Infrared Spectrum of the Formylperoxy Radical in Solid Argon

Rongjing Yang, Liang Yu, Aihua Zeng, and Mingfei Zhou*

Department of Chemistry & Laser Chemistry Institute, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China

Received: February 5, 2004; In Final Form: March 8, 2004

Infrared spectra and frequency assignments of various isotopomers of formylperoxy radical HC(O)OO in solid argon are presented. The formylperoxy radical was produced through the discharge production of formyl radical followed by the association reaction of formyl radicals with molecular oxygen in solid argon. Quantum chemical calculations indicate that the observed spectrum can be assigned to formylperoxy radical with the O-O bond in a cis position relative to the C-H bond.

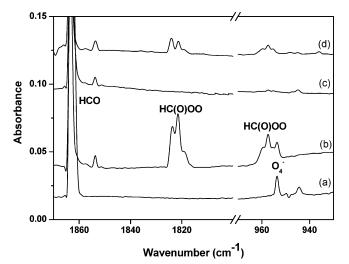
Introduction

Formyl radical HCO is a very important intermediate species that participates in many chemical reactions, such as the combustion of hydrocarbons and the photochemistry of the atmosphere. The kinetics and chemistry associated with formyl radical have been reported. The reaction between HCO and O_2 is one such study, which is thought to produce $HO_2 + CO$ and $OH + CO_2$.¹⁻⁴ The HO₂-forming process was directly confirmed by laser magnetic resonance spectroscopic experiments.⁵ Ab initio Hartree–Fock calculations suggested that the reaction of HCO with O_2 proceeded through the formation of a formyl-peroxy radical, HC(O)OO.⁶ When initially formed, the formyl-peroxy radical was highly excited: the initial internal energy for the formylperoxy radical with respect to dissociation in the gas phase.

Matrix isolation provides a powerful method for trapping reactive intermediates and free radicals. In a low temperature solid matrix, the reaction can be very effectively quenched after the primary reaction or, at most, the earliest stages of the overall process. Transient reaction intermediates, which fragment readily in the gas phase, can be stabilized with removal of the internal thermal energy when they are trapped in the matrix environment.7 Lee and co-workers suggested the formation of the HC-(O)OO formylperoxy radical in studies of the photochemical oxidation of formaldehyde in solid O₂ at 13 K.^{8,9} Two infrared absorptions at 1790 and 1089.9 cm⁻¹ have been assigned to the C=O and C-O stretching vibrations of the HC(O)OO radical. However, as the authors pointed out, it is probable that the observed frequencies may not be those of isolated formylperoxy radical, since the radical could be either complexed to or perturbed by the cage partner HO₂.^{8,9} In this paper, we report the infrared absorption spectrum of the isolated formylperoxy radical produced by the association reaction between HCO radical and molecular oxygen in solid argon. The HCO radical was formed by co-deposition of CH₃OH/Ar with high frequency discharged O₂/Ar mixture.

Experimental and Theoretical Methods

The formylperoxy radical was prepared by condensation of CH_3OH/Ar and O_2/Ar via high-frequency discharge. The


experimental setup for high-frequency discharge and matrix isolation Fourier transform infrared (FTIR) spectroscopic investigation has been described in detail previously.¹⁰ Briefly, two separated gas streams containing O₂/Ar and CH₃OH/Ar were co-deposited onto a 4 K CsI window simultaneously for 2-4 h at a rate of 3-5 mmol/h. One of the gas streams was subjected to discharge from a Tesla coil. The tip of the Tesla coil was connected to a copper cap on one end of a quartz tube extending into the vacuum chamber. The other end of the quartz tube was connected to a copper tube with ground potential. Discharge takes place between the cap and the copper tube. Infrared spectra were recorded on a Bruker Equinox 55 spectrometer at 0.5 cm⁻¹ resolution using a DTGS detector. Matrix samples were annealed at different temperatures, and selected samples were subjected to broad-band irradiation using a high-pressure mercury arc lamp. The CH₃OH/Ar (1:1000 to 1:2000) and O₂/Ar (1:100 to 1:200) mixtures were prepared in a stainless steel vacuum line using standard manometric technique. CH₃OH was cooled to 77 K using liquid N₂ and evacuated to remove volatile impurities. Isotopically labeled samples ¹⁸O₂ (Cambridge Isotope Laboratories, 99%), CD₃OD (Merck, 99%), and ¹³CH₃OH and CH₃¹⁸OH (99%, Cambridge Isotopic Laboratories) and selected mixtures were also prepared to elucidate the effects of isotopic substitution on the vibrational spectra of the reaction products.

