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In combined quantum mechanical and molecular mechanical (QM/MM) calculations with the QM/MM
boundary at a covalent bond, the generalized hybrid orbital (GHO) method has been shown to provide a well
balanced and stable connection between the QM and MM regions. The GHO method has previously been
developed for semiempirical molecular orbital methods based on neglect of diatomic differential overlap
(GHO-NDDO) and for the ab initio Hartree-Fock level (GHO-AIHF). In the present work, we formulate the
GHO algorithm and its analytical gradients for treating the QM subsystem by the self-consistent-charge density-
functional tight-binding (SCC-DFTB) theory. To obtain a good description of the bond length at the QM/
MM boundary, a parametrized empirical correction term involving the GHO boundary atom and its QM
frontier neighbor is added. Geometries and Mulliken charges obtained from GHO-SCC-DFTB calculations
are compared to the fully QM results for a set of 18 molecules and ions with various functional groups close
to the boundary, and we verified that we reproduced the full C-C stretch potential in ethane and in propanoate.
The torsion barrier ofn-butane around the central C-C bond is studied with the GHO boundary atom placed
at different locations. Finally, the energetics of the method are tested for the proton affinities of a series of
15 alcohols, amines, thiols, and acids. The results indicate that the GHO treatment for combining SCC-
DFTB with molecular mechanics is both theoretically robust and satisfactory for practical use. In Supporting
Information we present parameters for boundaries that cut through O-C and S-C bonds.

1. Introduction

Combined quantum mechanical and molecular mechanical
(QM/MM) methods are powerful tools for studying chemical
reactivity in large systems.1-4 Although various schemes have
been proposed and widely applied, they differ considerably in
the treatment of the QM/MM boundary when it runs through a
covalent bond. Under such circumstances, special care must be
taken to saturate the free valence caused by cutting the QM
frontier bond.

A number of methods have been proposed to truncate the
wave function for the QM fragment at the boundary region.1-43

One popular way is adding an additional atom (usually a
hydrogen atom is used) to cap the QM fragment.5-8 Although
this so-called “link atom” approach is widely used, the QM
frontier bond (the bond formed between the link atom and its
QM frontier neighbor) may experience unphysical polarization
if the electrostatic interactions involving the link atom are not
properly handled.9-12 Recently, delocalized Gaussian functions
have been used to correct the strong polarization near the QM/
MM boundary region.13,14 A more fundamental approach is to
use effective potentials,15,16 and a third, even more justifiable
family of methods is based on the self-consistent-field ap-
proximation, such as the local self-consistent field (LSCF)
algorithm17,18proposed by Rivail and co-workers. In the LSCF
method, the frontier bond connecting the QM and MM frag-
ments is represented by a set of strictly localized bond orbitals
(SLBOs). Because these bond orbitals are strictly localized, the
authors assumed that they are transferable from one system to
another. Therefore, one can construct the bond orbitals from
calculations on model compounds calculations. The self-

consistent-field (SCF) optimization of the QM wave functions
is carried out over an active subspace that excludes SLBOs.
The LSCF method was originally17,18 formulated for semi-
empirical wave functions with the neglect of diatomic dif-
ferential overlap44 (NDDO) approximation; then it was general-
ized to Hartree-Fock (HF) and post-HF wave functions and to
density functional theory (DFT), and analytical gradients were
formulated.19,20 Recently, specific force field parameters have
also been developed for LSCF.21 A disadvantage of the LSCF
approach is that the bond orbital must be reconstructed for
systems with different bonding situations. A similar approach
called the frozen orbital method has been proposed by Friesner
and co-workers, where a library of frozen densities representing
the frozen orbitals was parametrized for side chains of amino
acids.22-24 An important feature of the QM/MM methods
mentioned so far is that they all include the electrostatic effect
of the MM subsystem on the QM subsystem; other methods29-31

(IMOMM) circumvent some of the difficulties of treating this
polarization effect by neglecting it, but that can be a very serious
approximation.14,45

The present article is concerned with the generalized hybrid
orbital (GHO) method,25-28 which is similar to the LSCF
technique. In the GHO treatment, the QM/MM boundary atom
is represented by a set of sp3 hybrid orbitals, where one of these
hybrid orbitals participates in the SCF procedure to optimize
the QM wave function, and the other three hybrid orbitals are
frozen. The major improvement of the GHO method compared
to the LSCF method is that the construction of the bond orbitals
results from a hybridization scheme that is completely deter-
mined by the local geometry of the QM/MM boundary region,
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and therefore the model calculations for parametrizing the bond
orbital in each new situation are avoided. The GHO method
was originally25-27 proposed for NDDO wave functions, in
which form it has been used successfully in recent enzyme
dynamics studies.3,46-53 Recently, the GHO formalism was
extended to the ab initio Hartree-Fock (AIHF) level,28 including
unrestricted Hartree-Fock (UHF). The key step in the GHO-
AIHF extension is the satisfaction of orthogonality constraints
involving auxiliary hybrid basis functions, which were not
needed when the GHO algorithm was applied with the NDDO
approximation. The extension of the GHO method to ab initio
HF wave functions established a solid theoretical frame-
work for formulating the GHO method as a fundamental
quantum mechanical approach to quantal-classical boundary
problems. However, AIHF theory is generally inaccurate due
to the lack of electron correlation. Therefore it is desirable to
treat the QM subsystem more accurately, and this may be
accomplished by developing a method for hybrid density
functional theory54 and for post-Hartree-Fock correlated meth-
ods55 based on a Hartree-Fock reference.

