}$, respectively).
calculations along the CASSCF-optimized MEP at the MRCI+Q/ $6-311+\mathrm{G}(3 \mathrm{df})$, MRCI $+\mathrm{Q} / \mathrm{pvtz}$, and (additionally) $\operatorname{CCSD}(\mathrm{T}) / 6-$ $311+G(3 \mathrm{df})$ levels of theory and located the transition state as the maximal energy point along the MEP. At the MRCI+Q
level with both basis sets, the transition state s-TS0 is found at the $\mathrm{O}-\mathrm{C}$ distance of $\sim 2.3 \AA$ (see the optimized structure in Figure 1); at the $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}(3 \mathrm{df})$ level, the transition state structure is looser and has an $\mathrm{O}-\mathrm{C}$ distance of $\sim 2.6 \AA$.

The barrier for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2} \rightarrow \mathrm{CO}_{3}$ reaction is computed as 1.3 and $1.8 \mathrm{kcal} / \mathrm{mol}$ at the $\mathrm{MRCI}+\mathrm{Q} / 6-311+(3 \mathrm{df})$ and MRCI+Q/pvtz levels, respectively, and at the $\operatorname{CCSD}(\mathrm{T})$ level the transition state resides $0.2 \mathrm{kcal} / \mathrm{mol}$ below the reactants. On the other hand, the barrier for the decomposition of $\mathbf{s} 1$ to $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+\mathrm{CO}_{2}$ is computed as $48.5,49.2$, and $51.3 \mathrm{kcal} / \mathrm{mol}$ at the three levels of theory mentioned above, respectively - the dependence of the reaction rate constant on the barrier height will be seen in subsequent sections.

Transition state s-TS0 is not connected directly to the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+\mathrm{CO}_{2}$ reactants, as the PES has an attractive character at long separations. CASSCF optimization gave a $C_{2 v}$-symmetric $\mathrm{O} \cdots \mathrm{CO}_{2}$ complex on the ${ }^{1} \mathrm{~A}_{1}$ surface designated as $\mathbf{s} \mathbf{0}$ in Figure 1 with an $\mathrm{O}-\mathrm{C}$ separation of $3.34 \AA$. The complex formation energy for $\mathbf{s 0}$ appeared to be sensitive to the level of theory employed; it varies from $0.6 \mathrm{kcal} / \mathrm{mol}$ at MRCI $+\mathrm{Q} / \mathrm{pvtz}$ to 0.9 and $1.8 \mathrm{kcal} / \mathrm{mol}$ at the $\operatorname{CCSD}(\mathrm{T})$ and CASSCF levels, respectively, but increases to $6.6 \mathrm{kcal} / \mathrm{mol}$ at MRCI $+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df})$. The formation of the most stable CO_{3} isomer $\mathbf{s} 1$ from the initial reactants is described by the following mechanism: $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+$ $\mathrm{CO}_{2} \rightarrow \mathbf{s 0} \rightarrow \mathrm{~s}-\mathrm{TS} 0 \rightarrow \mathbf{s} \mathbf{1}$. The latter can further isomerize into the $D_{3 h}$-symmetric $\mathbf{s 2}$ structure, overcoming a relatively low barrier of $4.4 \mathrm{kcal} / \mathrm{mol}$ at a $C_{2 v}$-symmetric transition state s-TS1. In turn, $\mathbf{s} \mathbf{2}$ can rearrange back to $\mathbf{s 1}$, overcoming a slightly lower $4.3 \mathrm{kcal} / \mathrm{mol}$ barrier. Although the reversible $\mathbf{s} \mathbf{1} \leftrightarrows \mathbf{s} \mathbf{2}$ isomerization does not change the composition of $\mathbf{s} \mathbf{1}$ when all oxygen atoms are identical, it becomes significant for isotope scrambling when one of the O's is isotope-labeled. All of the oxygen atoms are equivalent in the $D_{3 h} \mathbf{s} \mathbf{2}$ isomer so that the position of the isotope label can change after the $\mathbf{s} \mathbf{1} \leftrightarrows \mathbf{s} \mathbf{2}$ isomerization. It should be also noted that, according to the calculated MEP, structure $\mathbf{s} 2$ cannot dissociate directly to the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ products; it must first rearrange to $\mathbf{s} \mathbf{1}$ via the process $\mathbf{s} \mathbf{2} \rightarrow \mathrm{s}-\mathrm{TS} 1$ $\rightarrow \mathbf{s} \mathbf{1} \rightarrow \mathrm{s}-\mathrm{TS} 0 \rightarrow \mathbf{s} \mathbf{0} \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$, so that isotope exchange can occur even without IVR if $\mathbf{s 2}$ is sampled.

On the ${ }^{1} \mathrm{~A}_{2} \mathrm{PES}, \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and CO_{2} form without a barrier a strongly bound complex $\mathbf{s 3}$, which has approximately the same geometry as $\mathbf{s 0}$ and lies 6.6 and $7.2 \mathrm{kcal} / \mathrm{mol}$ lower in energy than the reactants at the MRCI +Q level with the $6-311+\mathrm{G}-$ (3df) and pvtz basis sets, respectively. $\mathbf{s 3}$ can rearrange into the CO_{3} molecule in the excited electronic state ${ }^{1} \mathrm{~A}^{\prime \prime}$, structure $\mathbf{s 4}$. The latter has a geometry similar to that of the $D_{3 h}$-symmetric isomer $\mathbf{s} \mathbf{2}$, but all three $\mathrm{C}-\mathrm{O}$ bond lengths are slightly different, $1.26,1.28$, and $1.32 \AA$. s4 resides $27.1 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+\mathrm{CO}_{2}$, so that the adiabatic excitation energy of $\mathbf{s 2}$ into the first excited singlet electronic state constitutes $20 \mathrm{kcal} / \mathrm{mol}$. The $\mathbf{s 3} \rightarrow \mathbf{s} 4$ rearrangement takes place via C_{s}-symmetric transition state s-TS2 over a barrier of 17.7 and $11.1 \mathrm{kcal} / \mathrm{mol}$ relative to $\mathbf{s 3}$ and $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$, respectively. Because the barrier at s-TS2 is rather high, the ${ }^{1} \mathrm{~A}_{2}-{ }^{1} \mathrm{~A}^{\prime \prime}$ PES is not expected to play a significant role in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2} \Delta \mathrm{CO}_{3}$ isotope exchange reaction. Complex $\mathbf{s} \mathbf{3}$ can be formed, but isotope scrambling in this complex cannot occur unless it rearranges to $\mathbf{s 4}$, which cannot happen if the reaction collision energy is below 11.1 $\mathrm{kcal} / \mathrm{mol}$.

Two local minima have been found on the lowest triplet PES of CO_{3}. Isomer $\mathbf{t 1}$ has a $C_{2 v}$-symmetric structure $\left({ }^{3} \mathrm{~B}_{2}\right)$ with the central carbon connected to three O atoms with one double and two single bonds. $\mathbf{t 1}$ is $24.7 \mathrm{kcal} / \mathrm{mol}$ more stable than $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+\mathrm{CO}_{2}$ but lies $\sim 23 \mathrm{kcal} / \mathrm{mol}$ higher than the $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ asymptote. Dissociation of $\mathbf{t 1}$ to the latter products occurs via transition state $\mathrm{t}-\mathrm{TS} 1$, in which one of the single $\mathrm{C}-\mathrm{O}$ bonds lengthens from 1.34 to $1.52 \AA$, the other shortens to $1.24 \AA$, and the OCO angle in the forming CO_{2} fragment reaches 146.3°
versus 122.6° in $\mathbf{t 1}$, thus approaching 180°. The barrier at $\mathrm{t}-\mathrm{TS} 1$ is calculated as 13.2 and $36.2 \mathrm{kcal} / \mathrm{mol}$ in the $\mathbf{t} \mathbf{1} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+$ CO_{2} and opposite directions, respectively. This result indicates that the $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2} \rightarrow \mathbf{t 1}$ reaction can occur only with hyperthermal $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ atoms. The other isomer of triplet CO_{3} is $\mathrm{O}=\mathrm{C}-\mathrm{O}-\mathrm{O}, \mathbf{t} 2\left(C_{s},{ }^{3} \mathrm{~A}^{\prime \prime}\right)$. This structure lies 15.5 and 63.2 $\mathrm{kcal} / \mathrm{mol}$ above $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$, respectively. Therefore, $\mathbf{t 2}$ is not likely to play any role in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction, although it is expected to be important for the reaction to form $\mathrm{CO}+\mathrm{O}_{2}$. We do not consider the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2} \rightarrow \mathrm{CO}$ $+\mathrm{O}_{2}$ reaction here because it is much slower (the rate constant is $\sim 10^{-18} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at $1700 \mathrm{~K}^{53}$) than the exchange reaction $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2} \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right) / \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ with the rate constant of $\sim 10^{-10} \mathrm{~cm}^{3}$ molecule ${ }^{-1} \mathrm{~s}^{-1}$ at $300 \mathrm{~K} .{ }^{25}$ In addition to characterizing stationary points on the triplet PES, we have also located a minimum on the seam of crossing between the lowest singlet and triplet electronic states (MSX). Geometry optimization of MSX was carried out using the Lagrange multipliers method ${ }^{54}$ at the CASSCF/6-311G(d) level. The structure of MSX appeared to be rather close to that of t-TS1, with a slightly longer distance (1.57 vs $1.52 \AA$ in the transition state) for the forming/breaking CO bond. Thus, the ${ }^{3} \mathrm{~A}^{\prime}$ and ${ }^{1} \mathrm{~A}^{\prime}$ PESs cross each other (with the minimal energy) in the vicinity of transition state t-TS1, and the energy of MSX is close to that of the transition state. Interestingly, if hyperthermal $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ reacts with CO_{2}, MSX can be encountered before t-TS1.