Quantum chemical calculations were performed using the Gaussian 98 program.¹¹ The three-parameter hybrid functional according to Becke with additional correlation corrections due to Lee, Yang, and Parr was utilized (B3LYP).^{12,13} Additional comparison ab initio calculations were also done using the second-order Moller–Plesset perturbation theory (MP2) as well.¹⁴ The 6-311++G** basis sets were used.^{15,16} The geometries were fully optimized; the harmonic vibrational frequencies were calculated with analytic second derivatives, and zero point vibrational energies (ZPVE) were derived.

Results and Discussion

Low power microwave or radio frequency discharges have often been used in matrix isolation spectroscopic studies.^{7,17} Free radicals are formed and trapped by co-condensation of the argon beam passed through the discharge with the precursor molecules. The power level of discharge can control the fragmentation of the precursor molecules to some extent. In the present experi-

 $[\]ast$ To whom correspondence should be addressed. E-mail: mfzhou@fudan.edu.cn.

Figure 1. Infrared spectra in 1870–1800 and 970–930 cm⁻¹ regions from co-deposition of 0.05% CH₃OH/Ar and discharged 0.5% O₂/Ar at 4 K. (a) After 120 min deposition, (b) after 25 K annealing, (c) after 20 min broad-band irradiation, and (d) after 30 K annealing.

ments, CH₃OH was used as the precursor molecule. Condensation of CH₃OH/Ar with discharged Ar at 4 K resulted in fragmentation of CH₃OH to CH₂OH (1182.7 and 1047.5 cm⁻¹),¹⁸ H₂CO (1742.1 cm⁻¹), HCO (1863.4 and 1084.8 cm⁻¹),¹⁹ and CO. The relative intensities of these fragments depend on the power level of discharge. Generally, the formation of CH2OH dominated at low power level of discharge, while CO and HCO became the major fragments when relatively high level power was employed. These fragment absorptions remained almost unchanged on subsequent annealing to 25 and 30 K. The CH₂OH and HCO absorptions markedly decreased on broad-band irradiation. Similarly, O_3 (1039.4 cm⁻¹), $O_3^ (803.9 \text{ cm}^{-1})$,²⁰ O₄⁻ (953.6 cm⁻¹),²¹ and O₄⁺ (1118.4 cm⁻¹)²² were produced after discharge of O2/Ar and condensation at 4 K. The O_3 and O_3^- absorptions increased whereas the O_4^- and O₄⁺ absorptions decreased on annealing. All these oxygen cluster absorptions were eliminated on broad-band irradiation.

New absorptions were observed when CH₃OH/Ar was codeposited with discharged O₂/Ar. Figure 1 shows the spectra in the 1870–1800 and 970–930 cm⁻¹ regions from codeposition of 0.05% CH₃OH/Ar with discharged 0.5% O₂/Ar. Besides the above-mentioned absorptions, HOO (3412.1, 1388.3, and 1100.7 cm⁻¹)²³ and ArHAr⁺ (903.0 cm⁻¹)²⁴ absorptions were observed after sample deposition. Annealing to 25 K (Figure 1b) markedly decreased the HCO absorptions and produced new 1821.5 and 957.3 cm⁻¹ absorptions, with little effect on the other absorptions such as HOO, CH₂OH, and H₂-CO. The 1821.5 and 957.3 cm⁻¹ bands virtually disappeared on broad-band irradiation (Figure 1c), and slightly regenerated on further annealing to 30 K (Figure 1d).

