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It is well-known that applications of the JWKB method to central-field problems in three dimensions require
half-integral quantization of the angular momentum for their success. Thus, the square of the angular momentum
must be represented by the term (l + 1/2)2p2 rather thanl (l + 1)p2. This was first shown by Kramers in 1926
and has subsequently been discussed by several authors including, in particular, Langer (1937). While Kramers
based his discussion on the ordinary radial variabler, Langer switched to the variablex defined byr ) ex.
In this new representation of the central-field problem, the expression (l + 1/2)2p2 emerges naturally. The ad
hoc character of the Langer transformation has, however, often been emphasized. In the present communication,
we choose a different entry to the problem. We keep the variabler and focus on physically equivalent forms
of the radial Schro¨dinger equation in this variable. This leads to a smoother emergence of the (l + 1/2)2p2

term. Our analysis is carried out for a general dimensionD. For a givenD, there areD physically equivalent
radial equations, corresponding to the subdimensionsd ) 1, 2, ...,D. We show that it is only thed ) 2
equation that can be satisfactorily treated by the JWKB approximation. In the past, the focus was always on
thed ) 1 equation, and this was the reason behind the problems encountered by Kramers and Langer. As to
thed ) 2 equation, we finally show that this equation also is the most convenient starting point for determining
the exact solutions of a central-field problem for general values ofD and angular-momentum quantum number
L.

1. Introduction

An important version of semiclassical quantum mechanics
is the so-called Jeffreys-Wentzel-Kramers-Brillouin method
(JWKB or WKB method). In the present paper we discuss an
old dilemma which complicates the application of this method
to central-field problems. It has been with us since 1926, and
has attracted much interest in the intervening years, but the
dilemma has so far not been fully resolved.

To state the dilemma, consider the time-independent Schro¨-
dinger equation for a particle moving in a central fieldV(r)

wherer ) (x, y, z) is the radius vector of the particle,µ is its
mass, andE is its energy. The potential functionV(r) may be
singular at the origin, but we assume that|V(r)| diverges less
strongly than 1/r2. The eigenfunctions of the Schro¨dinger
equation may be written in the well-known form

where (θ,φ) are the spherical polar coordinates of the particle,
Ylm(θ,φ) is a normalized spherical harmonic, andl and m are
the usual angular-momentum quantum numbers. BesidesR(r),
it is customary to introduce the radial functionP(r), as given

by the definition

The radial functionR(r) is determined by the radial Schro¨-
dinger equation

while P(r) satisfies the equation

The differential equation forP(r) has the same form as the
Schrödinger equation for a one-dimensional particle moving in
the effective potential

It is therefore tempting to try to solve it by applying the JWKB
method to it. By this method,1-4 one first finds analytical
solutions that are approximately valid away from the so-called
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classical turning points, that is, the points at which the function

becomes zero and changes sign. These solutions are then
matched at the two sides of a turning point under the application
of connection formulas3,5-8 and perhaps continued through the
turning-point region as Airy functions.3,5 For bound states, where
two or more turning points must be considered simultaneously,
this is only possible at certain energies which, accordingly,
become the approximate bound-state energies.

An investigation of eq 5 along these lines was first made by
Kramers,3 with V(r) being an attractive Coulomb-like potential.
He found, however, that such a procedure led to an unacceptable
behavior ofP(r) for small values ofr. And for l ) 0 it could
not be applied at all because expression 6 only defines a single
turning point in this case. Kramers showed, however, that if
one adds a termp2/8µr2 to V(r) or, equivalently, modifies the
centrifugal term by writing (l + 1/2)2 instead ofl (l + 1), to
get the modified effective potential

then the difficulties associated with the JWKB method disap-
peared. With this modified potential, the method was found to
give very satisfactory results, both for attractive and repulsive
potentials.3,9,10It is now well-known that it even gives the correct
bound-state energy eigenvalues for the harmonic potential and
the attractive Coulomb potential (see section 6).

