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It is well-known that applications of the JWKB method to central-field problems in three dimensions require
half-integral quantization of the angular momentum for their success. Thus, the square of the angular momentum
must be represented by the tenf 1/,)%h? rather thary (/ + 1)h2. This was first shown by Kramers in 1926

and has subsequently been discussed by several authors including, in particular, Langer (1937). While Kramers
based his discussion on the ordinary radial variableanger switched to the variabledefined byr = e~

In this new representation of the central-field problem, the expresgieni(;)’4? emerges naturally. The ad

hoc character of the Langer transformation has, however, often been emphasized. In the present communication,
we choose a different entry to the problem. We keep the varrabial focus on physically equivalent forms

of the radial Schidinger equation in this variable. This leads to a smoother emergence of thé/f)%h?

term. Our analysis is carried out for a general dimenflofror a givenD, there areD physically equivalent

radial equations, corresponding to the subdimenstrs 1, 2, ...,D. We show that it is only thel = 2

equation that can be satisfactorily treated by the JWKB approximation. In the past, the focus was always on
thed = 1 equation, and this was the reason behind the problems encountered by Kramers and Langer. As to
thed = 2 equation, we finally show that this equation also is the most convenient starting point for determining
the exact solutions of a central-field problem for general valués afid angular-momentum quantum number

L.

1. Introduction by the definition

An important version of semiclassical quantum mechanics
is the so-called JeffreysWentzel-Kramers-Brillouin method
(JWKB or WKB method). In the present paper we discuss an
old dilemma which complicates the application of this method di
to central-field problems. It has been with us since 1926, and

P(r) = rR(r) (3)

The radial functionR(r) is determined by the radial Schro
nger equation

has attracted much interest in the intervening years, but the of 2
dilemma has so far not been fully resolved. — h_(d R 2@ + V(NR(r) +
To state the dilemma, consider the time-independent Schro 2u\ dr? rodr

dinger equation for a particle moving in a central fi&l(t) /(/ + 1)R?
TR(O = ER(r) (4)

2
=)+ VOY(0) = Ep) I y |
while P(r) satisfies the equation
wherer = (X, y, 2) is the radius vector of the particlg,is its » 2 2
mass, anc is its energy. The potential functiov(r) may be _ h_d P(r) +V(N)P(r) + /(/ + 1R P(r) = EP(r) (5)
singular at the origin, but we assume ti\¥(r)| diverges less 2u gr? r2
strongly than I”. The eigenfunctions of the Schtimger
equation may be written in the well-known form The differential equation foP(r) has the same form as the
Schralinger equation for a one-dimensional particle moving in
P(r) = R()Y,n(0.9) 2 the effective potential
where ¢,¢) are the spherical polar coordinates of the particle, /(/ + 1)R?
Ym(6,9) is a normalized spherical harmonic, adnd m are Ver(r) = V(r) + — (6)
the usual angular-momentum quantum numbers. Be§i(tes 2ur

it is customary to introduce the radial functi®ir), as given . . . .
It is therefore tempting to try to solve it by applying the JWKB

* Part of the “Gert D. Billing Memorial Issue”. method to it. By this metho#,* one first finds analytical
*To whom correspondence should be addressed. E-mail: jpd@kemi.dtu.dk. solutions that are approximately valid away from the so-called
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classical turning points, that is, the points at which the function and illustrate this with the harmonic oscillator and the hydrogen
atom as examples. In section 7 we comment on the fact that
Q4r) = Q[E 0] (7) the Kramers correction is independentdfSection 8 contains
K2 © our conclusion.

#- Resolving Kramers’ Dilemma

2.1. Langer’s Transformation. We begin by noting that the
domain of the independent variabién the Schrdinger eq 5
is from 0 to . In a genuine one-dimensional problem the
domain would be from- to c. In an important paper, Langer
pointed to this difference as the source of the problem of
applying the JWKB method to eq 5. While concentrating on
the Coulomb case

becomes zero and changes sign. These solutions are the
matched at the two sides of a turning point under the application
of connection formulas®8 and perhaps continued through the
turning-point region as Airy functior’s For bound states, where
two or more turning points must be considered simultaneously,
this is only possible at certain energies which, accordingly,
become the approximate bound-state energies.