Let us now compare relative energies of various species calculated at different levels of theory (see Table 1). MRCI +Q energies calculated with the $6-311+G(3 d f)$ and pvtz basis sets normally differ by less than $1 \mathrm{kcal} / \mathrm{mol}$, except for the s0 complex where the difference reaches $\sim 6 \mathrm{kcal} / \mathrm{mol}$. As compared to $\mathrm{MRCI}+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df}), \operatorname{CCSD}(\mathrm{T})$ calculations with the same basis set regularly underestimate relative energies for most species by $\sim 4 \mathrm{kcal} / \mathrm{mol}$. This is related to the fact that the single-reference $\operatorname{CCSD}(\mathrm{T})$ method overestimates the singlettriplet energy gap for the oxygen atom by 3.3 and $5.6 \mathrm{kcal} / \mathrm{mol}$ as compared to the MRCI +Q calculated value and experiment, ${ }^{55}$ respectively. The wave function of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ has a strong multireference character and cannot be properly described by a singlereference method, which causes the above-mentioned deviations. If we consider relative energies of various intermediates and transition states with respect to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$, the differences between the $\operatorname{CCSD}(\mathrm{T})$ and $\mathrm{MRCI}+\mathrm{Q}$ values are in the range of $0.9-2.3 \mathrm{kcal} / \mathrm{mol}$, excluding $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathbf{s 0}$. The B3LYP method does not seem to be reliable for this system as the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)-\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ energy gap is underestimated by $\sim 30 \mathrm{kcal} /$ mol at this level. This leads to large deviations in relative energies for the CO_{3} intermediates and transition states.

On the basis of the fact that the $\operatorname{CCSD}(\mathrm{T})$ relative energies with respect to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ are close to the $\mathrm{MRCI}+\mathrm{Q}$ values, we can carry out $\operatorname{CCSD}(\mathrm{T})$ calculations with larger basis sets to estimate a more accurate energy of $\mathbf{s 1}$. The $\operatorname{CCSD}(\mathrm{T})$ method is much more efficient than MRCI in terms of computing demands. Moreover, it includes correlation from all valence electrons, while in the $\operatorname{MRCI}(16,13)$ calculations $2 s$ lone pairs of oxygen atoms were excluded. Therefore, we performed $\operatorname{CCSD}(\mathrm{T})$ calculations with a series of correlation-consistent Dunning's basis sets pvtz, pvqz, and pv5z ${ }^{48}$ and obtained the relative energy of $\mathbf{s} \mathbf{1}$ with regards to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ as -0.47 , -1.72 , and $-2.45 \mathrm{kcal} / \mathrm{mol}$, respectively. Extrapolation of these results to the complete basis set limit ${ }^{56}$ gives the energy of $\mathbf{s} \mathbf{1}$ as $-3.47 \mathrm{kcal} / \mathrm{mol}$. Taking into account that the MRCI+Q relative energies for this species are $\sim 0.9 \mathrm{kcal} / \mathrm{mol}$ higher than the $\operatorname{CCSD}(\mathrm{T})$ energies with the same basis sets $(6-311+G(3 \mathrm{df})$

Figure 2. Kinetic schemes used for calculations of product branching ratios in the decomposition of the chemically activated CO_{3} (intermediate $\mathbf{s 1}$) formed in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction: (a) no isotope labels, ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction; (b) isotope-labeled ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction, ${ }^{18} \mathrm{O}$ atoms are shown in white. The numbers in parentheses show reaction path degeneracies for each rate constant.
or pvtz), we can conclude that the best estimate for the energy of $\mathbf{s} 1$ with respect to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ should be between -3.5 and $-2.5 \mathrm{kcal} / \mathrm{mol}$. Now, using the experimental energy gap between $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right), 45.37 \mathrm{kcal} / \mathrm{mol},{ }^{55}$ we find the best estimate for the relative energy of $\mathbf{s} \mathbf{1}$ with respect to $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+$ CO_{2} to be between -48.8 and $-47.8 \mathrm{kcal} / \mathrm{mol}$. Finally, if we take $48.8 \mathrm{kcal} / \mathrm{mol}$ as the energy gap at $\mathbf{s} \mathbf{1}$ and the barrier at $\mathrm{s}-\mathrm{TS} 0$ as $48.5 \mathrm{kcal} / \mathrm{mol}$ with respect to $\mathbf{s 1}$ [as calculated at the MRCI $+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df})$ level $)$], then s-TS0 lies $0.3 \mathrm{kcal} / \mathrm{mol}$ below the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reactants (see bold numbers in Figure 1). This result is consistent with a small negative activation energy observed in kinetic experiments for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction. ${ }^{25}$ However, the use of the barrier height obtained at MRCI $+\mathrm{Q} / \mathrm{pvtz}(49.2 \mathrm{kcal} / \mathrm{mol})$ puts the transition state s-TS0 $0.4 \mathrm{kcal} / \mathrm{mol}$ above the reactants. Therefore, we can only conclude here that either the barrier for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2} \rightarrow$ $\mathrm{CO}_{3}(\mathbf{s} 1)$ reaction is very low or the corresponding transition state lies slightly lower than the reactants. Even higher-level calculations such as MRCI +Q with full-valence active space extrapolated to the complete basis set limit can finally solve this question, but such calculations unfortunately are not feasible now.

Methods of Calculations of Rate Constants

Now we set out to calculate branching ratios of nonquenching isotope exchange/quenching isotope exchange in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+$ $\mathrm{CO}_{2} \leftrightarrows \mathrm{CO}_{3} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right) / \mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction. To do that, we consider the chemically activated CO_{3} intermediate $\mathbf{s} \mathbf{1}$ produced in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ collisions (assuming that the collision energy is sufficient to overcome the barrier at s-TS0) and compute rate constants for various dissociation and isomerization processes as illustrated in Figures 1 and 2. Because the barrier at s-TS2 is high $(11.1 \mathrm{kcal} / \mathrm{mol})$ and formation of the $\mathbf{s} \mathbf{3}$ complex
on the first excited singlet PES is not expected to result in isotope exchange, we consider here only the lowest energy singlet and triplet PESs. For the reactions which involve species of the same multiplicity, $\mathbf{s} \mathbf{1} \xrightarrow{k_{1}} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ via s-TS $0, \mathbf{t} \mathbf{\xrightarrow { k _ { 2 } }}$ $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ via t-TS1, and $\mathbf{s} \mathbf{~} \xrightarrow{k_{3}} \mathbf{s} \mathbf{2}$ and $\mathbf{s} \mathbf{2} \xrightarrow{k_{-3}} \mathbf{s} \mathbf{1}$ via s-TS1, we use standard RRKM theory (quasiequilibrium theory) to calculate the rate constants k_{1}, k_{2}, k_{3}, and k_{-3}. In RRKM theory, ${ }^{57}$ a rate constant $k(E)$ at an internal energy E for a unimolecular reaction $\mathrm{A}^{*} \rightarrow \mathrm{~A}^{\#} \rightarrow \mathrm{P}$ can be expressed as

$$
k(E)=\frac{\sigma}{h} \cdot \frac{W^{\#}\left(E-E^{\#}\right)}{\rho(E)}
$$

where σ is the reaction path degeneracy, h is Plank's constant, $W^{\#}\left(E-E^{\#}\right)$ denotes the total number of states for the transition state (activated complex) $\mathrm{A}^{\#}$ with a barrier $E^{\#}, \rho(E)$ represents the density of states of the energized reactant molecule A*, and P is the product or products. We used the harmonic approximation to calculate the total number and density of states, and the saddle-point method ${ }^{57}$ was employed for these computations. Vibrational frequencies used in the calculations were obtained at the $\operatorname{CASSCF}(16,13) / 6-311+G(d)$ level of theory and are presented in Table S1 of the Supporting Information. The available internal energy of the intermediate $\mathbf{s} \mathbf{1}$ was assumed to be equal to the well depth for this isomer (we took the 48.8 $\mathrm{kcal} / \mathrm{mol}$ value as the best estimate) plus collision energy. For the other species, the available internal energies are less than that for $\mathbf{s} \mathbf{1}$ by the amounts equal to their relative energies with respect to $\mathbf{s} \mathbf{1}$ calculated at the MRCI $+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df})$ level (see Figure 1 and Table 1). The resulting rate constants k_{1}, k_{2}, k_{3}, and k_{-3} computed for various collision energies between 0 and $10 \mathrm{kcal} / \mathrm{mol}$ are shown in Table 2.