The classical central-field problem is defined by the effective
potential

wherel is the classical angular momentum. Expression 8 may
therefore be said to originate from expression 9 by half-integral
quantization of the classical angular momentum.3

The fact that one must choose between the two expressions
6 and 8, and make an ad hoc choice rather than a rational one
to get acceptable results, is what we refer to asKramers’
dilemmain the present paper. It is the resolution of this dilemma
that is the theme of our article. The article is organized as
follows. In section 2 we describe some earlier work on the
resolution of Kramers’ dilemma in ordinary three-dimensional
space and add a qualitative presentation of our own entrance to
the problem. Our quantitative analysis is carried out in a general
D-dimensional space and is deferred to the following sections.
Thus, a discussion of the generalD-dimensional central-field
problem is given in section 3, with emphasis put on the fact
that the radial Schro¨dinger equation may be written inD
physically equivalent ways, corresponding to the respective
subdimensionsd ) 1, 2, ...,D. In section 4 we investigate the
possibility of applying the JWKB approximation to each of the
D radial equations in turn and conclude that a satisfactory result
only is attainable ford ) 2. We then collect the quantization
formulas based on thed ) 2 equation in section 5. In section
6 we specialize to the isotropic harmonic oscillator and the
hydrogen atom for which the JWKB energies, as already
mentioned, agree with the exact ones. We make the observation
that thed ) 2 radial equation also is the most convenient starting
point for an exact treatment of aD-dimensional radial problem

and illustrate this with the harmonic oscillator and the hydrogen
atom as examples. In section 7 we comment on the fact that
the Kramers correction is independent ofD. Section 8 contains
our conclusion.

2. Resolving Kramers’ Dilemma
2.1. Langer’s Transformation. We begin by noting that the

domain of the independent variabler in the Schro¨dinger eq 5
is from 0 to ∞. In a genuine one-dimensional problem the
domain would be from-∞ to ∞. In an important paper, Langer5

pointed to this difference as the source of the problem of
applying the JWKB method to eq 5. While concentrating on
the Coulomb case

he therefore transformed eq 5 into a new equation by the
substitution

The domain of the independent variable,x, is now from-∞ to
∞, the differential equation foru(x) taking the form

In this differential equation, the angular-momentum quantum
number l appears in the combination (l + 1/2)2 rather than
l (l + 1). As Langer showed, the application of the JWKB
method to eq 12 is unproblematic. It leads to a quantization
condition that, expressed in the originalr-coordinate, is defined
by the modified effective potential (eq 8). Hence, it produces
the correct energies for the Coulomb problem.

The Langer transformation is, however, not unique.11-13 Other
transformations of the formr ) f(x) may be constructed and
lead to different modified effective potentials and hence to less
satisfactory energies. How then does one choose one transfor-
mation over another? A simple qualified answer to this question
has been given by Adams and Miller.14 They suggested that
the transformation, and hence the modified potential, be so
chosen that the correct quantum-mechanical result, either for
the scattering phase shift or for the energy eigenvalues, is
obtained if the original potential is set to zero. They applied
this condition both for semi-infinite intervals such as 0e r <
∞ and for finite intervalsa e r e b and showed, in particular,
that it made the Langer transformation unique.

2.2. The Planar Radial Wave Equation. In the present
paper, we take a new look at Kramers’ dilemma. It is based on
the conjecture that it is not the domain of the independent
variabler that causes the problem, but solely the fact that the
differential eq 5 is singular at the origin. In accordance with
this viewpoint, we do not dismissr as a proper independent
variable. Instead, we merely consider alternative, but physically
equivalent forms of the differential equation itself and try to
apply the JWKB description to each of these equations
separately. It turns out that only one of the physically equivalent
equations can be satisfactorily attacked by the JWKB method.
This conclusion, then, resolves Kramers’ dilemma in an unforced
way.

To be specific, we note that for a normalized wave function
of form 2, we have that

Q2(r) ) 2µ
p2

[E - Veff(r)] (7)

Veff
mod(r) ) V(r) +

(l + 1
2)2

p2

2µr2
(8)

Vcl(r) ) V(r) + l2

2µr2
(9)

V(r) ) - Ze2

4πε0r
(10)

r ) ex, P ) ex/2u (11)

d2u

dx2
+ 2µ

p2(Ee2x + Ze2

4πε0
ex)u(x) - (l + 1

2)2

u(x) ) 0 (12)

∫0

∞
R2(r)r2 dr ) ∫0

∞
P2(r) dr ) 1 (13)
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Hence,R2(r) may be referred to as a spatial probability density
(with the “volume element” defined asr2 dr). On the other hand,
P2(r) is a radial probability density. But we may also introduce
a new function,15 T(r), which determines a planar probability
density,T2(r), in the sense that

The functionT(r) is defined as

It satisfies the differential equation

which we shall refer to as the planar radial wave equation. We
note that it also containsl in the same way as expression 8
does, namely, in the combination (l + 1/2)2.