An investigation of eq 5 along these lines was first made by

Kramers? with V(r) being an attractive Coulomb-like potential. 7&
He found, however, that such a procedure led to an unacceptable V(r) = — (10)
behavior ofP(r) for small values of. And for /= 0 it could Agre

not be applied at all because expression 6 only defines a single ) .
turning point in this case. Kramers showed, however, that if N€ therefore transformed eq 5 into a new equation by the

one adds a term28ur to \V(r) or, equivalently, modifies the ~ Substitution
centrifugal term by writing{ + %,)? instead of/(/ + 1), to _ o
get the modified effective potential r=¢, P=e% (11)
12, , The domain of the independent variabtgis now from—eo to
. (/ + 5) A oo, the differential equation fou(x) taking the form
[o] —
Veir () = V(r) + ot ®)

2 2
du, %(Ee” + f—ezeX)u(x) - (/ + %) U =0 (12)
then the difficulties associated with the JWKB method disap- dx” h €0
peared. With this modified potential, the method was found to
give very satisfactory results, both for attractive and repulsive
potentials®>2101t is now well-known that it even gives the correct
bound-state energy eigenvalues for the harmonic potential an
the attractive Coulomb potential (see section 6).

The classical central-field problem is defined by the effective

In this differential equation, the angular-momentum quantum
number/ appears in the combinatio ¢ /,)? rather than
O/(/ + 1). As Langer showed, the application of the JWKB
method to eq 12 is unproblematic. It leads to a quantization
condition that, expressed in the origimetoordinate, is defined
by the modified effective potential (eq 8). Hence, it produces

potential the correct energies for the Coulomb problem.
12 The Langer transformation is, however, not unigtié Other
V() = V() + —; 9) transformations of the form = f(x) may be constructed and
2ur lead to different modified effective potentials and hence to less

satisfactory energies. How then does one choose one transfor-

wherel is the classical angular momentum. Expression 8 may mation over another? A simple qualified answer to this question

therefore be said to originate from expression 9 by half-integral has been given by Adams and MillérThey suggested that

qu?ﬁt'zfat'??hoi the class;catl] angullf\rtmometrt;ﬁjrp. . the transformation, and hence the modified potential, be so
€ tact (hat one must choose between the tWo EXPressIONS. o that the correct guantum-mechanical result, either for
6 and 8, and make an ad hoc choice rather than a rational on

; &he scattering phase shift or for the energy eigenvalues, is
to get acceptable results, is what we refer tokaamers’ gp gy €19 '

dil in th A itis th luti f this dil optained |f the original pot.elntilal_ is set to zero. They applied
lemmain he present paper. 1L is the resolution ot this AIeMmMa ;¢ 4ndition both for semi-infinite intervals such as0r <

that is the theme of our artlclg. The article IS organized as ., and for finite intervalsa < r < b and showed, in particular,
fOHOWSJ In section 2 ,W? descrlt_Je some earlier vv_ork on the that it made the Langer transformation unique.

resolution of Kramers_ dl_Iemma in ord'lnary three-dimensional 2.2. The Planar Radial Wave Equation.In the present
space and add a quahtgmye presentation of our.own entrance topaper, we take a new look at Kramers’ dilemma. It is based on
the problem. Our quantitative analysis is carried out in a general

D-di ional dis deferred to the followi " the conjecture that it is not the domain of the independent
-dimensional space and IS deferred 10 the 101owing SECUONS. | o japier that causes the problem, but solely the fact that the
Thus, a discussion of the genefaddimensional central-field

Lo . . ; . differential eq 5 is singular at the origin. In accordance with
problem is given |n__sgct|on 3, W't.h emphasis put on the fact this viewpoint, we do not dismiss as a proper independent
that _the radlal_ Schidinger equation may be written iD . variable. Instead, we merely consider alternative, but physically
phys!cally gquwalent ways, correspondlng to the_respectlve equivalent forms of the differential equation itself and try to
subdimensiondl = 1, 2, ...,D. In section 4 we investigate the

- ; o apply the JWKB description to each of these equations
possibility of applying the JWKB approximation to each of the : .
D radial equations in turn and conclude that a satisfactory result separately. It turns out that only one of the physically equiivalent

v is attainable fod = 2. We th lect th tizati equations can be satisfactorily attacked by the JWKB method.
only 1S attainable fod = 2. We then collect the quantization ;¢ conclusion, then, resolves Kramers’ dilemma in an unforced
formulas based on thé = 2 equation in section 5. In section

o . . . ; way.
6 we specialize to the isotropic harmonic oscillator and the y

. g To be specific, we note that for a normalized wave function
hydrogen atom for which the JWKB energies, as already P '
. . 7 of form 2, we have that
mentioned, agree with the exact ones. We make the observation

that thed = 2 radial equation also is the most convenient startin w oo
d g [ R dr = [Py dr =1

point for an exact treatment ofl-dimensional radial problem 13)
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Hence,R%(r) may be referred to as a spatial probability density from the relations
(with the “volume element” defined addr). On the other hand,