Experiments were repeated with the ${}^{13}CH_3OH/O_2$, $CH_3{}^{18}OH/O_2$, CD_3OD/O_2 , $CH_3OH/{}^{18}O_2$, ${}^{12}CH_3OH + {}^{13}CH_3OH/O_2$, $CH_3{}^{16}OH + CH_3{}^{18}OH/O_2$, and $CH_3OH/{}^{16}O_2 + {}^{18}O_2$ samples. The new product infrared absorptions using these isotopic samples are listed in Table 1. The infrared spectra in selected regions using different isotopic samples are shown in Figures 2 and 3.

The 1821.5 and 957.3 cm⁻¹ bands appeared together on annealing, and can be grouped together by their consistent behavior upon annealing and broad-band irradiation, which suggests different vibrational modes of the same molecule. These two bands were appeared in the experiments when CH₃OH/Ar was co-deposited with discharged O_2 /Ar sample. The same

 TABLE 1: Infrared Absorptions (cm⁻¹) Observed for

 Various HC(O)OO Isotopomers in Solid Argon

	$C=O^a$	С-О
HCOOO	1821.5	957.3
H ¹³ COOO	1783.7	938.7
HC ¹⁸ OOO	1782.5	953.8
HCO ¹⁸ O ¹⁸ O	1816.9	933.6
HCO ¹⁸ OO		936.7
HCOO ¹⁸ O		955.3
DCOOO	1775.2	

 a The C=O stretching frequencies of HC(O) $^{18}\rm{OO}$ and HC(O)O $^{18}\rm{O}$ cannot be resolved.

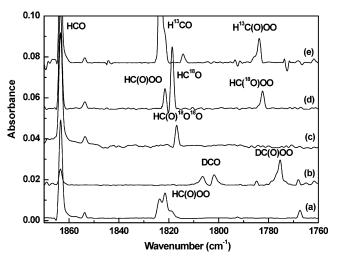


Figure 2. Infrared spectra in 1870–1760 cm⁻¹ region from codeposition of CH₃OH/Ar and discharged O₂/Ar at 4 K. Spectra were taken after 25 K annealing. (a) 0.05% CH₃OH + 0.5% O₂, (b) 0.05% CD₃OD + 0.5% O₂, (c) 0.05% CH₃OH + 0.5% ¹⁸O₂, (d) 0.03% CH₃¹⁶-OH + 0.03% CH₃¹⁸OH + 0.5% O₂, and (e) 0.02% ¹²CH₃OH + 0.04% ¹³CH₃OH + 0.5% O₂.

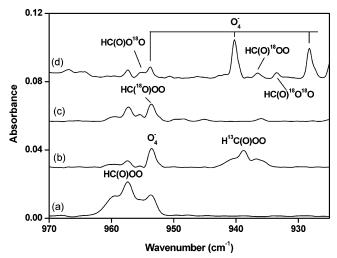


Figure 3. Infrared spectra in 970–925 cm⁻¹ region from co-deposition of CH₃OH/Ar and discharged O₂/Ar at 4 K. Spectra were taken after 25 K annealing. (a) 0.05% CH₃OH + 0.5% O₂, (b) 0.02% 12 CH₃OH + 0.04% 13 CH₃OH + 0.5% O₂. (c) 0.03% CH₃ 16 OH + 0.03% CH₃ 18 OH + 0.5% O₂, and (d) 0.05% CH₃OH + 0.4% 16 O₂ + 0.4% 18 O₂.

absorptions were produced when CH₃OH/Ar was subjected to discharge and co-deposited with O_2 /Ar. The 1821.5 and 957.3 cm⁻¹ absorptions appeared on annealing, during which the HCO absorptions markedly decreased. The intensities of these two bands strongly depended on the HCO absorptions. They were weak in the low power level discharge experiments, in which the HCO absorptions suggest

