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Optimal dynamic discrimination (ODD) was recently introduced as a technique for maximally drawing out
and detecting the differences between similar quantum systems by exploiting their controllable dynamical
properties. As a simulation of ODD, optimal fields were found that successfully discriminated among similar
species, but the underlying mechanisms of the process remained obscure. Hamiltonian encoding (HE) has
been introduced as a technique for identifying the mechanisms of controlled quantum dynamics. The results
of a HE based simulation analysis of ODD are presented in this paper. Different types and degrees of
constructive and destructive interference are shown to underly the controlled discrimination processes. In
general, it is found that successful discrimination relies on more complex interfering pathways for increasingly
similar systems or increasing numbers of similar quantum systems.

I. Introduction

Similar quantum systems are those with closely related
Hamiltonians (e.g., systems sharing common structural or
spectral features, etc.) and hence similar properties. A number
of applications are concerned with clearly identifying one system
in the presence of other similar ones. Distinguishing one system
from another very similar one by traditionalstaticmethods (i.e.,
spectroscopic or chromatographic analysis) can be very difficult.
However, even small differences in the system Hamiltonians
can lead to vastly differentdynamicalbehavior when the mixture
of quantum systems is exposed to the same control field.
Quantum optimal dynamic discrimination (ODD) has been
proposed1 to take advantage of this behavior as a tool for
distinguishing between systems with similar Hamiltonians.
Optimal control theory has been used with success for manipu-
lating quantum systems both in theoretical simulations2-4 and
in the laboratory.5-13 The ODD technique utilizes optimal
control theory (OCT) to generate a field which maximally
enhances a particular signal from one system while suppressing
signals from the other similar systems. By optimally exploiting
all accessible features of the Hamiltonian, ODD has a potential
advantage over traditional discrimination techniques. In the
laboratory, an optimal discrimination control field would be
generated in a closed loop experiment14,15 guided by a genetic
algorithm (GA) or some other suitable learning algorithm. An
optimal control field can have a rather complex structure, and
this may be especially true when attempting to discriminate by
drawing on subtle differences between two or more similar
Hamiltonians.

Initial simulations on model systems showed that ODD could
be quite effective,1 but a very limited understanding of the
discrimination mechanisms was attained. The goal of this study
is to attain a physical understanding of the mechanisms leading
to successful ODD. Such knowledge could guide subsequent

attempts at ODD in the laboratory. Hamiltonian encoding
(HE)16,17 was introduced as a general method for extracting
mechanistic information about controlled quantum dynamics.
This work will utilize HE to reveal the mechanisms of
discrimination under various physical conditions. Mechanistic
insights in this paper will be gained from ODD simulations,
but similar HE techniques could be directly applied to the
laboratory.

The remainder of the paper is organized as follows. Sections
II and III are brief overviews of the ODD and HE concepts.
Section IV illustrates the effect of system similarities on the
discrimination mechanisms. Sections V and VI explore the
effects of increasing numbers of systems to be discriminated
and increasing numbers of system levels upon the discrimination
mechanisms. Some brief conclusions are presented in section
VII.

II. Optimal Dynamic Discrimination

This section presents a short summary of the ODD concept;
a more thorough description can be found in ref 1. Given that
the N systems are similar but noninteracting quantum systems
denoted by S1, ..., SN, the goal of ODD is to identify a control
field, ε(t), which can generate a large value for a chosen
observable value for one system (say S1) while suppressing the
analogous observable value for all other systems. Here, an
observation will be taken at a specific trial time,T, although
time series discriminating observations over the interval 0e t
e T could also be considered. A wave function formulation
will be used for illustration of the concept, but a more
comprehensive density matrix presentation could also be treated
in a similar fashion. Given theN systems in the initial states
|ψ1(0)〉, ..., |ψN(0)〉 and a positive definite observable operator,
Ô, we seek to determine a control field,ε(t), which simulta-
neously drives the systems to the final states|ψ1(T)〉, ..., |ψN(T)〉
such that the observable signals

* Corresponding author. E-mail: hrabitz@princeton.edu. Current ad-
dress: Department of Chemistry, Frick Laboratory, Washington Road,
Princeton, NJ 08544. Phone: (609) 258-3917. Fax: (609) 258-0967. Oi ) 〈ψi(T)|Ô|ψi(T)〉 (1)
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are maximized fori ) 1 and minimized fori * 1. The
discrimination control field generally can be written as

where A(t) is the overall amplitude and the frequenciesωn

correspond to all or some of the allowed transitions in the
collection of systems being distinguished. The parameters{an}
and{φn} are the control variables that the optimization routine
needs to determine. Like most optimal control problems, the
discrimination goal admits great flexibility in the choice of the
optimizing fitness function. In ref 1, the difference between the
observable signals was used as the fitness criteria. If the goal
was to optimize the signal in system Sj, optimization was done
with a fitness function.

However, in this paper, we use the alternative fitness function.