P2(r) is a radial probability density. But we may also introduce R(r) = T(r)/\/F (22)
a new functiort® T(r), which determines a planar probability
density, T(r), in the sense that P(r) = VIT(r) (23)
L/:o T(rdr=1 (14) instead of looking for them as JWKB solutions to egs 4 and 5.
Our approach also throws new light on the success behind
The functionT(r) is defined as Langer’'s method. His analysis may, in fact, be considered as
nothing more than a somewhat complicated way of solving eq
T(r) = VIR(r) (15) 16 by the JWKB method. For as eq 23 shows, the funatieh
defined by eq 11 is exactly the functidrfr) expressed in the
It satisfies the differential equation variablex instead of the variable. Equations 12 and 16 are

accordingly equivalent.

The importance of our conclusions is amplified by noting
that they may be extended from three dimensions to any
1\2 dimension. In thd-dimensional central-field problem, one may
(/+5) K2 define D radial functions. Thus, we obtai® differential

5 T(r) = ET(r) (16) equations. But it turns out that among those, the JWKB
r approximation may only be applied to the planar equation. We
prove these assertions in the following sections. The results of
the present section follow from the general case by pufiing
= 3. Hence, we do not derive them independently here.

2
- h—z(m + 29O L vy +

2u\ gr? rodr

which we shall refer to as the planar radial wave equation. We
note that it also containg in the same way as expression 8
does, namely, in the combination ¢ %,)2.

Let us temporarily write the three equations, eq 4, eq 16, 3 The Central-Field Problem in D Dimensions

and eq 5, as . . . . . .
The Schidinger eq 1 is readily generalized Bodimensions

I:|(3)R(r) = ER() (17) (D = 2) by lettingr = (x4, X2, ..., Xp) denote the position vector
of a “particle” moving inD-dimensional position spaééwhere
I:|(2)T(r) = ET(r) (18) (X1, X2, ..., Xp) are Cartesian coordinatess now the hyperradius
as given by the relatior? = + X5 + ... + x5, andv?2 denotes
I:|(1)P(r) = EP(r) (19) the D-dimensional Laplacian.
The eigenfunctions of the Schtimger equation may now be
respectively. We have then that written
HE = e (20) ¥(r) = R(Y,(Q) (24)
and Here,Q is a collective notation foD — 1 angular coordinates,
B — (2@, 12 andY,(Q) is a hyperspherical harmoni€.?2 The hyperspheri-
cal harmonics are eigenfunctions of the grand angular-
= rH®1 (21) momentum operator

These relations specify the sense in which the three physically . 1b b
equivalent equations, eq 17, eq 18, and eq 19, are mathematically [P=- Z/ﬁ (25)
equivalent. Obviously, the origin plays a complicated singular 251 5
role because of the factors2 andr—=.

From the outset, there is no reason eq 19 should be morewhere
fundamental than egs 17 and 18 as a candidate for an application ~ . .
of the JWKB method. Admittedly, the equation is the only one Zi =Xp—%p, 1,J=1,2,..D (26)
that does not contain a first-order term in d/But actually, a
first-order term presents no difficulties, as already emphasizedare the components of the angular-momentum tensor. The
by WentzeP Hence, a complete JWKB analysis of the radial operatorsh are the components of tfi2-dimensional momen-
problem should investigate the possible application of the JWKB tum operator.
method to each of the three equations separately. Due to the The operatoi? has the eigenvalues
singular status given to the origin by relations 20 and 21, there
is no guarantee that each equation is equally favorable in this LL+D-2), L=0,1,.. (27)
respect. This is the philosophy behind the present work.

In this spirit, we have also applied the JWKB approximation With the degeneracy corresponding to the eigenvialbeing*-#2
to eq 4. We have found similar problems as Kramers noted for
eq 5. However, the application of the JWKB approximation to oD, L) = (2L+D—-2)(L+D - 3) (28)
eq 16 turns out to be unproblematic. ' LY(D — 2)!

