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In this paper is presented a theory according to whitbf the elements of the nonadiabatic coupling matrix,
7i(Q,), are created at thgingular points of the system. (These points are known also as points of conical
intersections.) For this purpose, we consider the angular distribution of the angular compénts0.¢;).

at the close vicinity of their singularities, namely, around jtftesingularity pointsy; = 0. It is shown that

these distributions determine the intensity of the entire field created by the nonadiabatic coupling matrix at
every point in the region of interest. To support these statements, the three lower states of Hyeshistem

(which in our example form three conical intersections) and the third and fourth states of théiNsystem

(which in our example form four conical intersections) are considered. From ab initio treatments, we obtain
the above-mentioned angular distributions and, having those, create the field at every desired point employing
vector—algebra. The final results are compared with ab initio calculations.

I. Introduction as sources for a field is somewhat reminiscent of the fields
d produced by charged patrticles (electrons, protons, etc.) and the

This paper is part of a collection of papers to honor our frien spatial distribution of the NACTSs as the spatial intensity of the

and colleague Professor Gert D. Billing. What makes this paper : . . X o
somewhat special is the fact that the subject considered heregg:gm;zgnzln:hgt tg 'tshgg%egﬁhtg i?:dvvi’sbéaﬁ%;ng ab initio
was started together with Professor Billing (and Professor John Although ,vve mentioned charges as possible s.ources for a
Avery) while one of the authors (M.B.) spent part of his fie

. h . . Id, the sources for the present (molecular) field are not electric
gabba’;:cal a:zthe Department of Chemistry at the University of charges. As is now known, the NACTSs fulfill (extended) Curl
opennhagen- . equation®® and therefore have their origin, just like the
In recent years, efforts were invested to study the nature of

he el 2 diabati i T h electromagnetic vector potential, in magnitudes that are pseudo
the electronic nonadiabatic coupling terms (NACTS}. The magnetic fields. This possibility becomes most apparent when

NACTSs are characterized by two features: They are ve€tsts . ,nsidering two isolated states that form a (single) singularity.
(in contrast to potentials that are scalars), and they may becomeg, .y an analysis performed a few years ago shows that the two-
slngl_JIai14 (in contrast to pot_ent_lals tha@ do not). If arranged in = ;440 NACT, 7 (see below for proper definitions), can be
matrices, they acquire a third interesting feature, namely, that gj 1ated as a vector potential formed by an infinitely long and

the matrices are antisymmetric. , narrow solenoid. In other words,was assumed to fulfill the
Because NACTs follow from the BorrOppenheimer treat- equations

ment2 and because they appear in the nuclear Stihger
equation that follows, they are on the same footing as the Curlt=H (@)
potential energy surfaces. Therefore, so it seems, the ordinary

way to get acquainted with the NACTSs is to study their spatial WhereH is modeled as a (pseudo) magnetic field produced by
structure-somewhat reminiscent of the way potential energy an “electric current” along a solenoid. Becausdds nonzero
surfaces are studieehnd then eventually to apply them. only inside the solenoid and because the solenoid is very narrow,
However, as it turns out, this idea is somewhat naive becauseit can be, mathematically, presented as

thesingularity of the NACTs adds a nedimensionin the study

of molecular processes. Being singular hints toward the pos- H = 27f(¢) @ 2)
sibility that the NACTs are a kind of field that has its origin at q

these singular points?15which produce nonlocal effects. In
what follows, this field is termed as thmolecular field The
intriguing idea to categorize the singularity points of the NACTs

where €, ¢) are polar coordinates in a plane perpendicular to
the solenoidg(q) is the Dirac delta function, anify) is some
function of the angler chosen in such a way as to satisfy certain
T Part of the “Gert D. Billing Memorial Issue”. features, as will be fjlscussed be_low. . . .
* Corresponding author. Permanent address: Soreq Nuclear Research The fact thatr fulfills eq 1 implies, semiclassically, that it
Center, Yavne 81800, Israel. E-mail: michaelb@fh.huji.ac.il. results from a quasi-electric current that flows along the
* Department of Theoretical Physics, University of Debrecen. solenoid. The solenoid according to the model is formed from
8 Hungarian Academy of Sciences. . .
a line of degeneracy points known by the naseam In what

I'nstitute of Informatics, University of Debrecen. ] ' .
D Szent-Gyogyi Albert Professor. follows, we term the degeneracy points as points of conical
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intersection and use the acronym ci (see refs 16 and 17 forcommutator in eq 6 becomes zero so that the equation reduces
detailed studies regarding the ci’'s and their importance for solid- to the more familiar form
state physics and molecular physics).

