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We consider two different semiclassical approximations for nonadiabatic quantum-mechanical correlation
functions of the form T eNe"B e~ Hq/"] whereHy = He represent the nuclear Hamiltonians of two different
electronic states. The first approximation is based on direct linearization (DL) of the forlacttward

(FB) action in theexactpath integral expression for this correlation function. The second approximation is
based on linearizing the FB action in aguivalent quantum expression for this correlation function, which

is given in terms of the MeyerMiller mapping Hamiltonian (MML). The two approximations have several
features in common, namely: (1) They are given in terms of an integral over a classical-like phase space; (2)
The relevant operators are replaced by their Wigner transforms; (3) The dynamics is purely classical and
governed by a Hamiltonian that represents an averagekyandHe; (4) The fact thaHy = He gives rise

to a phase factor of the form/&@" dr whereU = H, — Hy. The main differences between the two
approximations are: (1) The MML approximation involves an additional phase-space integral and Wigner
transforms that correspond to the continuous variables representing the electronic degree of freedom; (2) The
DL and MML approximations involve different averaged Hamiltonians, nantely,= (Hg + He)/2 in the

case of the DL approximation, as opposed to different relative weighitg, @ihd He, which depend on the
electronic degree of freedom, in the case of the MML approximation. The two approximations are tested
within the framework of a nonradiative electronic relaxation (NRER) benchmark problem. Although the NRER
rate constants are accurately reproduced by both methods, the DL approximation is consistently found to
perform somewhat better. A discussion is provided of a feasible scheme for implementing those approximations

in the case of anharmonic systems as well as the relationship to previous work.

I. Introduction one is typically interested in the rate of transition from an excited
electronic state to the ground electronic state, denotegeDy
and|gl] respectively. This process, which involves the degrada-
"Yon of electronic energy into heat, can be described in terms of
the following, completely generaloverall Hamiltonian

Most relevant measurable quantities pertaining to condensed-
phase systems can be expressed in terms of real-time correlatio
functions!® In many cases, classical mechanics provide a
reasonable approximation within which to calculate these
correlation functions. However, there are many situations where py — 1y 19| + (hao., + |:|P)|e| +Vv g + v} |elTg)
this is not the case. An important class of such problems 9 c9 g€ c9 1
corresponds to cases that involve nonadiabatic dynamics, where @

the temporal behavior reflects the time evolution of an electronic |4 wegis the electronic transition frequency in the absence
superposition state and therefore lacks a well-defined classical ;¢ co’upl?ng to the nuclear DOFFIg and H. are the nuclear

limit. ) ) ) Hamiltonians that correspond to the ground and excited
The exact calculation of real-time quantum-mechanical cor- glectronic states, respectively

relation functions for general many-body systems remains far

beyond the reach of currently available computer resources due Ny (lf,(k) 2

to the exponential scaling of the computational effort with the A = +V(0) (2a)
number of degrees of freedom (DOMjlence, the development g k; om® g

of effective, yet computationally feasible and versatile, ap-

proximate methods for calculating quantum-mechanical cor- Nn (|5(k))2

relation functions is highly desirable. Several such methods have |2|e = Z + (/e(Q) (2b)
been proposed throughout the years, including mixed quantum- &1 om®

classical treatmenfs;'® analytical continuatiod42% centroid

molecular dynamics (CMD¥*4! quantum mode-coupling andVgeandVegare off-diagonal coupling operators which may
theory2242-45 and the semiclassical (SC) approximatidt: 6’ be explicitly dependent o@ andP [Q = (QW, ..., QMNW), P =
These methods have been applied, with relative success, to gP®, ..., PM), and M®), ..., M) are the coordinates, conjugate
rather extensive set of systems, including ones that involve momenta, and masses that corresponii{muclear DOF].

