
MRSDCI Vertical Excitation Energies and MQDO Intensities for Electronic Transitions to
Rydberg States in H2S

A. M. Velasco and I. Martı́n*
Departamento de Quı´mica Fı́sica, Facultad de Ciencias, UniVersidad de Valladolid, E-47005 Valladolid, Spain

J. Pitarch-Ruiz and J. Sánchez-Marı́n
Departament de Quı´mica-Fı́sica, Institut de Cie`ncia Molecular, Facultat de Cie`ncies Quı´miques,
Dr. Moliner 50, E-46100 Burjassot, Vale`ncia, Spain

ReceiVed: February 9, 2004; In Final Form: June 11, 2004

Vertical excitation energies and the ionization potential for H2S have been calculated through the multireference
singles and doubles configuration interaction method. We have used these values to calculate oscillator strengths
of H2S. The molecular quantum defect orbital method has been employed to determine analytical wave functions
and transition intensities involving Rydberg states. The results have been analyzed on the grounds of the data
available in the literature.

I. Introduction

Hydrogen sulfide, as a reduced sulfur compound, plays an
important role in the global cycling of sulfur and has been
discovered not only in the Earth’s atmosphere but also in the
interestellar medium.1,2 It is mainly released into the Earth’s
atmosphere by volcanic and biogenic emissions, especially in
the areas of oceans,3,4 tropical rain forests,5 wetland plant
communities,6 and during oil and natural gas recovery opera-
tions.7 It has also been detected in the atmospheres of Jupiter8

and Io as well as on the surface of the satellite,9 in the outgassing
of comets,10,11 and even in star-forming regions.12 In addition,
H2S is known to be one of the major pollutants of the Earth’s
atmosphere, and is involved in corrosive processes in metals.13

Moreover, an atmosphere of H2S is used14 in the synthesis of a
semiconductor, tungsten sulfide (WS2), whose molecular struc-
ture is identical to that of fullerene (C60).

Photoprocesses of H2S have also been the subject of a number
of experimental and theoretical studies. In addition to a
fundamental interest in the electronic structure and excited states
of hydrogen sulfide, electronic transition probability data are
required to model equilibrium conditions in the stratosphere and
troposphere, as well as to analyze observed data from planetary
atmospheres and the interestellar space.15,16Therefore, quantita-
tive studies of the interaction of hydrogen sulfide with visible,
UV, VUV, and soft X-ray radiation are of importance in many
areas of science and technology including astrophysics, the study
of planetary atmospheres (aeronomy), dosimetry, and fusion.17

It is the purpose of the present study to supply new
spectroscopic data on H2S concerning Rydberg transition
intensities. The procedures followed in the present work have
recently been used satisfactorily to calculate vertical excitation
energies (VEEs) and ionization potentials (IPs), in addition to
absorption oscillator strengths and Einstein emission coefficients
for the Rydberg states of ArH.18 In this work, VEEs and IPs at
the multireference singles and doubles configuration interaction

(MR-SDCI) level, have been determined for H2S at the
equilibrium geometry (RS-H ) 2.52 au,ϑH-S-H ) 92.2°). In
an unmixed molecular Rydberg state, the excited electron
occupies a quasiatomic orbital of much greater dimensions than
those of the singly charged molecular core. Consequently,
Rydberg orbitals are usually not very important in determining
the geometry of the excited states. Instead, it is the core vacancy
what determines the geometry in a Rydberg excitation.

We have recently reported the vertical spectrum of H2S19 and
pointed out several open questions concerning this spectrum.
In the present work, both VEEs and IPs have been calculated
using MR and complete active space (CAS) as generators of
the complete SDCI spaces. For the first time, Rydberg states
of f character have been dealt with.19 We have mainly focused
our efforts on the analysis of the Rydberg states of H2S,
determined with the aforementioned multireference SDCI
procedure.