As long as our system behaves as a two-state Hilbert Curlz=0 (6)
subspace, the above equations are fulfilled and the relevant ) ) ) )
theory follows accordingly (see also the next section). However, Wherez, in this case, is a 2 2 vector matrix of the form

in general, the two-state approximation soon breaks down, and

as a result, the ordinary Curl equation has to be replaced by a T= (0 r) (7)
more general equation, the extended Curl equation, which, -7 0

among other things, contains nonlinear teffis what follows, It is noticed that, in this case, thematrix contains only one
we discuss this extension for three states and employ ab initio yonzero termy, and therefore the Curl equation for the matrix
results to study its relevance. r becomes the Curl equation for this matrix element=

The Hilbert subspace, in a given region, is formed from a (Tqr T40)
group of states where eaeldjacentpair forms one (or several)
ci(s)!® According to its definition, a Hilbert subspacannot 1(07 T
contain two adjacent states that do not form at least one ci. In Curlt= —(a—¢ - 8—q) =0 (8)
other words, adjacent states that do not form a ci with states aroq ¢

within the subspace are excluded. Nonadjacent states (€.9., thgquation 8 is valid at every point except at the singularity point.
first and third) usually do not form a ci, but this by no means T4 include this point (assuming we have only one point like
implies that the corresponding NACT (in this particular example, this), eq 8 is extended to become (see also eq 1)

713) is identically zero. This subject is discussed extensively in ’

the third section. or, ot
= 5 = (@) 6(0) 9
Il. Theory g dg
I.1. Introductory Remarks. The magnitudes to be discussed In what follows, we considet, as the only unknown function
in the present paper atgj/d, the angular component of and (thus, we ignore the fact that, is also unknown), so that its
Tgjk, the radial component, both defined'@s solution can be shown to be (by substitution)
_[+9 e _ aq, 0Tq
m= b ol A=ae iE0={L N @) r,(a9) - [ydag = ha (@) (10)

where g and ¢ are the two corresponding (nuclear) polar Where h(q) is the Heaviside function. Becauspis always
coordinates in the plane of interest and thés-|q,¢) functions positive,h(q) can be ignored and eq 10 becomes
are the eigenfunctions of an electronic Hamiltonkdyise|q,¢):

7,(9.9) — J; g 2 = t(g) (11)
[He(sI0.0) — U(@@)]Ii(slae)0=0; k=1,..,N (4) v S0 ag

To determinef(¢), we consider eq 11 in the limit af — O.
From numerous ab initio calculations, it is verified thatin
the intervalq ~ 0 is finite and therefore

Here uk(q,¢) is thekth electronic eigenvalue arsd stands for
the electronic coordinate.

A few decades ago, it was verified that any system of
electronic eigenfunctions that forms a Hilbert space and for any f(p) = 7,(q~0,p) (12)
pair of Cartesian nuclear coordinates ¥) the corresponding ¢

NACT matrices fulfill the following equatior Because,, is known to be quantized (reminiscent of the Behr

Sommerfeld quantization but applied to a spin), we have a

o, or, imi i ati -20
0 5 similar quantization foff(¢):
Xy 3)(y 3; [1y1 tx] (5) 2

27 21
7,(0,¢) dp = nr — f(p) dp = nw (13)
known as the extended Curl equation (to distinguish it from ﬁ’ A ﬁ’ ©o

the ordinary Maxwellian Curl equation). In the present paper,
we consider only two (polar) coordinates, and in this case, eq
5 reduces to

In what follows (and because of eq 18)p) is defined as the
virgin angular component related to a given ci. The reason being
that usually any part of a NACT is affected by neighboring
NACTSs, except for a section located atiafinitely small region
= 1(% _0rg [z, 1 ]) -0 ©) surrounding its own ci.
@ e So far, we discussed only,(q~0,¢) [=f(¢)]. As for zq, the
situation is somewhat different. Numerical studies show that
This equation was proved to exigtpproximately also for a 74(q) is finite asq — 0?* and therefore is orders of magnitude
group of states that forms a Hilbert subspace at a given régflon. smaller thanr,(¢)/q (in this region). Because a single ci for
The Curl equation (as well as the extended version) is discussedhe two-state Hilbert subspace is rare if it exists at all, it is not
frequently in the literature and will not be elaborated in this clear whether the nonzeug values in the close vicinity af ~
article871° Equation 6, as applied for a Hilbert subspace, is 0 that are obtained by the ab initio calculation are essentially
one of the subjects in the present study. produced by other ci's or by the ci under consideration.
I1.2. Treatment of the Two-State System in a Plane. 11.2.1. Therefore, in what follows, we assume that thiegin radial
General Theory. In the case of a subspace of two states, the componentzq(g,0), is always identically zero.
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The situation in the close vicinity of each ci is summarized N 1
as follows: 7,(0.9) = quj(%) a cos@p — @) 17)
i= j