nonadiabatic dynamics. In a situation where the nuclear DOF reach thermal equilib-
Nonradiative electron relaxation (NRER) represents an im- rium on the excited surface prior to the NRER process, and the
portant example of a nonadiabatic proc&sg? In this case, off-diagonal coupling termyge/gle| + Vegeld|, can be treated
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as a small perturbation, one may use Fermi’s golden rule in N—1 ll X,trl — xf 2 ]
order to derive the following expression for the NRER rate S=Y ¢-m——| -v (x]-+) (7a)
constant J; |2 o
Kyo= iz J7 die”d C(t) 3) = ER e .
g2 S=2 M) ) (7b)
= 12 €
where

are the forward and backward actions, respectively,{&hd,
A A 2¢, ...,Ne = t} corresponds to the discretized time (the lifdit
C(t) =2, 'Trle ™ elHeUhVege IHgt/the] 4) — oo will be i}mposedpat a later stage). (
The linearization approximation is based on the assumption
Here,3 = 1/kgT, Tr, stands for the trace over the nuclear DOF, that the most important contributions to the path integral in eq
and Z. = Tr[e"". Thus, the calculation of the NRER rate 6 come from forward and backward trajectories, which are
constant translates into that of calculating the correlation function infinitesimally close to each other. Thus, one may expand the

C(t) in eq 4. _ . ~ FBaction,S| — S, to first order with respect to the difference
Approximate schemes for calculating the correlation function petween the forward and backward trajectoffet:56.78.79.8285

in eq 4, as well as other related types of correlation functions, To this end, we change the integration variables in eq 6 from
have been proposed by many authors in the p&st® The main Xgs ooos Xogs Xg s +os Xy INLO Y0, -0y YNy Z0, -.- Zn, SUCh that
goal of the present paper is to consider an approach which is

based on the linearization of the forwatbdackward (FB) action 1.+ Ty

in the exact path integral expression for this correlation function. Y= 2 (XJ % )

This work was particularly motivated by the recent finding that

a similar approach is effective for calculating quantum me- z= ijr =X (8)
chanical adiabatic correlation functions which are relevant to

vibrational energy relaxatioff:8 The linearization approximation is then introduced by expanding

We note that approximations in a similar spirit were recently the FB action,S,Z — &, to first order inz, ..., zv. This yields
proposed by Egorov, Rabani, and Berf&é>7%and derived by -
Miller and co-workers within the framework of the semiclassical _; _ m ,
initial-value-representation (SC-IVR) approd@i9The present =~ N — S\ ~¢€ Z} [_2 Ve = Y)(Fe1 — ) — Valy)z +
paper provides an alternative, and more general, derivation of =0 le
some of the results obtained by those authors and sheds new N-1
light on se_veral important aspects of _the various possible U(yj) =¢ Z %[—2 (2yj — Vi1~ yj+1) - V:alv(yj) + U(yj)
approximations as well as the relationships between them. The =1 e
analysis also leads to improved approximations that increase
the accuracy without sacrificing the appealing cost effectiveness ezol

+

m m
5 (Y1 = Yo) = ValYo) + U(yo)| + €z 5 (YN — Yn-1)

of the approach.

The plan of this papers is as follows. In section Il, we derive € € )
one type of approximation, which is based on direct linearization
of the FB action. In section Ill, we derive an alternative where
approximation, which is based on linearizing the FB action that
corresponds to the same correlation function, within the V. (y) = 1 [V,(y) + V()] (10)

framework on the MeyerMiller mapping Hamiltonian. The

two approximations are tested on a benchmark NRER problem, . . . .
in section IV. The results are summarized and discussed in'S the arithmetic average of the ground and excited electronic
section V. ' potential surfaces, and

Il. Direct Linearization (DL) Approximation Uy = Vely) = Vg(y) (11)

Consider the following general nonadiabatic two-time cor- is the difference between them.
relation function Following the linearization, one can perform the integration
overz, ..., zy-1 explicitly by using the following identity

_ A AR A —iF g
Cas() =Tr[Ae™"Be ] () f dz o iAW 12 ) HVa (I
The correlation function in eq 4 is obviously of this type, with 27h  [m ,
A = Vge e PHe/Z, and B = Vey For the sake of simplicity, the =~ 0 2 Vi1 = 2 T Vi) = VaW)| (12)
direct linearization approximation will be derived below for the
case of a single particle of mass which moves in 1D. It should also be noted that in the limit — o (¢ — 0)