For transition-intensity calculations, the molecular-adapted
version of the molecular quantum defect orbital (MQDO)
method,20,21 which has proven to yield correct intensities for
Rydberg transitions in a variety of molecular species,18,20-24 has
been employed. We have considered those transitions that obey
the Laporte,∆l ) (1, selection rule, in addition to symmetry
constrains, as these are experimentally observed to be the
strongest ones, with the exception of those involving states that
show signs of important mixing with others. We have compared
our calculated oscillator strengths with some experimental and
theoretical values available in the literature.

II. Calculation of Transition Intensities

The QDO formalism adapted to deal with molecular Rydberg
transitions has been described in detail elsewhere.20,21 A very
brief summary, thus, follows. The MQDO radial wave functions
are the analytical solutions of a one-electron Schro¨dinger
equation that contains a model potential of the form
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wherea represents the set of quantum numbers and symmetry
labels that define a given molecular state. Solutions of this
equation are related to Kummer functions. The parameterδa is
the quantum defect, which varies with the angular momentum
of the electron and with the symmetry of the state (i.e., differs
from one Rydberg series to another), andc is an integer within
a narrow range of values that ensures the normalization of the
orbitals and their correct nodal pattern. The number of radial
nodes is equal ton - l - c - 1. The angular part of the
molecular Rydberg orbitals is a symmetry-adapted linear
combination of spherical harmonics so that the Rydberg
molecular orbitals (MOs) form bases for the different irreducible
representations of the molecular symmetry group.

The quantum defect,δa, corresponding to a given state, is
related to the energy eigenvalue through the following equation

whereT is the ionization energy. BothT andEa are expressed
here in Hartrees.

The absorption oscillator strength for an electronic excitation
between two bound statesa andb may be expressed as

N is the number of equivalent electrons in the MO where the
transition originates, andQ{a f b}, referred to as the angular
factor, results from the integration of the angular parts of the
MOs involved in the transition.Rab is the radial transition
moment. The detailed MQDO algebraic expressions for the
radial transition moment are given in ref 21.

We find it relevant to mention here that all the radial transition
integrals that involve quantum defect orbitals have closed-form
analytical expressions. This makes the calculation of transition
intensities free from numerical errors and convergence problems,
which is, in our view, an important computational advantage.

III. Energies and Quantum Defects

The MR-SDCI energy calculations have been performed with
the CASDI25,26 code. This code includes a recent option that
allows for large-scale MR-SDCI calculations without the
additional requirement that the MR space be a CAS.27 The MR-
SDCI option removes, from the reference space of SDCI
generators, the high-energy excitations occurring in the CAS,
which play an irrelevant role in the description of the low-lying
excited states. The dimension of the CI spaces generated in this
way can be several orders of magnitude smaller than the
corresponding CAS-SDCI spaces. Such a reduction is performed
efficiently without a sensible loss of efficiency in the addressing
and memory managing so that most algorithmic advantages
inherent in the CAS description are retained.27 Test calculations
have shown that, as long as the MR set is not exceedingly small
or badly adapted, the error relative to the corresponding CAS-
SDCI values falls quickly with the dimension of the generated
SDCI space, so that one easily gets stable (but asymptotically
decaying) errors for the both ground state and the vertical
excitation energies,27 with only a small fraction of the compu-
tational effort.

The atomic natural orbitals (ANO)28 basis sets [4s3p2d1f]
for S and [2s1p] for H, respectively, have been augmented with
a series of 4s4p4d2f Rydberg functions allocated in the charge
centroid of the2B1(2b1)1 cation state in order to attain improved
asymptotic conditions for the Rydberg series. More details on

the basis set, in particular those concerning the augmented basis
functions exponents and coefficients, can be found in ref 19.
The MOs resulting from the RHF calculation have been adapted,
separately for eachC2V symmetry representation, by means of
equally weigthed state averaging. The first-order CAS self-
consistent field (SCF) density matrixes of all the CASSCF states
of each symmetry were combined, and the resulting pseudo
natural orbitals have been used for the subsequent MR-SDCI
calculations. The basis-set augmentation, the CASSCF calcula-
tions, and the state-averaging steps were performed by means
of the MOLCAS 4 program.29 In the CASSCF MOs generating
step, four electrons were included in the active space in all
symmetries. The active spaces in the CASSCF calculation step,
given in the (a1 b1 b2 a2) order, were (2 13 0 0) for the A1
symmetry, (22 2 1 0) for the B1 symmetry, (2 1 2 6) for the B2
symmetry, and (2 1 13 0) for the A2 symmetry. The inactive
space was (3 1 2 0), and the core 1a1 MO was frozen in all
cases.

