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We consider two different semiclassical approximations for nonadiabatic quantum-mechanical correlation
functions of the form Tr[Â eiĤet/pB̂ e-iĤgt/p], whereĤg * Ĥe represent the nuclear Hamiltonians of two different
electronic states. The first approximation is based on direct linearization (DL) of the forward-backward
(FB) action in theexactpath integral expression for this correlation function. The second approximation is
based on linearizing the FB action in anequiValent quantum expression for this correlation function, which
is given in terms of the Meyer-Miller mapping Hamiltonian (MML). The two approximations have several
features in common, namely: (1) They are given in terms of an integral over a classical-like phase space; (2)
The relevant operators are replaced by their Wigner transforms; (3) The dynamics is purely classical and
governed by a Hamiltonian that represents an average overHg andHe; (4) The fact thatĤg * Ĥe gives rise
to a phase factor of the form ei∫0

t dτU(τ)/p dτ, whereU ) He - Hg. The main differences between the two
approximations are: (1) The MML approximation involves an additional phase-space integral and Wigner
transforms that correspond to the continuous variables representing the electronic degree of freedom; (2) The
DL and MML approximations involve different averaged Hamiltonians, namely,Ĥav ) (Ĥg + Ĥe)/2 in the
case of the DL approximation, as opposed to different relative weights ofĤg andĤe, which depend on the
electronic degree of freedom, in the case of the MML approximation. The two approximations are tested
within the framework of a nonradiative electronic relaxation (NRER) benchmark problem. Although the NRER
rate constants are accurately reproduced by both methods, the DL approximation is consistently found to
perform somewhat better. A discussion is provided of a feasible scheme for implementing those approximations
in the case of anharmonic systems as well as the relationship to previous work.

I. Introduction

Most relevant measurable quantities pertaining to condensed-
phase systems can be expressed in terms of real-time correlation
functions.1-6 In many cases, classical mechanics provide a
reasonable approximation within which to calculate these
correlation functions. However, there are many situations where
this is not the case. An important class of such problems
corresponds to cases that involve nonadiabatic dynamics, where
the temporal behavior reflects the time evolution of an electronic
superposition state and therefore lacks a well-defined classical
limit.

The exact calculation of real-time quantum-mechanical cor-
relation functions for general many-body systems remains far
beyond the reach of currently available computer resources due
to the exponential scaling of the computational effort with the
number of degrees of freedom (DOF).7 Hence, the development
of effective, yet computationally feasible and versatile, ap-
proximate methods for calculating quantum-mechanical cor-
relation functions is highly desirable. Several such methods have
been proposed throughout the years, including mixed quantum-
classical treatments,8-13 analytical continuation,14-23 centroid
molecular dynamics (CMD),24-41 quantum mode-coupling
theory,22,42-45 and the semiclassical (SC) approximation.7,46-67

These methods have been applied, with relative success, to a
rather extensive set of systems, including ones that involve
nonadiabatic dynamics.

Nonradiative electron relaxation (NRER) represents an im-
portant example of a nonadiabatic process.68-70 In this case,

one is typically interested in the rate of transition from an excited
electronic state to the ground electronic state, denoted by|e〉
and|g〉, respectively. This process, which involves the degrada-
tion of electronic energy into heat, can be described in terms of
the following,completely general, overall Hamiltonian

Here,ωeg is the electronic transition frequency in the absence
of coupling to the nuclear DOF,Ĥg and Ĥe are the nuclear
Hamiltonians that correspond to the ground and excited
electronic states, respectively

andV̂ge andV̂eg are off-diagonal coupling operators which may
be explicitly dependent onQ̂ andP̂ [Q̂ ) (Q̂(1), ..., Q̂(Nn)), P̂ )
(P̂(1), ...,P̂(Nn)), and (M(1), ...,M(Nn)) are the coordinates, conjugate
momenta, and masses that correspond toNn nuclear DOF].

In a situation where the nuclear DOF reach thermal equilib-
rium on the excited surface prior to the NRER process, and the
off-diagonal coupling term,V̂ge|g〉〈e| + V̂eg|e〉〈g|, can be treated

Ĥ ) Ĥg|g〉〈g| + (pωeg + Ĥe)|e〉〈e| + V̂ge|g〉〈e| + V̂eg|e〉〈g|
(1)

Ĥg ) ∑
k)1

Nn (P̂(k))2

2M(k)
+ V̂g(Q̂) (2a)

Ĥe ) ∑
k)1

Nn (P̂(k))2

2M(k)
+ V̂e(Q̂) (2b)
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as a small perturbation, one may use Fermi’s golden rule in
order to derive the following expression for the NRER rate
constant71

where

Here,â ) 1/kBT, Trn stands for the trace over the nuclear DOF,
and Ze ) Trn[e-âĤe]. Thus, the calculation of the NRER rate
constant translates into that of calculating the correlation function
C(t) in eq 4.