The exactpath integral expression f@ag(t) is given by

m \N -
Cas(®) :(_6) decJ)r "’fdxﬁfdxo
m
[ dx, B 1Al [ [Bxi TS S0 (6) A 20~ -0 T 2P (13)

o[~ 30~ 9 = Vasd] —

Here where po/m = lim.-o(y1 — Yo)le and pn/m = lim—o(yn —
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yn-1)/e. Changing the integration variablgs ...
.., In—1 such that

y YN-1 into fy,

2y, +yi-1) + Valy) (14)

m
f] =_2(yj+l -
€

and explicitly integrating ovef; ..., fy—1 then leads to the

following approximation

ap
Cual®) ~ 5. Yo f b [ 2 [ a3+

z/2|Aly, — zy/21y, — z/2|Bly, + Z/20]
efipozdheipg‘/ﬁeif{)dru(r)/h (15)

It should be noted that, in arriving to eq 15, we have explicitly
incorporated the limilN — o (¢ — 0) such thatyy — yvi, zZv —
z, and e 3]LgU(Y) — fb dr U(x) and made use of the
following |dent|ty86

1 N-1
lim = ( )
N—w € \2

(lay/of | is the determinant of the\N(— 1) x (N — 1) matrix
whose {j)th element isdyi/of;). It should also be noted that

= vi(Yo,po) in eq 15 follows a classical trajectory which is
dictated by the averaged potential (cf. eq 12)

po
8y

| _

of (16)

=y - m -y =

—Valy®] (17)

2y, + Y1) T VLY) =0

Finally, changing the integration variabjeinto po, we arrive
at the following DL approximation

Cas(®) ~ Cag(t) =
(2h) ™ [ dy, [ dpo Au(YoPo)Bu(Yepy) €' (18)

where

Ay(@p) = [ dA e g+ A21AIg — Al20 (19)

is the Wigner transform ang = yi(Yo,po) and p: = pt(Yo,Po)
follow a classical trajectory which is dictated by the averaged
potential.

The DL approximation in eq 18 can be straightforwardly
extended to the case of a multidimensional system

Cha(t) ~ CRg(t) =

(27h) ™ [ dQ, [ dPy Aw(QoPo)Bw(Q,Py) €/6™ "
(20)
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Tr (A gefhg g iy —
@27h) ™ [ dQ, [ dPJ[Al(QyPyle" " B & o,
(QoPy) ~ (27) ™ [dQ, [ dPy Ay(QoPo)
By(Q,P) €/6™O™ (21)

The first equality in eq 21 is exact, and the second is based on
thefi — 0 limit of the equation of motion of [BRBe-Hdh],,,.
Under those conditions, the dynamics@fandP; is classical

and dictated by the averaged Hamiltonidlg,, which is identical

to that in eq 20. Those two approximations are therefore
completely equivalent.

2. Although eq 20 can also be obtained by direct linearization
of the corresponding approximate SC-IVR expression for
Cag(t), invoking the SC-IVR approximation is not necessary
for deriving this result.

3. WhenVy = Ve, eq 20 reduces to the corresponding
linearized approximation for a single surface, adiabatic, cor-
relation function?” However, it should be noted that the second-
order term in the expansion of the FB action vanishes in the
adiabatic limit, which implies that the linearized approximation
is in fact exact up to second order. This is no longer true in the
nonadiabatic case, where the linearized approximation is exact
to first-order only, unlessVy = V¢ This implies that the
linearization approximation will not be exact, even when the
potentialsVe andVy are both harmonic, unless the ground and
excited electronic surfaces can be described in terms of the same
set of normal modes coordinates and frequencies.

4. The correlation function in eq 5 lacks a well-defined
classical limit ff — 0). This is manifested by the fact that the
DL approximation in eq 20 is not an analytical functionfof

5. As for its adiabatic counterpart, eq 20 is exact &t 0.
This is particularly important when the desired quantity depends
on high-frequency Fourier components of the correlation
function, which is often rather sensitive to its behavior at short
times.