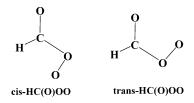


Figure 4. Structures of the formylperoxy radical HC(O)OO.

that the new product species were formed by the reaction of HCO, which was produced from CH₃OH during sample deposition. The 1821.5 cm⁻¹ band exhibited a very small shift when CH₃OH/¹⁸O₂ sample was employed in the experiment, but shifted to 1783.7 cm⁻¹ with ¹³CH₃OH/O₂, to 1782.5 cm⁻¹ with CH₃¹⁸OH/O₂, and to 1775.2 cm⁻¹ with CD₃OD/O₂. The isotopic frequency ratios of 1.0212 for ¹²CH₃OH/¹³CH₃OH and 1.0219 for CH3¹⁶OH/CH3¹⁸OH are very similar to those of the C=O stretching vibration of the HCO molecule (H¹²CO/ H¹³CO, 1.0219; and HC¹⁶O/HC¹⁸O, 1.0246), which indicates that the 1821.5 cm^{-1} band is due to a C=O stretching vibration. In the mixed ${}^{12}CH_3OH + {}^{13}CH_3OH/O_2$ and $CH_3{}^{16}OH +$ CH₃¹⁸OH/O₂ experiments, only the pure isotopic counterparts were presented in the spectra (Figure 2), indicating that only one HCO subunit is involved in the new species and that the HCO subunit came from the CH₃OH precursor. The 957.3 cm⁻¹ band showed a very small shift (3.5 cm⁻¹) with the CH₃¹⁸OH/ O_2 sample. This mode was observed at 938.7 cm⁻¹ in the $^{13}CH_3OH/O_2$ experiment. In the mixed $^{12}CH_3OH + ^{13}CH_3OH/$ O_2 and $CH_3^{16}OH + CH_3^{18}OH/O_2$ experiments, no obvious intermediate components were observed, suggesting that one C atom and one O atom that contributed from the CH₃OH precursor are involved in this mode. When a CH₃OH/¹⁸O₂ sample was used, the band was observed at 933.6 cm⁻¹. The ${}^{16}\text{O}_2/{}^{18}\text{O}_2$ isotopic frequency ratio of 1.0254 and the ${}^{12}\text{C}/{}^{13}\text{C}$ isotopic frequency ratio of 1.0198 imply that this band is a C-Ostretching vibration. In the mixed $CH_3OH/^{16}O_2 + {}^{18}O_2$ experiment, a quartet at 957.3, 955.3, 936.7, and 933.6 cm⁻¹ was observed, indicating that two inequivalent oxygen atoms are involved in this vibration, and that these two oxygen atoms came from the oxygen molecule. These isotopic substitution experiments confirmed that the new product species involves one HCO subunit and one O₂ subunit with two inequivalent O atoms, and was produced by the reaction of HCO with O₂ in solid argon. Accordingly, we assign the 1821.5 and 957.3 cm⁻¹ bands to the C=O and C-O stretching vibrations of the formylperoxy HC(0)00 radical.

Quantum chemical computations were performed to support the experimental assignment and to provide insight into the geometry and electronic structure in HC(O)OO. Two stable structural isomers-a trans and a cis form so labeled depending upon the O-O bond geometry with respect to the C-H bondwere found on the doublet potential energy surface as shown in Figure 4, and the optimized geometric parameters and vibrational frequencies and intensities are listed in Table 2. As can be seen, excellent agreement was found between the B3LYP hybrid density functional theory and the second-order Moller-Plesset perturbation theory. These calculations indicated that both the trans and cis isomers have a doublet ground state with a planar structure and are very close in energy. The cis form was predicted to be more stable than the trans form by about 2.0 kcal/mol at B3LYP/6-311++G** level and 1.9 kcal/mol at MP2/6-311++G** level. The optimized bond lengths of the cis and trans structures are very similar, with only about 0.001-0.002 Å differences. Both structural isomers have ²A" ground