Approximate schemes for calculating the correlation function
in eq 4, as well as other related types of correlation functions,
have been proposed by many authors in the past.6,71-79 The main
goal of the present paper is to consider an approach which is
based on the linearization of the forward-backward (FB) action
in the exact path integral expression for this correlation function.
This work was particularly motivated by the recent finding that
a similar approach is effective for calculating quantum me-
chanical adiabatic correlation functions which are relevant to
vibrational energy relaxation.80,81

We note that approximations in a similar spirit were recently
proposed by Egorov, Rabani, and Berne,71,75,76and derived by
Miller and co-workers within the framework of the semiclassical
initial-value-representation (SC-IVR) approach.78,79The present
paper provides an alternative, and more general, derivation of
some of the results obtained by those authors and sheds new
light on several important aspects of the various possible
approximations as well as the relationships between them. The
analysis also leads to improved approximations that increase
the accuracy without sacrificing the appealing cost effectiveness
of the approach.

The plan of this papers is as follows. In section II, we derive
one type of approximation, which is based on direct linearization
of the FB action. In section III, we derive an alternative
approximation, which is based on linearizing the FB action that
corresponds to the same correlation function, within the
framework on the Meyer-Miller mapping Hamiltonian. The
two approximations are tested on a benchmark NRER problem
in section IV. The results are summarized and discussed in
section V.

II. Direct Linearization (DL) Approximation

Consider the following general nonadiabatic two-time cor-
relation function

The correlation function in eq 4 is obviously of this type, with
Â ) V̂ge e-âĤe/Ze and B̂ ) V̂eg. For the sake of simplicity, the
direct linearization approximation will be derived below for the
case of a single particle of massm, which moves in 1D.

The exactpath integral expression forCAB(t) is given by

Here

are the forward and backward actions, respectively, and{0, ε,
2ε, ..., Nε ) t} corresponds to the discretized time (the limitN
f ∞ will be imposed at a later stage).

The linearization approximation is based on the assumption
that the most important contributions to the path integral in eq
6 come from forward and backward trajectories, which are
infinitesimally close to each other. Thus, one may expand the
FB action,SN

+ - SN
-, to first order with respect to the difference

between the forward and backward trajectories.47,48,56,78,79,82-85

To this end, we change the integration variables in eq 6 from
x0

+, ..., xN
+, x0

-, ..., xN
- into y0, ..., yN, z0, ..., zN, such that

The linearization approximation is then introduced by expanding
the FB action,SN

+ - SN
-, to first order inz0, ..., zN. This yields

where

is the arithmetic average of the ground and excited electronic
potential surfaces, and

is the difference between them.
Following the linearization, one can perform the integration

over z1, ..., zN-1 explicitly by using the following identity

It should also be noted that in the limitN f ∞ (ε f 0)

where p0/m ) limεf0(y1 - y0)/ε and pN/m ) limεf0(yN -

kgre ) 1

p2 ∫-∞

∞
dteiωegt C(t) (3)

C(t) ) Ze
-1Trn[e

-âĤe eiĤet/pV̂eg e-iĤgt/pV̂ge] (4)

CAB(t) ) Trn[Â eiĤet/pB̂e -iĤgt/p] (5)

CAB(t) ) ( m
2πpε)N ∫ dx0

+ ‚‚‚ ∫ dxN
+ ∫ dx0

- ‚‚‚

∫ dxN
- 〈x0

+|Â|x0
-〉 〈xN

-|B̂|xN
+〉 ei(SN

+-SN
-)/p (6)

SN
+ ) ∑

j)0

N-1

ε[12 m(xj+1
+ - xj

+

ε
)2

- Vg(xj
+)] (7a)

SN
- ) ∑

j)0

N-1

ε[12 m(xj+1
- - xj

-

ε
)2

- Ve(xj
-)] (7b)

yj ) 1
2

(xj
+ + xj

-)

zj ) xj
+ - xj

- (8)

SN
+ - SN

- ≈ ε ∑
j)0

N-1 [m

ε
2

(yj+1 - yj)(zj+1 - zj) - V′av(yj)zj +

U(yj)] ) ε ∑
j)1

N-1

zj[m

ε
2

(2yj - yj-1 - yj+1) - V′av(yj) + U(yj)] +

εz0[-
m

ε
2

(y1 - y0) - V′av(y0) + U(y0)] + εzN

m

ε
2

(yN - yN-1)

(9)