Let us temporarily write the three equations, eq 4, eq 16,
and eq 5, as

respectively. We have then that

and

These relations specify the sense in which the three physically
equivalent equations, eq 17, eq 18, and eq 19, are mathematically
equivalent. Obviously, the origin plays a complicated singular
role because of the factorsr-1/2 and r-1.

From the outset, there is no reason eq 19 should be more
fundamental than eqs 17 and 18 as a candidate for an application
of the JWKB method. Admittedly, the equation is the only one
that does not contain a first-order term in d/dr, but actually, a
first-order term presents no difficulties, as already emphasized
by Wentzel.2 Hence, a complete JWKB analysis of the radial
problem should investigate the possible application of the JWKB
method to each of the three equations separately. Due to the
singular status given to the origin by relations 20 and 21, there
is no guarantee that each equation is equally favorable in this
respect. This is the philosophy behind the present work.

In this spirit, we have also applied the JWKB approximation
to eq 4. We have found similar problems as Kramers noted for
eq 5. However, the application of the JWKB approximation to
eq 16 turns out to be unproblematic.

Kramers’ dilemma is thus fully resolved by noting that it is
eq 16 which is the proper starting point for the application of
the JWKB approximation. The optimal procedure is therefore
to concentrate onT(r) and subsequently determineR(r) andP(r)

from the relations

instead of looking for them as JWKB solutions to eqs 4 and 5.
Our approach also throws new light on the success behind

Langer’s method. His analysis may, in fact, be considered as
nothing more than a somewhat complicated way of solving eq
16 by the JWKB method. For as eq 23 shows, the functionu(x)
defined by eq 11 is exactly the functionT(r) expressed in the
variablex instead of the variabler. Equations 12 and 16 are
accordingly equivalent.

The importance of our conclusions is amplified by noting
that they may be extended from three dimensions to any
dimension. In theD-dimensional central-field problem, one may
define D radial functions. Thus, we obtainD differential
equations. But it turns out that among those, the JWKB
approximation may only be applied to the planar equation. We
prove these assertions in the following sections. The results of
the present section follow from the general case by puttingD
) 3. Hence, we do not derive them independently here.

3. The Central-Field Problem in D Dimensions

The Schro¨dinger eq 1 is readily generalized toD dimensions
(D g 2) by lettingr ) (x1, x2, ...,xD) denote the position vector
of a “particle” moving inD-dimensional position space,16 where
(x1, x2, ...,xD) are Cartesian coordinates.r is now the hyperradius
as given by the relationr2 ) x1

2 + x2
2 + ... + xD

2 , and32 denotes
the D-dimensional Laplacian.

The eigenfunctions of the Schro¨dinger equation may now be
written

Here,Ω is a collective notation forD - 1 angular coordinates,
andYLγ(Ω) is a hyperspherical harmonic.17-22 The hyperspheri-
cal harmonics are eigenfunctions of the grand angular-
momentum operator

where

are the components of the angular-momentum tensor. The
operatorsp̂i are the components of theD-dimensional momen-
tum operator.

The operatorL̂2 has the eigenvalues

with the degeneracy corresponding to the eigenvalueL being21,22

In a central-field problem, this is the number of hyperspherical
harmonics associated with a givenL-value. In eq 24 they are
denoted byYLγ(Ω).