Kramers’ dilemma is thus fully resolved by noting that it is
eq 16 which is the proper starting point for the application of In a central-field problem, this is the number of hyperspherical
the JWKB approximation. The optimal procedure is therefore harmonics associated with a givervalue. In eq 24 they are
to concentrate ofii(r) and subsequently determiRér) andP(r) denoted byy,,(€2).
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The Schidinger equation for the radial functid®®)(r) of
eq 24 is

2(D) (D) _
dR(z(r)+D—1dR (N LL+D 2)R<D)(r)+
dr r dl’ r2

%{E — V(IR = 0 (29)

For a normalized wave function(r), we have that

JIIROMPAC  dr =1 (30)
Hence, RP)()]2 is a probability density ifD-dimensional space,
the “volume element” beingP~1 dr.

The function PO)(r) which determines the corresponding
radial probability density asP{P)(r)]2, such that

SrPOmPdr =1 (31)
is
PO(r) = r® V2 ROr) (32)
It satisfies the differential equation
d?P® LL+D-2) (D—-1)(D -3
() [L( )+ ( ) ) PO +

4r?
%[E ~V(NIPO(r) =0 (33)

dr? r?

Equations 9 and 33 are the generalization®tdimensions

Dahl and Schleich

RO | d— 1dR®I(r)
+ —
dr? r dr
LL+D-2) (D—d({D+d-4)
r? " 4r?

%[E —V(IR®I(r) = 0 (37)

R®I(r) +

or
RO | d—1dR®) A +d-2)
+ —
dr? r dr r?
%[E — VNIR®(r) =0 (38)

R®9(r) +

where

r=L+224

5 (39)

In the following, we shall consider the possible application of
the JWKB method to eq 38.
4. The Radial JWKB Problem in D Dimensions

We begin by writing eq 38 in the form

RV | d—1dR°V()

dr? — 5 T QMR =0 (40)

with

7 +d—2m7 M
Q) =,%l[ 24[E ~ V(r)] - %} (@1)

We then seek solutions of eq 40 of the form

of the corresponding egs 4 and 5 in three dimensions. We note

that the effective potential defined by eq 33 has the form

el?le)(r) =
_ 2 _ _ 2
Vi) LL+D-2#r (D—1)D -3k

2ur? 8ur?

(34)

The last term in the expression ffy™(r) is the quantum
fictitious potentialthat we have discussed in earlier wékiVe

note that it disappears in three dimensions, in accordance with

eq 5.
The functionsR®)(r) and PO)(r) are just two members of a
set of D radial functions, defined by the relation

RPIYr) =r® 9RO, d=1,2,..D (35)

Obviously, RPY(r) = P(r) and R®D)(r) = RO)Xr). For a
normalized wave function of the form 24 we have that

JIIRCIm A dr =1 (36)
Hence, RP9(r)]2 is a probability density in a@-dimensional
subspace.

The Schrdinger equation determining the radial function
R®A(r) is found to be

@(r) = A(r)g*®

For the sake of simplicity, we have suppressed tbe (
d)-dependence of the functiolr), ¢(r), A(r), ando(r). We
take A(r) and o(r) to be even and odd functions df,
respectively. Since eq 40 is invariant under the substitution
— —h, this implies thatA(r)e~°() is a solution of this equation
whenA(r)ee® is. HenceRP:d(r) may be written

(42)

RO = An{c,e” + ce ) (43)
where ¢; and ¢, are complex constants. Our problem is to
determine the approximate form 8{r) ando(r).

To this end, we substitute expression 42 into eq 40 to get

d°A , d—1dA do\®> . o
dr2+ — 5 A(dr)—i—QAJr
|.d%  d—1,do , .dAdo| _

BecauséA is an even function df, while ¢ is an odd function,
this equation falls apart in two separate equations, namely,

2 f—
A d—1dA_ o

25
dr? rodr ar] TQA=0

da)2 (45)

and
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dc  d—1do_ ,dAdo_
Adr A T %0 © (46)
The second of these equations has the solution
Ay = (47)

(@02 (o (r))l/z

where C is an arbitrary constant and the prime denotes
differentiation with respect to.
We now divide eq 45 from the left bj(r) to get

1A, d—11dA _(do\?
Adr (0 (48)

_ 2:
Adr r dr)-’_Q 0

and then substitute the form @&{(r) into this equation. After
some cumbersome reductions this leads to the equation