Vav(y) ) 1
2

[Vg(y) + Ve(y)] (10)

U(y) ) Ve(y) - Vg(y) (11)

∫ dzj e-iε[(m/ε2)(yj+1-2yj+yj+1)+Vav′(yj)]zj/p )

2πp
ε

δ [m

ε
2

(yj+1 - 2yj + yj+1) - V′av(yj)] (12)

εz0 [- m

ε
2

(y1 - y0) - V′av(y0)] f -z0p0

εzN
m

ε
2
(yN - yN-1) f zNpN (13)
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yN-1)/ε. Changing the integration variablesy1 ..., yN-1 into f1,
..., fN-1 such that

and explicitly integrating overf1 ..., fN-1 then leads to the
following approximation

It should be noted that, in arriving to eq 15, we have explicitly
incorporated the limitN f ∞ (ε f 0) such thatyN f yt, zN f

zt, and ε ∑j)0
N-1U(yj) f ∫0

t dτ U(τ) and made use of the
following identity86

(|∂y/∂f | is the determinant of the (N - 1) × (N - 1) matrix
whose (i,j)th element is∂yi/∂fj). It should also be noted thatyt

) yt(y0,p0) in eq 15 follows a classical trajectory which is
dictated by the averaged potential (cf. eq 12)

Finally, changing the integration variableyt into p0, we arrive
at the following DL approximation

where

is the Wigner transform andyt ) yt(y0,p0) and pt ) pt(y0,p0)
follow a classical trajectory which is dictated by the averaged
potential.

The DL approximation in eq 18 can be straightforwardly
extended to the case of a multidimensional system

Equation 20 represents the main result of this section. The
following points should be noted in relation to it:

1. The dynamics in eq 20 takes place on a potential surface
which corresponds to an arithmetic average of the ground and
excited surfaces. Shemetulskis and Loring have previously
obtained a similar result based on a somewhat different
argument, which can be summarized as follows72

The first equality in eq 21 is exact, and the second is based on
thep f 0 limit of the equation of motion of [eiĤet/pB̂e-iĤgt/p]W.
Under those conditions, the dynamics ofQt andPt is classical
and dictated by the averaged Hamiltonian,Hav, which is identical
to that in eq 20. Those two approximations are therefore
completely equivalent.

2. Although eq 20 can also be obtained by direct linearization
of the corresponding approximate SC-IVR expression for
CAB(t), invoking the SC-IVR approximation is not necessary
for deriving this result.

3. When Vg ) Ve, eq 20 reduces to the corresponding
linearized approximation for a single surface, adiabatic, cor-
relation function.87 However, it should be noted that the second-
order term in the expansion of the FB action vanishes in the
adiabatic limit, which implies that the linearized approximation
is in fact exact up to second order. This is no longer true in the
nonadiabatic case, where the linearized approximation is exact
to first-order only, unlessV′′g ) V′′e. This implies that the
linearization approximation will not be exact, even when the
potentialsVe andVg are both harmonic, unless the ground and
excited electronic surfaces can be described in terms of the same
set of normal modes coordinates and frequencies.

4. The correlation function in eq 5 lacks a well-defined
classical limit (p f 0). This is manifested by the fact that the
DL approximation in eq 20 is not an analytical function ofp.

5. As for its adiabatic counterpart, eq 20 is exact att ) 0.
This is particularly important when the desired quantity depends
on high-frequency Fourier components of the correlation
function, which is often rather sensitive to its behavior at short
times.

Application of the DL approximation in eq 20 to the particular
correlation function in eq 4 leads to the following approximation

It should be emphasized that, generally speaking, [V̂ge e-âĤe/
Ze]W * [V̂ge]W[e-âĤe/Ze]W. This inequality reflects the fact that
V̂ge may not commute withĤe. Egorov, Rabani, and Berne have
recently proposed the Wigner averaged classical limit (WACL)
approximation, which is equivalent to replacing [V̂ge e-âĤe/Ze]W

by [V̂ge]W[e-âĤe/Ze]W in eq 2271

A similar approximation has also been proposed by Hernandez
and Voth as a simplified version of the SC-IVR approximation
for adiabatic correlation functions.88 The WACL and DL
approximations coincide whenV̂ge and V̂eg are constants but
will be different whenV̂ge andV̂ge are explicitly dependent on
the nuclear coordinates and momenta. Furthermore, we have
recently shown that an approximation that is analogous to
WACL fails to accurately account for high-frequency vibrational
energy relaxation rate constants in condensed-phase hosts, where
the quantities analogous toV̂ge and V̂eg are highly nonlinear

fj ) m

ε
2

(yj+1 - 2yj + yj-1) + V′av(yj) (14)