The ratio between the two signals is maximized, provided that
the signal in the system singled out for maximization is in excess
of a threshold value,σ, which is set atσ ) 0.1 here. Each fitness
function has its own advantages and disadvantages. To appreci-
ate the point, simply consider two systems for discrimination
where the goal is to create a strong signal in system S1 to
distinguish it from system S2. Using eq 3 would imply, for
example, that getting a signal ofO1 ) 0.9 in system S1 andO2

) 0.4 in system S2 with F1 ) 0.5 is better than gettingO1 )
0.3 in system S1 andO2 ≈ 0 in system S2 with F1 ) 0.3, yet it
can be argued that the second case, with a near complete absence
of a signal in system S2, is actually better for discrimination.
Using eq 4 means that the optimizing routine will try to
minimize the signal in system S2 while keeping the signal in
system S1 above the threshold. However, once the signal in
system S1 is above the threshold, there is a stronger incentive
to maximize the signal ratio by driving the signal in system S2

closer to zero than to increase the signal in system S1. This
behavior can be seen from the variations of the fitness function
with respect to the following two arguments.

For O2 , O1, the fitnessF1 should be improved much further
by reducing the signal in system S2 than increasing it in system
S1. This behavior is consistent with what is found in the
simulations later in the paper.

The goal of this work is to reveal the general trends in
mechanistic behavior of ODD with respect to various factors
such as the degree of system similarity. This behavior will be
illustrated with simple model systems, and the basic mechanistic
trends with regard to discrimination revealed in this study are

expected to carry over to more complex situations as well. The
ultimate intent of application to real molecules calls for closed
loop laboratory implementation of ODD, and an encoding/
decoding algorithm for revealing the mechanism working
directly in the laboratory can be built from the present
concepts.18

Unless otherwise stated, all of the model systems studied in
this paper have four levels, with the initial population in the
ground state, and the observable one is the population in the
highest state. The discrimination mechanisms operating in ODD
are expected to be subtle, as the same control acts on similar
systems and is able to separate their dynamics. From the prior
work with ODD,1 a general view of the controlled dynamics
was attained, as indicated in Figure 1, but the discrimination
mechanisms were left obscure. With the HE technique presented
below, these operating mechanisms will be revealed.

III. Control Mechanism Identification with Hamiltonian
Encoding

This section outlines the relevant aspects of the HE concept
as introduced in ref 16. The goal of HE is to reveal control
mechanisms by identifying the amplitudes of the dominant
pathways contributing to the dynamics, where the notion of
pathways is defined below. Consider the evolution of a quantum
system in the interaction representation, where the system
dynamics are restricted to ad-dimensional state space. The
system Hamiltonian is

with H0 being the field free Hamiltonian andε(t) being the
control field coupled into the system through the dipole operator
µ. One may write the time dependent Schro¨dinger equation in
the interaction representation

where µI(t) ) exp(-iH0t/p)µ exp(iH0t/p) and U is the time
evolution operator. To find the mechanism by which amplitude
is transferred from an initial state,|a〉, to state|b〉 at time T,
consider the relevant matrix element denoted byUba(T) )

ε(t) ) A(t)∑
n

an sin(ωnt + φn) (2)

Fj ) Oj - ∑
i)1,i*j

N

Oi (3)

Fj )
Oj

∑
i)1,i*j

N

Oi

, Oj > σ

) 0, Oj e σ (4)

F1 ) O1

O2

δF1 ) δO1

O2
- O1δO2

(O2)2

Figure 1. Schematic of how optimal dynamic discrimination (ODD)
operates.1 The arrows denote the complex vectors|ψi(t)〉 for three
similar systems at timest ) 0 andt ) T in the system state spaces.
Initially, all of the state vectors are nearly coincident, corresponding
to identical initial conditions. There is a particular direction in the system
state spaces, shown by the dark arrow, corresponding to the projection
associated with making the detection measurement. Initially, each
system has essentially the same projection along the measurement
direction. Through ODD, one vector, denoted by an asterisk, is rotated
to be maximally aligned with the measurement direction, while the
others are rotated to be perpendicular to it. The Hamiltonian encoding
(HE) technique reveals the mechanisms by which such discrimination
is achieved.

H ) H0 - µε(t) (5)

ip
dU(t)

dt
) µI(t) ε(t) U(t) (6)
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〈b|U(T)|a〉. The Dyson series expansion forUba(T), with µI(t) ε(t)
≡ VI(t), is