An alternative strategy is to try to improve the accuracy while
retaining the low cost of NDDO methods. The recently
developed self-consistent-charge density-functional tight-binding
(SCC-DFTB) method is particularly encouraging for its ef-
ficiency and transferability to various scales of systems.56-66

Starting from a second-order expansion of the Kohn-Sham total
energy with respect to density fluctuations, the total energy is
self-consistently minimized to incorporate the relaxation of the
initial charge density at the Mulliken population level.56,57The
SCC-DFTB method has been shown to provide reaction
energies, geometries, and vibrational frequencies for a set of
small organic molecules that are of comparable accuracy to full
DFT results.56 Parameters for sulfur58 and zinc59 have been
developed recently. With corrections for long-range dispersion
forces incorporated, the method can be applied to study
hydrogen bonding and stacking interactions in biological
systems.60-63 This method has been implemented in the
CHARMM program67 for link atom QM/MM calculations.64-66

A generalized-Born-plus-atomic-surface-tension solvation model68

and a class IV charge model69 have also been developed on the
basis of the SCC-DFTB method.

With the increasing number of applications of this method,
it will be useful to have a more fundamental QM/MM boundary
treatment, and we provide such a treatment in the present paper.
In particular, we formulate the GHO algorithm for combined
QM/MM calculations in which the QM part is described by
the SCC-DFTB theory. The presentation of the method is
organized as follows. Following a brief review of the theory,
the key modifications of the formulas for combining SCC-DFTB
and GHO as well as a set of practical procedures for imple-
mentation are given in section 2. Section 3 summarizes the
determination of parameters for the case in which the boundary
atom is an sp3 methylene carbon. In section 4, we present and
discuss tests of the proposed GHO-SCC-DFTB method. Section
5 contains concluding remarks.

2. Theory

In this section, we describe the theoretical background for
combining the SCC-DFTB method with molecular mechanics
using the GHO method. The presentation is organized as
follows. First we briefly review the SCC-DFTB theory and the
GHO method. Next we describe our GHO implementation on
the basis of the SCC-DFTB framework and derive the analytical
gradient expression that takes account of the GHO basis

transformation. At the end of this section, the requirement of
orbital orthogonalization is discussed.

2.1. SCC-DFTB.The method was derived from a second-
order expansion of the Kohn-Sham energy with respect to a
charge density fluctuationδF from a given reference density
F0:56,57,70

whereni is the occupation number of the Kohn-Sham orbital
φi, Ecore is the effective core-core repulsion energy, and the
first term is the expectation value of the Kohn-Sham Hamil-
tonian based on the reference densityF0:

whereRR denotes the atomic coordinates of the atomR. In these
equations,Vxc and Exc are the exchange-correlation potential
and exchange-correlation energy, respectively. The Kohn-Sham
orbitals φi in eq 1 are expanded in a minimal basis set of
localized pseudoatomic Slater orbitals with a frozen core,

where the pseudoatomic orbitalsøµ are obtained by solving an
atomic Kohn-Sham equation for neutral atoms. Under the two-
center approximation, the zero-order Hamiltonian matrix ele-
ments are expressed as

where εµ are the orbital energies obtained from solving the
Kohn-Sham equations for neutral atoms, the effective one-
electron operatorVeff incorporates both the Columbic and the
exchange-correlation contribution in eq 2, andF0

R is the
reference density on atomR. The second term in eq 1 takes
into account the second-order energy due to the charge fluctua-
tion. With a multipole expansion of the density fluctuation
truncated at the monopole term, the second-order energy can
be approximated by56

whereqR is the partial charge of atomR obtained from Mulliken
population analysis,71 γRR is related to the chemical hardness
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of R, andγRâ is an effective Coulomb operator that tends to
RRâ

-1 at large interatomic distances, whereRRâ is |RR - Râ|.
The sum of the third and fourth terms in eq 1 is assumed to be
short ranged and pairwise; their sum is called the repulsive
energyErep. With these approximations, the SCC-DFTB total
energy is finally written as56

where the first term is the band structure energy defined by

The repulsive energy for each pair of atoms in the system is
obtained from the difference ofEbs and the DFT energy for
diatomic species or small model systems. Because the second
term in Ebs depends on the Mulliken charges, which in turn
depend on the coefficients in eq 3, the application of the
variational principle to eq 6a leads to a secular equation that
must be solved self-consistently:

where

and

whereRµ denotes the atom on which basis functionµ is centered
andε is a diagonal matrix of orbital energies.