CAB(t) ≈ 1
2πp

∫ dy0 ∫ dyt ∫ dz0 ∫ dzt|∂p0

∂yt
|〈y0 +

z0/2|Â|y0 - z0/2〉 〈yt - zt/2|B̂|yt + z/2〉

e-ip0z0/peiptzt/pei∫0
t dτU(τ)/p (15)

lim
NF∞

1
ε (m

ε
2)N-1 |∂y

∂f | ) 1
m |∂p0

∂yt
| (16)

fj ) m
ε

2 (yj+1 - 2yj + yj+1) + V′av(yj) ) 098
Nf∞

m d2

dt2
y(t) )

-V′av[y(t)] (17)

CAB(t) ≈ CAB
DL(t) )

(2πp)-1 ∫ dy0 ∫ dp0 AW(y0,p0)BW(yt,pt) ei∫0
t dτU(τ)/p (18)

AW(q,p) ) ∫ d∆ e-ip∆/p 〈q + ∆/2|Â|q - ∆/2〉 (19)

CAB(t) ≈ CAB
DL(t) )

(2πp)-Nn ∫ dQ0 ∫ dP0 AW(Q0,P0)BW(Qt,Pt) ei∫0
t dτU(τ)/p

(20)

Trn(Â eiĤet/pB̂ e-iĤgt/p) )

(2πp)-Nn ∫ dQ0 ∫ dP0[Â]W(Q0,P0)[e
iĤet/pB̂ e-iĤgt/p]W

(Q0,P0) ≈ (2πp)-N ∫ dQ0 ∫ dP0 AW(Q0,P0)

BW(Qt,Pt) ei∫0
t dτU(τ)/p (21)

CDL(t) ) (2πp)-Nn ∫ dQ0 ∫ dP0 [V̂ge e-âĤe/Ze]W(Q0,P0)

[V̂eg]W(Qt,Pt) ei∫0
t dτU(τ)/p (22)

CWACL(t) ) (2πp)-Nn ∫ dQ0 ∫ dP0 [e-âĤe/Ze]W(Q0,P0)

[V̂ge]W(Q0,P0)[V̂ge]W(Qt,Pt) ei∫0
t dτU(τ)/p (23)
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functions of the nuclear coordinates and momenta.80,81 By
contrast, the corresponding DL approximation was found to be
accurate under the same conditions.

III. Meyer -Miller Linearization (MML) Approximation

The correlation function in eq 5 can be rewritten in the
following form

where Tr) TrnTre stands for the trace overbothelectronic and
nuclear DOF and

At this point, one may employ the Meyer-Miller (MM)
mapping in order to represent the electronic DOF in terms of
classical-like variables.63,78,82,89-93 More specifically, the elec-
tronic two-level system{|g〉,|e〉} may be replaced by two
harmonic modes with coordinatesqg and qe and momentapg

and pe, respectively, ([q̂k, p̂l] ) ipδ(k,l)). The state|g〉 then
corresponds to|0,1〉, where the e oscillator is in the ground state,
|0〉, and the g oscillator is in the first excited state,|1〉 (we use
the convention that the first and second indexes correspond to
e and g, respectively). Similarly, the state|e〉 corresponds to
|1,0〉. Thus, the electronic operators can be expressed in terms
of the harmonic oscillator coordinate and momenta operators

such that

with

It should be noted that eq 27 is exact and completely equivalent
to eq 24 and that the trace in eq 27 corresponds to tracing over
the nuclear DOF (the original Trn) andthe DOF that correspond
to the two harmonic modes representing the electronic DOF.

In the next step, we apply the linearization approximation to
the correlation function in eq 2787

whereq ) (qe,qg) andp ) (pe,pg). The Wigner transforms that
correspond to the electronic DOF can be evaluated analytically
and are given by

The variablesqt, pt, Qt, and Pt in eq 29 are propagated
according to classical mechanics, subject to the Hamiltonian in
eq 28. In practice, it is convenient to propagate the quantities
σ+ ) (qeqg + pepg + iqepg - ipeqg)/2p, σ- ) (qeqg + pepg -
iqepg + ipeqg)/2p, andσz ) (qe

2 + pe
2 - qg

2 - pg
2)/2p, which are

the classical variables that correspond to the operators|e〉〈g|,
|g〉〈e|, and|e〉〈e| - |g〉〈g|, respectively, within the MM mapping.
The equations of motion forσ(, σz, Q(t), andP(t) are given by

It should be noted thatσz is a constant of the motion and that
the equations of motion forσ( can be integrated explicitly to
yield

It should also be noted that the nuclear dynamics is governed
by an effective potential energy of the form

rather than justVav(Q), as in the DL approximation. Thus, the
effective nuclear potential depends on the initially sampled
values ofq andp, which dictate the value ofσz.