To simplify the equations, we defineVlm ) (-i/p)〈l|VI(t)|m〉,
where|l〉 and|m〉 are typically chosen as eigenstates ofH0, and
introduce the notation16

so that the Dyson series (eq 7) becomes

An evolution pathway is defined as the sequence of transitions
starting from|a〉 and ending in|b〉. Each pathway corresponds
to one of the individual integrals in the expansion ofUba(T),
with the amplitude of the pathway (a f l1 ... f ln-1 f b) being
Uba

n(l1,l2,...,ln-1). The order of a pathway,n, is the number of
transitions made linking states|b〉 and |a〉. The control mech-
anism is identified by thesetof pathways (a f l1 ... f ln-1 f
b) connecting states|a〉 and |b〉 which have amplitudes of
significant magnitude,|Uba

n(l1,l2,...,ln-1)|. An understanding of the
mechanism involves an analysis of the constructive/destructive
interferences among the significant complex amplitudes
{Uba

n(l1,l2,...,ln-1)}.
An understanding of the control mechanism in any application

must be made in reference to a particular representation of the
system Hamiltonian. The choice of a basis is not a matter of
right or wrong but rather an issue of convenience guided by
the goal of attaining a physically acceptable picture of the control
mechanism. In some cases, special insights into the physics of
the problem can be used to identify suitable representations.17

In most OCT applications, the a priori choice of representation
will have much freedom. The choice of{|li〉| as eigenstates of
H0 to form a representation is a reasonable natural basis
employed in many applications.

The integrals in eq 7 are computationally difficult to evaluate
directly. The HE technique bypasses this problem by evaluating
these integrals through a number of solutions of Schro¨dinger’s
equation. The basic operation in HE is the introduction of a
new dimensionless timelike variable,s, which is used to
modulate (encode) individual elements of the Hamiltonian with
suitable functions{mij(s)} of s, such that

Integrating the new encoded equation, of the same form as eq
6, givesUba(T,s) as a function ofs, denoted asUba(s) where
theT is now omitted for notational simplicity. From the structure
of eqs 6-10, it can be shown16 that

with

The task now reduces to extracting the desired pathway
amplitudesUba

n(l1,l2,...,ln-1) for Uba(s) by finding the components
of Uba(s) associated with each basis function,Mba

n(l1,l2,...,ln-1)(s).
The criteria for choosing the encoding functions{mij(s)} is that
they produce a unique signature function,Mba

n(l1,l2,...,ln-1)(s), for
each amplitude,Uba

n(l1,l2,...,ln-1), in eq 12. There is considerable
freedom in the choice of{mij(s)}, and here, they are taken to
be of the formmij(s) ) exp(iγijs). By an appropriate choice of
the dimensionless real frequencies{γij}, it is possible to ensure
that each distinct pathway oscillates at a unique frequency,
γ(l1,l2,...,ln-1)

(n) , ass is scanned. Each function in eq 12 becomes

The extraction of the desired pathway amplitudes requires
solving forUba(s) over a sufficient number ofspoints to permit
performing a Fourier transform (FFT) ofUba(s). The resultant
amplitude of the spectral line at the frequencyγ(l1,l2,...,ln-1)

(n) may
be quantitatively identified asUba

n(l1,l2,...,ln-1). This procedure uses
the fact that calculatingUba(s) is relatively easy, even for a large
number ofsvalues. In some cases (i.e., for high intensity fields),
the total number of pathways connecting the initial and final
states can become very large, and the number of solutions of
Schrödinger’s equation for extracting the amplitude of each
individual pathway quickly grows. However, by a suitable
choice of the frequencies{γij}, it is possible to combine
pathways into well defined physical pathway classes and find
the net contribution of each pathway class rather than the
contribution of each individual pathway. For example, the choice
γij ) γ ∀i,j collects all pathways of the same order together
independent of what particular intermediate transitions actually
take place. This gives an estimate of the number of photons
involved in the transfer and the relative importance of the
various order processes. Another way in which pathways are
grouped is to form composite pathways. Each composite
pathway is a collection ofnet transitions. In this case, suitable
modulation is introduced such that ani f j transition will
“cancel out” a j f i transition when contributing to the net
amplitude. For example, the pathways (1f 2), (1 f 2 f 1 f
2), and (1f 2 f 3 f 2) all fall into the same composite
pathway class denoted as (1f 2)*, as that is the net transition
occurring in all three pathways. The net transition amplitude
of the composite pathway would be the sum of the amplitudes
in the pathway class. This kind of classification is achieved by
constraining the modulation to obeyγij ) -γji. For the analysis
purposes of this paper, pathways grouped into composite classes
are sufficient for revealing the mechanisms of ODD.

IV. ODD Mechanisms in Relation to the Degree of
System Similarity

This section considers ODD under different circumstances
and uses HE mechanistic analysis to understand how the optimal
discrimination fields distinguish between pairs of systems. The
variation of the mechanism with system similarity is studied in

Mba
n(l1,l2,...,ln-1)(s) ) mbln-1

(s) × mln-1ln-2
(s) × ... × ml1a

(s) (12)

Mba
n(l1,l2,...,ln-1)(s) ) exp{isγbln-1

} × exp{isγln-1ln-2
} × ... ×

exp{isγl1a
}

) exp{isγ(l1,l2,...,ln-1)
(n) } (13)

Uba(T) ) 〈b|a〉 + (-i

p )∫0

T
〈b|VI(t1)|a〉 dt1 (-i

p )2

×

∑
l)1

d ∫0

T∫0

t2〈b|VI(t2)|l〉〈l|VI(t1)|a〉 dt1 dt2 + ... (7)