The gradient of the SCC-DFTB energy is

For the QM/MM implementation of the SCC-DFTB method in
CHARMM, the interaction of the MM point charges with the
QM fragment is approximated by the electrostatic interaction
between MM point charges and Mulliken charges of the QM
atoms:64

and the gradient of this term must be added to eq 8.
2.2. GHO-SCC-DFTB/MM. The GHO boundary carbon

(denoted by B) is taken in this work to be an sp3 carbon. Note
that although the GHO boundary B can in principle be in other
hybridization states or even be any other type of atom, the

present choice of the QM/MM boundary is sufficient for most
situations in practical studies for enzymes. The QM atom
directly bonded to the GHO boundary atom is called the frontier
atom, and it is denoted as A. Having defined the A (QM frontier)
and B (GHO boundary) atoms, we can partition the entire system
into a QM subsystem and an MM subsystem (Figure 1). We
note that although the GHO boundary atom B is included in
the QM subsystem, it is actually both a QM atom and an MM
atom, as we will discuss below. The QM atoms other than B in
the QM subsystem are fully treated by quantum mechanics and
are defined as “fully QM atoms” subsequently. We will denote
fully QM atoms as Q throughout the paper. Because we select
an sp3 hybridized carbon as the GHO boundary B, there are
three molecular mechanics atoms bonded to atom B. In Figure
1, these MM neighbors of atom B are denoted by X, Y, and Z.

In the SCC-DFTB theory, a minimum set of pseudoatomic
orbitals is used for the basis set. For a GHO-SCC-DFTB/MM
treatment, only the atoms in the fully QM subsystem will be
represented by these basis functions; the basis functions on the
GHO boundary atom are treated differently. The basis functions
on fully QM atoms are denoted byøµ, with µ ) 1, 2, ...,N,
whereN denotes the number of such basis functions. For the
GHO boundary atom B, one can construct a set of hybrid orbitals
{ηB, ηX, ηY, ηZ} based on the hybridization of the atomic s and
p basis functions on B. Note that SCC-DFTB uses a minimum
basis set; therefore only a single set of valence s and p orbitals
must to be considered in the above hybridization for a carbon
boundary atom. The orbitalηB is called the active hybrid orbital,
and it points toward A. The other three hybrid orbitals{ηX, ηY,
ηZ} are called auxiliary hybrid orbitals. The hybridization
scheme is described by a basis transformation matrixTb, defined
in detail previously.26 One can construct the hybrid orbitals from
the s and p atomic orbtials on B by applying the basis
transformation:

By construction,24 the hybrid orbitals{ηB, ηX, ηY, ηZ} form an
orthonormal set:

The matrixT that transforms the atomic orbital (AO) basis to
the hybrid (H) basis over the entire QM subsystem is

whereIN is anN dimensional unit matrix, andTb is the 4× 4
hybridization matrix that is used to construct the local hybrid
orbitals on GHO boundary B as in eq 10. By this convention,
we have placed the boundary atom at the end of the QM atom
list.
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Figure 1. Schematic representation of the QM/MM partition in the
GHO method.
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The basis functionsøµ on fully QM atoms plus the active
hybrid basis functionηB form the (N + 1)-dimensional active
basis space for the SCF calculation; functions in this active space
are denoted byøa. The N + 1 occupied and virtual Kohn-
Sham orbitals (KSO) resulting from solving the secular equation
of the SCC-DFTB theory are linear combinations of these active
basis functions:

whereøN+1 ) ηB. Each of the three auxiliary basis functions
forms an auxiliary KSO by itself and is frozen in the SCF
procedure:

Each frozen auxiliary KSO provides an effective charge
distribution to mimic the bond formed by atom B and one of
its MM neighbors X, Y, or Z. The charge densityPbb

H assigned
to each auxiliary orbital is chosen to be 1-qB/3 whereqB is the
MM point charge of B. This represents a uniform partition of
the MM point charge on B over the auxiliary orbitals. In
particular,qB equals-0.27 and-0.18 for a methyl carbon and
a methylene carbon, respectively, in the CHARMM force field.
Thus the auxiliary orbital occupancy for these two key cases is
1.09 and 1.06, respectively. As mentioned above, the GHO
boundary atom B exists in two regions in the GHO method. As
a QM atom, its orbitals contribute to the construction of QM
wave functions. As an MM atom, the fractional densities in
frozen orbitals on B are determined by its MM point charge,
and the chemical bonding with X, Y, and Z is modeled by the
MM force field that is used. Therefore, atom B is both a QM
and an MM atom in the GHO treatment.

The total energy is the sum of the QM energy, the MM
energy, and the QM/MM interaction energy:

whereEQM andEMM denote the energies of the QM and MM
subsystems, respectively, andEQM/MM is the interaction energy.
For EMM, the contributions of terms involving only QM atoms
(fully QM atoms Q and the boundary atom B) are removed.
Note that the electrons in GHO auxiliary orbitals experience
the MM charges and therefore make a contribution in the
QM/MM interaction energy. In addition,EQM/MM contains the
nuclear-nuclear repulsion between the QM nuclei and MM
charges, and the nonbonded van der Waals interactions between
QM and MM atoms.