A more challenging task is to calculate reaction rate constants involving a change of the spin multiplicity, for instance, for the $\mathbf{s 1} \leftrightarrows \mathbf{t 1}\left(k_{4} / k_{-4}\right)$ and $\mathbf{s 2} \leftrightarrows \mathbf{t} \mathbf{1}\left(k_{5} / k_{-5}\right)$ rearrangements. Several approaches exist to address this problem, including nonadiabatic dynamical studies or nonadiabatic statistical rate theories. ${ }^{27-35}$ For instance, the latter theories involve using a multiplicative "transmission factor" related to the spin-orbit coupling strength to correct the rate computed using standard transition state theory, where the minimum on the seam of crossing between two PESs (MSX) involved is treated like the transition state of adiabatic statistical methods. The density of states for the transition state in the TST (or RRKM) rate equation is then multiplied by the probability of hopping from one surface to the other. To a first approximation, this term can be calculated in a pseudo-one-dimensional way using either Landau-Zener theory or from WKB theory. ${ }^{34,35}$ The rate constant is then expressed as

$$
k(E)=\frac{\sigma}{h \rho(E)} \int_{0}^{\infty} \mathrm{d} E_{\mathrm{h}} \rho^{\mathrm{MSX}}\left(E-E_{\mathrm{h}}\right) p_{\mathrm{sh}}\left(E_{\mathrm{h}}\right)
$$

Here, $\rho^{\mathrm{MSX}}\left(E-E_{\mathrm{h}}\right)$ is the density of states for the degrees of freedom within the crossing seam at the MSX, and E_{h} is the part of the available energy which is in the coordinate orthogonal to the seam. According to the Landau-Zener formula, the hopping probability $p_{\mathrm{sh}}\left(E_{\mathrm{h}}\right)$ is given by

$$
\begin{gathered}
p_{\text {sh }}{ }^{\text {Landau-Zeener }}\left(E_{\mathrm{h}}\right)=(1+P)(1-P) \\
P=\exp \left(\frac{-2 \pi V_{12}^{2}}{h \Delta F} \sqrt{\frac{\mu_{\mathrm{h}}}{2\left(E-E_{\mathrm{MSX}}\right)}}\right)
\end{gathered}
$$

TABLE 2: Rate Constants (s^{-1}) for Various Isomerization and Dissociation Pathways on the CO_{3} Singlet and Triplet Potential Energy Surfaces Calculated Using RRKM Theory ${ }^{a}$

$E_{\text {collision }}(\mathrm{kcal} / \mathrm{mol})$	$k_{1}{ }^{\text {b }}$		k_{2}	k_{3}	k_{-3}
	$E^{\#}=48.5$	$E^{\#}=49.2$			
0	1.21×10^{9}		3.63×10^{12}	1.05×10^{13}	1.77×10^{13}
0.5	1.88×10^{9}	1.08×10^{9}	3.86×10^{12}	1.05×10^{13}	1.78×10^{13}
1	2.87×10^{9}	1.48×10^{9}	4.09×10^{12}	1.06×10^{13}	1.78×10^{13}
2	5.74×10^{9}	3.39×10^{9}	4.55×10^{12}	1.07×10^{13}	1.80×10^{13}
3	1.00×10^{10}	6.48×10^{9}	5.03×10^{12}	1.07×10^{13}	1.81×10^{13}
4	1.59×10^{10}	1.10×10^{10}	5.52×10^{12}	1.08×10^{13}	1.82×10^{13}
4.2	1.73×10^{10}	1.20×10^{10}	5.62×10^{12}	1.09×10^{13}	1.82×10^{13}
5	2.38×10^{10}	1.71×10^{10}	6.02×10^{12}	1.09×10^{13}	1.83×10^{13}
6	3.37×10^{10}	2.51×10^{10}	6.52×10^{12}	1.10×10^{13}	1.84×10^{13}
7	4.61×10^{10}	3.52×10^{10}	7.03×10^{12}	1.11×10^{13}	1.86×10^{13}
7.7	5.65×10^{10}	4.37×10^{10}	7.39×10^{12}	1.12×10^{13}	1.86×10^{13}
8	6.12×10^{10}	4.77×10^{10}	7.54×10^{12}	1.12×10^{13}	1.87×10^{13}
9	7.91×10^{10}	6.28×10^{10}	8.06×10^{12}	1.13×10^{13}	1.88×10^{13}
10	1.00×10^{11}	8.07×10^{10}	8.57×10^{12}	1.13×10^{13}	1.89×10^{13}

${ }^{a}$ Reaction path degeneracies shown in Figure 2a are taken into account. Available internal energies used in the RRKM calculations were computed as $E_{\text {avail }}=E_{\text {collision }}+48.8$, where $48.8 \mathrm{kcal} / \mathrm{mol}$ is the best estimate of the potential energy well depth for the $\mathbf{s} \mathbf{1}$ isomer relative to $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$. ${ }^{b}$ Rate constant k_{1} was calculated for two different values of the barrier height $E^{\#}$ at transition state s-TS0 with respect to $\mathbf{s} \mathbf{1}$ obtained at the $\mathrm{MRCI}+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df})$ and MRCI $+\mathrm{Q} / \mathrm{pvtz}$ levels of theory.

In this expression, V_{12} is the spin-orbit coupling term at MSX, μ_{h} is the reduced mass for movement along the direction orthogonal to the crossing seam, and ΔF is the norm of the difference of the gradients on the two surfaces at MSX.

In the present study, in addition to the nonadiabatic transition state theory method described above, we also employ an alternative approach, which does not require the PESs involved to cross and MSX to exist. Our method is based on the theory of radiationless transitions. ${ }^{36-44}$ In this theory, the rate constant for a radiationless transition (nonradiative decay) from a local minimum on one PES to another local minimum on a second PES is determined through the overlap between wave functions between these two structures. We adopt the adiabatic approximation, which allows the vibronic (i.e., electronic and vibrational) description of this process. The rate constant is then expressed as a product of the overlap of electronic wave functions (spin-orbit coupling term for the case of ISC) and that of vibrational wave functions (Franck-Condon factor):

$$
W_{b \leftarrow a}\left(\omega_{b a}\right)=\frac{1}{\hbar^{2}}\left|V_{\mathrm{ISC}}(b \leftarrow a)\right|^{2} \int_{-\infty}^{\infty} \mathrm{d} t \mathrm{e}^{i t \omega_{b a}} \prod_{l=1}^{N} G_{l}^{b a}(t)
$$

where

$$
\begin{gathered}
G_{l}^{b a}(t)=\frac{2 n_{l}^{b a} \mathrm{e}^{i t\left(\omega_{l}^{a}-\omega_{l}^{b}\right) / 2}\left(\mathrm{e}^{\hbar \omega_{l}^{a} / k T}-1\right)}{\omega_{l}^{a}+\omega_{l}^{b}} \sqrt{\frac{\omega_{l}^{a} \omega_{l}^{b}}{f_{l}^{b a+} f_{l}^{b a-}} \times} \\
\exp \left\{\frac{-\omega_{l}^{a} \omega_{l}^{b}\left(d_{l}^{b a}\right)^{2}}{\hbar\left(\omega_{l}^{a}+\omega_{l}^{b}\right)} \times \frac{\left(1+2 n_{l}^{b a}\right)-g_{l}^{b a+}}{f_{l}^{b a-}}\right\} \\
g_{l}^{b a \pm}=\left(n_{l}^{b a}+1\right) \mathrm{e}^{i t \omega_{l}^{b}} \pm n_{l}^{b e} \mathrm{e}^{-i t \omega_{l}^{b}} \\
f_{l}^{b a \pm}=1 \pm \frac{\omega_{l}^{b}-\omega_{l}^{a}}{\omega_{l}^{b}+\omega_{l}^{a}} g_{l}^{b a-} \\
n_{l}^{b a}=\frac{1}{\mathrm{e}^{i t\left(\omega_{l}^{a}-\omega_{l}^{b}\right)+\hbar \omega_{l}^{a} l k T}-1}
\end{gathered}
$$

In these equations, $\omega_{b a}$ is the energy gap between two local minima a and b on two different PESs, $V_{\operatorname{ISC}(b \leftarrow a)}$ is the spinorbit coupling term, $\left\{\omega_{1}{ }^{a}, \omega_{2}{ }^{a}, \ldots, \omega_{N}{ }^{a}\right\}$ and $\left\{\omega_{1}{ }^{b}, \omega_{2}{ }^{b}, \ldots, \omega_{N}{ }^{b}\right\}$ are
vibrational frequencies for the two local minima, and $\left\{d_{1}{ }^{b a}, d_{2}{ }^{b a}, \ldots, d_{N}{ }^{b a}\right\}$ are normal mode displacements from one local minimum to the other. All of these quantities can be obtained from ab initio calculations. Effective temperature T corresponding to available internal energy E can be computed employing the equipartition theorem. The spin-orbit coupling is taken out of the integral in these calculations assuming it is a constant; the values of the spin-orbit coupling constants were computed at the equilibrium structures involved in the singlet-triplet transitions (see below). In the calculations of the FranckCondon factor, we used the approximation of displaced and distorted harmonic oscillators and did not take into account a mixing between normal modes because this mixing (Duschinsky rotation) is not significant for the $\mathbf{s} \mathbf{1} \rightarrow \mathbf{t} 1$ and $\mathbf{s} \mathbf{2} \rightarrow \mathbf{t} 1$ transitions.