Uba
n(l1,l2,...,ln-1) )

∫0

T∫0

tn ...∫0

t2Vbln-1
(tn) Vln-1ln-2

(tn-1) ... Vl1a
(t1) dt1 ... dtn-1 dtn

(8)

Uba ) ∑
n)1

∞

∑
l1,l2,...,ln-1)1

d

Uba
n(l1,l2,...,ln-1) (9)

Vlq(t) f Vlq(t) × mlq(s) (10)

Uba(s) ) ∑
n)1

∞

∑
l1,l2,...,ln-1)1

d

Uba
n(l1,l2,...,ln-1) Mba

n(l1,l2,...,ln-1)(s) (11)
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order to understand the various processes being exploited to
achieve discrimination.

For all of the examples, the system Hamiltonian has the
structure of eq 5. Considering system similarity, each Hamil-
tonian has two distinct features, described byH0 and µ.
Differences inH0 and differences inµ have fundamentally
different effects upon discrimination. Differences inH0 change
the frequency spectrum, whereas differences inµ alter the degree
of sensitivity to a given spectral component. It was found that
high quality discrimination between systems with the sameµ
but differentH0 (referred to as spectrally distinct systems) is
often easier to attain (i.e., the control field has a smaller fluence)
than in the case of systems with the sameH0 but differentµ
(referred to as spectrally identical systems). The results also
show that fundamentally different mechanisms are used in
discriminating spectrally identical systems compared to spec-
trally distinct ones. In practice, system differences will simul-
taneously occur inH0 and µ. However, to understand the
underlying principles, their effects on discrimination revealed
by the mechanistic analysis will be separately explored. In all
the cases below, increasing fluence was found to be a good
indicator of the need for more complex mechanisms to attain
comparable degrees of discrimination. Fluence as an indicator
is legitimate, as the fitness function in eq 4 puts no penalty on
the fluence. The fluence is expressed in arbitrary units in the
calculations, and it is the relative value from case to case that
is significant.

A. Spectrally Distinct Systems. This section considers
discrimination between pairs of four level systems with identical
dipole moments but different field free Hamiltonians. The effect
of system similarity on the mechanism is analyzed. The energy
levels for all the systems are similar, and the transitions are
nondegenerate; the energy levels for any particular system A
may be ordered in the sequence{E1

a, E2
a, ..., En

a}, where the
label a refers to system A. We define a difference factor,δω,
between systems C and D as follows

with

The smaller the value ofδω, the more similar are systems C
and D. While this scalar difference factor will not capture all
of the subtle dynamical differences between the systems, it
provides a useful quantitative measure of the degree of spectral
distinction between the systems. Another factor,η, previously
introduced in ref 16, serves as a measure of the degree of
constructive/destructive interference of the pathways defined by
the expression

where the various significant pathway class amplitudes are
numbered here by a simple index,n, for notational simplicity.
If the pathways are perfectly aligned in the complex plane, then
η ) 1, while, for complete destructive interference,η ) 0. Each

system in a sample subjected to discrimination will have its
ownη value, as the control field induces pathways with different
amplitudes in each system.

Table 1 shows the results of ODD simulations for four
different discrimination problems, each involving two systems.
The goal in each case is to generate a control field which will
discriminate system A from (the increasingly similar) systems
E, D, C, and B, respectively. As can be seen, the greater the
difference factorδω, the smaller the fluence of the discriminat-
ing field. Naturally, systems that are more similar may also be
more difficult to discriminate, as reflected in the value of the
fitness functionFA, although good results were found in all the
present cases. Even in the worst case of systems A and B, the
signal in system A is 9 times as large as the signal in system B.
Thus, despite the increasing similarity of the systems, compa-
rable discrimination quality was achieved by “working harder”,
as reflected by the increasing fluence.

Table 2 shows the results of HE mechanistic analysis for the
cases in Table 1. The number of composite pathways of
significant amplitude (i.e., with magnitudes>0.01) are listed
along with the maximum order of the processes. The systems
show distinct regimes of discrimination mechanistic behavior.
For system E, the control field sets up large amplitude pathways
in system A, while little amplitude is excited in system E, and
even these low amplitude pathways interfere destructively. In
this case, the composite pathways to the target state for system
A add up nearly completely constructively, while those for
system E add up destructively. This is close to the ideal
discrimination limit. The number of significant pathways is far

ωlm
c )

El
c - Em

c

p
(14)

δω ) ∑
l,m,l*m

|ωlm
c - ωlm

d |

|ωlm
c |

(15)

η )

|∑
n

Uba
n |

∑
n

|Uba
n |

(16)

TABLE 1: Results of Optimal Dynamic Discrimination
between System A and the Increasingly Similar Systems E,
D, C, and B, Respectivelya

sample OA FA δω fluence

A and E 0.195 5.7× 107 0.094 4.4
A and D 0.101 105 0.047 7.3
A and C 0.106 24 0.023 15.1
A and B 0.114 9 0.016 39.3

a In each case the goal is to enhance the signal for system A and
diminish it for the other system in the sample. OA is the signal in system
A, andFA is the ratio between the signal in system A and the signal in
the other system. These systems have identical dipole matrices but
different field free Hamiltonians. The difference coefficientδω from
eq 15 is a measure of the distinction between the field free Hamiltonians,
with smaller values ofδω implying that the systems are more similar.