As stated above, the GHO-SCC-DFTB wave functions are
optimized over an active QM basis set space with reduced
dimensionality and the frozen auxiliary hybrid orbitals only
provide electron fields for the active QM orbitals. To enforce
the constraint, the self-consistent-field (SCF) procedure must
be modified. A practical way to do this is as follows.

i. Form the basis transformation matrixT from the AO basis
to the hybrid (H) basis according to eqs 10 and 12.

ii. Transform the overlap matrixS from the AO basis to the
H basis:

iii. Drop columns and rows corresponding to the auxiliary
orbitals to obtain the reduced overlap matrix for the active
orbitals: SN+1

H

iv. Form the total Hamiltonian matrix in the AO basis:
HN+4

AO , which is a sum of the charge-independent part (H0)N+4
AO

and the charge-dependent part (H1)N+4
AO . (Note that for the first

iteration, the Hamiltonian matrix only includes the charge-
independent part.)

v. Transform the total Hamiltonian matrix from the AO basis
to the H basis, and obtain the auxiliary orbtial energies:

vi. Drop columns and rows corresponding to auxiliary orbitals
to obtain the reduced Hamiltonian matrix for the active
orbitals: HN+1

H

vii. Solve the secular equation in the space of the active hybrid
basis, to obtain the active KSOs in the hybrid basisCN+1

H :

viii. Append the auxiliary orbitals to form the total KSO
matrix.

ix. Transform the KSO coefficient matrix from the H basis
to the AO basis.

x. Carry out a Mulliken population analysis to obtain partial
chargesqR, and form the new Hamiltonian matrixHN+4

AO .
xi. Calculate the band structure energy by summing over

orbital energies, and check convergence. If not converged, go
back to step iv.

xii. After the SCF is converged, evaluate the GHO-SCC-
DFTB total energy. For a parametrized version (see Section 3),
add the pairwise empirical correction (Ecor) between a GHO
boundary atom B and its QM frontier neighbor A.

2.3. GHO-SCC-DFTB Gradients.The basis transformation
matrix contributes a nonvanishing force on the GHO boundary
atom B and on MM atoms bonded to B (denoted X, Y, and Z).
This introduces additional terms into the GHO-SCC-DFTB
gradients. The GHO-SCC-DFTB analytical gradient can be
derived by starting with the same expression used for GHO-
AIHF:28

where theP and W are the density matrix and the energy-
weighted density matrix, respectively, in the AO basis,H and
S are the total Hamiltonian matrix and overlap matrix in SCC-
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DFTB, andRR denotes the nuclear coordinates of atoms B, X,
Y, and Z. The derivative of the density matrix and energy-
weighted density matrix can be further expanded as

where the last terms are not included in the gradient terms
because the corresponding density in the hybrid basis is truly
variational, so they are zeroes.72

To evaluate the gradient analytically according to eq 16, the
density matrix and energy-weighted density matrixWAO are
required. The density matrix elementsPµν

AO are defined as

wherecµi and cνi are the orbital coefficients for atomic basis
functionsµ andν in KSO i; the MOs with indexes ofi ) N +
1, N + 2, N + 3 correspond to the auxiliary KSOs constructed
from each of the auxiliary hybrid basis functions. Note that these
auxiliary KSOs are fractionally occupied with an occupation
numberni (i ) N + 1, N + 2, N + 3) of 1 - qB/3.0, whereqB

is the MM point charge on the GHO boundary B. Similarly,
the auxiliary KSOs has been included in formulating the energy
weighted density matrix elementWµν

AO:

The orbital energies for theN + 1 active KSOs can be obtained
in the conventional way56 by solving the secular equation (eq
7a) in the active space. The auxiliary orbital energies are not
directly available, because the auxiliary KSOs are excluded from
the active SCF space. However, we evaluate the auxiliary orbital
energies explicitly as expectation values of the GHO-SCC-
DFTB Hamiltonian operator, which yields

In particular, we evaluate this expression using the hybrid basis,
in which only diagonal Hamiltonian elements survive:

The occupation numberni for an auxiliary orbital is equal to (1
- qB/3.0), as we stated above.

Notice that no special orthogonalization treatments have been
imposed for GHO-SCC-DFTB. Because the SCC-DFTB method
is intrinsically a nonorthogonal tight-binding theory, the overlap
matrix S for solving the secular equation (eq 7a) and carrying
out the population analysis is not a unit matrix. Therefore, the
auxiliary hybrid basis functions{ηX, ηY, ηZ} have nonvanishing
overlaps with other fully QM basis functions. Note that the
orthogonality between the active hybrid basis functionηB and
the three auxiliary basis functions has been satisfied in eq 11.
In the current implementation, we simply neglect the other

overlap elements involving the auxiliary hybrid basis functions
in the hybrid basis:

This approximation can be simply accomplished by dropping
entries of the overlap matrix and Hamiltonian matrix corre-
sponding to the auxiliary basis functions. The consequence of
the approximation in eq 23 is that all Kohn-Sham orbitals
including the auxiliary orbitals are mutual orthogonal in the
GHO-SCC-DFTB treatment:

Although our experience28 showed that explicit orbital orthogo-
nalization is indispensable for obtaining even qualitatively
reasonable results at the ab initio HF level (GHO-AIHF), this
does not seem to be required for GHO-SCC-DFTB. This
phenomenon might be largely related to the semiempirical
character of the SCC-DFTB method, in which the construction
of the Hamiltonian matrix only takes account of diatomic
interactions (eqs 4 and 7e).

3. Parametrization

In this section, the GHO-SCC-DFTB method is parametrized
for use with the CHARMM22 force field.73 Note that
CHARMM2774 protein parameters are essentially identical75 to
those in CHARMM22, so the current parametrization should
be useful with CHARMM27 as well.