Substituting eqs 30 and 32 back into eq 29 yields the final
form of the MML approximation

The MML approximation in eq 34 has a few features in common
with the DL approximation of eq 23, namely: (1) The nuclear
dynamics in both cases is completely classical and governed

CAB(t) ) Tr[(Â|g〉〈e|) eiĤ0t/p(B̂|e〉〈g|) e-iĤ0t/p] (24)

Ĥ0 ) Ĥe|e〉〈e| + Ĥg|g〉〈g| ) ∑
k)1

N (P̂(k))2

2M(k)
+ V̂av(Q̂) +

1

2
(|e〉〈e| - |g〉〈g|)U(Q̂) (25)

|g〉〈g| T
1
2p

(q̂g
2 + p̂g

2 - p)

|e〉〈e| T
1
2p

(q̂e
2 + p̂e

2 - p)

|g〉〈e| T
1
2p

(q̂gq̂e + p̂gp̂e + iq̂gp̂e - ip̂gq̂e)

|e〉〈g| T
1
2p

(q̂eq̂g + p̂ep̂g + iq̂ep̂g - ip̂eq̂g) (26)

CAB(t) ) Tr[(Â|0,1〉〈1,0|) eiĤ0t/pB̂|1,0〉〈0,1|e-iĤ0t/p] (27)

Ĥ0 ) ∑
k)1

Nn (P̂(k))2

2M(k)
+ V̂av(Q̂) +

1

4p
(q̂e

2 + p̂e
2 - q̂g

2 - p̂g
2)U(Q̂)

(28)

CAB(t) ≈ CAB
MML(t) )

(2πp)-(Nn+2) ∫ dq0 ∫ dp0 ∫ dQ0 ∫ dP0 AW(Q0,P0)[|0,1〉

〈1,0|]W(q0,p0)BW(Qt,Pt)[|1,0〉〈0,1|]W(qt,pt) (29)

[|1,0〉〈0,1|]W(q,p) )

23

p
(qg + ipg)(qe - ipe) e-(qe

2+pe
2+qg

2+pg
2)/p

[|0,1〉〈1,0|]W(q,p) )

23

p
(qg - ipg)(qe + ipe) e-(qe

2+pe
2+qg

2+pg
2)/p (30)

σ̆( ) ( i
p

U(Q)σ(

σ̆z ) 0

Q̇(k) ) P(k)

M(k)

Ṗ(k) ) -
∂Vav

∂Q(k)
-

σz

2
∂U

∂Q(k)
(31)

σ((t) ) σ((0) e(i∫0
t dτU(Qτ)/p (32)

Veff(Q) ) Vav(Q) + σzU(Q)/2 (33)

CAB
MML(t) ) 1

(2πp)N+2

1

p2 ∫ dp0 dq0 ∫ dP0 dQ0

e-(2/p)(qg
2+pg

2+qe
2+pe

2)σ-(q,p)σ+(q,p)AW(Q,P)

BW(Qt,Pt) [ei∫0

t
dτU[Qτ]dτ/p] (34)
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by an effective potential surface that averages over the ground
and excited electronic surfaces; (2) The same type of phase
factor is accumulated along the classical trajectories; (3) The
initial sampling of the nuclear coordinates and momenta is
dictated by the same Wigner transform,AW(Q0,P0). At the same
time, the two approximations differ in two important respects:
(1) The MML approximation involves an additional average
over the initial electronic state (within the MM representation);
(2) The effective potential on which nuclear motion takes place
within the MML approximation contains an additional term
which depends on the initial electronic state.

IV. Illustrative Applications

In this section, we test the accuracy of the DL and MML
approximations by applying them for calculating NRER rate
constants. The specific model was adopted from the recent work
of Egorov, Rabani, and Berne, who used it to test several mixed
quantum-classical approximations, including the WACL ap-
proximation [cf. eq 23].71,74,76,94Within this model, both ground
and excited electronic surfaces are assumed to be harmonic,
which facilitates the analytical calculation of theexactcorrela-
tion function in eq 4. More specifically,Ĥe andĤg are given in
terms of mass-weighted normal-mode coordinates and momenta
such that

with Û either linear inQ̂ (linear diagonal coupling (LDC))

or quadratic inQ̂ (quadratic diagonal coupling (QDC))

In the LDC case, the normal-mode frequencies are the same in
the ground and excited electronic states, such that the DL
approximation is formally exact (cf. section II). In the QDC
case, the normal-mode coordinates and frequencies in the ground
and exited electronic states are different and the DL approxima-
tion is no longer formally exact.