The MR space for the different MR-SDCI calculations has
been selected by starting with the single-reference (SR)-SDCI
calculation. The leading determinants in the wave functions have
been then included, recursively, in the MR space. The final MR
spaces included all the determinants having coefficients in the
MR-SDCI wave function of the targeted states larger than 0.15.
In this way, the MR spaces should be large enough to avoid
significant errors in the excitation energies as compared to those
of the corresponding CAS-SDCI calculation, i.e., a CAS-SDCI
procedure that would include all the MOs involved in the MR
excitations as active space. In most cases, a significant number
of excited states can be calculated with a reference set (MR),
in the same way as it has been described in ref 19.

The ground-state outer electronic configuration of H2S may
be written as follows, ...(2b2)2(5a1)2(2b1)2X1A1 in C2V symmetry,
where the highest-occupied molecular orbital, 2b1, is essentially
a nonbonding 3px atomic orbital located on the sulfur atom,
with its electron density being perpendicular to the molecular
plane.30 5a1 is H-S bonding. Rydberg MOs in H2S may be
denoted asns (a1), np (b2, a1, and b1), andnd (a1, a1, b1, a2, b2).
It should be noted, however, that the s, p, and d description for
Rydberg MOs is an oversimplification when valence-Rydberg
or Rydberg-Rydberg mixing is present.

Conventional analyses of the one-photon VUV absorption
spectrum of H2S have identified a number of well-defined
Rydberg series converging to the first ionization potential. The
former have been assigned in terms of electronic promotions
from the 2b1 MO to different orbitals belonging to thensa1, to
the three differentnp, and to the five different nd Rydberg series,
respectively

Of these nine potential promotions, the two excitations to
the Rydberg series ofnlb2 symmetry, the1A2(npb2) and 1A2-
(ndb2) series, for which the transition moment transforms as a2

areC2V symmetry forbidden. In addition, transitions of the type
2b1 f np are not allowed by the Laporte selection rule in the
atomic limit. It has also been reported31 that the upper state of
the (2b1 f 4sa1) excitation contains some valence character.

Ea ) T - 1

2(na - δa)
2

(2)

f(a f b) ) 2
3

N(Eb - Ea)Q{a f b}|Rab|2 (3)

2b1 f 1B1(nsa1) n g 4

2b1 f 1A2(npb2),
1B1(npa1),

1A1(npb1) n g 3

2b1 f 1B1(nda1I),
1B1(nda1II),

1A2(ndb2),
1A1(ndb1),

1B2(nda2) n g 3
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The energy data chosen for the present calculations of
transition intensities have been the MR-SDCI vertical excitation
energies computed in the present work, as well as the experi-
mental values that were consistent with each other of those found
in the literature.31-34 As previously remarked,19 there is certain
disagreement among some of the experimental excitation
energies. This fact made our assignment of the MR-SDCI values
difficult for some of the states. Only the 11B1(4sa1) state has
been calculated with an error greater than 0.15 eV relative to
the experimental value, which for this state has been taken from
ref 33. However, a wide band ranging from 4.89 to 6.52 eV
has been assigned to this state in a more recent reference (ref
32). Hence, the assignation of a vertical experimental value for
this state is not clear. If this state is excluded, the absolute
average error of the calculated excitation energies is about 0.07
eV. The presently calculated vertical excitation energies, together
with experimental values, are collected in Table 1.