(d—1)d—3)
4r®

Irr I 2
(Y~ Q@+ 3% 5] =0 we)

To proceed, we now put

o(r) = ["q(r) dr (50)
and substitute this expression into eq 49. This gives
1 (d-1)d=3) 19'() 3(qMN}*_
w0 T T _Z(q(r)) -
(51)

We shall not pursue the problem of determining the general
form qg(r) from eq 51. We are interested in determining(r)
= Q(r) is already a reasonable approximate solution. For
expression 43 foR®.d(r), together with eq 47, would then give

R®9(r) = L@ 0 ey (5

(d l)/2 Q( )1/2

which is the JWKB expression faRPd(r).
Thus, we must direct our attention toward the function
U r y r 2
1Q( )_§(Q( )) 53)
2Q(r) 4Qr)

which must be small for eq 52 to be approximately valid.
Obviously,z(r) is ill behaved at the zeros of the functi@fr),

1(d-1)@d-3)

7(r) =

but eq 52 is only sought as a solution away from these zeros

anyway. The serious problem is that, in generél) must also

be suspected to blow up for valuesraflose to the origin. This
was, in fact, the behavior noted by Krameesd Langet for

the three-dimensional hydrogen atom, wdthk- 1. In their case,
the first term on the right-hand side of eq 53 is absent,=nd
becomes identical with Langer’s auxiliary functien(r), apart
from a change of sign. It was the undesired behaviapgtf)

that led Langer to introduce transformation 11 which bears his
name. In our more general analysis, we are free to chdose

different from 1, and we shall now see how to take advantage

of this freedom.

We begin by assuming that the terr(/” + d — 2)h%r2 in
expression 41 foQ(r) is nonzero. As always, we also assume
that|V(r)| diverges less strongly thanrd At the origin. We then

J. Phys. Chem. A, Vol. 108, No. 41, 2008717

have, for sufficiently small values af that

Q) ~ 7 (54)

wherea is a complex constant. With this expression @(r),
we find that

1Q'M 2»(%)2 L
2Qn 4an) ~a? 59
and eq 53 becomes
1d-1)@d-3) 1

Obviously, the condition for(r) to become approximately zero
close to the origin, is thad(— 1)(d — 3) = —1. But the only
value ofd for which this happens id = 2.

We have thus arrived at the important conclusion that the
only circumstance under which the JWKB description may be
expected to give reasonable results is when it is applied to the
radial eq 38 withd = 2. But can it be applied for anp? The
condition is that eq 54 hold, that is, the quantity/” + d — 2)
must be nonzero. With the definition 39 ¢f we have that

2
A +d-2)E2 2= (L+9—1) (57)

2
This expression is actually nonzero, apart from the particular
case wherd = 2 andL = 0. Hence, the JWKB description
should, in fact, be a reasonable description for Bngnd any
L, except for the special casB,(L) = (2, 0)%*

In light of this conclusion, let us now introduce a special
notation whernd = 2 and, in analogy with the terminology of
section 2, denote the radial functi&®2(r) by TO)(r). We have
then, in accordance with eq 35

TONr) = rC~22RO)r) (58)

and
SmOmrrdr=1 (59)

[T®)(r)]? is a planar probability density.
According to eqgs 38 and 57 the radial equationTé&¥(r) is

D 2
#00)  1an (oY,
w2 Trodr > TO(r) +

%[E —V(ITO(r) = 0 (60)

The effective potential defined by this equation is

D 2 5
ﬂ+§‘ﬁh
VEAry = v(r) + 61
(r)=V(r) our? (61)
The functionQ(r) of eq 41 therefore takes the form
) (L +o- 1)2h2 "
Q) = 5| 2E ~ VOl - ————  (62)

and the JWKB solution 52 away from the zeros@P-2(r)
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2.5 left and right parts, respectively, of region Il

1 a
ij%@%Wwwp&%wowa

J 1 r
ijiﬁﬁwﬁwﬁw%wowa
by _c 1 r (D, _
E TOr) = ﬁQ@T(r)WCOS(fa QP(r) dr — z/4) (66)
_c 1 b (D,
Tf)D)(r) = ﬁ Q(DT(['):L/Z COS(/: Q(D 2)(r) dr — .71'/4) (67)

with the requirement thaf>(r) = T)(r). We have drawn on
the well-known connection formulas for one-dimensional JWKB
problems35-8.2526