Using the approach described above, we computed the ISC rate constants $\mathbf{s} \mathbf{\rightarrow} \mathbf{t} 1\left(k_{4}\right), \mathbf{t} \mathbf{1} \rightarrow \mathbf{s} 1\left(k_{-4}\right), \mathbf{s} \mathbf{2} \rightarrow \mathbf{t} 1\left(k_{5}\right), \mathbf{t} 1 \rightarrow$ $\mathbf{s 2}\left(k_{-5}\right)$, which are shown in Table 3. It should be noted that for k_{4} and k_{-4} Franck-Condon factors involve vibrational overlap between the $\mathbf{s} \mathbf{1}$ and $\mathbf{t} \mathbf{1}$ isomers, but they are computed at different effective temperatures because the available internal energies for the two species differ. Also, in the calculations of k_{4}, we used the spin-orbit coupling term obtained at the CASSCF/6-311G(d) level at the geometry of $\mathbf{s 1}$, while the spinorbit coupling term obtained at the $\mathbf{t 1}$ geometry was employed to compute k_{-4}. Similar statements can be made concerning the rate constants k_{5} and k_{-5}. Thus, k_{-4} and k_{-5} include the same $V_{\text {ISC }}(b \leftarrow a)$ term and differ by their Franck-Condon factors. Rate constant k_{6} for the dissociation of $\mathbf{s} \mathbf{1}$ directly to the $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+$ CO_{2} products on the triplet PES via MSX was computed using the nonadiabatic transition state theory with Landau-Zener hopping probability.

Rate Constants

As seen in Table 2, rate constant k_{1} for the $\mathbf{s} \mathbf{1} \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)+$ CO_{2} dissociation process rapidly increases with a rise in the collision energy. The growth is nearly 2 orders of magnitude from $E_{\text {col }}=0$ to $10 \mathrm{kcal} / \mathrm{mol}$. This is due to the fact that the available energy is only slightly higher than the energy of the transition state s-TS0, so that the number of states for the transition state increases much faster than the density of states for $\mathbf{s 1}$. One can also see that k_{1} values are sensitive to the barrier height used in the calculations, especially for low collision

TABLE 3: Franck-Condon Factors, Spin-Orbit Coupling Constants, and Intersystem Crossing Rate Constants for the s1 \rightarrow $\mathbf{t} 1, \mathbf{t} \mathbf{1} \rightarrow \mathbf{s} 1, \mathbf{s} \mathbf{2} \rightarrow \mathbf{t} 1$, and $\mathbf{t} \mathbf{1} \rightarrow \mathbf{s} 2$ Transitions Calculated Using the Theory of Radiationless Transitions
(a) Franck-Condon Factors $\left(\mathrm{cm}^{2} \mathrm{~s}^{-1}\right)$

$E_{\text {collision }}, \mathrm{kcal} / \mathrm{mol}$	$\mathbf{s} \mathbf{\rightarrow} \rightarrow \mathbf{t} \mathbf{1}$	$\mathbf{t 1} \rightarrow \mathbf{s} \mathbf{1}$	$\mathbf{s} \mathbf{2} \rightarrow \mathbf{t} \mathbf{1}$	$\mathbf{t 1} \rightarrow \mathbf{s} \mathbf{2}$
0	7.14×10^{7}	6.16×10^{7}	4.33×10^{7}	1.34×10^{8}
0.5	7.14×10^{7}	6.19×10^{7}	4.34×10^{7}	1.32×10^{8}
1	7.14×10^{7}	6.23×10^{7}	4.35×10^{7}	1.30×10^{8}
2	7.14×10^{7}	6.31×10^{7}	4.37×10^{7}	1.28×10^{8}
3	7.14×10^{7}	6.37×10^{7}	4.39×10^{7}	1.25×10^{8}
4	7.14×10^{7}	6.43×10^{7}	4.41×10^{7}	1.23×10^{8}
4.2	7.14×10^{7}	6.45×10^{7}	4.41×10^{7}	1.23×10^{8}
5	7.14×10^{7}	6.49×10^{7}	4.43×10^{7}	1.21×10^{8}
6	7.15×10^{7}	6.54×10^{7}	4.45×10^{7}	1.20×10^{8}
7	7.15×10^{7}	6.59×10^{7}	4.47×10^{7}	1.18×10^{8}
7.7	7.15×10^{7}	6.63×10^{7}	4.49×10^{7}	1.17×10^{8}
8	7.15×10^{7}	6.64×10^{7}	4.49×10^{7}	1.17×10^{8}
10	7.15×10^{7}	6.68×10^{7}	4.51×10^{7}	1.16×10^{8}
	7.15×10^{7}	6.72×10^{7}	4.53×10^{7}	1.15×10^{8}

(b) Spin-Orbit Coupling Constants $\left(\mathrm{cm}^{-1}\right)$

$\mathbf{s 1}$	$\mathbf{s 2}$	$\mathbf{t 1}$	MSX
5.5	26	14	63

(c) Intersystem Crossing Rate Constants $\left(\mathrm{s}^{-1}\right)^{a}$

$E_{\text {col }}, \mathrm{kcal} / \mathrm{mol}$	$k_{4}(\mathbf{s} 1 \rightarrow \mathbf{t 1})$	$k_{-4}(\mathbf{t} \mathbf{~} \rightarrow \mathbf{s} \mathbf{1})$	$k_{5}(\mathbf{s} 2 \rightarrow \mathbf{t} 1)$	$k_{-5}(\mathbf{t} 1 \rightarrow \mathbf{s} 2)$	$k_{6}(\mathrm{MSX})$
0	2.16×10^{9}	1.21×10^{10}	2.93×10^{10}	2.63×10^{10}	5.79×10^{8}
0.5	2.16×10^{9}	1.21×10^{10}	2.93×10^{10}	2.60×10^{10}	6.27×10^{8}
1	2.16×10^{9}	1.22×10^{10}	2.94×10^{10}	2.56×10^{10}	6.77×10^{8}
2	2.16×10^{9}	1.24×10^{10}	2.95×10^{10}	2.50×10^{10}	7.83×10^{8}
3	2.16×10^{9}	1.25×10^{10}	2.97×10^{10}	2.46×10^{10}	8.98×10^{8}
4	2.16×10^{9}	1.26×10^{10}	2.98×10^{10}	2.42×10^{10}	1.02×10^{9}
4.2	2.16×10^{9}	1.26×10^{10}	2.98×10^{10}	2.41×10^{10}	1.04×10^{9}
5	2.16×10^{9}	1.27×10^{10}	2.99×10^{10}	2.38×10^{10}	1.15×10^{9}
6	2.16×10^{9}	1.28×10^{10}	3.01×10^{10}	2.35×10^{10}	1.28×10^{9}
7	2.16×10^{9}	1.29×10^{10}	3.02×10^{10}	2.32×10^{10}	1.43×10^{9}
7.7	2.16×10^{9}	1.30×10^{10}	3.03×10^{10}	2.30×10^{10}	1.54×10^{9}
8	2.16×10^{9}	1.30×10^{10}	3.04×10^{10}	2.29×10^{10}	1.58×10^{9}
9	2.16×10^{9}	1.31×10^{10}	3.05×10^{10}	2.27×10^{10}	1.73×10^{9}
10	2.16×10^{9}	1.32×10^{10}	3.07×10^{10}	2.25×10^{10}	1.89×10^{9}

[^1]energies. We computed the rates for two $E^{\#}$ values, 48.5 and $49.2 \mathrm{kcal} / \mathrm{mol}$, obtained at the MRCI+Q level of theory with the $6-311+\mathrm{G}(3 \mathrm{df})$ and pvtz levels, respectively. For the case of $E^{\#}=49.2 \mathrm{kcal} / \mathrm{mol}$, the reaction cannot take place at zero collision energy. For $E_{\text {col }}=0.5 \mathrm{kcal} / \mathrm{mol}$, the k_{1} value computed with the $48.5 \mathrm{kcal} / \mathrm{mol}$ barrier is a factor of 1.74 higher than that obtained with $49.2 \mathrm{kcal} / \mathrm{mol}$. However, as the collision energy increases, this ratio eventually decreases to 1.15 at $E_{\text {col }}$ $=10 \mathrm{kcal} / \mathrm{mol}$.

For k_{2}, the available energy is at least $11.5 \mathrm{kcal} / \mathrm{mol}$ higher than the threshold value and the changes as the collision energy increases are less pronounced as compared to those for k_{1}. For instance, from $E_{\text {col }}=0$ to $10 \mathrm{kcal} / \mathrm{mol}, k_{2}$ rises a factor of only 2.36. Rate constants k_{3} and k_{-3} are least sensitive to the reaction collision energy because they correspond to the low barrier s1 $\leftrightarrows \mathbf{s 2}$ reactions and transition state s-TS1 lies $42.8 \mathrm{kcal} / \mathrm{mol}$ below $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$, so that the available energy is higher than the threshold value by at least this amount. As a result, k_{3} and k_{-3} are high and show only a small $7-8 \%$ increase with $E_{\text {col }}$. It should also be noted that the k_{3} and k_{-3} values are somewhat higher than the RRKM applicability limit of $10^{13} \mathrm{~s}^{-1}$ determined by the rate of intramolecular vibrational relaxation (IVR), which normally occurs on a picosecond scale. Therefore, some dynamic effects may be significant for the $\mathbf{s} \mathbf{1} \leftrightarrows \mathbf{s} \mathbf{2}$ isomerization.

Intersystem crossing rate constants k_{4}, k_{-4}, k_{5}, and k_{-5} (Table 3) are nearly independent of the collision energy. This result originates from the fact that the available energy is much higher (by at least $\sim 25 \mathrm{kcal} / \mathrm{mol}$) than the threshold, which constitutes $\sim 22.5 \mathrm{kcal} / \mathrm{mol}$ for the $\mathbf{s} \mathbf{1} \rightarrow \mathbf{t} 1$ and $\mathbf{s 2} \rightarrow \mathbf{t} 1$ transitions and close to zero for the reverse rearrangements. k_{5} values are about an order of magnitude higher than k_{4} due to the higher value of the spin-orbit coupling term for the $\mathbf{s} \mathbf{2}$ structure (26 vs 5.5 cm^{-1} for $\mathbf{s} \mathbf{1}$). The rates are proportional to the square of the spin-orbit coupling constants, while the difference in $V_{\text {ISC }}$ is somewhat compensated by the higher Franck-Condon factor between $\mathbf{s} \mathbf{1}$ and $\mathbf{t} 1$ as compared to that between $\mathbf{s} 2$ and \mathbf{t}.