The value of 10.46 eV, adopted for the ionization energy (IP)
from the outermost orbital. The ionization can be described as
the (2b1)-1 process and has been recently reported from high-
resolution measurements.35,36

In Table 2, we display the quantum defects for the molecular
Rydberg states. These values have been calculated by means
of eq 2 using both the experimental and the MR-SDCI vertical
excitation energies reported in Table 1. The quantum defect
values individually obtained for each state are collected in
columns one and three. In columns two and four, we display
the quantum defects extracted from the MR-SDCI and the
experimental energies, respectively, after both were subject to
a least-squares fitting procedure. The initial purpose of perform-
ing these fittings was to smooth the energy values. A single
value for the quantum defect, which was assumed to be constant
along a given Rydberg series, was adopted as the fitting

parameter for eachnlγ series. The sum of the squared differ-
ences between the estimated and the reference energies was then
minimized. The reproducibility of the results was verified for
each fitting, starting from different guess values, especially in
those cases where some single-state quantum defect occurred
to be noticeably different from those resulting from the fitting.
We find it worth comparing the quantum defects obtained from
the least-squares fitting of the MR-SDCI energies, for each of
thenlγ Rydberg series under consideration to those derived from
the fitting of the experimental data. The two sets of quantum
defects conform rather well with each other. Nonetheless, we
find it more important to point out that the whole set of residues
from the fitting procedure (i.e., the differences between the fitted
energy values and the least-squares estimates) show an absolute
mean value of 0.001 au for both the MR-SDCI and the
experimental energy fittings, while the sample standard devia-
tions equals 0.002 and 0.001 au, respectively. All this leads us
to the conclusion that, in situations where no experimental
energies are available, quantum defects deduced from fitted MR-
SDCI energies could be safely used.

The virtual 6a1(γ*) and 3b2(σ*) valence orbitals are anti-
bonding conjugate partners of the bonding 5a1(γ) and 2b2(σ)
orbitals, respectively. These antibonding orbitals are expected
to contribute significantly to excitation or ionization intensities
in accordance with their locations in the discrete or continuum
spectral regions.37 Accordingly, there is no evidence of an orbital
that is separate from thensa1 Rydberg series that warrants a
6a1(γ*) designation. The angular antibonding (γ*) nature of the
6a1(γ*) contribution is clarified through a detailed examination
of the spatial characteristics of the resonance transition in the

TABLE 1: Vertical Excitation Energies (eV)

state MR-SDCIa expb

1 1B1(4sa1) 6.567 6.33
2 1B1(5sa1) 8.760 8.837
11 1B1(6sa1) 9.585 9.656
17 1B1(7sa1) 9.8360 9.943
2 1B1(4pa1) 8.163 8.181
6 1B1(5pa1) 9.389 9.275
121B1(6pa1) 9.693 9.764
201B1(7pa1) 9.956 10.003
2 1A2(4pb2) 8.038 7.89
4 1A2(5pb2) 9.278 9.2
8 1A2(6pb2) 9.691 9.70
12 1A2(7pb2) 10.018 9.97
2 1A1(4pb1) 8.284 8.272
4 1A1(5pb1) 9.369 9.315
9 1A1(6pb1) 9.735 9.788
13 1A1(7pb1) 9.97 10.017
3 1B1(3da1I) 8.569 8.661
7 1B1(4da1I) 9.435 9.441
13 1B1(5da1I) 9.732 9.839
18 1B1(6da1I) 9.896 10.043
5 1B1(3da1II) 8.967 8.914
10 1B1(4da1II) 9.585 9.602
14 1B1(5da1II) 9.781 9.919
19 1B1(6da1II) 9.931 10.087
3 1A1(3db1) 8.854 8.81
7 1A1(4db1) 9.519 9.537
10 1A1(5db1) 9.821 9.88
14 1A1(6db1) 10.032 10.076
1 1B2(3da2) 8.796 8.79
2 1B2(4da2) 9.482 9.54
4 1B2(5da2) 9.798 9.88
6 1B2(6da2) 9.980 10.08

a This work. b References 31-34.