TABLE 2: Comparison of the Number of Significant
Composite Pathways and the Nature of Constructive and
Destructive Interference (η Is Defined in Eq 16) as System
Similarity Increases in the Sample When Going from
Systems E to B (See Table 1)a

sample system
no. of

pathways η order

A and E A 6 0.83 6
E 2 0.01 4

A and D A 7 0.40 6
D 7 0.05 6

A and C A 9 0.29 8
C 10 0.06 8

A and B A 5 0.60 14
B 6 0.18 14

a Increasing system similarity makes it more difficult to get construc-
tive interference in system A while keeping destructive interference in
the other system. While the maximum order of the processes increases
with system similarity, the number of significant composite pathways
does not increase for the last case of systems A and B, as explained in
the text. A significant composite pathway is defined as one with a
magnitude>0.01.
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more for system A (6) than for system E (2). Also, the highest
relevant order of pathways excited for system E (4) is lower
than for system A (6). This is the first discrimination regime,
where the systems are sufficiently different (δω ) 0.094) to
allow for distinct yet relatively simple dynamics. Figure 2 shows
the amplitudes of the most significant composite pathways
induced by the control field in systems A and E plotted in the
complex plane. The spectra of systems A and E are sufficiently
different to allow the excitation of high amplitude pathways in
system A without setting up very high amplitude pathways in
system E. However, the ODD algorithm further improves
performance by ensuring constructive interference between the
pathways in system A and destructive interference between the
pathways in system E.

For the more similar systems A and D, the control field now
sets up the same number (7) of composite pathways and the
same order (6) of processes for both systems. The main
composite pathways are shown in Figure 3. The pathways show
nearly complete destructive interference in system D withη )
0.05 and a fair degree of constructive interference in system A
with η ) 0.4 to ensure that there is a signal in system A and
essentially none in system D. The major pathways and their
amplitudes are listed in Table 3. For the even more similar
systems A and C, the story is the same except more composite
pathways and higher order processes are needed in order to
successfully discriminate between the systems. Also, as the
systems become more similar, the degree of constructive

interference in system A diminishes, while the degree of
constructive interference in the other system increases. This is
the second regime, where discrimination occurs by setting up a
large number of composite pathways, which add up constructively/
destructively to achieve the required result as best as possible.
The number of composite pathways used in discriminating
between systems A and C is very large and highly nontrivial in
structure. Figure 4 shows the significant composite pathways
induced in both systems A and C by the discrimination field.
While the same pathways are induced in both systems, they
are induced with different phases and amplitudes, thereby
allowing for destructive interference in one case and constructive
interference in the other.

The trend of using more composite pathways with increasing
system similarity seen in Table 2 is broken in the most similar
system B, which introduced fewer composite pathways than
system C while creating much higher order processes. This
behavior arises because the discrimination mechanism relies on
“rattlings”,16 or pathways that belong to the same composite
class but which have additional pairs of canceling transitions.
The discrimination mechanism here is similar to that in
spectrally indistinguishable systems seen in the next subsection.
This is the third regime of discrimination.

The results of the mechanistic analysis for discrimination
between pairs of spectrally distinguishable systems show that,
for increasingly similar systems, it is necessary to excite more
complex dynamics in order to successfully distinguish between
the systems.

B. Spectrally Identical Systems.This section explores the
mechanisms for ODD between spectrally identical systems,
defined to be systems with the sameH0 but different dipole
coupling matrices,µ’s. Such systems will have spectral peaks
in the same location but with different intensities, given the
added condition that the same transitions are allowed in both
systems. Three cases are explored, involving the discrimination
of A from the increasingly similar systems H, G, and F,

Figure 2. Comparison of the significant composite pathways induced
by the optimal control field in discriminating systems A and E in Tables
1 and 2. Table 2 lists six significant composite pathways for system
A, but here, only the two largest are shown for graphical clarity. The
scale for system E is magnified by a factor of 10 for visual clarity, as
the composite pathways induced are of much lower amplitude. As can
be seen, the interference in system E is nearly completely destructive,
and for system A, the interference is constructive. This discrimination
mechanism is possible because systems A and E are sufficiently distinct
from each other.

Figure 3. Comparison of the significant composite pathways induced
by the optimal control field in systems A and D of Table 2. The
composite pathways induced are of the same order of magnitude. There
is near complete destructive interference for system D. In contrast,
although the interference for system A is not fully constructive, it gives
a comparatively large net population in the target state. The mechanism
is more complex for this case of discrimination as compared to that
shown in Figure 2 because systems A and D are more similar.