Application of the DL approximation in eq 20 to the particular
correlation function in eq 4 leads to the following approximation

CoH(t) = (ZJTh)_anonfdPo [\7 e_ﬂﬂe/ze]w(QOvPo)
[Veg;lw(Qt' t) |f‘drU R (22)

It should be emphasized that, generally speaknu(ge &Ry
Zw = [Vge]w[e ﬁ”e/Ze]W This inequality reflects the fact that
Vge may not commute withle. Egorov, Rabani, and Berne have
recently proposed the Wigner averaged classical limit (WACL)
approximation, which is equivalent to replacmg,{e‘ﬁ'*elze]w

by [Vgdwle #He/Zdw in eq 221

(2h) ™ f onf dP, [e_ﬂHE/ZJW(QoPo)
[Vodw(QoPolVodw(QuP) €™ (23)

A similar approximation has also been proposed by Hernandez
and Voth as a simplified version of the SC-IVR approximation
for adiabatic correlation functlor?§ The WACL and DL

CWACL (t) —

Equation 20 represents the main result of this section. The approximations coincide whe\;[ge and Veg are constants but

following points should be noted in relation to it:

will be different whenvg,e andVge are explicitly dependent on

1. The dynamics in eq 20 takes place on a potential surfacethe nuclear coordinates and momenta. Furthermore, we have
which corresponds to an arithmetic average of the ground andrecently shown that an approximation that is analogous to
excited surfaces. Shemetulskis and Loring have previously WACL fails to accurately account for high-frequency vibrational
obtained a similar result based on a somewhat different energy relaxation rate constants in condensed-phase hosts, where

argument, which can be summarized as follGws

the quantities analogous t@ige and Veg are highly nonlinear
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functions of the nuclear coordinates and moméhta.By Cag(t) ~ CUML () =
. . . AB AB
contrast, the corresponding DL approximation was found to be s
accurate under the same conditions. (27h)" ™" ["dq, [ dp, [ dQ, J dPy AL(QuPHII0,10

ll. Meyer —Miller Linearization (MML) Approximation (1,01 w(GoPo) Bu(Qu PIIIT, 00, 1]y (G, Py) (29)

The correlation function in eq 5 can be rewritten in the whereq = (Qe,0g) andp = (pPe,pg). The Wigner transforms that
following form correspond to the electronic DOF can be evaluated analytically
and are given by

[11,000, 1]y(a.p) =
_ ; 23 . . — (G224 2
where Tr= TryTre stands for the trace ovéothelectronic and - (G + iP)(Ge — ipy) € (@& +pe+ag+pg?)/h

nuclear DOF and

Cas(t) = Trl(Algmel) " (Blemgl) e ") (24)

N (PR)2 (10,101, 0] (a.p) =
Ho=F & - = N Vol G 23 i . (02402402
Ho = Hclelle| + H,|glg| & + Vo (Q) + H (qg - ng)(qe +ipy) e (02+Pe2+ag2+ped/h (30)
1 R _ _
— (lelle| — |gg)U(Q) (25) The variablesqy, p, Qi and Py in eq 29 are propagated
2 according to classical mechanics, subject to the Hamiltonian in

eq 28. In practice, it is convenient to propagate the quantities
At this point, one may employ the MeyeMiller (MM) 0+ = (Qedg + PePg + iqePy — iPedg)/2h, 0— = (Qelg + PePg —
mapping in order to represent the electronic DOF in terms of igepg + ipedg)/2h, ando, = (0 + pi — of — pi)/2h, which are
classical-like variable$}78828%93 More specifically, the elec-  the classical variables that correspond to the operasdi,
tronic two-level system{|gCleJ may be replaced by two g, and|el& — |gg|, respectively, within the MM mapping.

harmonic modes with coordinateg and ge and momentgg The equations of motion fary, oz, Q(t), andP(t) are given by
and pe, respectively, @ p] = ihd(kl)). The state|gdthen _

corresponds t@,1]where the e oscillator is in the ground state, .=+ 1 UQ)o

|00) and the g oscillator is in the first excited staftE,J(we use + A +

the convention that the first and second indexes correspond to )
e and g, respectively). Similarly, the stgeticorresponds to o,=0
|1,000 Thus, the electronic operators can be expressed in terms
of the harmonic oscillator coordinate and momenta operators

1 ,. o
98] < o (6 + P; — )
py = v T2 U (31)

eT8 = o (&2 + 0 — ) | .
It should be noted that, is a constant of the motion and that
the equations of motion far,. can be integrated explicitly to
1 o an | iaa ia yield
|9 < 5 (@gfle + PgPe + 105Pe — 1D50e) _
0. (t) = 0,(0) /U@ (32)

1.4 a A A A A
|elg] < o (Gl + PPy + 10Dy — IPLy)  (26) It should also be noted that the nuclear dynamics is governed
by an effective potential energy of the form