The operatorsV̂ge andV̂eg are assumed to be eitherconstant
(static off-diagonal coupling (SOC)),V̂eg ) V̂ge ) V0, whereV0

is a real constant or linear in the nuclear momenta (Born-
Oppenheimer off-diagonal coupling (BOC))

where{S(k)} are real constants. The parameters used for each
of those cases are provided in Appendix A, along with
information regarding the exact results. It should be noted that
the Wigner transforms in this case only involve Gaussian
integrals and can be performed analytically.71,80

The results for each of the four possible scenarios, namely,
SOC-LDC, SOC-QDC, BOC-LDC, and BOC-QDC, are pre-
sented in Figures 1-4, respectively. It should be noted that:

(1) The WACL and DL approximations are equivalent when
the off-diagonal coupling is static (SOC); (2) The DL ap-
proximation coincides with the exact result when the diagonal
coupling is linear (LDC). Thus, only the MML approximation
can be critically tested in the SOC-LDC case (Cf. Figure 1).
Although the MML approximation is not formally exact, it
performs quite well and particularly so at high frequencies. The
main difference between the MML approximation and exact
results is that the former exhibits weaker oscillations, which is
particularly relevant at low frequencies and which can be traced

Ĥe )
1

2
∑
k)1

Nn

[(P̂(k))2 + (ω(k))2(Q̂(k))2]

Ĥg ) Ĥe - Û(Q̂) (35)

ÛLDC(Q̂) ) - ∑
k)1

Nn

(ω(k))2δ(k)[Q̂(k) + δ(k)/2] (36)

ÛQDC(Q̂) ) - ∑
k)1

Nn

(ω(k))2δ(k)[Q̂(k) + δ(k)/2] - ∑
k,j)1

Nn

gj,kQ̂
(j)Q̂(k)

(37)

V̂eg ) ∑
k)1

Nn

S(k)P̂(k) (38)

Figure 1. Semilog plots of the nonradiative electron relaxation rate
constant as a function ofωeg for SOC and LDC. Shown are the exact
results, which coincide with those obtained via the DL and WACL
approximations in this case, and the results obtained via the MML
approximation.

Figure 2. Semilog plots of the nonradiative electron relaxation rate
constant as a function ofωeg for SOC and QDC. Shown are the exact
results and the results obtained via the DL, WACL, and MML
approximations. Note that the DL and WACL approximations coincide
in this case.

Figure 3. Semilog plots of the nonradiative electron relaxation rate
constant as a function ofωeg for BOC and LDC. Shown are the exact
results, which coincides with those obtained via the DL approximation
in this case, and the results obtained via the WACL and MML
approximations.

Nonradiative Electronic Relaxation Rate Constants J. Phys. Chem. A, Vol. 108, No. 29, 20046113



back to the additional averaging over the MM-mapped electronic
DOF in eq 34.

We next consider the results obtained in the SOD-QDC case,
where neither the DL approximation nor the MML approxima-
tion are formally exact (cf. Figure 2). Nevertheless, the DL
approximation, which is also equivalent to the WACL ap-
proximation in this case, performs particularly well and practi-
cally coincides with the exact result beyond the low-frequency
region. The agreement between the MML approximation and
the exact result is also quite good, although larger errors are
observed at high frequencies.

It should be noted that the observations regarding the MML
approximation in Figures 1 and 2 are also consistent with those
reported by Rabani, Egorov, and Berne in ref 75. Those authors
proposed an approximation similar to our MML approximation
for calculating the NRER rate constant within the framework
of the reactive flux formalism and observed that, in the case of
SOC, their approximation was in overall agreement with the
exact result, except at very low and very high frequencies.

The DL approximation also coincides with the exact result,
in the BOC-LDC case (cf. Figure 3). The MML approximation,
although not formally exact, is also found to be in very good
agreement with the exact result, except at very low frequencies.
The WACL approximation is no longer equivalent to the DL
approximation in this case. Although the agreement between
the WACL approximation and the exact result is fairly good, it
is clearly inferior in comparison to either the DL or MML
approximations.

Both DL and MML approximations remain in very good
overall agreement with the exact results in the BOC-QDC case
(cf. Figure 4). The DL approximation, in particular, practically
coincides with the exact result throughout the entire range of
frequencies considered. The MML approximation exhibits a
slight deviation from the exact result and particularly so at high
frequencies. Finally, the WACL approximation is seen to be
significantly inferior to both DL and MML approximations in
this case. Thus, avoiding the approximation [V̂ge e-âĤeZe]W ≈
[V̂ge]W[e-âĤeZe]W appears to be essential for obtaining an
accurate result.