TABLE 2: Quantum Defects for Rydberg States of H2S

state MR-SDCIa MR-SDCIb expc expd

1B1(4sa1) 2.13 2.13 2.19 2.18
1B1(5sa1) 2.17 2.10
1B1(6sa1) 2.06 1.89
1B1(7sa1) 2.33 1.87
1B1(4pa1) 1.57 1.56 1.56 1.56
1B1(5pa1) 1.44 1.61
1B1(6pa1) 1.79 1.58
1B1(7pa1) 1.80 1.54
1A2(4pb2) 1.63 1.63 1.70 1.70
1A2(5pb2) 1.61 1.71
1A2(6pb2) 1.79 1.77
1A2(7pb2) 1.80 1.73
1A1(4pb1) 1.50 1.50 1.51 1.51
1A1(5pb1) 1.47 1.55
1A1(6pb1) 1.67 1.50
1A1(7pb1) 1.73 1.46
1B1(3da1I) 0.32 0.32 0.25 0.27
1B1(4da1I) 0.36 0.35
1B1(5da1I) 0.68 0.32
1B1(6da1I) 1.09 0.29
1B1(3da1II) -0.02 0.03 0.03 0.03
1B1(4da1II) 0.06 0.02
1B1(5da1II) 0.52 -0.02
1B1(6da1II) 0.93 -0.04
1A1(3db1) 0.09 0.12 0.13 0.13
1A1(4db1) 0.20 0.16
1A1(5db1) 0.39 0.16
1A1(6db1) 0.36 0.05
1 1B2(3da2) 0.14 0.18 0.15 0.15
2 1B2(4da2) 0.27 0.15
4 1B2(5da2) 0.47 0.16
6 1B2(6da2) 0.68 0.016

a Derived from the MR-SDCI energy values.b Derived from a least-
squares fitting of MR-SDCI energies.c Derived from the experimental
energy values, refs 31-34. d Derived from a least-squares fitting of
the experimental energies, refs 31-34.
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2b1 f nsa1 series, which suggests the designation 2b1 f 4sa1/
6a1(γ*). The (2b1 f 4sa1) band shape suggests31 the presence
of some valence character in the excited state, and this has been
confirmed by theoretical computations.38,39 Theory38,40 and
experiment41 also indicate that a (largely dissociative) mixed
Rydberg (3db2)/valence(3b2*) state of1A2 symmetry lies at an
energy of comparable magnitude to that of a1B1 state. This
appears to be consistent with the observation of homogeneous
predissociation in the first members of the1A2 Rydberg series.34

As regards the 2b1 f nda2 Rydberg series, although configu-
ration mixing with other excitations leaves the calculated energy
positions unchanged, evidence of significant perturbations has
been found. This effect is attributed to mixing with both 5a1 f
3b2(σ*) and 2b2 f 6a1 (γ*) intravalence transitions of1A1 -
1B2 symmetry.41

IV. Results and Discussion

The great prominence of Rydberg series in H2S is a clear
evidence of the atomic-like nature of the (2b1)-1 core vacancy.
As in the case of atoms, the threend, 1A1(ndb1), 1B1(nda1I),
1B1(nda1II), with n g 3, Rydberg series in H2S are the most
intense of all that arise from the excitation of the outermost
valence electron. It is now generally accepted thatnd Rydberg
promotions are responsible for the Rydberg series that dominate
the VUV absorption spectra of H2S as the first ionization
threshold is approached.42 This is one of the reasons why we
have studied the excitations from the outermost MO in the
ground state to the unperturbed Rydberg1A1(ndb1), 1B1(nda1I),
and 1B1(nda1II) Rydberg series in the present work. Provided
that the MO that gives rise to the existence of Rydberg states
in this molecule is a nonbonding orbital, the adopted vertical
transition picture appears to lead to transition intensities that
are a good approach to the experimental values. The results are

collected in Tables 3-5. We have also calculated oscillator
strengths for excitations involvingnp Rydberg states of1B1,
1A1, and1A2 symmetries to the1B1(nsa1) Rydberg series, given
their great relevance in astrophysics and astrochemistry.1,2 The
corresponding oscillator strengths are displayed in Table 6.
Higher transitions of the presently studied symmetries have not
been included in the table because they turn out to be rather
weak for H2S. Diercksen and Langhoff attribute this feature to
the highernsa1 states being more sensitive to mixing effects
than the lower Rydberg states of1B1(nsa1) symmetry.42 Finally,
transitions between the1B1(4sa1) and thenp Rydberg states of
symmetries1B1, 1A1, and 1A2, respectively, are displayed in
Table 7. Neither measurements nor theoretical calculations seem
to have been reported up to date for the transitions object of
the last two tables.