Optimization of molecular geometries by the unparametrized
GHO-SCC-DFTB method underestimates the bond distance
between the GHO boundary atom B and the QM frontier atom
A. Similar behavior was observed for unparametrized semi-
empirical GHO-AM125 and GHO-PM3.27 The underestimated
A-B bond distances across the QM/MM boundary can be
related to the difficulty of treating the boundary consistently.
In GHO-AIHF, we found that the unbalance across the boundary
could be remediated by introducing a set of integral scaling
factors for one-electron kinetic energy integrals involving the
boundary orbitals.28 By analogy, in GHO-SCC-DFTB, the
diatomic Hamiltonian matrix elements involving the boundary
orbital could be adjusted to improve the results. In fact, it would
be very easy to scale these matrix elements as a whole because
in the present implementation of the SCC-DFTB method in
CHARMM, all H andS (overlap matrix) elements are precal-
culated and tabulated as simple functions of interatomic
distances. However, decomposition of these matrix elements
into individual contributions, i.e., kinetic energies, nuclear
attraction potential energies, repulsion energies related to a given
density, and exchange-correlation terms, is not well defined.
One could also adjust the chemical hardness parameters inγBB

or the parameters in the pairwise repulsive terms involving the
boundary atom. Note thatErep directly affects the geometries,
but it does not affect the wave functions, except indirectly
through the geometry, and therefore the atomic charges are
insensitive to these changes.

We found that the most serious problem with the unparam-
etrized method is with the geometries, not the charges.
Therefore, keeping the above analysis in mind, we decided that
the adjustment of the A-B pairwise repulsive term is the best
way to parametrize the GHO-SCC-DFTB method. We therefore
added an empirical correctionEcor to Erep:

∂PAO
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whereEcor is composed of a harmonic polynomial plus a quartic
term:

whereRAB denotes the distance between a GHO boundary atom
B and the QM frontier atom A connected to it; and coefficients
c1, c2, and c4 are parameters to be empirically determined. We
note that the polynomial correction term in eq 26 effectively
does not allow the A-B bond to dissociate. This is not a
problem in QM/MM calculations because the boundary region
is chosen away from the chemical process, and although the
A-B bond can fluctuate from its equilibrium geometry, there
should not be enough energy to break it.

The total fitness function used for determining theEcor

parameters is an equally weighted combination of a geometry
fitness function and a charge fitness function:

where the geometry and charge fitness functions are

In eq 28, the training set for geometries contains 10 molecules
(m ) 1,2, ..., 10); in particular, the training set molecules and
the QM/MM division can be found in Table 2 where the training
set molecules are listed in bold;K is the number of unique bond
distances (r) and angles (θ) in the training set molecules (note
that if two bond distances or angles are equal by symmetry, we
include them only once);qB

GHO is the Mulliken charge on the
GHO boundary atom B in propane (which is the first molecule
in the training set);qB

MM is the MM point charge for the
methylene carbon in propane (this equals-0.18 in CHARMM);
andr0 (0.02 Å), θ0 (2°), andq0 (0.05 atomic charge) are scale
units for distances, angles, and charges, respectively. We take
the reference geometry (denoted SCC-DFTB in eq 28) to be
the geometry optimized at the fully QM level, i.e., SCC-DFTB.
Note the GHO boundary atom B is a carbon atom in a CH2

group and the frontier atom is also chosen as a carbon atom.
The parameters are optimized by maximizing the total fitness
function using a genetic algorithm.76 Table 1 gives the optimized
coefficients of eq 26 for the cases where the QM/MM boundary
cuts a C-C bond.

In the optimization, although the QM frontier atom A is
always a carbon atom, we did not restrict the type of hybridiza-
tion on the frontier carbon. However, one may need more
flexibility in choosing the QM frontier atom for some situations.

For example, to study phosphate hydrolysis processes in
ribonucleic acids, one may need to put the QM/MM boundary
along an O-C bond instead of a C-C bond. The parameters
for an A atom other than a carbon can be obtained by a
procedure similar to the one we used for C-C bonds. Parameters
for O-C and S-C boundaries are presented in the Supporting
Information, with recommendedEcor coefficients and test results;
however, we restrict the main text to boundaries that pass
through C-C bonds.

4. Results and Discussion

4.1. Stretch Potential.To test the new method, we study
the C-C stretch potential for ethane and propanoate. The former
has a typical C-C bond distance, and the latter is an extreme
case with a very large C-C equilibrium distance. Figures 2
and 3 show the stretch potential curves obtained by using
unparametrized and parametrized GHO-SCC-DFTB and com-

TABLE 1: Empirical Correction Parameters for
GHO-SCC-DFTB with the QM/MM Boundary Cutting a
C-C Bond

Ecor coefficient C-C

c1
a 6.422

c2
b -55.715

c4
c 7.040

a In kcal/mol/Å b In kcal/mol/Å2 c In kcal/mol/Å4

Ecor ) c1RAB + c2RAB
2 + c4RAB

4 (26)

Ftotal ) -(Fgeom
2 + Fcharge

2)1/2 (27)

Fgeom) - [1

K
∑
m

(∑
r

(rGHO - rSCC-DFTB

r0
)2

+

∑
θ

(θGHO - θSCC-DFTB

θ0
)2)]1/2

(28)