Ver(Q) = VaQ) + 0 U(Q)12 (33)

Cas(t) = Tr[(A10,11,0)) €""B|1,00, e "] (27) rather than jusVa(Q), as in the DL approximation. Thus, the
effective nuclear potential depends on the initially sampled
with values ofg andp, which dictate the value af.
Substituting eqs 30 and 32 back into eq 29 yields the final
form of the MML approximation

such that

No (P2

R o1 .
Ho=2 +Vo(Q) + — (@ + L — 85— FBUQ) 11
& om® 4h CMLty=——=——= ("dp,ddq, [ dP,d
(28) ae (D) (2.7'[h)N+2h2f Po %f 0 dQq

g CM@EHtpdtad+ped) P
It should be noted that eq 27 is exact and completely equivalent _(q,p)af(q,tp)AW(Q, )
to eq 24 and that the trace in eq 27 corresponds to tracing over Bw(QuPy) [e'deTU[Qf]dT/h] (34)
the nuclear DOF (the original fjrandthe DOF that correspond
to the two harmonic modes representing the electronic DOF. The MML approximation in eq 34 has a few features in common
In the next step, we apply the linearization approximation to with the DL approximation of eq 23, namely: (1) The nuclear
the correlation function in eq 27 dynamics in both cases is completely classical and governed
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by an effective potential surface that averages over the ground SOC-LDC
and excited electronic surfaces; (2) The same type of phase 0 T T
factor is accumulated along the classical trajectories; (3) The
initial sampling of the nuclear coordinates and momenta is
dictated by the same Wigner transforfyy(Qo,Pg). At the same
time, the two approximations differ in two important respects:
(1) The MML approximation involves an additional average
over the initial electronic state (within the MM representation);
(2) The effective potential on which nuclear motion takes place
within the MML approximation contains an additional term
which depends on the initial electronic state.

IV. lllustrative Applications

In this section, we test the accuracy of the DL and MML Figure 1. 59”;”09 PlOt;j Offthesgogfadéatl_i\é% elgﬁtron reIaxFa]\tion rate
Cati ; i constant as a function or an . Shown are the exact

approximations by ‘?‘Pp'y'”g them for calculating NRER rate results, which coincide V\e/?th those obtained via the DL and WACL
constants. The SpQCIfIC model was adoptgd from the recent Workapproximations in this case, and the results obtained via the MML
of Egorov, Rabani, and Berne, who used it to test several mixed gpproximation.
guantum-classical approximations, including the WACL ap-
proximation [cf. eq 23]17476.94Vithin this model, both ground
and excited electronic surfaces are assumed to be harmonic,
which facilitates the analytical calculation of teeactcorrela-
tion function in eq 4. More specificalljHe andHg are given in
terms of mass-weighted normal-mode coordinates and momenta
such that

SOC-QDC

1M
A B5(K)\2 K2 AKy2
He 2.;[(P )=+ (@™)(Q™)]

Hy=H.— U(Q) (35)

with U either linear inQ (linear diagonal coupling (LDC)) _ _ o _
Figure 2. Semilog plots of the nonradiative electron relaxation rate

Nn constant as a function efey for SOC and QDC. Shown are the exact
% Ay — (N2 s (1 AK) (K results and the results obtained via the DL, WACL, and MML
Uioc(Q) kZ‘ (@7) 07 QT + 0772 (36) approximations. Note that the DL and WACL approximations coincide

in this case.
or quadratic inQ (quadratic diagonal coupling (QDC)) BOC-LDC
Nn Nn -1 T T T
Ooocl@ == 3 (@ 0UIQ1 + 05121 = § 6,Q"Q"
= KI=1 &
(37) 8
. . 2
In the LDC case, the normal-mode frequencies are the same in hC)
the ground and excited electronic states, such that the DL 2

approximation is formally exact (cf. section Il). In the QDC
case, the normal-mode coordinates and frequencies in the ground
and exited electronic states are different and the DL approxima-
tion is no longer formally exact.