TABLE 3: List of the Different Amplitudes Introduced for
the Seven Composite Major Pathways in the Discrimination
between Systems A and D (See Table 1)a

pathway
amplitude in

system A
amplitude in

system B

(1 f 4)* -0.2- 0.2i -0.07+ 0.16i
(1 f 3 f 4)* 0.06+ 0.15i -0.05- 0.12i
(1 f 2 f 3 f 4)* -0.12+ 0.01i 0.07+ 0.06i
(1 f 2 f 3 f 1 f 4)* -0.06+ 0.03i 0.05
(1 f 3 f 2 f 1 f 4)* -0.03+ 0.06i 0.04- 0.04i
(1 f 4 f 3 f 1 f 4)* 0.05+ 0.02i -0.03- 0.03i
(1 f 4 f 3 f 2 f 1 f 4)* 0.19i 0.01- 0.01i

sum of amplitudes -0.3+ 0.26i 0.02+ 0.02i

a The sum of the amplitudes shows that the pathways interfere
destructively in system D, while the corresponding pathways interfere
constructively in system A.

Figure 4. Ten main contributing composite pathways induced in
systems A and C by an optimal discriminating field. The same pathways
are introduced in systems A and C, but they have different amplitudes
and phases. The large number of composite pathways indicates that
the discrimination mechanism is highly complex.
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respectively. The results are shown in Table 4. If the dipole
matrix elements of system A are{µlm

a }, then the difference
coefficientδµ between systems A and F is defined as

to quantify the degree of distinction between the systems. Note
that the added condition of identical allowed transitions means
if µlm

a ) 0, thenµlm
b ) 0.

As can be seen in Table 4, the electric field fluences are much
larger than those seen in the case of spectrally distinguishable
systems in Table 1. It was found that discrimination became
much more difficult (i.e., higher intensity fields had to be used)
for decreasingδµ values, just as was found for decreasingδω
values in the previous section. However, the results of the
mechanistic analysis for the spectrally identical systems in Table
5 show trends different from the case of spectrally distinct
systems. The degrees of constructive and destructive interference
do not vary monotonically with increasing system difference;
however, the ratio betweenη for system A andη for the other
system does increase monotonically, implying that sometimes
the control field will accept a lower degree of constructive
interference in system A if that means a greater degree of
destructive interference in the other system. Another key point
is that there is no trend of using more composite pathways as
the systems become more similar. However, there is a clear
trend of using much higher order processes. Systems A and F
are almost identical, and the optimal field distinguishing between
them is of high fluence. The number ofcompositepathways
used was very few, and there was essentially a single dominant
composite pathway, the direct (1f 4)* transition. However,
the small number of composite pathways does not imply a
simple discrimination mechanism. Figure 5 shows some of the

pathways that contribute to the two main composite pathway
classes used in the discrimination. The presence of field induced
processes of the order of more than 20 in systems A and F
implies that detailed pathways such as those shown in Figure 5
contribute significantly. The control field attempts to use these
processes to create interference as a delicate means for
discrimination. The reason for this behavior can be understood
through the following analysis. Consider the expression for the
pathway (not a composite pathway) (1f 3 f 4)

whereµIlm is the (time dependent)lmth element ofµI, which is
explicitly

Then, eq 18 reduces to

For spectrally identical systems, each transition frequency,ωlm,
is the same for both systems, and therefore, the integral in eq
20 will be the same for both systems. The difference in the
amplitude of a pathway will come from the difference in the
dipole moments alone. This is true for all pathways, not just
the one chosen for illustration. If the dipole elements are real
(as is the case for all systems considered here), then every
pathway excited in one system will have the same phase as the
corresponding pathway in the other system. Even for complex
dipole elements, the phase difference between the two corre-
sponding pathways will be fixed by the dipole elements and
cannot be manipulated by the optimizing algorithm. Thus, the
only way to excite significantly different dynamics is to exploit
the small differences in the dipole moment magnitudes.
However, as the dipole moments are very similar in magnitude,
to create pathways with different amplitudes, high order
processes need to be introduced; this is done by rattling (i.e.,
an a f b transition is subsequently followed by ab f a
transition, etc.16). Such pathways are highly nonlinear in the
dipole moment matrix elements to amplify their system-to-
system small differences and create significantly different
pathway amplitudes. This behavior results in a complex
discrimination mechanism.

Given this behavior found with spectrally identical systems,
it is useful to compare it with what was found in section IV.A
for spectrally distinct systems. In the latter case, the phases of

TABLE 4: Results of Optimal Dynamic Discrimination
between Three Increasingly Similar, Spectrally Identical
Systemsa

sample OA FA δµ fluence

A and H 0.102 3.5× 105 1.81 9.58
A and G 0.100 2.5× 104 0.90 30.76
A and F 0.100 20.3 0.045 64.65

a OA is the enhanced signal for system A, andFA is the fitness
function (i.e., the ratio of the signal in A to the signal in the other
system). These systems have different dipole matrices and identical
field free Hamiltonians. The difference coefficientδµ defined in eq
17 is a measure of dipole matrix distinctness, with smaller values
implying more similar dipole matrices.