Fcharge) - [(qB
GHO - qB

MM

q0
)

m)1

2]1/2

(29)

TABLE 2: Key A -B Bond Distance (Å) for
Unparametrized and the Parametrized GHO-SCC-DFTB
Compared to the SCC-DFTB Fully QM Resultsa

system
GHO-SCC-DFTB
(unparametrized)

GHO-SCC-DFTB
(with Ecor)

SCC-
DFTB

CH3BH2-AH3 1.427 1.489 1.509
CH3BH2-AH2CH3 1.432 1.496 1.518
CH3BH2-AH2C(O)OH 1.430 1.495 1.519
CH3BH2-AH2NH2 1.441 1.512 1.528
CH3BH2-AH2NH3

+ 1.429 1.491 1.518
CH3BH2-AH2NH- 1.458 1.543 1.540
CH3BH2-AH2OH 1.435 1.500 1.513
CH3BH2-AH2O- 1.477 1.619 1.606
CH3BH2-AH2SH 1.432 1.496 1.515
CH3BH2-AH2S- 1.442 1.515 1.520
CH3BH2-AHdCH2 1.424 1.490 1.494
CH3BH2-A(O)NH2 1.450 1.526 1.521
CH3BH2-A(O)OH 1.444 1.514 1.506
CH3BH2-A(O)O- 1.495 1.643 1.621
CH3BH2-A(O)OCH3 1.446 1.519 1.507
ethyl benzeneb 1.429 1.494 1.502
histidineb 1.432 1.502 1.492
alanine dipeptidec 1.432 1.503 1.526

a The training set is in bold.b B is the methylene carbon, and A is
the ipso ring carbon.c B is CR, and A is a carbonyl carbon.

Figure 2. C-C stretching potential in ethane, treated by fully QM
(SCC-DFTB) and QM/MM (GHO-SCC-DFTB). Results of both the
unparametrized version and the parametrized version with an empirical
correctionEcor for GHO-SCC-DFTB are given.
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pare them to the fully SCC-DFTB results for ethane and
propanoate, respectively. The unparametrized method gives
C-C potential energy curves with a shape in good agreement
with the fully SCC-DFTB results. However, the locations of
the minima of the potential wells are underestimated by 0.08
and 0.12 Å for ethane and propanoate, respectively. With the
aid of theEcor term, the parametrized GHO-SCC-DFTB method
gives accurate equilibrium C-C distances for these systems,
and the C-C stretch potential energy curves obtained by the
parametrized GHO-SCC-DFTB method agree well with the
results of fully QM calculations over a wide range from 1.2 to
1.8 Å. Note that we do not modulate theEcor term with any
cutoff or decay functions. This simplification is justified be-
cause one should not place the QM/MM boundary at a bond
that dissociates during a simulation. The functional form of the
Ecor term developed here should be suitable for practical
applications.

4.2. Geometry. The bond distances between the GHO
boundary atom B and the QM frontier atom A are listed in Table
2, for both the unparametrized and the parametrized model.
Table 2 shows that the unparametrized GHO-SCC-DFTB
underestimates the A-B bond distance by 0.06-0.13 Å.
However, the parametrized GHO-SCC-DFTB yields A-B bond
lengths that deviate by only 0.004-0.02 Å from the fully QM
results. In Table 3, we report the mean-unsigned-errors (MUEs)
of bond distances and bond angles involving the GHO boundary
atom of the GHO-SCC-DFTB results as compared to the fully
QM results. The A-B bond distance given by GHO-SCC-DFTB
only deviates from the QM results by 0.015 Å on average. The
bond angles near the QM/MM boundary reproduce the QM
results within 1.5°. The MUEs for the whole test set and the
training set are similar, which may indicate that the training set
is diverse enough and is representative of various bonding
situations near the QM/MM boundary.

4.3. Mulliken Charges.Although we do adjust the charges
in our parametrization, we find that the charges obtained from
Mulliken population analysis are not sensitive to the empirical
corrections, because theEcor term does not change the electronic
wave function directly. We report the Mulliken partial charge
determined by GHO-SCC-DFTB/CHARMM for propane and
acetic acid in Tables 4 and 5. The QM methyl group in propane
as calculated by GHO-SCC-DFTB is within 0.01 au of neutral
for both the unparamtrized and the parametrized calculations.
The results show that the atomic charge is not changed very
much by the paramtrization. This is partly due to the fact that
the Ecor term does not alter the QM wave function for a given
molecular geometry.