The operatord/ge andVeg are assumed to be eitheonstant

(static off-diagonal coupling (SOC)Yeq = Vge = Vo, WhereVo Figure 3. Semilog plots of the nonradiative electron relaxation rate
is a real constant or linear in the nuclear momenta (Born constant as a function @feg for BOC and LDC. Shown are the exact
Oppenheimer off-diagonal coupling (BOC)) results, which coincides with those obtained via the DL approximation
in this case, and the results obtained via the WACL and MML
Nn approximations.
) — KBK
Veg k; s (38) (1) The WACL and DL approximations are equivalent when

the off-diagonal coupling is static (SOC); (2) The DL ap-
where{ 3K} are real constants. The parameters used for eachproximation coincides with the exact result when the diagonal

of those cases are provided in Appendix A, along with coupling is linear (LDC). Thus, only the MML approximation
information regarding the exact results. It should be noted that can be critically tested in the SOC-LDC case (Cf. Figure 1).

the Wigner transforms in this case only involve Gaussian Although the MML approximation is not formally exact, it
integrals and can be performed analytic@f{° performs quite well and particularly so at high frequencies. The
The results for each of the four possible scenarios, namely, main difference between the MML approximation and exact
SOC-LDC, SOC-QDC, BOC-LDC, and BOC-QDC, are pre- results is that the former exhibits weaker oscillations, which is
sented in Figures-14, respectively. It should be noted that: particularly relevant at low frequencies and which can be traced
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BOC-QDC e The technique used by Shemetulskis and Loring in the
O context of nonlinear response functidhsan be used in order
to provide an alternative route to the DL approximation.
~ -1 e The WACL approximation proposed by Egorov, Rabani,
g D) and Berné' corresponds to a simplified version of the DL
2 - approximation.
c? -3+  Miller and co-workers have employed the MM mapping in
Ke} - E)IiaCt order to evaluate similar types of nonadiabatic correlation
-4~ MML : functions in the context of the SC-IVR methodoldgyrur-
-—-WAC ‘«,' thermore, Rabani, Egorov, and Berne have also applied those
50 54 6 ‘ ‘8 1‘0'1‘2‘14 techniques for calculating NRER rate constants, in the case of
o/® SOC, and within the framework of the reactive flux formali&m.
op

. . o ) The present work provides the following new insights
Figure 4. Semilog plots of the nonradiative electron relaxation rate

constant as a function @fey for BOC and QDC. Shown are the exact regarding such approximations: . .
results and the results obtained via the DL, MML, and WACL  * Although the DL and MML approximations can also be
approximations. derived within the context of SC-IVR theory, we have shown

B ) _ that it is not necessary to invoke the SC-IVR approximation in
back to the additional averaging over the MM-mapped electroniC grder to derive them. This extends a similar earlier result

DOF in eq 34. der th s obtained in th pertaining to adiabatic correlation functiofs.
We next consider the resuilts obtained in the SOD-QDC case, The rigorous derivation of the DL approximation clarifies

l’;’:r?rgrge;g;%r;ﬁ]e g(:lgtp?cr?xll:r?eﬁlr(;n 2r;orr\§23el\:ltwé_|eipspr?|qxém§|__ and provides partial justification for the WACL approximation,
approximation )\/NhiCh is a'lsoge uivaient to the WACL a0- which was originally suggested based on an intuitive argurfient.
pp ’ q P Furthermore, it was shown that the DL approximation is exact

proxima_tio_n in thi_s case, performs particularly well and practi- for harmonic systems with the same normal-mode frequencies
cally coincides with the exact result beyond the low-frequency . . : ~
in the ground and excited electronic states, even whgmand

region. The agreement between the MML approximation and S -
: . Vge are not constant and that a significant improvement can be
the exact result is also quite good, although larger errors are - - L . S
obtained by avoiding the additional assumption, which is

observed at high frequencies. AT = .
. . implicitly implied by the WACL approximation, according to
It should be noted that the observations regarding the MML wh?ch [%;ge e?ﬁéeze]v)\j ~ [Vge]w[e’ﬂ'ige]w- 9