∫0

∞
T2(r)r dr ) 1 (14)

T(r) ) xrR(r) (15)

- p2

2µ(d2T(r)

dr2
+ 1

r
dT(r)

dr ) + V(r)T(r) +

(l + 1
2)2

p2

2µr2
T(r) ) ET(r) (16)

Ĥ(3)R(r) ) ER(r) (17)

Ĥ(2)T(r) ) ET(r) (18)

Ĥ(1)P(r) ) EP(r) (19)

Ĥ(2) ) r1/2Ĥ(3)r-1/2 (20)

Ĥ(1) ) r1/2Ĥ(2)r-1/2

) rĤ(3)r-1 (21)

R(r) ) T(r)/xr (22)

P(r) ) xrT(r) (23)

ψ(r ) ) R(D)(r)YLγ(Ω) (24)

L̂2 )
1

2
∑
i)1

D

∑
j)1

D

l̂ ij
2 (25)

l̂ ij ) xip̂j - xjp̂i, i, j ) 1, 2, ...,D (26)

L(L + D - 2), L ) 0, 1, ... (27)

g(D, L) )
(2L + D - 2)(L + D - 3)!

L!(D - 2)!
(28)
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The Schro¨dinger equation for the radial functionR(D)(r) of
eq 24 is

For a normalized wave function,ψ(r ), we have that

Hence, [R(D)(r)]2 is a probability density inD-dimensional space,
the “volume element” beingrD-1 dr.

The function P(D)(r) which determines the corresponding
radial probability density as [P(D)(r)]2, such that

is

It satisfies the differential equation

Equations 9 and 33 are the generalizations toD dimensions
of the corresponding eqs 4 and 5 in three dimensions. We note
that the effective potential defined by eq 33 has the form

The last term in the expression forVeff
(D,1)(r) is the quantum

fictitious potentialthat we have discussed in earlier work.23 We
note that it disappears in three dimensions, in accordance with
eq 5.

The functionsR(D)(r) andP(D)(r) are just two members of a
set ofD radial functions, defined by the relation

Obviously, R(D,1)(r) ) P(r) and R(D,D)(r) ) R(D)(r). For a
normalized wave function of the form 24 we have that

Hence, [R(D,d)(r)]2 is a probability density in ad-dimensional
subspace.

The Schro¨dinger equation determining the radial function
R(D,d)(r) is found to be

or

where

In the following, we shall consider the possible application of
the JWKB method to eq 38.

4. The Radial JWKB Problem in D Dimensions

We begin by writing eq 38 in the form

with

We then seek solutions of eq 40 of the form

For the sake of simplicity, we have suppressed the (D,
d)-dependence of the functionsQ(r), æ(r), A(r), andσ(r). We
take A(r) and σ(r) to be even and odd functions ofp,
respectively. Since eq 40 is invariant under the substitutionp
f -p, this implies thatA(r)e-iσ(r) is a solution of this equation
whenA(r)eiσ(r) is. HenceR(D,d)(r) may be written

where c1 and c2 are complex constants. Our problem is to
determine the approximate form ofA(r) andσ(r).

To this end, we substitute expression 42 into eq 40 to get

BecauseA is an even function ofp, while σ is an odd function,
this equation falls apart in two separate equations, namely,

and

d2R(D)(r)

dr2
+ D - 1

r
dR(D)(r)

dr
-

L(L + D - 2)

r2
R(D)(r) +

2µ
p2

[E - V(r)]R(D)(r) ) 0 (29)

∫0

∞
[R(D)(r)]2rD-1 dr ) 1 (30)

∫0

∞
[P(D)(r)]2 dr ) 1 (31)

P(D)(r) ) r(D-1)/2 R(D)(r) (32)

d2P(D)(r)

dr2
- [L(L + D - 2)

r2
+

(D - 1)(D - 3)

4r2 ]P(D)(r) +

2µ
p2

[E - V(r)]P(D)(r) ) 0 (33)

Veff
(D,1)(r) )

V(r) +
L(L + D - 2)p2

2µr2
+

(D - 1)(D - 3)p2

8µr2
(34)

R(D,d)(r) ) r(D-d)/2 R(D)(r), d ) 1, 2, ...,D (35)

∫0

∞
[R(D,d)(r)]2rd-1 dr ) 1 (36)

d2R(D,d)(r)

dr2
+ d - 1

r
dR(D,d)(r)

dr
-

[L(L + D - 2)

r2
+

(D - d)(D + d - 4)

4r2 ]R(D,d)(r) +

2µ
p2

[E - V(r)]R(D,d)(r) ) 0 (37)

d2R(D,d)(r)

dr2
+ d - 1

r
dR(D,d)(r)

dr
-

L (L + d - 2)

r2
R(D,d)(r) +

2µ
p2

[E - V(r)]R(D,d)(r) ) 0 (38)