Rate constants k_{6} for the $\mathbf{s} \mathbf{~} \rightarrow \mathrm{MSX} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ process appear to be significantly lower than k_{4} and especially k_{5} (see Table 3). Despite the fact that V_{12} at MSX ($63 \mathrm{~cm}^{-1}$) is higher than those at $\mathbf{s} \mathbf{1}$ and $\mathbf{s} \mathbf{2}$, the hopping probability is computed to be about 10^{-2} near MSX (at E_{h} close to and slightly higher than E_{MSX}), but it rapidly decreases when E_{h} increases-by a factor of 5 within $3 \mathrm{kcal} / \mathrm{mol}$ and by an order of magnitude within $10 \mathrm{kcal} / \mathrm{mol}$. As a result, k_{6} computed for the nonadiabatic process is ~ 300 times lower than a rate constant for a hypothetical adiabatic process involving MSX as a transition state. Rate constants k_{6} show a moderate increase with a rise of the available energy and change by a factor of ~ 2.7 from $E_{\text {col }}$ $=0$ to $10 \mathrm{kcal} / \mathrm{mol}$.

Branching Ratios in the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ Reaction

To compute branching ratios for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ $+\mathrm{CO}_{2}$ products in the decomposition of chemically activated intermediate $\mathbf{s} \mathbf{1}$ formed in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction at different collision energies between 0 and $10 \mathrm{kcal} / \mathrm{mol}$, we used the calculated rate constants $k_{1}-k_{6}$ and kinetic scheme shown in Figure 2a. The kinetic master equations are then written as follows:

$$
\begin{gathered}
\mathrm{d}[\mathbf{s} \mathbf{2}] / \mathrm{d} t=k_{3}[\mathbf{s} 1]+k_{-5}[\mathbf{t} \mathbf{1}]-\left(k_{-3}+k_{5}\right)[\mathbf{s} \mathbf{2}] \\
\mathrm{d}[\mathbf{t} \mathbf{1}] / \mathrm{d} t=k_{4}[\mathbf{s} \mathbf{1}]+k_{5}[\mathbf{s} \mathbf{2}]-\left(k_{2}+k_{-4}+k_{-5}\right)[\mathbf{t} \mathbf{1}]
\end{gathered}
$$

Using the steady-state approximation, $\mathrm{d}[\mathbf{s} 2] / \mathrm{d} t=0$ and $\mathrm{d}[\mathbf{t} \mathbf{1}] /$ $\mathrm{d} t=0$, we express concentrations of the $\mathbf{s} \mathbf{2}$ and $\mathbf{t} \mathbf{1}$ intermediates in terms of $[\mathbf{s 1}]$ and then calculate rate constants for the production of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$:

$$
\begin{gathered}
\mathrm{d}\left[\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}\right] / \mathrm{d} t=k_{1}[\mathbf{s} \mathbf{1}] \\
\mathrm{d}\left[\mathrm{O}\left({ }^{3} \mathrm{D}\right)+\mathrm{CO}_{2}\right] / \mathrm{d} t=k_{6}[\mathbf{s} 1]+k_{2}[\mathbf{t} 1]
\end{gathered}
$$

which allows us to obtain the product branching ratios.
The results are shown in Table 5 (column a) and plotted in Figure 3a. As one can see, the $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ products are dominant at low collision energies ($\sim 98 \%$ at $E_{\text {col }}=0$), but the calculated branching ratio for $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ rapidly increases with $E_{\text {col }}$. The branching ratios are sensitive to the barrier height $E^{\#}$ at t-TS0 with respect to $\mathbf{s} \mathbf{1}$. We carried out the calculation for two values of $E^{\#}, 48.5 \mathrm{kcal} / \mathrm{mol}$ obtained at the MRCI+Q/ $6-311+\mathrm{G}(3 \mathrm{df})$ level and $49.2 \mathrm{kcal} / \mathrm{mol}$ (MRCI+Q/pvtz). The differences are not large for low collision energies but reach $5-6 \%$ at $E_{\text {col }}$ greater than $3 \mathrm{kcal} / \mathrm{mol}$. The $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ product branching ratio becomes larger than that for $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ at $E_{\text {col }}=8$ and $9 \mathrm{kcal} / \mathrm{mol}$ for $E^{\#}=48.5$ and $49.2 \mathrm{kcal} / \mathrm{mol}$, respectively. The rapid growth of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ relative product yield is due to the fast increase of rate constant k_{1} when the available energy increases and is only slightly above the threshold energy $E^{\#}$ needed for the reaction to occur. Another interesting result is that the $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ products are mostly produced via t1, that is, through the radiationless transition mechanism not involving the MSX; the radiationless transition rate constants are $5.3-5.7 \times 10^{10} \mathrm{~s}^{-1}$. Only a small fraction of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ products ($2-6 \%$) are formed directly from $\mathbf{s} \mathbf{1}$ via the MSX with rate constants for this process varying from 1.2 $\times 10^{9}$ to $3.8 \times 10^{9} \mathrm{~s}^{-1}$ as a function of collision energy.

Branching Ratios in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ Reaction: Comparison with Experiment

In the crossed-beam experiments, ${ }^{3,4}$ relative yields were measured for isotope exchange with and without quenching in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction, that is, for the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{46} \mathrm{CO}_{2}$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{46} \mathrm{CO}_{2}$ products, which have a different mass from that of the reactants and can therefore be most easily detected. In our calculations including isotope labeling, we use the rate constants in Table 4 computed for isotope-labeled species and the kinetic scheme shown in Figure 2b. One can see that this scheme is more complex due to the presence of an ${ }^{18} \mathrm{O}$ atom. Rate constants are also somewhat different because of differences in vibrational frequencies, zero-point energies, and reaction path degeneracies. Table 5 (column b) shows computed branching ratios for the four possible products, ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{46} \mathrm{CO}_{2},{ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2},{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{46} \mathrm{CO}_{2}$, and ${ }^{18} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{44} \mathrm{CO}_{2}$. Only the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$ are observable
TABLE 4: Rate Constants (s^{-1}) for Various Isomerization and Dissociation Pathways on the Singlet and Triplet Potential Energy Surfaces of Isotope-Labeled CO ${ }_{3}$ Calculated Using RRKM Theory ${ }^{a}$

TABLE 5: Branching Ratios (\%) for $\mathbf{O}\left({ }^{1} \mathrm{D}\right)$ and $\mathbf{O}\left({ }^{(3} \mathbf{P}\right)$ Products Calculated for Two Different Values of the Barrier Height $E^{\#}$ at Transition State s-TSO

$\underset{\mathrm{kcal} / \mathrm{mol}}{E_{\mathrm{col}}}$	$E^{\#}=48.5 \mathrm{kcal} / \mathrm{mol}$						$E^{\#}=49.2 \mathrm{kcal} / \mathrm{mol}$					
	a		b				a		b			
	O(${ }^{1}$ D)	$\mathrm{O}\left({ }^{3} \mathrm{P}\right)$	${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$	${ }^{18} \mathrm{O}\left({ }^{(} \mathrm{D}\right)$	${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$	${ }^{18} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$	O($\left.{ }^{1} \mathrm{D}\right)$	$\mathrm{O}\left({ }^{3} \mathrm{P}\right)$	${ }^{16} \mathrm{O}\left({ }^{(} \mathrm{D}\right)$	${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$	${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$	${ }^{18} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$
0	2.17	97.83	1.36	0.64	65.49	32.50						
0.5	3.33	96.67	2.11	1.00	64.76	32.14	1.93	98.07	1.21	0.62	65.61	32.56
1	4.95	95.05	3.14	1.50	63.73	31.63	2.62	97.38	1.65	0.78	65.20	32.36
2	9.37	90.63	5.99	2.89	60.90	30.23	5.75	94.25	3.65	1.75	63.22	31.38
3	15.11	84.89	9.72	4.72	57.18	28.39	10.33	89.67	6.60	3.20	60.28	29.92
4	21.91	78.09	14.17	6.90	52.74	26.19	16.17	83.83	10.41	5.06	56.48	28.05
4.2	23.36	76.64	15.13	7.37	51.78	25.71	17.47	82.53	11.26	5.48	55.64	27.62
5	29.29	70.71	19.05	9.30	47.87	23.77	22.94	77.06	14.86	7.24	52.05	25.85
6	36.75	63.25	24.01	11.74	42.93	21.32	30.15	69.85	19.63	9.59	47.30	23.49
7	44.04	55.96	28.88	14.15	38.06	18.91	37.52	62.48	24.53	12.00	42.41	21.06
7.7	48.81	51.19	32.09	15.74	34.85	17.32	42.50	57.50	27.86	13.65	39.08	19.41
8	50.75	49.25	33.39	16.39	33.55	16.67	44.55	55.45	29.23	14.33	37.71	18.73
9	56.88	43.12	37.53	18.44	29.41	14.62	51.16	48.84	33.68	16.53	33.27	16.53
10	62.24	37.76	41.14	20.25	25.79	12.82	57.07	42.93	37.65	18.51	29.28	14.55

[^2]in the crossed-beam experiment. The relative branching ratios ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /\left[\right.$ total ${ }^{16} \mathrm{O}$] and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right) /\left[\right.$ total $\left.{ }^{16} \mathrm{O}\right]$ can be easily computed from the data presented in Table 5 and are plotted in Figure 3b. In general, the relative branching ratio for the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+{ }^{46} \mathrm{CO}_{2}$ channel in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction is slightly lower than (but is within 1% of) the branching ratio for the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ channel in the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction. The differences are mostly due to lower vibrational frequencies for the ${ }^{62} \mathrm{CO}_{3}$ intermediates, which result in higher densities of states for the reactants and correspondingly somewhat lower rate constants for their decomposition (especially k_{1}). On the other hand, the rates for intersystem crossing critical for the overall production rate of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ are not sensitive (at least within our approximations) to isotope labeling in CO_{3}. As a result, the relative yield of ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{46} \mathrm{CO}_{2}$ in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction is slightly higher than the branching ratio for ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$ $+{ }^{44} \mathrm{CO}_{2}$ in the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction.