The conditionT®(r) = TE)(r) gives the quantization re-
r quirement

Figure 1. JWKB description of the isotropic harmonic oscillator in

three dimensionsY = 3), L = O states. The lower curve shows the be(D,Z)(r) dr = (3+ 1)7[ s=0,1,2,.. (68)
potential energyW(r) = Yuw??, the upper curve shows the effective a 21 T

potential defined by eq 61, which in this cade € 3, L = 0) reads

VE2(r) = V(r) + h¥8ur2 The variabler is measured in units of the ~ With ¢’ = ¢ for s even, andc’ = —c for s odd. This relation
characteristic length/A/uw; energies are measured in unitshes; a determines the possible bound-state energies. It is, of course,
andb are the modified classical turning points corresponding to the the standard quantization condition of one-dimensional JWKB
energyE. theory, with the effective potential 61 playing the role of the

one-dimensional potential.
Having determined an allowed energy from relation 68, the

becomes JWKB approximation to the corresponding radial function
TO)(r) is given by expressions 6467. The whole set d radial
T(D)(r) — functions corresponding to the chosen energy may then be

1 1 o o obtained via eq 35. In particular, the radial functi®®(r) of
——{cle'f Q.20 4 cze_'f QP20 (53) eq 32 is obtained by multiplying expressions-@% by /.
\/F Q(D,Z)(r)l/z

6. The Isotropic Harmonic Oscillator and the Hydrogen
These expressions give the general solution of the radial Atom in D Dimensions

JWKB problem inD dimensions. The results for the three- 6.1. JWKB Energies. With the application of appropriate
dimensional case discussed in sections 1 and 2 follow, of courseechniqued for evaluating the integral on the left-hand side of
from these expressions by puttilg= 3. Thus, eq 16 results ¢4 68 it is readily shown that the quantization condition
from eq 60 in this way. represented by that equation reproduces the exact energies, as
As to the values of the coefficients and c, they stay given below, for the isotropic harmonic oscillator and the

constant within a region of free from zeros of the function  hydrogen atom in any dimension. This is even true for the case
QP2)r) but change in a discontinuous way when one passes a(D, L) = (2, 0), if the origin is taken as the left turning point.
zero ofQP2)(r). The pattern is the usual one known from the The combinationl, L) = (2, 0) was excluded from the general
JWKB discussion of motion in a single dimension. In the analysis because the factdr ¢ D/2 — 1) in eq 57 becomes
following section, we list the bound-state results for an attractive zero in this case. To understand that it may nevertheless be
potential, where the effective potenti e'?f'z)(r) of eq 61 included, we note that our whole analysis holds for any positive,
defines a single potential well. nonzero value ok, even ifL is not an integer. The validity for

(D, L) = (2, 0) may therefore be considered to follow as a

o limiting case during the transition (2) — (2, 0).

5. JWKB Quantization That the JWKB method gives the correct energy eigenvalues

for the harmonic oscillator and the hydrogen atom in any

As an illustration, Figure 1 shows the effective-potential well  dimension is, to a large extent, well-known. FBr= 3, the

associated with the. = O states of an isotropic harmonic  reason for the success of the JWKB method in this respect has
oscillator in three dimension®(= 3). The qualitative form of been discussed by several authors, most conclusively by
the well is shared with other attractive potentials and ofher Rosenzweig and Kriegé®. Their conclusions may be readily
andL-values, and the expressions below refer to such generalextended to cover all values &
potentials.a and b are the modified classical turning points 6.2. Exact Solutions From the Planar Radial Wave
corresponding to the enerdy They are defined by the zeros  Equation. The exact analytical solutions for the harmonic
of the functionQ(®2)r) of eq 62. The regions I, II, and Il refer  oscillator and the hydrogen atom i dimensions have been

to the domains O< r < a,a <r < b,andr > b, respectively.  carefully studied in the literatu®®:2° The point of departure
For a bound state, the JWKB wave function 63 takes the for determining the solutions has usually been eq 29 for the
following form in the various regions, where indices | and Il radial functionR®)(r) or eq 33 for the radial functioR®)(r).

refer to the regions | and I, while indicesandb refer to the Here we want to point out, that among tBeradial equations
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given by expression 38, eq 60 f6®)(r) has an especially simple
form because, according to eq 57, the factdry” + d — 2)
reduces to the squaré @ D/2 — 1)2 This implies, in turn,
that not only does the equation faP)(r) hold a preferred
position as far as the JWKB approximation goes, it is also a
more convenient starting point for obtaining analytical solutions
of the Schidinger equation, when such solutions exist. This
holds for a general potentiaV/(r). In the following we
demonstrate it for the isotropic harmonic oscillator and the
hydrogen atom in arbitrary dimensions.