V. Discussion and Summary

The main result of this paper corresponds to thederiVation
of the DL and MML approximations, eqs 22 and 34, respec-
tively, via linearization of theexactpath integral expression
for a nonadiabatic correlation function. Several related ap-
proximations have been derived and/or proposed by other
authors in the past. More specifically:

• The technique used by Shemetulskis and Loring in the
context of nonlinear response functions72 can be used in order
to provide an alternative route to the DL approximation.

• The WACL approximation proposed by Egorov, Rabani,
and Berne71 corresponds to a simplified version of the DL
approximation.

• Miller and co-workers have employed the MM mapping in
order to evaluate similar types of nonadiabatic correlation
functions in the context of the SC-IVR methodology.63 Fur-
thermore, Rabani, Egorov, and Berne have also applied those
techniques for calculating NRER rate constants, in the case of
SOC, and within the framework of the reactive flux formalism.75

The present work provides the following new insights
regarding such approximations:

• Although the DL and MML approximations can also be
derived within the context of SC-IVR theory, we have shown
that it is not necessary to invoke the SC-IVR approximation in
order to derive them. This extends a similar earlier result
pertaining to adiabatic correlation functions.87

• The rigorous derivation of the DL approximation clarifies
and provides partial justification for the WACL approximation,
which was originally suggested based on an intuitive argument.71

Furthermore, it was shown that the DL approximation is exact
for harmonic systems with the same normal-mode frequencies
in the ground and excited electronic states, even whenV̂eg and
V̂ge are not constant and that a significant improvement can be
obtained by avoiding the additional assumption, which is
implicitly implied by the WACL approximation, according to
which [V̂ge e-âĜeZe]W ≈ [V̂ge]W[e-âĤeZe]W.

• We have been able to put the MML approximation in a
form which is particularly suitable for comparison with the DL
approximation. More specifically, we have shown that, like the
DL approximation, the MML approximation is based on
classical propagation of the nuclear DOF on anaVeraged
potential. However, the DL and MML approximations give rise
to different averaged potentials, with the latter explicitly
dependent on the initial electronic state.

• We performed a systematic comparison between the DL
and MML approximations. Although both approximations
performed rather well when tested on a benchmark problem,
we have observed that the performance of the DL approximation
was consistently better than that of the MML approximation in
all of the situations considered.

• Despite the fact that the dynamics in both DL and MML
approximations is purely classical, those approximations are still
able to capture the resonances observed in the frequency
dependence of the NRER rate constants (cf. Figures 1-4). Those
resonances should thereforenot be associated with quantum
dynamics, as previously suggested.75

The very good agreement between the DL and MML
approximations and the exact results should be attributed to the
fact that those approximations are able to correctly capture the
short-time quantum dynamics. Indeed, the most significant errors
arise at small frequencies and reflect the fact that the long-time
dynamics is treated by those approximations as purely classical.
In this context, it is interesting to note that the same approxima-
tions should not be expected to do as well in capturing
dynamical effects in the vibronic spectrum of a general
system.72,94This is because the high-frequency tail corresponds
to the relatively unimportant far wings of the vibronic spectrum
or very short time behavior of the optical response functions.
For the same reason, the DL and MML approximations should
not be expected to be accurate when applied for simulating the

Figure 4. Semilog plots of the nonradiative electron relaxation rate
constant as a function ofωeg for BOC and QDC. Shown are the exact
results and the results obtained via the DL, MML, and WACL
approximations.
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nonequilibrium NRER dynamics. Such nonequilibrium sim-
ulations may be required in cases where the relaxation process
does not follow simple rate kinetics. However, even in such
cases, it is often possible to describe the influence of the
environment in terms of a short-lived memory kernel, which
may be accurately estimated via the DL and MML approxima-
tions.95,96

The major advantage of the DL and MML approximations
over other approaches has to do with the fact that they provide
a consistent strategy for calculating NRER rate constants, as
well as other related quantities, in generalanharmonicsystems,
where exact quantum results are not available. The major
challenge involved in applications to anharmonic hosts has to
do with the difficulty of computing the corresponding Wigner
transforms. However, several strategies, which have been
recently employed for computing such Wigner transforms in
other contexts,80,81,97can be adopted for this purpose, thereby
opening the door to such applications. The synthesis of those
methods with the DL and MML approximations, and subsequent
applications to nonradiative electron relaxation and related
processes, in liquid solutions is the subject of ongoing work in
our group and will be reported in a separate paper.
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Appendix A: Parameters and Exact Results for the
Benchmark Problem

In this appendix, we provide a brief summary of the
parameters and exact results that were used in order to generate
Figures 1-4. The reader is referred to ref 71 for a more detailed
discussion of the model.