L ) L + D - d
2

(39)

d2R(D,d)(r)

dr2
+ d - 1

r
dR(D,d)(r)

dr
+ Q2(r)R(D,d)(r) ) 0 (40)

Q(r) )1
p{2µ[E - V(r)] -

L (L + d - 2)p2

r2 }1/2

(41)

æ(r) ) A(r)eiσ(r) (42)

R(D,d)(r) ) A(r){c1e
iσ(r) + c2e

-iσ(r)} (43)

d2A

dr2
+ d - 1

r
dA
dr

- A(dσ
dr )2

+ Q2A +

i[Ad2σ
dr2

+ d - 1
r

A
dσ
dr

+ 2
dA
dr

dσ
dr ] ) 0 (44)

d2A

dr2
+ d - 1

r
dA
dr

- A(dσ
dr )2

+ Q2A ) 0 (45)
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The second of these equations has the solution

where C is an arbitrary constant and the prime denotes
differentiation with respect tor.

We now divide eq 45 from the left byA(r) to get

and then substitute the form ofA(r) into this equation. After
some cumbersome reductions this leads to the equation

To proceed, we now put

and substitute this expression into eq 49. This gives

We shall not pursue the problem of determining the general
form q(r) from eq 51. We are interested in determining ifq(r)
) Q(r) is already a reasonable approximate solution. For
expression 43 forR(D,d)(r), together with eq 47, would then give

which is the JWKB expression forR(D,d)(r).
Thus, we must direct our attention toward the function

which must be small for eq 52 to be approximately valid.
Obviously,τ(r) is ill behaved at the zeros of the functionQ(r),
but eq 52 is only sought as a solution away from these zeros
anyway. The serious problem is that, in general,τ(r) must also
be suspected to blow up for values ofr close to the origin. This
was, in fact, the behavior noted by Kramers3 and Langer5 for
the three-dimensional hydrogen atom, withd ) 1. In their case,
the first term on the right-hand side of eq 53 is absent, andτ(r)
becomes identical with Langer’s auxiliary functionω0(r), apart
from a change of sign. It was the undesired behavior ofω0(r)
that led Langer to introduce transformation 11 which bears his
name. In our more general analysis, we are free to choosed
different from 1, and we shall now see how to take advantage
of this freedom.

We begin by assuming that the termL (L + d - 2)p2/r2 in
expression 41 forQ(r) is nonzero. As always, we also assume
that|V(r)| diverges less strongly than 1/r2 at the origin. We then

have, for sufficiently small values ofr, that

wherea is a complex constant. With this expression forQ(r),
we find that

and eq 53 becomes

Obviously, the condition forτ(r) to become approximately zero
close to the origin, is that (d - 1)(d - 3) ) -1. But the only
value ofd for which this happens isd ) 2.

We have thus arrived at the important conclusion that the
only circumstance under which the JWKB description may be
expected to give reasonable results is when it is applied to the
radial eq 38 withd ) 2. But can it be applied for anyD? The
condition is that eq 54 hold, that is, the quantityL (L + d - 2)
must be nonzero. With the definition 39 ofL , we have that

This expression is actually nonzero, apart from the particular
case whereD ) 2 andL ) 0. Hence, the JWKB description
should, in fact, be a reasonable description for anyD and any
L, except for the special case (D, L) ) (2, 0).24

In light of this conclusion, let us now introduce a special
notation whend ) 2 and, in analogy with the terminology of
section 2, denote the radial functionR(D,2)(r) by T(D)(r). We have
then, in accordance with eq 35

and

[T(D)(r)]2 is a planar probability density.
According to eqs 38 and 57 the radial equation forT(D)(r) is

The effective potential defined by this equation is

The functionQ(r) of eq 41 therefore takes the form

and the JWKB solution 52 away from the zeros ofQ(D,2)(r)

A
d2σ
dr2

+ d - 1
r

A
dσ
dr

+ 2
dA
dr

dσ
dr

) 0 (46)

A(r) ) C

r(d-1)/2

1

(σ′(r))1/2
(47)

1
A

d2A

dr2
+ d - 1

r
1
A

dA
dr

- (dσ
dr )2

+ Q2 ) 0 (48)