TABLE 2: Calculated Structures (Bond Lengths in Å, Bond Angles in deg), Vibrational Frequencies (cm^{-1}) , and Intensities (km/mol) for *cis*- and *trans*-HC(O)OO

	cis-HC(O)OO		trans-HC(0)00	
	B3LYP	MP2	B3LYP	MP2
R(C=O)	1.179	1.185	1.178	1.186
R(C-H)	1.099	1.099	1.097	1.096
R(C-O)	1.428	1.427	1.428	1.423
R(O-O)	1.328	1.315	1.326	1.319
∠C00	111.0	110.1	114.1	112.9
∠0=C0	119.9	120.2	125.3	125.6
∠HC=O	130.4	130.4	129.2	129.1
C-H str	3053.7(14)	3118.1(13)	3070.0(24)	3140.5(24)
C=O str	1888.2(280)	1884.8(286)	1878.3(245)	1868.3(230)
HCO in-plane bend	1334.5(0)	1334.5(0)	1361.9(0)	1392.4(0)
O-O str	1145.4(26)	1205.1(86)	1100.5(46)	1128.8(123)
HCO out-of -plane bend	1009.3(0)	1023.4(0)	975.4(0)	999.3(0)
C-O str	953.3(226)	987.8(308)	865.1(176)	905.4(227)
COO in-plane	586.2(16)	602.6(16)	776.6(39)	803.5(17)
bend	404.3(16)	420.1(15)	322.6(3)	334.8(3)
	175.5(19)	178.1(17)	244.4(18)	246.0(17)

state with the unpaired electron occupying the 3a'' molecular orbital which is largely antibonding p_{π} orbital of the O₂ subunit.

As listed in Table 2, the calculated vibrational frequencies and intensities of the two HC(O)OO structural isomers are quite different. For the cis structure, the C=O and C-O stretching vibrations were predicted to be at 1887.9 and 955.6 cm⁻¹ with 280 and 226 km/mol IR intensities at B3LYP/6-311++G** level. MP2/6-311++G** calculations gave frequencies of 1884.8 and 987.7 cm^{-1} with 287 and 308 km/mol IR intensities. These two modes were predicted to have the largest IR intensities at both levels of theory. There are nine vibrational modes for the formylperoxy radical. Besides the C=O and C-O stretching modes, the other modes such as C-H stretching (14 km/mol) and O-O stretching (26 km/mol) modes were predicted to have much lower IR intensities than the C=O and C-O stretching modes. For the trans isomer, the C=O and C-O stretching modes were predicted at 1879.5 and 864.6 cm⁻¹ with 245 and 176 km/mol IR intensities by B3LYP, and at 1868.3 and 905.4 cm⁻¹ with 230 and 228 km/mol intensities using MP2. Although the calculated C=O stretching frequencies of the cis and trans isomers are very close and both fit the experimental value very well, there is 91 (B3LYP) or 82.3 cm^{-1} (MP2) difference between the C-O stretching frequencies of the two isomers. The predicted C-O stretching frequency of the cis structure is only about 1.7 cm⁻¹ lower with B3LYP or 30.4 cm⁻¹ higher with MP2, whereas the frequency of the trans structure is about 92.7 (B3LYP) or 51.9 cm⁻¹ (MP2) lower than the experimentally observed value of 957.3 cm⁻¹. Due mainly to the neglect of anharmonicity, computed vibrational frequencies are generally higher than the experimental values. Apparently the calculated frequencies of the cis structure fit the experimental values much better than that of the trans structure. These indicate that the experimentally observed HC(O)OO radical has a cis structure. The same conclusion can also be deduced from the relative stability prediction as has already been mentioned. As listed in Table 3, the calculated isotopic frequency shifts of the cis structure are in good agreement with the experimental values.