7(~0¢) = {7,(a~0¢)/a, 7(a~0¢)} ={f()/a. O (14) Equation 17 yields the two components =(@,¢) for a

. distribution of two-state ci's expressed in terms of thegin
The rest is just algebra. distributions of the NACTSs at their ci's. These functions have
Before completing this section, we return to eq 2 in order to o pe obtained from ab initio treatments; however, the entire
make a connection between the findings regard{py and the field is formed by eq 17.
pseudo magnetic fieldd along the seam. Becaud@y) is 11.3. Treatment of the Three-State System in a PlaneThe
words, the quantization we encounter fdnas its origin in the

quantization of the pseudo magnetic field that exists along the 0 T, T3
seam. This situation, which is reminiscent of Dirac’s quantiza- r=|-1,0 Tps (18)
tion of the magnetic monopole, was discussed, to some extent, —Ty3 —Tp3 0
in ref 15.
11.2.2. Application of Vector —Algebra To Form the Two- and the corresponding three-state Curl equations become
State Molecular Field. In the previous section, we analyzed a
system with a single ci (see eq 14). Next we consider the Curlz,, = [Ty3 X 7,4 (19a)
situation where the two states form several ci’s. In this case,
just like in electrodynamics, vecterlgebra is employed to add Curl 7,53 =[1,5 X 7)) (19b)
up the contributions of the various ci’s to obtain the resultant
intensity of the field at a given point. Curlz; = [1,, X 7,3 (19¢)
For this purpose, we first derive the mathematical expression
for the field due to a ci located at an arbitrary poigb,gjo). As is noticed, the extension from two states to three states is

The procedure is as follows: Havimg= [fi(¢;)/q;, O], we present much more involved than just adding another equation. Com-
it in terms of Cartesiancomponentgz,, z,) and then shift the paring eq 19 with eq'6(or with eq 8) shows already some of
solution to the point of interest, namely, (0,0)(Xjo, Yio) [=(0jo, the difficulties with this extension. In the two-state case, all we
@jo)]- Once completed, the solution is transformed back to polar have to do is employ vectefalgebra to obtain the components
coordinates. The derivation, presented elsewhere, yields for aof z, but no differential equations have to be solved. In the three-
given point P(q,p) (as measured from the new origin) the state system, the vectealgebra may at most yield a first guess
following resultst2 for the inhomogeneity terms related to the Curl equations of
the various matrix elements, but then to obtain thelements
_ 1 . themselves, one is forced to solve differential equations.
rq(q,go) - _fj(wi) a sin(p — qoj) Moreover, these differential equations are nonlinear, which may
: introduce additional complications.
The three equations in eq 19 contain six unknown functions,
7,(@%) = fi(@) qﬂ cos@ — @) (15) namely, €,k Tqi); K > j, j = 1, 2. Thus, to solve them, we
: need to find another three equations (this subject was recently
where the connection between the various coordinates is asdlscussed_m refs 2.1 and 22). The present paper d_lffers fr_om
follows: the ones just mentioned by the fact that these (differential)
equations will not be solved. Here we only apply veetalgebra
to validate the relevance of the equations themselves.
q = \/(q COSQ — G COS@,0)° + (0 SiN @ — g SiN ) Before we start with the numerical part, we discuss an
important feature given in eq 19. We argued on several
g COS@ — Gjp COS@)y occasions that singularities can be formed only between two
cosg; = q (16) adjacent states and therefore only the NAC#s; values are
! formed by their own singularities, whereas the other NACTSs,
. ) of the kindzy (k= j + 1), have to be formed in a different
It is noticed that forg — O (and thereforep; — ¢) the way. Equation 19c implies that such a NACT, namety, is
solution in eq 15 vyields 4,(q.¢)/a, Q@) = [fi(@)/a, formed by the mutual interaction of the first two NACTs»
74— 0], which is the solution for the case where the ciis at the and 7.z, If these two NACTs do not interact, namely, do not
origin. A similar situation is encountered gs> gjo. Here, too, overlap in the region of interest;s becomes identically zero
% — @ and thereforerg — 0. in that region. This finding can be expressed in a different

We attached to each ci a differeity) function, i.e.fi(¢j), way: If 713is zero at every point in the region of interest, then
to indicate that each such ci (in this case ftifieone) may form  the two first equations become decoupled, and as a result, the
a differentvirgin distribution. assumed three-state Hilbert subspace breaks up into two two-
With this modified expression, we can now extend the state Hilbert subspaces: one subspace between the two lower
solution of eq 15 to any number of ci’'s. Becausgd,¢) and states and one subspace between the two upper spaces. In other
74(0,¢) are scalars, the solution in the caséNddi's is obtained words, having two groups of ci*sone group that couples the
by summing up the contributions of all ci's: two lower states and one group that couples the two upper

states-does not necessarily guarantee that the three states form
N 1 a real three-state Hilbert space.
T(a9) = —ij((pj) —sinlp — ¢) The case in whiclriz is zero at every point in the region of
= g interest has also practical implications because in this situation
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calculated the respective ab initio virgin distributiofi§p;)
[=7,(Gi~0,¢))] to be employed in eq 17.