(σ′)2 - Q2 +
(d - 1)(d - 3)

4r2
+ 1

2
σ′′′
σ′ - 3

4(σ′′
σ′ )

2
) 0 (49)

σ(r) ) ∫r
q(r) dr (50)

q(r)2 - Q(r)2 + 1
4

(d - 1)(d - 3)

r2
+ 1

2
q′′(r)
q(r)

- 3
4(q′(r)

q(r) )2

) 0

(51)

R(D,d)(r) ) 1

r(d-1)/2

1

Q(r)1/2
{c1e

i∫r
Q(r)dr + c2e

-i∫r
Q(r)dr} (52)

τ(r) ) 1
4

(d - 1)(d - 3)

r2
+ 1

2
Q′′(r)
Q(r)

- 3
4(Q′(r)

Q(r) )2

(53)

Q(r) ≈ a
r

(54)

1
2

Q′′(r)
Q(r)

- 3
4(Q′(r)

Q(r) )2

≈ 1

4r2
(55)

τ(r) ≈ 1
4

(d - 1)(d - 3)

r2
+ 1

4r2
(56)

L (L + d - 2) d)2 L 2 ) (L + D
2

- 1)2
(57)

T(D)(r) ) r(D-2)/2R(D)(r) (58)

∫0

∞
[T(D)(r)]2r dr ) 1 (59)

d2T(D)(r)

dr2
+ 1

r
dT(D)(r)

dr
-

(L + D
2

- 1)2

r2
T(D)(r) +

2µ
p2

[E - V(r)]T(D)(r) ) 0 (60)

Veff
(D,2)(r) ) V(r) +

(L + D
2

- 1)2
p2

2µr2
(61)

Q(D,2)(r) ) 1
p{2µ[E - V(r)] -

(L + D
2

- 1)2
p2

r2 }1/2

(62)
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becomes

These expressions give the general solution of the radial
JWKB problem inD dimensions. The results for the three-
dimensional case discussed in sections 1 and 2 follow, of course,
from these expressions by puttingD ) 3. Thus, eq 16 results
from eq 60 in this way.

As to the values of the coefficientsc1 and c2, they stay
constant within a region ofr free from zeros of the function
Q(D,2)(r) but change in a discontinuous way when one passes a
zero ofQ(D,2)(r). The pattern is the usual one known from the
JWKB discussion of motion in a single dimension. In the
following section, we list the bound-state results for an attractive
potential, where the effective potentialVeff

(D,2)(r) of eq 61
defines a single potential well.

5. JWKB Quantization

As an illustration, Figure 1 shows the effective-potential well
associated with theL ) 0 states of an isotropic harmonic
oscillator in three dimensions (D ) 3). The qualitative form of
the well is shared with other attractive potentials and otherD-
andL-values, and the expressions below refer to such general
potentials.a and b are the modified classical turning points
corresponding to the energyE. They are defined by the zeros
of the functionQ(D,2)(r) of eq 62. The regions I, II, and III refer
to the domains 0< r < a, a < r < b, andr > b, respectively.

For a bound state, the JWKB wave function 63 takes the
following form in the various regions, where indices I and III
refer to the regions I and III, while indicesa andb refer to the

left and right parts, respectively, of region II:

with the requirement thatTa
(D)(r) ) Tb

(D)(r). We have drawn on
the well-known connection formulas for one-dimensional JWKB
problems.3,5-8,25,26

The conditionTa
(D)(r) ) Tb

(D)(r) gives the quantization re-
quirement

with c′ ) c for s even, andc′ ) -c for s odd. This relation
determines the possible bound-state energies. It is, of course,
the standard quantization condition of one-dimensional JWKB
theory, with the effective potential 61 playing the role of the
one-dimensional potential.

Having determined an allowed energy from relation 68, the
JWKB approximation to the corresponding radial function
T(D)(r) is given by expressions 64-67. The whole set ofD radial
functions corresponding to the chosen energy may then be
obtained via eq 35. In particular, the radial functionP(D)(r) of
eq 32 is obtained by multiplying expressions 64-67 by xr.