According to our calculations, the trans structure is stable; however, no spectroscopic evidence was found for the trans structure. Although the trans and cis isomeric forms are similar in energy, they are separated by a calculated potential energy barrier of 8.4 kcal/mol (cis to trans) with B3LYP. No indication

TABLE 3: Comparison between Observed and Calculated Isotopic Frequency Differences (cm⁻¹) for the Product Molecules

	С=0		С-О	
	calcd	obsd	calcd	obsd
HCOOO	0.0	0.0	0.0	0.0
H13COOO	40.5	37.8	20.3	18.6
HC18OOO	42.9	39.0	2.0	3.5
HCO18O18O	0.7	4.6	22.0	23.7
HCO ¹⁸ OO	0.5		17.9	20.6
HCOO ¹⁸ O	0.2		3.4	2.0
DCOOO	58.9	46.3	20.0	

of a possible IR-induced conformational process was observed during FTIR measurements.

It has been reported that formylperoxy radical, HC(O)OO, was isolated in solid O2 at 13-18 K from the UV photoexcitation of solid O₂/H₂CO and O₂/trans-H₂C₂O₂ samples, respectively.^{8,9} The key mechanistic step for the formation of HC(O)OO was thought to involve the intermediacy of the photochemically generated HCO radical which reacted with molecular O₂. Two absorptions at 1790.0 and 1089.9 cm⁻¹ were assigned to the C=O and C-O stretching vibrations of the formylperoxy radical in solid O₂. The C=O stretching frequency is 31.5 cm⁻¹ lower while the C–O stretching frequency is 132.6 cm⁻¹ higher than those of present argon matrix values. Such large frequency differences cannot be due to matrix shifts in solid argon and oxygen. The matrix shifts in solid argon are expected to be similar to the matrix shifts in solid O_2 . As a reference point, the C=O stretching of H₂CO was observed at 1740.0 and 1742.1 cm^{-1} in solid O₂ and argon, respectively. Our argon matrix isolated values clearly indicate that the formylperoxy radical observed in solid O2 is not an "isolated" molecule. As the authors already pointed out, the observed absorptions may be due to a formylperoxy-hydroperoxy radical complex rather than a matrix isolated formylperoxy radical. The observation of different frequencies for the O2/D2CO and O2/ HDO samples also suggested the complex assignment in solid O₂.^{8,9} The C=O stretching band of *cis*-HC(O)OO shows strong splitting similar to HArF, a molecule which exhibits strong dipoles.²⁵ The dipole moment of the formylperoxy radical was predicted to be only 1.7 D. A different matrix environment may be responsible for the band structure of the formylperoxy radical.

The present isotopic substitution experiments showed that the formylperoxy radical was formed by the reaction of formyl radical with O_2 in solid argon, reaction 1:

$$HCO(^{2}A') + O_{2}(^{3}\Sigma_{g}^{-}) \rightarrow HC(O)OO(^{2}A'')$$
$$\Delta E = -29.4 \text{ kcal/mol} (1)$$

, which was predicted to be exothermic by about 29.4 kcal/mol at B3LYP/6-311++G** level. The HC(O)OO absorptions increased on annealing, indicating that the association reaction (1) requires negligible activation energy. The HC(O)OO absorptions were eliminated on broad-band irradiation, during which the CO and CO₂ absorptions increased. It appears that UVvisible light initiates dissociation reactions to form CO and CO₂.

Conclusions

The formylperoxy radical HC(O)OO has been studied by matrix isolation infrared absorption spectroscopy and quantum chemical calculations. The formylperoxy radical was produced by the association reaction between HCO radical and molecular oxygen in solid argon. The HCO radical was formed by codeposition of CH₃OH/Ar with a high frequency discharged O₂/ Ar mixture. On the basis of the isotopic substitution experiments, absorptions at 1821.5 and 957.3 cm⁻¹ are assigned to the C=O and C-O stretching vibrations of the formylperoxy radical with the O–O bond in a cis position relative to the C–H bond.

Acknowledgment. We greatly acknowledge financial support from the NKBRSF of China.