In Tables 3-7, the f values presently calculated with the
MQDO procedure, using four different sets of quantum defects,
have been collected. The latter comprise the ones directly
resulting from the present MR-SDCI calculations, those ex-
tracted from the experimental energies by Lee et al.43 with a
synchroton radiation measurement (their uncertainty is reported

TABLE 3: Absorption Oscillator Strengths for the X 1A1(3pb1)-1A1(ndb1) (n ) 3-6) Electronic Transitions in H2S

MCRPAg

transition f MQDOa f MQDOb f MQDOc f MQDOd expe SCf CIf fL fV

X1A1(3pb1)-1A1(3db1) 0.0569 0.0625 0.0610 0.0631 0.0606 0.0457 0.0706 0.051 0.044
X1A1(3pb1)-1A1(4db1) 0.0293 0.0276 0.0258 0.0264 0.0296 0.0175 0.0247 0.020 0.017
X1A1(3pb1)-1A1(5db1) 0.0170 0.0136 0.0129 0.0132 0.0082 0.0147 0.009 0.007
X1A1(3pb1)-1A1(6db1) 0.0091 0.0068 0.0073 0.0075 0.0051 0.0097

a MQDO calculations with presently obtained MR-SDCI energies.b MQDO calculations with experimental energies.c MQDO calculations with
fitted MR-SDCI energies.d MQDO calculations with fitted experimental energies.e Lee et al.43 f Diercksen and Langhoff42 (single-channel, SC,
and configuration-mixing, CI).g Cacelli et al.44 (MCRPA, length and velocity oscillator strengths).

TABLE 4: Absorption Oscillator Strengths for the X 1A1(3pb1)-1B1(nda1I) (n ) 3-6) Electronic Transitions in H2S.

transition f MQDOa f MQDOb f MQDOc f MQDOd expe SCf CIf

X1A1(3pb1)-1B1(3da1I) 0.0319 0.0275 0.0318 0.0284 0.0362 0.0416 0.0397
X1A1(3pb1)-1B1(4da1I) 0.0121 0.0119 0.0115 0.0107 0.0139 0.0201 0.0166
X1A1(3pb1)-1B1(5da1I) 0.0060 0.0054 0.0054 0.0051 0.0053 0.0101 0.0078
X1A1(3pb1)-1B1(6da1I) 0.0014 0.0029 0.0029 0.0028 0.0063 0.0045

a MQDO calculations with presently obtained MR-SDCI energies.b MQDO calculations with experimental energies.c MQDO calculations with
fitted MR-SDCI energies.d MQDO calculations with fitted experimental energies.e Lee et al.43 f Diercksen and Langhoff42 (single-channel, SC,
and configuration-mixing, CI).

TABLE 5: Absorption Oscillator Strengths for the X 1A1(3pb1)-1B1(nda1II) ( n ) 3-6) Electronic Transitions in H2S

transition f MQDOa f MQDOb f MQDOc f MQDOd expe SCf CIf

X1A1(3pb1)-1B1(3da1II) 0.0434 0.0495 0.0491 0.0489 0.0564 0.0504 0.0432
X1A1(3pb1)-1B1(4da1II) 0.0232 0.0216 0.0221 0.0220 0.0323 0.0254 0.0198
X1A1(3pb1)-1B1(5da1II) 0.0182 0.0107 0.0114 0.0114 0.0133 0.0098
X1A1(3pb1)-1B1(6da1II) 0.0067 0.0060 0.0066 0.0066 0.0067 0.0048

a MQDO calculations with presently obtained MR-SDCI energies.b MQDO calculations with experimental energies.c MQDO calculations with
fitted MR-SDCI energies.d MQDO calculations with fitted experimental energies.e Lee et al.43 f Diercksen and Langhoff42 (single-channel, SC,
and configuration-mixing, CI).