6. The Isotropic Harmonic Oscillator and the Hydrogen
Atom in D Dimensions

6.1. JWKB Energies. With the application of appropriate
techniques27 for evaluating the integral on the left-hand side of
eq 68, it is readily shown that the quantization condition
represented by that equation reproduces the exact energies, as
given below, for the isotropic harmonic oscillator and the
hydrogen atom in any dimension. This is even true for the case
(D, L) ) (2, 0), if the origin is taken as the left turning point.
The combination (D, L) ) (2, 0) was excluded from the general
analysis because the factor (L + D/2 - 1) in eq 57 becomes
zero in this case. To understand that it may nevertheless be
included, we note that our whole analysis holds for any positive,
nonzero value ofL, even ifL is not an integer. The validity for
(D, L) ) (2, 0) may therefore be considered to follow as a
limiting case during the transition (2,L) f (2, 0).

That the JWKB method gives the correct energy eigenvalues
for the harmonic oscillator and the hydrogen atom in any
dimension is, to a large extent, well-known. ForD ) 3, the
reason for the success of the JWKB method in this respect has
been discussed by several authors, most conclusively by
Rosenzweig and Krieger.28 Their conclusions may be readily
extended to cover all values ofD.

6.2. Exact Solutions From the Planar Radial Wave
Equation. The exact analytical solutions for the harmonic
oscillator and the hydrogen atom inD dimensions have been
carefully studied in the literature.20,29 The point of departure
for determining the solutions has usually been eq 29 for the
radial functionR(D)(r) or eq 33 for the radial functionP(D)(r).
Here we want to point out, that among theD radial equations

Figure 1. JWKB description of the isotropic harmonic oscillator in
three dimensions (D ) 3), L ) 0 states. The lower curve shows the
potential energyV(r) ) 1/2µω2r2, the upper curve shows the effective
potential defined by eq 61, which in this case (D ) 3, L ) 0) reads
Veff

(3,2)(r) ) V(r) + p2/8µr2. The variabler is measured in units of the
characteristic lengthxp/µω; energies are measured in units ofpω; a
and b are the modified classical turning points corresponding to the
energyE.

T(D)(r) )
1

xr

1

Q(D,2)(r)1/2
{c1e

i∫r
Q(D,2)(r)dr + c2e

-i∫r
Q(D,2)(r)dr} (63)

TI
(D)(r) ) c

2xr

1

|Q(D,2)(r)|1/2
exp(-∫r

a|Q(D,2)(r)| dr) (64)

TIII
(D)(r) ) c′

2xr

1

|Q(D,2)(r)|1/2
exp(-∫b

r|Q(D,2)(r)| dr) (65)

Ta
(D)(r) ) c

xr

1

Q(D,2)(r)1/2
cos(∫a

r
Q(D,2)(r) dr - π/4) (66)

Tb
(D)(r) ) c′

xr

1

Q(D,2)(r)1/2
cos(∫r

b
Q(D,2)(r) dr - π/4) (67)

∫a

b
Q(D,2)(r) dr ) (s + 1

2)π, s ) 0, 1, 2, ... (68)
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given by expression 38, eq 60 forT(D)(r) has an especially simple
form because, according to eq 57, the factorL (L + d - 2)
reduces to the square (L + D/2 - 1)2. This implies, in turn,
that not only does the equation forT(D)(r) hold a preferred
position as far as the JWKB approximation goes, it is also a
more convenient starting point for obtaining analytical solutions
of the Schro¨dinger equation, when such solutions exist. This
holds for a general potentialV(r). In the following we
demonstrate it for the isotropic harmonic oscillator and the
hydrogen atom in arbitrary dimensions.

According to eq 60, the functionT(D)(r) only depends upon
the dimensionD and the angular momentumL through the
parameter

We may hence rewrite eq 60 as

The fact that this differential equation only contains the orbital
angular momentumL and the dimensionD in the combination
R ) L + D/2 - 1 implies an isomorphism in the sense thatD
f D + 2 is equivalent toL f L + 1. This isomorphism, which
holds for any central-field potential, is well-known,30 but it is
usually derived in a somewhat less direct way from the
differential equation forR(D)(r), or the differential equation for
P(D)(r).