approximation in Figures 1 and 2 are also consistent with those L
reported by Rabani, Egorov, and Berne in ref 75. Those authors  * We have been able to put the MML approximation in a
proposed an approximation similar to our MML approximation form Whlch is particularly s_u_|table for comparison with tr_le DL
for calculating the NRER rate constant within the framework &PProximation. More specifically, we have shown that, like the
of the reactive flux formalism and observed that, in the case of DL @pproximation, the MML approximation is based on
SOC, their approximation was in overall agreement with the classical propagation of the nuclear DOF on areraged
exact result, except at very low and very high frequencies.  Potential. However, the DL and MML approximations give rise
The DL approximation also coincides with the exact result, t0 different averaged potentials, with the latter explicitly
in the BOC-LDC case (cf. Figure 3). The MML approximation, dependent on the initial electronic state.
although not formally exact, is also found to be in very good ¢ We performed a systematic comparison between the DL
agreement with the exact result, except at very low frequencies.and MML approximations. Although both approximations
The WACL approximation is no longer equivalent to the DL performed rather well when tested on a benchmark problem,
approximation in this case. Although the agreement betweenwe have observed that the performance of the DL approximation
the WACL approximation and the exact result is fairly good, it was consistently better than that of the MML approximation in
is clearly inferior in comparison to either the DL or MML  all of the situations considered.
approximations. « Despite the fact that the dynamics in both DL and MML
Both DL and MML approximations remain in very good approximations is purely classical, those approximations are still
overall agreement with the exact results in the BOC-QDC case able to capture the resonances observed in the frequency
(cf. Figure 4). The DL approximation, in particular, practically ~dependence of the NRER rate constants (cf. Figuret).IThose
coincides with the exact result throughout the entire range of resonances should therefonet be associated with quantum
frequencies considered. The MML approximation exhibits a dynamics, as previously suggestéd.
slight de\_/latlon_ from the exact result and_ paryculgrly soathigh The very good agreement between the DL and MML
frequencies. Finally, the WACL approximation is seen 10 be 5pnroximations and the exact results should be attributed to the
significantly inferior to both DL and I\/.IMLIaApproB(ler'natlons N fact that those approximations are able to correctly capture the
this Casf'HTh“S' avoiding the approximatiafiele "eZgw ~ short-time quantum dynamics. Indeed, the most significant errors
[Vodwle™"Zw appears to be essential for obtaining an ,yise at small frequencies and reflect the fact that the long-time
accurate result. dynamics is treated by those approximations as purely classical.
In this context, it is interesting to note that the same approxima-
tions should not be expected to do as well in capturing
The main result of this paper corresponds to dlegivation dynamical effects in the vibronic spectrum of a general
of the DL and MML approximations, eqs 22 and 34, respec- system’2%4This is because the high-frequency tail corresponds
tively, via linearization of theexactpath integral expression  to the relatively unimportant far wings of the vibronic spectrum
for a nonadiabatic correlation function. Several related ap- or very short time behavior of the optical response functions.
proximations have been derived and/or proposed by otherFor the same reason, the DL and MML approximations should
authors in the past. More specifically: not be expected to be accurate when applied for simulating the

V. Discussion and Summary
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nonequilibrium NRER dynamics. Such nonequilibrium sim- C

ulations may be required in cases where the relaxation process 1 e

does not follow simple rate kinetics. However, even in such exp{%ﬁ) do J(w)w[coth(Bhw/2)[cost) — 1] —

cases, it is often possible to describe the influence of the 1 o

environment in terms of a short-lived memory kernel, which ! smwt]}{[% ﬁ, dw J,g(w)w[coth(Bhwl2)[cost) — 1] —

may be accurately estimated via the DL and MML approxima- 2 1 e

fions 5.9 |S|n(wt)]] + 5 Ji do Igw)olcoth(Bhal2)cosE) —
The major advantage of the DL and MML approximations

over other approaches has to do with the fact that they provide

a consistent strategy for calculating NRER rate constants, as

well as other related quantities, in geneaaharmonicsystems,

where exact quantum results are not available. The major _ K2 _®

challenge involved in applications to anharmonic hosts has to Is() Z (g G (AS)

do with the difficulty of computing the corresponding Wigner

transforms. However, several strategies, which have beenand

recently employed for computing such Wigner transforms in

other context§28197can be adopted for this purpose, thereby Jsslw) = Z $9%8(w — ™) (A6)

opening the door to such applications. The synthesis of those

methods with the DL and MML approximations, and subsequent ; should be noted that the corresponding expression in eq 19

applications to nonradiative electron relaxation and related of ref 71 should be corrected by substitutivgo = 1 and

processes, in liquid solutions is the subject of ongoing work in  replacing|-++|2 by [-+*]? on the right-hand sid® Following ref

soc-toc(t) =

i sin(wt)]} (Ad)

where

our group and will be reported in a separate paper. 71, we assume thak(w) = Jss(w) = J(w) (cf. eq A3), with
the same parameters as for the SOC-LDC case.
Acknowledgment. The authors are grateful to Dr. Eran In the SOC-QDC case, one has to determine the values of