TABLE 6: Absorption Oscillator Strengths for 4p -1B1(nsa1)
Transitions in H2S

transition f MQDOa f MQDOb f MQDOc f MQDOd

1B1(4pa1)-1B1(5sa1) 0.3093 0.3135 0.3825 0.3729
1A2(4pb2)-1B1(5sa1) 0.3098 0.2745 0.3737 0.3608
1A1(4pb1)-1B1(5sa1) 0.2932 0.3128 0.3727 0.3554
1B1(4pa1)-1B1(6sa1) 0.0202 0.0297 0.0105 0.0058
1A2(4pb2)-1B1(6sa1) 0.0253 0.0271 0.0195 0.0262
1A1(4pb1)-1B1(6sa1) 0.0140 0.0282 0.0043 0.0015

a MQDO calculations with presently obtained MR-SDCI energies.
b MQDO calculations with experimental energies.c MQDO calculations
with fitted MR-SDCI energies.d MQDO calculations with fitted
experimental energies.
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to be 10% of their given value),43 as well as the quantum defects
derived from the least-squares fitting of the theoretical and
experimental excitation energies, respectively, as mentioned
above. It is generally observed, with the exception of the
transitions originating in the 4p Rydberg states belonging to
three different symmetries1B1, 1A1, and1A2 and ending in the
1B1(6sa1) Rydberg state (see Table 6), that a better accord is
achieved between the two sets of MQDO oscillator strengths
calculated through the fitted theoretical and experimental
energies than between the sets obtained with the individual-
state quantum defects. We understand this feature on the grounds
that fitting the energies of a given Rydberg series is tantamount
to smoothing the errors inherent in both the experimental and
theoretical energies. In the present case, such a smoothing is
achievable with absolute mean values and sample standard
deviations of the order of 1-2 milliHartree, so that it can be
considered as a reliable approach to assign a unique quantum
defect to eachnlγ Rydberg series.

The comparativef values, also included in Tables 3-5, are
the experimental measurements determined by Lee et al.43 and
the theoretical values reported by Diercksen and Langhoff42 and
by Cacelli et al.44 The former authors42 performed two sets of
calculations, one following the vertical-electronic single-channel
static exchange approach and the other with the single-excitation
coupled-channel configuration-mixing procedure. Cacelli et al.44

employed extended basis sets of integrable functions and the
Stieltjes imaging procedure in a random-phase approximation
(MCSEA) method to yield oscillator strengths in the length (fL)
and velocity (fV) gauges.44 Cacelli et al. consider44 their MCSEA
calculations to be directly comparable with the ones by
Diercksen and Langhoff,42 except for the different basis sets
employed.

An inspection of Tables 3-5 reveals that the present results
conform rather well with the comparative experimental and
theoretical data. A general good accord between the two sets
of MQDO f values, the ones calculated with the present MR-
SDCI excitation energies and those obtained with the experi-
mental energies of Lee et al.,43 is apparent, in particular for the
stronger transitions. Some irregularities in the trends of thef
values as the excitation energy increases can be noticed in those
Rydberg series that seem to be subject to configuration
mixing.42,43

We may summarize our analysis by remarking that both
energy and transition intensity indicators in the present calcula-
tions show consistency with the values obtained from experi-
mental data. Even though the present excitation energies do not

represent a significant improvement over those of CI methods
that take into account the coupling with the electron exit
channels, they contribute to assess the accuracy and effectiveness
of the chosen approach, that is, a MR-SDCI calculation with a
chosen basis set of ANOs complemented with a consistently
builtsingle set of Rydberg ANOs centered in the molecule, and
the use of the MQDO technique to supply transition probability
data.
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