TABLE 5: Comparison of the Number of Significant
Composite Pathways and the Nature of Constructive and
Destructive Interference,η, as the System Similarity
Increases (See Table 4) for Spectrally Identical Systemsa

sample system
no. of

pathways η order

A and H A 7 0.52 10
H 6 0.01 8

A and G A 9 0.73 18
G 8 0.03 16

A and F A 7 0.63 27
F 5 0.38 26

a The number of composite pathways does not grow with system
similarity in contrast to the case of the spectrally distinguishable systems
in Table 2. Rather, rattling cancellations16 within each path are exploited,
which can be inferred from the presence of high order processes induced
by the discriminating fields.

δµ ) ∑
l,m,µlm

a *0

|µlm
a - µlm

f |

|µlm
a |

(17)

Figure 5. Mechanism of discrimination for the spectrally identical
systems A and F. While there are only two major composite pathways
induced in both systems (shown as m1 and m2 in the left portion of the
figure), that observation is misleading. The presence of processes of
the order of 20 and higher in Table 5 means that each composite
pathway class has within it many high order contributing pathways.
P1, P2, and P3 are examples of three pathways that contribute
significantly. The first two, P1 and P2, belong to the pathway class m1

) (1 f 4)* and the third to the class m2 ) (1 f 4 f 3 f 1 f 4)*.

U41
2(3) ) ∫0

T∫0

t2µI43
(t1) µI31

(t2) ε(t2) ε(t1) dt1 dt2 (18)

µIlm
) µlm exp(iωlmt) (19)

U41
2(3) )

µ43µ31∫0

T∫0

t2exp(iω43t2) exp(iω31t1) ε(t2) ε(t1) dt1 dt2 (20)
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each composite pathway could be manipulated by drawing on
the slightly different values ofωlm for each system; even small
differences inωlm can become amplified by the time dependent
integrals (e.g., eq 18) when the control pulse goes through many
oscillation periods. Therefore, discrimination in spectrally
distinct cases is achieved by introducing many composite
pathways with different phases, which then add up constructively/
destructively as dictated by the desired objective. As spectrally
distinct systems become increasingly similar, the values of the
various transition frequenciesωlm will become increasingly
similar. In that case, low order pathways will tend to have similar
phases as well. In this situation, it will become difficult to
generate an electric field capable of creating significantly distinct
phases for the same low order pathways in the two systems.
Hence, as spectrally distinct systems become extremely similar,
seeking optimal discrimination forces the introduction of high
order pathways to magnify the small differences inωlm and
thereby ensure significantly different amplitudes and phases for
the corresponding pathways in the two systems. This explains
the nature of the mechanism of discrimination found for the
weakly spectrally distinct systems A and B in Table 2.

We can infer from the results of sections IV.A and IV.B that
arbitrary systems with scattered small differences in the matrix
elementsH0 andµ will draw on every possible means afforded
by ε(t) to achieve ODD.

V. Mechanistic Behavior for Distinguishing Increasing
Numbers of Systems

In this section, HE is used to analyze the nature of the
discrimination mechanisms operating with samples containing
increasing numbers of systems. The systems are spectrally
distinct with identical dipole matrices and are labeled A, A2,
A3, and A4. The spectral difference coefficientsδω between
A2, A3, and A4 and A are 0.047, 0.056, and 0.092, respectively.
The goal is to maximize the observable signal in A and minimize
the signals in all the other systems. A sequence of discrimination
problems will be examined, where system A is to be discrimi-
nated from only A2, from A2 and A3, and finally from A2, A3,
and A4. The results are presented in Table 6.

While successful discrimination of A was achieved even as
the number of additional systems increased, the discrimination
mechanism became more complex, drawing on subtle dynamical
differences between the systems. This behavior is qualitatively
evident from the increasing fluence of the electric fields, and
the quantitative mechanistic analysis is shown in Table 7. As
the number of systems to be discriminated among increases,
the number of composite pathways increases to achieve a
comparable degree of discrimination. The order of the control
processes also increases as more systems are added. For
multisystem discrimination, a combination of many composite
pathways along with high order rattling processes is required
to achieve successful discrimination. This behavior is in contrast
with the two system discrimination problems in section IV,

where either mechanism sufficed. The multisystem cases
illustrate the general principle that the control field will take
optimal advantage, as required, of all available dynamics to
achieve successful discrimination.