Rabani for his helpful comments regarding ref 71 and to the {o®} and gji}, which is done following a procedure similar

National Science Foundation for financial support (through to th‘?‘F re_ported in ref 71. Morel specifica}lly,l thhe elect_ronich
Grant No. CHE-0306695). transition is assumed to be coupled to a single harmonic bat

mode,Q®, which is in turn bilinearly coupled to the remaining
uncoupled harmonic bath mod€®®@, ..., Q™}. The corre-
Appendix A: Parameters and Exact Results for the sponding coupling term is given bit‘;z c®OWO®. The
Benchmark Problem frequencies of the bath modé%Y, ..., QM) are given byd®),
..., @™, respectively. The values ab® and the coupling
In this appendix, we provide a brief summary of the coefficients{c®}, which correspond to the ground and excited
parameters and exact results that were used in order to generatelectronic states, are assumed to be different. More specifically,
Figures 1-4. The reader is referred to ref 71 for a more detailed it is assumed thaf ", (c®)20(w — @®)/20® = J(w), where
discussion of the model. J(w) is as in eq (A3), withy = 0.2,wep = @ = 1.1 (1.0), and
In the SOC-LDC case, the exact correlation function in eq 4 # = 0.05 (0.125), in the ground (excited) electronic state. It is
is explicitly given by also assumed that the equilibrium displacement oQﬁér_node
in the ground state is shifted by the amodgt= 2.0 relative to
the excited state. The resulting free bath Hamiltonian that

Csoc_ipc(t) = |Vo|2 exp{% fo“’ do J(w)w[coth(Bhw/2) x corresponds to the excited electronic state is then numerically
diagonalized, and the corresponding normal-mode frequencies,
[cost) — 1] — i(Sina)t)]} (A1) coordinates, and momenta are associated with those appearing
in eq 37. The intermode coupling coefficiefds} are obtained

by rewriting the ground-state nuclear Hamiltonian in terms of
where the normal modes of the excited-state Hamiltonian. The tem-
perature was given b = 4.0, as in the SOC-LDC case. It
Jw) = Z (6(k))2<§(w _ w(k)) (A2) vn\gz?)z Z:rified that the results are convergedNigr= 60 harmonic
In the BOC-QDC case, the bath was treated in the same way
as in the SOC-QDC case, with a direct coupling of the electronic
DOF to a single primary bath mode, which is in turn coupled
to the rest of the bath modes. The off-diagonal coupling between
; the nuclear and electronic DOF is given &P®, wheresy =
_ . P® is the momentum of the primary bath mode. The
Jw) = expl—(w — v, )426° A3 2.0 andP™is -ntun primary .
(@) (2ﬂ02)1/2 PE-(@ — o) ] (A3) resulting free bath Hamiltonian that corresponds to the excited
electronic states is then numerically diagonalized, and the
corresponding normal-mode frequencies, coordinates, and mo-
B . . L menta are associated with those appearing in eq 37. The
\a/ndﬁﬁv— zl(i./TEeoolff-dlagonal coupling constant is given by coefficients{gjx} are obtained by rewriting the ground-state
ge ™ VYeg™ YO M.t nuclear Hamiltonian in terms of the normal modes of the
In the BOC-LDC case, the exact correlation function in eq 4 excited-state Hamiltonian, and the temperature is sélte-
is explicitly given by 4.0. It was verified that the results are convergedNpr= 60

is the spectral density. The spectral density used in the actual
calculations is given by

with the following parametersl = 1.0, wqp = 1.0,0 = 0.1,
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harmonic modes. It should be noted that the results presented (45) Reichman, D. R.; Rabani, B. Chem. Phys2002 116, 6279.

in Figure 4 are different in comparison to the corresponding
Figure 4 of ref 71 due to a different choice of parameférs.
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