TABLE 3: Mean Unsigned Errors in Bond Lengths (Å) and Bond Angles (deg) with GHO-SCC-DFTBa

GHO-SCC-DFTB (unparametrized) GHO-SCC-DFTB (withEcor)

system A-B Q-A B-M Q-A-B A-B-M A-B Q-A B-M Q-A-B A-B-M

CH3BH2AH3 0.083 0.006 0.018 1.9 1.4 0.020 0.006 0.015 2.3 1.6
CH3BH2AH2CH3 0.086 0.005 0.018 1.2 0.7 0.021 0.006 0.015 1.7 0.6
CH3BH2AH2C(O)OH 0.089 0.004 0.020 1.3 0.9 0.024 0.005 0.017 0.9 0.7
CH3BH2AH2NH2 0.087 0.003 0.019 1.3 0.8 0.016 0.005 0.016 1.4 0.8
CH3BH2AH2NH3

+ 0.089 0.008 0.022 1.6 0.8 0.027 0.009 0.020 1.4 0.5
CH3BH2AH2NH- 0.082 0.007 0.026 2.9 2.7 0.003 0.004 0.028 2.7 2.8
CH3BH2AH2OH 0.078 0.005 0.019 1.9 1.0 0.013 0.007 0.016 1.8 0.9
CH3BH2AH2O- 0.129 0.010 0.027 2.0 2.5 0.012 0.003 0.031 2.5 2.9
CH3BH2AH2SH 0.084 0.008 0.019 1.3 0.9 0.019 0.010 0.016 1.7 0.6
CH3BH2AH2S- 0.078 0.001 0.026 1.2 1.1 0.005 0.004 0.027 1.7 1.2
CH3BH2AHdCH2 0.070 0.004 0.017 0.7 0.5 0.005 0.005 0.017 1.0 0.6
CH3BH2A(O)NH2 0.061 0.007 0.018 0.6 2.2 0.012 0.013 0.015 1.1 1.9
CH3BH2A(O)OH 0.062 0.004 0.016 0.5 3.3 0.008 0.009 0.015 0.9 2.9
CH3BH2A(O)O- 0.126 0.012 0.025 1.0 1.2 0.021 0.006 0.032 0.6 1.1
CH3BH2A(O)OCH3 0.061 0.007 0.018 0.6 2.2 0.012 0.013 0.015 1.1 1.9
ethyl benzene 0.094 0.004 0.026 0.7 2.3 0.024 0.002 0.027 1.0 2.5
histidine 0.060 0.002 0.010 1.2 1.0 0.009 0.002 0.009 1.5 1.0
alanine dipeptide 0.094 0.004 0.026 0.7 2.3 0.024 0.002 0.027 1.0 2.5
training set 0.088 0.006 0.020 1.3 1.4 0.015 0.006 0.019 1.4 1.3
whole set 0.083 0.005 0.020 1.2 1.5 0.014 0.006 0.019 1.4 1.4

a The training set is in bold.

Figure 3. C-C stretching potential in propanoate, treated by fully
QM (SCC-DFTB) and QM/MM (GHO-SCC-DFTB). Results of both
the unparametrized version and the parametrized version with an
empirical correctionEcor for GHO-SCC-DFTB are given.

TABLE 4: Mulliken Atomic Charges (au) Determined at the
GHO-SCC-DFTB Level for the CAH3-CB Fragment in
Propane

atom
GHO-SCC-DFTB
(unparametrized)

GHO-SCC-DFTB
(with Ecor) SCC-DFTB

CA -0.21 -0.21 -0.20
H1 0.06 0.07 0.06
H2 0.07 0.07 0.06
H3 0.07 0.07 0.06
CB -0.17 -0.18 -0.08
CAH3 -0.01 -0.01 -0.01
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4.4. Rotational Barriers. The potential energy profile for
internal rotation about the central C-C bond inn-butane has
been frequently used to test QM/MM boundary algorithms.25-28

As we mentioned in our previous paper,28 the X-A-B-X
molecular mechanical torsion energy should be included in the
GHO-SCC-DFTB total energy, because both the QM and MM
contributions are important for the torsion barrier. Figure 4 plots
the internal rotational barrier for cases where the GHO boundary
atom is placed at different locations with respect to the central
C-C bond. The choice of placing the GHO boundary atom at
the second, third, and fourth carbon corresponds a small-, a
medium-, and a large-sized QM fragment. For the case with
the GHO boundary at C4, both of the central atoms involved
in the rotation are described by full QM; therefore the rotational
barrier faithfully reproduces the QM results. If the central C-C
bond whose torsion is being considered coincides with the A-B
bond for the QM/MM division (C3 boundary case), the rotation
barrier is described by both the QM and MM terms. In this
case, because MM predicts higher internal rotation barriers than
SCC-DFTB, the combination of the QM/MM barrier heights is
similar to the MM one. With the size of the QM fragment
reduced (C2 boundary case), the description of the rotational
barrier is eventually dominated by MM.

4.5. Proton Affinities. In combined QM/MM calculations,
the QM energy is of central importance for evaluating the QM/
MM boundary treatment. Proton affinities are a sensitive test
of how well the boundary regions are described. With the energy
of the proton defined as zero, the proton affinity for a base X
can be calculated as the energy difference between a base species
(denoted X or X-) and its protonated form (denoted XH+ or

XH). Table 6 compares the proton affinities calculated by GHO-
SCC-DFTB with the results obtained from fully QM calculations
by SCC-DFTB. The proton affinity test suite listed in Table 6
has been used previously in testing the GHO-AIHF algorithm.28

The average absolute deviation of the proton affinities from the
fully QM results for 30 cases in Table 6 is only 1.7 kcal/mol,
which is only about 1% of the typical proton affinity. Note that
15 out of the 30 cases are designed to push the method to its
limit by putting the GHO boundary only one bond away from
the X-H bond being dissociated. Even for these extremely hard
cases, the proposed GHO-SCC-DFTB method gives reasonable
agreement with the fully QM calculations with a mean unsigned
error of 2.4 kcal/mol. It is encouraging that these deviations
are reduced to only 1.2 and 0.6 kcal/mol, respectively, if the
GHO boundary is moved one bond and two bonds further away
from the protonated/deprotonated center, respectively. These
results suggest that one obtains more accurate results if one
places the GHO boundary atom at least one carbon atom away
from the reactive center.