References and Notes

(1) Washlda, N.; Martinez, R. I.; Bayes, K. D. Z. Naturforsch. A 1974, 29. 251.

(2) Shibuya, K.; Ebata, T.; Obi, K.; Tanaka, I. J. Phys. Chem. 1977, 81, 2292

(3) Reilly, J. P.; Clark, J. H.; Moore, C. B.; Pimentel, G. C. J. Chem. Phys. 1978, 69, 4381. Langford, A. O.; Moore, C. B. J. Chem. Phys. 1984, 80.4211

(4) Veyret, B.; Lesclaux, R. J. Phys. Chem. 1981, 85, 1918.

(5) Radford, H. E.; Evenson, K. M.; Howard, C. J. J. Chem. Phys. 1974, 60, 3178.

(6) Winter, N. W.; Goddard, W. A., III. Chem. Phys. Lett. 1975, 33, 25. (7) Jacox, M. E. In Chemistry and Physics of Matrix-Isolated Species; Andrews, L., Moskovits, M., Eds.; North-Holland: Amsterdam, 1989.

(8) Tso, T. L.; Diem, M.; Lee, E. K. C. Chem. Phys. Lett. 1982, 91, 339. (9) Tso, T. L.; Lee, E. K. C. J. Phys. Chem. 1984, 88, 5475.

(10) Kong, Q. Y.; Zeng, A. H.; Chen, M. H.; Zhou, M. F.; Xu, Q. J. Chem. Phys. 2003, 118, 7267. Zhou, M. F.; Zeng, A. H.; Wang, Y.; Wang, Z. X.; Schleyer, P. v. R. J. Am. Chem. Soc. 2003, 125, 11512. Chen, M. H.; Wang, X. F.; Zhang, L. N.; Yu, M.; Qin, Q. Z. Chem. Phys. 1999, 242, 81. (11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, (11) Frisch, M. J., Hucks, G. W., Schleger, H. D., Scuscha, G. E., Roos, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

(12) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(13) Lee, C.; Yang, E.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(14) Moller, C.; Plesset, M. S. Phys. Rev. B 1984, 46, 618.

(15) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.

(16) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.

(17) See, for example: Jacox, M. E. Rev. Chem. Intermed. 1978, 2, 1. Bohn, R. B.; Hannachi, Y.; Andrews, L. J. Am. Chem. Soc. 1992, 114, 6452. Langford, V. S.; McKinley, A. J.; Quickenden, T. I. J. Am. Chem. Soc. 2000, 122, 12859.

(18) Jacox, M. E.; Milligan, D. E. J. Mol. Spectrosc. 1973, 47, 148. Jacox, M. E. Chem. Phys. 1981, 59, 213.

(19) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1969, 51, 277.

(20) Andrews, L.; Ault, B. S.; Grzybowski, J. M.; Allen, R. O. J. Chem. Phys. 1975, 62, 2461.

(21) Chertihin, G. V.; Andrews, L. J. Chem. Phys. 1998, 108, 6404.

(22) Thompson, W. E.; Jacox, M. E. J. Chem. Phys. 1989, 91, 3826. Chertihin, G. V.; Saffel, W.; Yustein, J. T.; Andrews, L.; Neurock, M.;

Ricca, A.; Bauschlicher, C. W. J. Phys. Chem. 1996, 100, 5261 (23) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1963, 38, 2627. Smith,

D. W.; Andrews, L. J. Chem. Phys. 1974, 60, 81.

(24) Milligan, D. E.; Jacox, M. E. J. Mol. Spectrosc. **1973**, 46, 460. Wight, C. A.; Ault, B. S.; Andrews, L. J. Chem. Phys. **1976**, 65, 1244. Legay-Sommaire, N.; Legay, F. Chem. Phys. Lett. 1999, 314, 40.

(25) Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. Nature (London) 2000, 406, 874. Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Rasanen, M. J. Am. Chem. Soc. 2001, 123, 8610