To evaluate the percentage of the incoming $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$, which are incorporated into the product CO_{2} molecules after the exchange reaction with and without quenching, we calculated the overall branching ratios of ${ }^{44} \mathrm{CO}_{2}$ [produced with ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ or ${ }^{18} \mathrm{O}\left({ }^{3} \mathrm{D}\right)$] and ${ }^{46} \mathrm{CO}_{2}$ [with ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ or ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{O}\right)$] in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+{ }^{44} \mathrm{CO}_{2}$ reaction. These branching ratios are $33.06-33.18 \%$ and $66.94-66.82 \%$, respectively; the relative yield of the ${ }^{44} \mathrm{CO}_{2}$ product slightly increases and that of ${ }^{46} \mathrm{CO}_{2}$ correspondingly decreases with an increase of the collision energy. Thus, our results confirm that isotope exchange occurs at a near-statistical rate and approximately two-thirds of incoming O atoms are incorporated into the product carbon dioxide molecules. From the data in Table 5, we can also compute the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /{ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right) /{ }^{18} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$ branching ratios for different collision energies (see Table 6), which describe the kinetic isotope effect (KIE) in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction. For $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, the ratios are close to the statistical value of 2.0 ranging from 2.015 for zero collision energy to 2.012 for $E_{\text {col }}=10 \mathrm{kcal} / \mathrm{mol}$. On the other hand, the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /{ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ branching ratios deviate from the statistical value more significantly and vary from 2.11 to 2.03 , as the collision energy increases from 0 to $10 \mathrm{kcal} / \mathrm{mol}$.

Also shown in Figure 3b are the experimental measurements performed for two collision energies of 4.2 and $7.7 \mathrm{kcal} / \mathrm{mol} .^{3,4}$ The best agreement of the calculated branching ratios is obtained with $E^{\#}=49.2 \mathrm{kcal} / \mathrm{mol}$. In this case, theoretical branching ratios agree with experiment to within 1% for $E_{\mathrm{col}}=4.2 \mathrm{kcal} / \mathrm{mol}$,
but for $E_{\text {col }}=7.7 \mathrm{kcal} / \mathrm{mol}$ the computed branching ratio of ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{46} \mathrm{CO}_{2}$ overestimates the experimental value by $\sim 9 \%$. For $E^{\#}=48.5 \mathrm{kcal} / \mathrm{mol}$, the deviations of theoretical values from experiment are larger, $\sim 7 \%$ and $\sim 15 \%$ at $E_{\text {col }}=4.2$ and $7.7 \mathrm{kcal} / \mathrm{mol}$, respectively. Apparently, the theoretical branching ratio for $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ (isotope exchange with quenching) falls faster and that for $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ (isotope exchange without quenching) rises more rapidly with $E_{\text {col }}$ than the experimental values do.

Several reasons could be behind these deviations. First, the rate constants for the production of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ can be overestimated due to underestimation of the barrier height $E^{\#}$ at s-TSO. However, this is not likely because the thermal rate constant measured for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction exhibits a slightly negative temperature dependence, ${ }^{25}$ indicating that the transition state energy (if such a TS exists at all) should be lower than the energy of the reactants. In Figure 4, we plotted the experimental rates of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction and theoretical high-pressure-limit rate constants computed using transition state theory with relative energies of s-TS0 taken as -0.3 and -0.6 $\mathrm{kcal} / \mathrm{mol}$, respectively, with respect to the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reactants, that is, 48.5 and $48.2 \mathrm{kcal} / \mathrm{mol}$ relative to $\mathbf{s 1}$. One can see that the best agreement is found for $E^{\#}=48.2 \mathrm{kcal} /$ mol , while the rates computed with $E^{\#}=48.5 \mathrm{kcal} / \mathrm{mol}$ underestimate the experimental values by a factor of $1.8-2.1$. Moreover, a positive temperature dependence is found if the thermal rate is calculated with $E^{\#}=49.2 \mathrm{kcal} / \mathrm{mol}$ (assuming the well depth at $\mathbf{s} \mathbf{1}$ to be $48.8 \mathrm{kcal} / \mathrm{mol}$). Although the computations of thermal rate constants are rather approximate-they are carried out for the high-pressure limit and do not take into account possible formation of the $\mathbf{s} \mathbf{0}$ and $\mathbf{s} \mathbf{3}$ complexes-they still illustrate that the barrier height at $\mathrm{t}-\mathrm{TS} 0$ is not likely to be underestimated in our calculations.

Hence, a more likely reason for the deviation of the theoretical branching ratios from experiment is underestimation of rate constants leading to the production of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, especially at high collision energy. Because the ISC rates (k_{4} and k_{5}) do not show a significant dependence on the available energy, the rate k_{6} for the reaction through MSX $\left(\mathbf{s} \mathbf{1} \rightarrow \mathrm{MSX} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}\right)$ is likely to be underestimated. This observation is in line with the results of previous theoretical calculations using the nonadiabatic transition state theory, which showed that the one-dimensional handling of the surface hopping probability often gives rate

Figure 3. Branching ratios in decomposition of chemically activated CO_{3} formed in the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction as functions of the collision energy. The curves marked with open squares and open circles show the branching ratios of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ products, respectively. Closed squares and circles show experimental branching ratios from ref 4 . Theoretical branching ratios were calculated for two different values of the barrier height $E^{\#}$ at transition state s-TS0 with respect to $\mathbf{s 1}$ obtained at the $\mathrm{MRCI}+\mathrm{Q} / 6-311+\mathrm{G}(3 \mathrm{df})(48.5 \mathrm{kcal} / \mathrm{mol}$, dotted curves) and MRCI $+\mathrm{Q} / \mathrm{pvtz}(49.2 \mathrm{kcal} / \mathrm{mol}$, solid curves) levels of theory. Plot a shows branching ratios for the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction without isotope labels. Plot b shows the relative branching ratios for the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{46} \mathrm{CO}_{2}$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{46} \mathrm{CO}_{2}$ products for the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction, that is, ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /\left[\right.$ total $\left.{ }^{16} \mathrm{O}\right]$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right) /[$ total ${ }^{16} \mathrm{O}$], respectively, which are observable in experiment.
constants 1-2 orders of magnitude lower than experimental values; ${ }^{28,35}$ extensive multidimensional nonadiabatic dynamical studies are required to improve theoretical treatment of this rate constant. ${ }^{58}$ Another source for the deviations could be nonstatistical (non-RRKM) redistribution of energy in the CO_{3} intermediates. For instance, the branching ratios appear to be sensitive to the $\mathbf{s} \mathbf{1} \boldsymbol{\rightarrow} \mathbf{s} \mathbf{2}$ and $\mathbf{s} \mathbf{2} \rightarrow \mathbf{s} \mathbf{1}$ rate constants, which are close to the RRKM applicability limit. If we fix the k_{3} and k_{-3} values at exactly 10^{13}, the calculated yield of $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ increases because ISC mostly takes place through $\mathbf{s} \mathbf{2}\left(k_{5}>k_{4}\right)$. Therefore, if the $\mathbf{s} \mathbf{2} \rightarrow \mathbf{s} \mathbf{1}$ rate $\left(k_{-3}\right)$ is lowered, $\mathbf{s} \mathbf{2}$ survives longer and the probability for the system to end up on the triplet PES is higher. Thus, the branching ratio depends on how long the system will be spending in the vicinity of the $\mathbf{s} \mathbf{2}$ potential well as compared to $\mathbf{s 1}$. This could be a source for a non-RRKM behavior.

Despite the notable deviation from experiment at higher collision energies, our calculated branching ratios correctly

Figure 4. Calculated and experimental thermal rate constants for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction. The curve marked with closed squares shows experimental rate constants from ref 25 . The curves marked with closed triangles and circles show rate constants calculated using the transition state theory (high-pressure limit rates) with relative energies of s-TS0 taken as -0.3 and $-0.6 \mathrm{kcal} / \mathrm{mol}$, respectively, with regards to the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ $+\mathrm{CO}_{2}$ reactants.