According to eq 60, the functiom®)(r) only depends upon
the dimensionD and the angular momentuiln through the
parameter

a=L+9—1

> (69)
We may hence rewrite eq 60 as
TN | 1dT,() o2 2u
et T+ HE - VOIT 0 =0
(70)

The fact that this differential equation only contains the orbital
angular momenturh and the dimensio® in the combination
o =L + D/2 — 1 implies an isomorphism in the sense tbat
— D + 2is equivalent td. — L + 1. This isomorphism, which
holds for any central-field potential, is well-knowhput it is
usually derived in a somewhat less direct way from the
differential equation foR®)(r), or the differential equation for
POX(r).

For the harmonic potential

V(r) = %ua)zrz (71)

eq 70 may be solved analytically by the well-known polynomial
method®® Applying this method, one finds the bound-state
energies to be

E(a, s) = (o + 2s+ 1hw, s=0,1,2, ... (72)
The corresponding eigenfunctions are
T, N =110, 9EM(—s, o + 1,8)e < (73)
where
E= /%r (74)

and M(=s, a + 1, £?) is the confluent hypergeometric, or
Kummer’s, functior®2 and 1{q, s) is a normalization constant.
sis referred to as the radial quantum number.
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The eigenfunctions for the Coulomb problem are

TN =1"(c, 9p"e "*M(=s, 200+ 1,p)  (77)
where
_2Z

with ag = 4egh?ue?, and "' (a, S) is a normalization constant.
Let us note that the principal quantum numbkof eq 76 is

integral forD odd and half integral fobD even. The reverse is
the case for the factom + 2s + 1 contained in the energy
expression 72 for the harmonic oscillator. This alternation
between integral and half-integral values was an interesting
observation in early wave mechanics, primarily for the transition
(D = 2) — (D = 3). It was, in particular, emphasized by
Sommerfeld® and van Vleclé*

7. Comment

As we have shown, a successful application of the JWKB
method to the central-field problem D dimensions requires
that one takes the planar eq 60 as the preferred equation, rather
than the one-dimensional eq 33. We may define a general
Kramers correction as the difference between the effective
potentials defined by egs 61 and 34. We find easily

ﬁ%%ﬁ%h%; (79)

Thus, the Kramers correction is independenbof his reflects
the fact that the differential operator in the equation determining
R®.d(r) only depends upod, and not uporD, as shown in eq
38.

That the Kramers correction is the same forR@Jlimplies
that the Langer transformation 11 may be invoked for Bny
This possibility has, in fact, already been recognized by
MoreheadP®

8. Conclusions

TheD-dimensional central-field problem definBsphysically
equivalent radial Schidinger equations, corresponding to the
subdimensiond = 1, 2, ...,D. These equations are all singular
at the origin. In the present paper, we have shown that this
causes them to be nonequivalent as far as the JWKB ap-
proximation is concerned. In fact, we have shown that only the
d = 2 equation can be directly attacked by the JWKB
approximation. In the past, focus was always put ondhke 1
equation. This led to difficulties that could only be overcome
in an indirect way. Thus, Kramers had to add an ad hoc term to
the central-field potential in order to get satisfactory results,
while Langer made an ad hoc transformation of the independent

For the Coulomb potential 10 the bound-state energies arevariabler.

similarly found to be
z& )2 u

2 1
Ao 2h2(a +s+ %)

where s is again the radial quantum number. The so-called
principal quantum numbeN is

E(a, s)=—( s=0,1,2, .. (75)

N:(1+S+1'

5 (76)

A direct application of the JWKB approximation to thde=
2 radial equation leads to the exact energy expressions for the
hydrogen atom and the harmonic oscillator. That Kramers and
Langer also got the exact expressions is understood by noting
that the Kramers correction turns tbe= 1 effective potential
into thed = 2 effective potential, while Langer’s differential
equation can be interpreted as an indirect representation of our
d = 2 equation.

As to determining the exact solutions of a central-field
problem, thed = 1 and thed = D equations have been the
preferred equations in the past. We have shown, however, that
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