For the harmonic potential

eq 70 may be solved analytically by the well-known polynomial
method.31 Applying this method, one finds the bound-state
energies to be

The corresponding eigenfunctions are

where

and M(-s, R + 1, ê2) is the confluent hypergeometric, or
Kummer’s, function,32 andN (R, s) is a normalization constant.
s is referred to as the radial quantum number.

For the Coulomb potential 10 the bound-state energies are
similarly found to be

where s is again the radial quantum number. The so-called
principal quantum numberN is

The eigenfunctions for the Coulomb problem are

where

with a0 ) 4πε0p2/µe2, andN ′(R, s) is a normalization constant.
Let us note that the principal quantum numberN of eq 76 is

integral forD odd and half integral forD even. The reverse is
the case for the factorR + 2s + 1 contained in the energy
expression 72 for the harmonic oscillator. This alternation
between integral and half-integral values was an interesting
observation in early wave mechanics, primarily for the transition
(D ) 2) f (D ) 3). It was, in particular, emphasized by
Sommerfeld33 and van Vleck.34

7. Comment

As we have shown, a successful application of the JWKB
method to the central-field problem inD dimensions requires
that one takes the planar eq 60 as the preferred equation, rather
than the one-dimensional eq 33. We may define a general
Kramers correction as the difference between the effective
potentials defined by eqs 61 and 34. We find easily

Thus, the Kramers correction is independent ofD. This reflects
the fact that the differential operator in the equation determining
R(D,d)(r) only depends upond, and not uponD, as shown in eq
38.

That the Kramers correction is the same for allD, implies
that the Langer transformation 11 may be invoked for anyD.
This possibility has, in fact, already been recognized by
Morehead.35

8. Conclusions

TheD-dimensional central-field problem definesD physically
equivalent radial Schro¨dinger equations, corresponding to the
subdimensionsd ) 1, 2, ...,D. These equations are all singular
at the origin. In the present paper, we have shown that this
causes them to be nonequivalent as far as the JWKB ap-
proximation is concerned. In fact, we have shown that only the
d ) 2 equation can be directly attacked by the JWKB
approximation. In the past, focus was always put on thed ) 1
equation. This led to difficulties that could only be overcome
in an indirect way. Thus, Kramers had to add an ad hoc term to
the central-field potential in order to get satisfactory results,
while Langer made an ad hoc transformation of the independent
variabler.

A direct application of the JWKB approximation to thed )
2 radial equation leads to the exact energy expressions for the
hydrogen atom and the harmonic oscillator. That Kramers and
Langer also got the exact expressions is understood by noting
that the Kramers correction turns thed ) 1 effective potential
into thed ) 2 effective potential, while Langer’s differential
equation can be interpreted as an indirect representation of our
d ) 2 equation.

As to determining the exact solutions of a central-field
problem, thed ) 1 and thed ) D equations have been the
preferred equations in the past. We have shown, however, that

R ) L + D
2

- 1 (69)

d2TR(r)

dr2
+ 1

r

dTR(r)

dr
- R2

r2
TR(r) + 2µ

p2
[E - V(r)]TR(r) ) 0

(70)

V(r) ) 1
2
µω2r2 (71)

E(R, s) ) (R + 2s + 1)pω, s ) 0, 1, 2, ... (72)

TR, s(r) ) N (R, s)êRM(-s, R + 1, ê2)e-ê2/2 (73)

ê ) xµω
p

r (74)

E(R, s) ) - ( Ze2

4πε0
)2 µ

2p2(R + s + 1
2)2

, s ) 0, 1, 2, ... (75)

N ) R + s + 1
2

(76)

TR,s(r) ) N ′(R, s)FRe-F/2M(-s, 2R + 1, F) (77)

F ) 2Z
Na0

r (78)

Veff
(D,2)(r) - Veff

(D,1)(r) ) p2

8µr2
(79)
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the d ) 2 equation is, in fact, a more convenient equation to
use also in this case. This is because this equation has the same
formal appearance for allD-values and for all values of the
angular-momentum quantum numberL, the significant param-
eter beingR ) L + D/2 - 1.

In closing, we remark that the preferred role played by thed
) 2 radial equation in the quantum-mechanical context has a
parallel in classical mechanics. For in the classical-mechanical
central-field problem the motion is always two-dimensional, no
matter what the value ofD. It takes place in a plane through
the origin.
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