TABLE 6: Branching Ratios ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /{ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right) /$ ${ }^{18}$ O($\left.{ }^{3} \mathrm{P}\right)$ Calculated for Different Collision Energies

$E_{\text {col }, ~ \mathrm{kcal} / \mathrm{mol}}$	${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /{ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$	${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right) /{ }^{18} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$
0	2.111	2.015
0.5	2.108	2.015
1	2.093	2.015
2	2.071	2.015
3	2.060	2.014
4	2.053	2.014
4.2	2.052	2.014
5	2.048	2.014
6	2.044	2.013
7	2.041	2.013
7.7	2.039	2.013
8	2.038	2.013
9	2.035	2.012
10	2.031	2.012

reproduce the experimental trend and quantitatively agree with experiment at $E_{\text {col }}=4.2 \mathrm{kcal} / \mathrm{mol}$. Therefore, the results predicted for the lower collision energies are likely to be reliable. It should also be noted that theory would not be able to reproduce experimental branching ratios for isotope exchange/ quenching if one takes into account only the $\mathbf{s} \mathbf{~} \rightarrow$ MSX \rightarrow $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ reaction channel via MSX and not considering radiationless transitions $\mathbf{s} \mathbf{\rightarrow} \mathbf{t 1}$ and $\mathbf{s} \mathbf{2} \rightarrow \mathbf{t} \mathbf{1}$, which play a dominant role in ISC, especially at low $E_{\text {col }}$.

Conclusions

Ab initio multireference configuration interaction calculations for the CO_{3} system demonstrate that the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction involves at least two PESs corresponding to singlet and triplet electronic states. The reaction starts from the formation of an $\mathrm{O}-\mathrm{CO}_{2}$ complex $\mathbf{s 0}$, which then isomerizes to a cyclic $\mathrm{O}=$ $\left(\mathrm{CO}_{2}\right)$ structure $\mathbf{s 1}$ over a barrier at s-TS0. The best estimate for the relative energy of s-TS0 is $0.3 \mathrm{kcal} / \mathrm{mol}$ below the reactants. The cyclic isomer s1, which is predicted to lie 48.8 $\mathrm{kcal} / \mathrm{mol}$ lower in energy than $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$, can in turn rearrange to a $D_{3 h}$ structure $\mathbf{s} \mathbf{2}$, only slightly higher in energy. The isomers $\mathbf{s} \mathbf{1}$ and $\mathbf{s} \mathbf{2}$ formed in the reaction possess high internal energy (chemically activated) and can decompose into the initial reactants. If the attacking oxygen atom is isotope-
labeled, isotope exchange can occur due to the symmetry properties of the s1 and s2 isomers. Alternatively, s1 and s2 can undergo singlet-triplet intersystem crossing to form the triplet isomer t1, which can dissociate to $\mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$, overcoming a barrier at $\mathrm{t}-\mathrm{TS} 1$. The triplet products can also be formed directly from s1 through a minimum on the seam of crossing of the singlet and triplet PESs, which is found in the vicinity of the transition state t-TS1. On the first excited singlet surface, $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and CO_{2} can form a strongly bound complex $\mathbf{s} 3$ $\left({ }^{1} \mathrm{~A}_{2}\right)$. However, the barrier for isomerization of this complex into excited isomer $\mathbf{s} 4\left({ }^{1} \mathrm{~A}^{\prime \prime}\right)$ is high ($11 \mathrm{kcal} / \mathrm{mol}$ relative to the initial reactants), and the excited singlet PES is not likely to contribute to isotope exchange at collision energies lower than $11 \mathrm{kcal} / \mathrm{mol}$.

When the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ reaction initially produces chemically activated s1, the branching ratios for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ and $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ $+\mathrm{CO}_{2}$ products depend on the dissociation (k_{1} and k_{2}), isomerization (k_{3} and k_{-3}), and $\operatorname{ISC}\left(k_{4 /-4}, k_{5 /-5}\right.$, and k_{6}) rate constants. The formation of the triplet products mostly occurs through the $\mathbf{s} \mathbf{2} \rightarrow \mathbf{t 1}$ radiationless transition, which has a rate constant nearly independent of the available energy. The contribution of the $\mathbf{s} \mathbf{1} \rightarrow \mathrm{MSX} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}_{2}$ process involving the crossing seam is much less significant, only $2-6 \%$. Due to the fact that the rate constant for the $\mathbf{s} \mathbf{\rightarrow} \rightarrow \mathrm{s}$-TS0 $\rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ dissociation on the singlet PES rapidly increases with available energy (and therefore with collision energy), the calculated branching ratio for the $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ products also increases from 2% at zero collision energy to 57% at $E_{\text {col }}=10 \mathrm{kcal} / \mathrm{mol}$. In the isotope-labeled ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction, the calculated relative branching ratios ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /[$ total ${ }^{16} \mathrm{O}$] observable in experiment are found to be slightly lower than (but within 1% of) the branching ratios for $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CO}_{2}$ in the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction without isotope labels. The computed relative branching ratios for ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)$ and ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)$ at $E_{\text {col }}=4.2$ and $7.7 \mathrm{kcal} / \mathrm{mol}, 17 / 83$ and $42 / 58$, agree reasonably well with the experimental values of $16 / 84$ and $33 / 67$, respectively. The calculations also reproduce the qualitative trend with $E_{\text {col }}$, that is, an increase of the relative yield of isotope exchange without quenching when the collision energy grows. The calculated overall branching ratios of ${ }^{44} \mathrm{CO}_{2}$ and ${ }^{46} \mathrm{CO}_{2}$ confirm that the attacking $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ atom can be incorporated into the product CO_{2} molecule with a near-statistical probability of about $\frac{2}{3}$. On the other hand, KIE is displayed in the fact that the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right) /{ }^{18}\left({ }^{1} \mathrm{D}\right)$ branching ratio deviates for the statistical value of 2.0 and varies from 2.11 to 2.03 as collision energy increases, while the ${ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right) /{ }^{18}\left({ }^{3} \mathrm{P}\right)$ ratio remains close to 2.0 . The discrepancy of the $\mathrm{O}\left({ }^{1} \mathrm{D}\right) / \mathrm{O}\left({ }^{3} \mathrm{P}\right)$ branching ratios from experiment at the higher $E_{\text {col }}$ is attributed to an underestimation of the surfacehopping rate constant k_{6} by the nonadiabatic transition state theory approach. Meanwhile, our results clearly demonstrate that the theory of radiationless transitions can be successfully employed to compute rate constants for intersystem crossing with reasonable accuracy using ab initio energies, geometric structures, vibrational normal modes and frequencies, and spinorbit coupling constants as input data. Therefore, this approach, in combination with ab initio and RRKM calculations, can have broad applications for theoretical studies of rate constants and branching ratios of chemical reactions involving a change of electronic multiplicity.

Acknowledgment. A.M.M. is grateful to Florida International University for his start-up funds used to purchase the computer equipment partially employed for this study. We thank Academia Sinica and National Science Council of Taiwan, R.O.C. (Grant \# NSC 91-2113-M-001-029), for financial
support. We are also thankful to Prof. K. A. Boering, Dr. J. J. Lin, Prof. K. Liu, Mr. M. J. Perri, and Ms. A. L. Van Wyngarden for stimulating discussions.