Another way to put the results in Table 6 into perspective is
to compare to a previous study. Twenty-one of the cases in Table
6 (the first 18 rows, BH3AH2CO2

-, and the last two rows) were
also studied by Amara and Field with QM/MM methods based
on Hartree-Fock theory for QM, OPLS-AA for MM, and a
link atom approach with smear charge distributions.14 Their two
best methods are denoted LAg(4,0) and LAg(4,3), and for these
21 cases, their mean unsigned deviations of QM/MM from QM
in proton affinities are 3.3 and 2.3 kcal/mol, respectively. Our
mean unsigned deviation for these 21 cases is 1.8 kcal/mol. The
mean SCC-DFTB proton affinity in these 21 cases is 190.4 kcal/
mol, so a 1.8 kcal/mol mean unsigned error is less than 1%.
This accuracy is satisfactory enough for many applications.

TABLE 5: Mulliken Atomic Charges (au) Determined at the
GHO-SCC-DFTB Level for Acetic Acid

atom
GHO-SCC-DFTB
(unparametrized)

GHO-SCC-DFTB
(with Ecor) SCC-DFTB

O(dCA) -0.48 -0.42 -0.50
O(sCA) -0.43 -0.47 -0.45
H(O) 0.34 0.34 0.33
CA(dO) 0.65 0.66 0.63
CB -0.34 -0.37 -0.28

Figure 4. Potential energy curve for the internal rotation around the
C2-C3 bond inn-butane using parametrized GHO-SCC-DFTB, pure
QM (SCC-DFTB), and MM (CHARMM22). For the GHO-SCC-DFTB
method, three cases are studied, where the GHO boundary atom is
placed at C2, C3, and C4, respectively.

TABLE 6: Proton Affinities (kcal/mol) Using
GHO-SCC-DFTB/CHARMM Compared to the SCC-DFTB
Fully QM Results

system
GHO-SCC-DFTB

(with Ecor) SCC-DFTB
QM/MM
vs QM

BH3-AH2O- 251.5 255.2 -3.7
CH3BH2-AH2O- 256.8 253.7 3.0
BH3-AH2CH2O- 253.9 253.7 0.1
CH3CH2BH2-AH2O- 256.3 253.1 3.2
CH3BH2-AH2CH2O- 255.5 253.1 2.4
BH3-AH2CH2CH2O- 252.7 253.1 -0.4
BH3-AH2NH2 65.2 68.5 -3.3
CH3BH2-AH2NH2 67.1 69.3 -2.2
BH3-AH2CH2NH2 67.6 69.3 -1.7
CH3CH2BH2-AH2NH2 66.9 69.9 -3.0
CH3BH2-AH2CH2NH2 69.3 69.9 -0.5
BH3-AH2CH2CH2NH2 68.8 69.9 -1.0
BH3-AH2NH- 273.2 274.0 -0.8
CH3BH2-AH2NH- 276.2 272.6 3.6
BH3-AH2CH2NH- 272.3 272.6 -0.3
CH3CH2BH2-AH2NH- 275.8 272.0 3.8
CH3BH2-AH2CH2NH- 274.0 272.0 2.0
BH3-AH2CH2CH2NH- 271.6 272.0 -0.4
BH3-AH2S- 212.7 213.7 -1.0
CH3BH2-AH2S- 215.0 212.8 2.2
BH3-AH2CH2S- 212.1 212.8 -0.7
CH3CH2BH2-AH2S- 214.7 212.4 2.3
CH3BH2-AH2CH2S- 213.7 212.4 1.3
BH3-AH2CH2CH2S- 212.0 212.4 -0.5
BH3-A(O)O- 222.4 224.6 -2.1
CH3BH2-A(O)O- 222.8 223.9 -1.1
BH3-AH2C(O)O- 223.6 223.9 -0.3
CH3CH2BH2-A(O)O- 222.1 223.2 -1.2
CH3BH2AH2C(O)O- 225.4 223.2 2.2
BH3-AH2CH2C(O)O- 222.7 223.2 -0.5
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5. Concluding Remarks

In this paper, we used the GHO approach to combine a QM
fragment described by the SCC-DFTB method with a fragment
described by molecular mechanics, and we present formulas
for analytical gradients. By adding a parametrized empirical
term, we obtain an improved description of the bond length at
the QM/MM boundary. The proposed method is robust for
geometry optimizations with various functional groups present
near the boundary. The electronic and energetic properties of
the GHO-SCC-DFTB method are further tested against the full
QM results. We conclude that the GHO-SCC-DFTB method
provides an electrostatically stable representation of the QM
and MM boundary, where the SCC-DFTB theory is used to
describe the QM part. This work also has implications for
applying the GHO-SCC-DFTB/MM methodology to solid-state
and other condensed-phase systems, such as enzymes.
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