In the SOC-LDC case, the exact correlation function in eq 4
is explicitly given by

where

is the spectral density. The spectral density used in the actual
calculations is given by71

with the following parameters:λ ) 1.0, ωop ) 1.0, σ ) 0.1,
andpâ ) 4.0. The off-diagonal coupling constant is given by
Vge ) Veg ) V0 ) 0.1.

In the BOC-LDC case, the exact correlation function in eq 4
is explicitly given by

where

and

It should be noted that the corresponding expression in eq 19
of ref 71 should be corrected by substitutingV10 ) 1 and
replacing|‚‚‚|2 by [‚‚‚]2 on the right-hand side.98 Following ref
71, we assume thatJS(ω) ) JδS(ω) ) J(ω) (cf. eq A3), with
the same parameters as for the SOC-LDC case.

In the SOC-QDC case, one has to determine the values of
{δ(k)} and{gj,k}, which is done following a procedure similar
to that reported in ref 71. More specifically, the electronic
transition is assumed to be coupled to a single harmonic bath
mode,Q̃(1), which is in turn bilinearly coupled to the remaining
uncoupled harmonic bath modes{Q̃(2), ..., Q̃(Nn)}. The corre-
sponding coupling term is given by∑k)2

Nn c(k)Q̃(1)Q̃(k). The
frequencies of the bath modesQ̃(1), ..., Q̃(Nn) are given byω̃(1),
..., ω̃(Nn), respectively. The values ofω̃(1) and the coupling
coefficients,{c(k)}, which correspond to the ground and excited
electronic states, are assumed to be different. More specifically,
it is assumed that∑k)2

Nn (c(k))2δ(ω - ω̃(k))/2ω(k) ) J(ω), where
J(ω) is as in eq (A3), withσ ) 0.2,ωop ) ω̃(1) ) 1.1 (1.0), and
λ ) 0.05 (0.125), in the ground (excited) electronic state. It is
also assumed that the equilibrium displacement of theQ̃(1) mode
in the ground state is shifted by the amountd0 ) 2.0 relative to
the excited state. The resulting free bath Hamiltonian that
corresponds to the excited electronic state is then numerically
diagonalized, and the corresponding normal-mode frequencies,
coordinates, and momenta are associated with those appearing
in eq 37. The intermode coupling coefficients{gj,k} are obtained
by rewriting the ground-state nuclear Hamiltonian in terms of
the normal modes of the excited-state Hamiltonian. The tem-
perature was given bypâ ) 4.0, as in the SOC-LDC case. It
was verified that the results are converged forNn ) 60 harmonic
modes.

In the BOC-QDC case, the bath was treated in the same way
as in the SOC-QDC case, with a direct coupling of the electronic
DOF to a single primary bath mode, which is in turn coupled
to the rest of the bath modes. The off-diagonal coupling between
the nuclear and electronic DOF is given bys0P̃(1), wheres0 )
2.0 andP̃(1) is the momentum of the primary bath mode. The
resulting free bath Hamiltonian that corresponds to the excited
electronic states is then numerically diagonalized, and the
corresponding normal-mode frequencies, coordinates, and mo-
menta are associated with those appearing in eq 37. The
coefficients{gj,k} are obtained by rewriting the ground-state
nuclear Hamiltonian in terms of the normal modes of the
excited-state Hamiltonian, and the temperature is set topâ )
4.0. It was verified that the results are converged forNn ) 60

CSOC-LDC(t) ) |V0|2 exp{ 1
2p

∫0

∞
dω J(ω)ω[coth(âpω/2) ×

[cos(ωt) - 1] - i(sinωt)]} (A1)

J(ω) ) ∑
k

(δ(k))2δ(ω - ω(k)) (A2)

J(ω) ) λ
(2πσ2)1/2

exp[-(ω - ωop)
2/2σ2] (A3)

CBOC-LDC(t) )

exp{ 1
2p

∫0

∞
dω J(ω)ω[coth(âpω/2)[cos(ωt) - 1] -

i sinωt]}{[ 1
2p

∫0

∞
dω JδS(ω)ω[coth(âpω/2)[cos(ωt) - 1] -

i sin(ωt)]]2
+ 1

2p
∫0

∞
dω JS(ω)ω[coth(âpω/2)cos(ωt) -

i sin(ωt)]} (A4)

JS(ω) ) ∑
k

(S(k))2δ(ω - ω(k)) (A5)

JδS(ω) ) ∑
k

S(k)δ(k)δ(ω - ω(k)) (A6)
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harmonic modes. It should be noted that the results presented
in Figure 4 are different in comparison to the corresponding
Figure 4 of ref 71 due to a different choice of parameters.98
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