Supporting Information Available: Vibrational frequencies $\left(\mathrm{cm}^{-1}\right)$ for different isotopologues of various intermediates and transition states on the singlet and triplet potential energy surfaces of CO_{3} calculated at the $\operatorname{CASSCF}(16,13) / 6-311 \mathrm{G}(\mathrm{d})$ level of theory (Table S1). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Yung, Y. L.; Lee, A. Y. T.; Irion, F. W.; DeMore, W. B.; Wen, J. J. Geophys. Res., D: Atmos. 1997, 102, 10857.
(2) Yung, Y. L.; Demore, W. B.; Pinto, J. P. Geophys. Res. Lett. 1991, 18, 13.
(3) Perri, M. J.; Van Wyngarden, A. L.; Boering, K. A.; Lin, J. J.; Lee, Y. T. J. Chem. Phys. 2003, 119, 8213.
(4) Perri, M. J.; Van Wyngarden, A. L.; Boering, K. A.; Lin, J. J.; Lee, Y. T. J. Phys. Chem. A 2004, 108, 7995.
(5) Gamo, T.; Tsutsumi, M.; Sakai, H.; Nakazawa, T.; Tanaka, M.; Honda, H.; Kubo, H.; Itoh, T. Tellus B 1989, 41, 127.
(6) Thiemens, M. H.; Jackson, T.; Mauersberger, K.; Schueler, B.; Morton, J. Geophys. Res. Lett. 1991, 18, 669.
(7) Thiemens, M. H.; Jackson, T. L.; Zipf, E. C.; Erdman, P. W.; Vanegmond, C. Science 1995, 270, 969.
(8) Thiemens, M. H.; Jackson, T. L.; Brenninkmeijer, C. A. M. Geophys. Res. Lett. 1995, 22, 255.
(9) Alexander, B.; Vollmer, M. K.; Jackson, T. L.; Weiss, R. F.; Thiemens, M. H. Geophys. Res. Lett. 2001, 28, 4103.
(10) Lammerzahl, P.; Rockmann, T.; Brenninkmeijer, C. A. M.; Krankowsky, D.; Mauersberger, K. Geophys. Res. Lett. 2002, 29, 1582.
(11) Boering, K. A.; Jackson, T.; Hoag, K.; Cole, A. S.; Perri, M. J.; Thiemens, M. H.; Atlas, E. Geophys. Res. Lett. 2004, 31, L03109.
(12) (a) Mauersberger, K. Geophys. Res. Lett. 1987, 14, 80. (b) Schueler, B.; Morton, J.; Mauersberger, K. Geophys. Res. Lett. 1990, 17, 1295. (c) Krankowsky, D.; Lammerzahl, P.; Mauersberger, K. Geophys. Res. Lett. 2000, 27, 2593.
(13) Mauersberger, K.; Erbacher, B.; Krankowsky, D.; Gunther, J.; Nickel, R. Science 1999, 283, 370.
(14) (a) Gao, Y. Q.; Marcus, R. A. Science 2001, 293, 259. (b) Gao, Y. Q.; Marcus, R. A. J. Chem. Phys. 2002, 116, 5913. (c) Gao, Y. Q.; Chen, W. C.; Marcus, R. A. J. Chem. Phys. 2002, 117, 1536.
(15) Baulch, D. L.; Breckenridge, W. H. Trans. Faraday Soc. 1966, 62, 2768.
(16) Hoag, K. J.; Boering, K. A.; Still, C. J.; Fung, I. Y.; Randerson, J. T. EOS Trans. Am. Geophys. Union 2002, 83, Fall Meet. Suppl., Abstract B71A-0707.
(17) (a) Luz, B.; Barkan, E.; Bender, M. L.; Thiemens, M. H.; Boering, K. A. Nature 1999, 400, 547. (b) Blunier, T.; Barnett, B.; Bender, M. L.; Hendricks, M. B. Global Biogeochem. Cycles 2002, 16, doi: 10.1029/ 2001GV001460.
(18) Atreya, S. K.; Gu, Z. G. Adv. Space Res. 1995, 16, 57.
(19) Yung, Y. L.; DeMore, W. B. Photochemistry of Planetary Atmospheres; Oxford University Press: Oxford, 1999.
(20) Bogard, D. D.; Clayton, R. N.; Marti, K.; Owen, T.; Turner, G. Space Sci. Rev. 2001, 96, 425.
(21) Moroz, V. I. Adv. Space Res. 1998, 22, 449.
(22) Galimov, E. M. Dokl. Akad. Nauk 1997, 355, 382.
(23) Wine, P. H.; Ravishankara, A. R. Chem. Phys. Lett. 1981, 77, 103.
(24) Young, R. A.; Black, G.; Slanger, T. G. J. Chem. Phys. 1968, 49, 4758.
(25) (a) Davidson, J. A.; Sadowski, C. M.; Schiff, H. I.; Streit, G. E.; Howard, C. J.; Jennings, D. A.; Schmeltekopf, A. L. J. Chem. Phys. 1976, 64, 57. (b) Streit, G. E.; Howard, C. J.; Schmeltekopf, A. L.; Davidson, J. A.; Schiff, H. I. J. Chem. Phys. 1976, 65, 4761. Sander, S. P.; FinlaysonPitts, B. J.; Friedl, R. R. Jet Propulsion Laboratory, JPL Publication 02-25, Pasadena, CA, 2002.
(26) Froese, R. D. J.; Goddard, J. D. J. Phys. Chem. 1993, 97, 7484.
(27) Lorquet, J. C.; Leyh-Nihant, B. J. Phys. Chem. 1988, 92, 4778.
(28) Cui, Q.; Morokuma, K.; Bowman, J. M.; Klippenstein, S. J. J. Chem. Phys. 1999, 110, 9469.
(29) Aschi, M.; Grandinetti, F. J. Chem. Phys. 1999, 111, 6759.
(30) Harvey, J. N.; Grimme, S.; Woeller, M.; Peyerimhoff, S. D.; Danovich, D.; Shaik, S. Chem. Phys. Lett. 2000, 322, 358.
(31) de Moraes, P. R. P.; Linnert, H. V.; Aschi, M.; Riveros, J. M. J. Am. Chem. Soc. 2000, 122, 10133.
(32) Aschi, M.; Largo, A. Chem. Phys. 2001, 265, 251.
(33) Marks, A. J. J. Chem. Phys. 2001, 114, 1700.
(34) Harvey, J. N.; Aschi, M. Phys. Chem. Chem. Phys. 1999, 1, 5555.
(35) Harvey, J. N.; Aschi, M. Faraday Discuss. 2003, 124, 129.
(36) Lin, S. H. Proc. R. Soc. London, Ser. A 1976, 352, 57.
(37) (a) Lin, S. H. J. Chem. Phys. 1966, 44, 3759. (b) Lin, S. H.; Bersohn, R. J. Chem. Phys. 1968, 48, 2732.
(38) Lin, S. H. J. Chem. Phys. 1973, 58, 5760.
(39) (a) Englman, R.; Jortner, J. Mol. Phys. 1970, 18, 145. (b) Freed, K. F.; Jortner, J. J. Chem. Phys. 1970, 52, 1272.
(40) Nitzan, A.; Jortner, J. J. Chem. Phys. 1971, 55, 1355.
(41) Siebrand, W. J. Chem. Phys. 1971, 54, 363.
(42) Fischer, S. F. Chem. Phys. Lett. 1971, 11, 577.
(43) Heller, D. F.; Freed, K. F.; Gelbart, W. M. J. Chem. Phys. 1972, 56, 2309.
(44) Hayashi, M.; Mebel, A. M.; Liang, K. K.; Lin, S. H. J. Chem. Phys. 1998, 108, 2044.
(45) (a) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1985, 82, 5053.
(b) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1985, 115, 259.
(46) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(47) (a) Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803. (b) Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1988, 145, 514.
(48) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007.
(49) (a) Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. (b) Scuseria, G. E.; Janssen, C. L.; Schaefer, H. F., III. J. Chem. Phys. 1988, 89, 7382. (c) Scuseria, G. E.; Schaefer, H. F., III. J. Chem. Phys. 1989, 90, 3700. (d) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968.
(50) DALTON, a molecular electronic structure program, Release 1.2, 2001, written by Helgaker, T.; Jensen, H. J. Aa.; Jørgensen, P.; Olsen, J.; Ruud, K.; Ågren, H.; Auer, A. A.; Bak, K. L.; Bakken, V.; Christiansen, O.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Enevoldsen, T.; Fernandez, B.; Hättig, C.; Hald, K.; Halkier, A.; Heiberg, H.; Hettema, H.; Jonsson, D.; Kirpekar, S.; Kobayashi, R.; Koch, H.; Mikkelsen, K. V.; Norman, P.;

Packer, M. J.; Pedersen, T. B.; Ruden, T. A.; Sanchez, A.; Saue, T.; Sauer, S. P. A.; Schimmelpfenning, B.; Sylvester-Hvid, K. O.; Taylor, P. R.; Vahtras, O.
(51) MOLPRO is a package of ab initio programs written by Werner, H.-J.; Knowles, P. J., with contributions from Almlöf, J.; Amos, R. D.; Deegan, M. J. O.; Elbert, S. T.; Hampel, C.; Meyer, W.; Peterson, K.; Pitzer, R.; Stone, A. J.; Taylor, P. R.; Lindh, R.
(52) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
(53) Ibragimova, L. B. Khim. Fiz. 1991, 10, 307.
(54) (a) Dunn, K.; Morokuma, K. J. Chem. Phys. 1995, 102, 4904. (b) Cui, Q. Ph.D. Thesis, Emory University, Atlanta, GA, 1998.
(55) NIST Atomic Spectra Data Base, http://physics.nist.gov/cgi-bin/ AtData/main_asd.
(56) Peterson, K. A.; Dunning, T. J. Phys. Chem. 1995, 99, 3898.
(57) Eyring, H.; Lin, S. H.; Lin, S. M. Basic Chemical Kinetics; Wiley: New York, 1980.
(58) It should be noted that in the case of the $\mathrm{N}_{2}+\mathrm{CH}$ reaction, ${ }^{28}$ the deviation between the theoretical and experimental rate constants was found to be due to the fact that this reaction can occur by another, spin-allowed channel; see: (a) Moskaleva, L. V.; Xia, W. S.; Lin, M. C. Chem. Phys. Lett. 2000, 331, 269. (b) Moskaleva, L. V.; Lin, M. C. Proc. Combust. Inst. 2000, 28, 2393.

[^0]: † Part of the special issue "Richard Bersohn Memorial Issue".

 * To whom correspondence should be addressed. E-mail: mebela@fiu.edu.
 *Florida International University.
 § Institute of Atomic and Molecular Sciences.
 "National Taiwan University.

[^1]: ${ }^{a}$ Symmetry factors (reaction path degeneracies) shown in Figure 2 were not included in the values shown here but were taken into account in the calculations of branching ratios. Intersystem crossing rate constants used for the calculations of branching ratios in the isotope-labeled system [Figure 2 b], $k_{4}{ }^{\prime}, k_{-4}{ }^{\prime}, k_{5}{ }^{\prime}, k_{-5^{\prime}}$, differ from $k_{4}, k_{-4}, k_{5}, k_{-5}$, respectively, only by the symmetry factors.

[^2]: ${ }^{a}$ Decomposing chemically activated intermediate $\mathbf{s 1}$ is formed in the ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction and does not have isotope labels. ${ }^{b}$ Branching ratios of ${ }^{16} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{46} \mathrm{CO}_{2},{ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2},{ }^{16} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{46} \mathrm{CO}_{2}$, and ${ }^{18} \mathrm{O}\left({ }^{3} \mathrm{P}\right)+{ }^{44} \mathrm{CO}_{2}$ produced from decomposing chemically activated intermediate $\mathbf{s} 1$ formed in the ${ }^{18} \mathrm{O}\left({ }^{1} \mathrm{D}\right)+{ }^{44} \mathrm{CO}_{2}$ reaction.