VI. Discrimination Mechanisms with an Increasing
Number of System Levels

This section explores how the number of system levels affects
the quality of the discrimination and the associated mechanisms.
A series of discrimination problems will be considered, where
the goal is discrimination of system A from system D by the
population transfer|1〉 f |4〉. Both systems are modeled
successively as having six, five, and four levels, where the five
and four level systems are simply truncations of the six level
system. Each pair of systems is spectrally distinct. The results
of the discrimination are shown in Table 8 (the case of four
levels with system D is the same as that in Table 1). Having
more energy levels means that there is greater dynamic freedom
to exploit for achieving discrimination. This extra freedom is
reflected in the increasing value of the difference parameterδω
in Table 8. The results of the mechanistic analysis are shown
in Table 9, where the decreasing value ofη for system D with
an increasing number of levels shows that the extra freedom
allows for better destructive interference.

TABLE 6: Results of Discrimination with Samples Having
an Increasing Number of Systemsa

sample OA O2 O3 O4 FA fluence

A, A2 0.107 0.001 105 7.3
A, A2, A3 0.108 0.011 0.003 21.2 20.8
A, A2, A3, A4 0.123 0.017 0.0003 0.004 5.8 76.8

a The goal of the control field is to maximize the signal in system
A while minimizing the signal in all the other systems in the sample.
FA is the ratio of the signal in system A to the sum of the signals in all
the other systems.

TABLE 7: Results of the Mechanistic Analysis for a Series
of Multisystem Discrimination Problemsa

sample system
no. of

pathways η order

A, A2 A 7 0.40 6
A2 7 0.05 6

A, A2, A3 A 11 0.37 9
A2 11 0.08 9
A3 11 0.06 9

A, A2, A3, A4 A 23 0.37 24
A2 23 0.13 24
A3 23 0.006 24
A4 22 0.06 24

a Both a large number of composite pathways and very high order
processes are introduced.

TABLE 8: Results of Optimal Dynamic Discrimination for
Two Spectrally Distinct Systems (A and D) Modeled with
Different Numbers of Levelsa

no. of levels signal A FA δω fluence

6 0.107 3.4× 106 0.094 10.0
5 0.109 105 0.075 8.3
4 0.101 105 0.047 7.3

a As the number of levels increases, there is additional dynamic
freedom to exploit, and thus, better discrimination is achieved without
a significant change in fluence.

TABLE 9: Results of the Mechanistic Analysis for the
Discrimination Problems of Table 8a

sample system
no. of

pathways η order

6 A 11 0.38 8
D 8 0.008* 6

5 A 11 0.38 6
D 8 0.004 6

4 A 7 0.40 6
D 7 0.05 6

a The values ofη show that greater destructive interference occurs
in system D as the number of levels increases. The value ofη denoted
by an asterisk is likely less than 0.008; numerical issues make it difficult
to obtain accurately.
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It was also observed that the optimal discrimination field for
the four level system also worked extremely well when applied
to the five and six level systems. In this case, the mechanistic
analysis shows that the composite pathways induced in the five
level systems A and D are very similar to the corresponding
composite pathways in the four level systems. Therefore,
undermodeling the system did not have a significant effect.
However, the optimal fields determined for the five and six level
systems did not produce satisfactory discrimination upon
application to the four level case. This outcome is reasonable
because the control field naturally exploits levels|5〉 and |6〉
when they are available for ODD.

VII. Conclusions

This paper applied HE in a number of contexts with model
systems to provide insight into the mechanisms of ODD.
Mechanism identification revealed how ODD exploits construc-
tive interference in the target system and destructive interference
in the other systems in order to achieve discrimination. The
effect of system similarity upon the discrimination mechanisms
was explored, and the mechanism qualitatively depended on
whether the system differences were inH0 or µ. The effects of
additional systems and additional system energy levels were
also investigated. The general conclusion is that greater similar-
ity or a larger number of systems invariably leads to the
exploitation of multipathway mechanisms to dynamically
magnify even the smallest difference between the systems. A
similar analysis could be carried out for radiation coupled
through other operators besidesµ, and Raman or other nonlinear
spectral signatures could define the output signal for mechanistic
analysis.

It is clear that operating optimally will allow for the best
degree of discrimination, given all the laboratory constraints
and realities. The presence of noise and control field limitations
will constrain the ability to exploit all aspects of constructive
and destructive interference, although operating with ODD will
fight against these effects as best as possible. In this regard,
the earlier work1 explored some aspects of robustness to field
noise. Ultimately, it will be valuable to introduce analogous
HE techniques directly in the laboratory to reveal the actual
mechanisms under real conditions.

Finally, mechanistic analysis through HE is a tool with broad
applications for revealing the processes by which quantum

optimal control in any context achieves its goals. The different
mechanistic behaviors identified in the cases of spectrally
identical and distinct systems show the utility of the HE
technique. The system discrimination problem also clearly
demonstrates that an examination of the control field in any
form (e.g., temporal structure, power spectrum, frequency-time
plots, etc.) alone generally cannot reveal a mechanism, as the
same field subtly directs the dynamics of similar systems in
very different ways. Only a full unraveling of the contributing
pathways can truly reveal the operating mechanisms. It is
anticipated that systematic application of HE to wide classes
of quantum control problems should provide a broad perspective
on how the control is achieved.
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