Finally, we make the following comments: No details are
given regarding the ab initio calculations. They were presented
in the appropriate papers (see ref 10 forHH, and ref 11 for
Na + Hz).

I1I.1. Numerical Studies of Two-State Systems. IIl.1.1.
H + H, System.We concentrate on configurations for which
the distanceRyy, between two hydrogens is fixed to Bgy =
0.74 A and allow the third hydrogen to be free. For these
configurations, the kisystem is characterized by two important
features: it possesses an equilateral ci known asDpeci,
which couples its two lower states, namelgAland ZA’, and
Figure 1. Schematic figure to show the various vectors due to two the_refore Is assigned as (1')3-h ci, and two isosceles c,i’s,
sources (ci's) for constructing the andq components of(¢|q), the which couple the second and third _S,tates’ naméely, and 3’6 ’
NACT along a circle centered at an arbitrary point. Around each the two upper states. These two ci's were shown t€heci's
(thejth) source is drawn an infinitesimal circle along which are given and therefore are labeled as (2(3) ci's.
the ab initio (undisturbed) values of;(¢;|g~0) = fi(¢)). Because the klystem lacks (3,4) ci'®¢the Hilbert subspace

of three states covers a relatively extensive region in the

the calculation Otlz andf23 will be carried out, independently, Conﬁguration space around the (1% ci. As for the poss|b|||ty
using, as before, vectemlgebra only. of forming two-state Hilbert subspaces, it was shown that the
lower two-state subspace is damaged significantly by the two
upper (2,3) ci'st%2b On the other hand, the upper two states

This section is divided into two parts: In the first part, we can be shown to form a subspace upon a much more extensive
show to what extent the straightforward vectaigebra is region. This subspace is, indeed, perturbed by the lower (1,2)
capable of producing the two-state NACTs. This treatment will Dan Ci but only within a relatively small region around the (1,2)
be carried out for two systems: (a) for the two upper states Dsn Ci. Thus, for our purposes, the two upper states of the H
(the second and third) of the H H, system [in this case are  system can be considered, approximately, as a two-state Hilbert
encountered two ci's, and we sum up the components of the subspace in a region that excludes (I2) ci (and its close
two respective NACTs (employing eq 17) and compare the vicinity).
results with ab initio calculations] and (b) for the third and the There is not much interest in showing the veetatgebra
fourth states of the N& H. system [in this case we have four  approach for the two lower states (in a small region around the
ci's and, again, we sum up the components of all of them and py;, ci) because these two states form only one ci. Still, our
compare with ab initio calculations]. approach implies, based on previous studies, tha{q,¢) ~

In the second part, we discuss some aspects for the three 5 just like the value,12(q~0,p) ~ 0.5%a6.71%we remind the
state subspace as obtained for thettH, system. Recently,  reader that by, we mean the angular componentrafiultiplied
we Completed a detalled S'[Udy Of '[hIS SyStem, and |t was ShOWn by q) The deviations are at most10% as |0ng as we are not

I1l. Numerical Results

that increasing the nuclear region surrounding Eag ci, the o0 close to the two (2,3) ci's (see Figure 2). In case the circle
two-state approximation soon breaks down so that the minimal syrrounds the (2,3) ci's, this approximation fails along a
Hilbert Subspace has to be formed by three Stéf)é§F0r the re'aﬂve'y |arge angular interval, Whe'@lz Changes S|gn and

sake of completeness, we just add that continuing to increasepecomes negative.
this region leads slowly to the deterioration of the three-state
subspace as well, and it soon becomes clear that at least fiv
states are required et¢¢ The present study concentratesmsn
or, to be more precise, on Curi; as given in eq 19c.

To carry out the proposed numerical treatment, we first have N )
to reveal the positions of the ci's. Our way of doing &t (=7423(Ts~0,¢23)), as calculated fofips = 0.02 A (see also
is somewhat different from the “orthodox” w@yNamely, we ref 10). Having these twé,3(¢23) functions, we are now in
fix the distance between two atoms and use the third atom as aPosition to calculate the resulting molecula_r field. In Figure 4
test particle to locate ci's. The search is done in a given plane, &€ prgsented the results along the three circles _centered at the
and therefore the relevant coordinates are the planar coordinate$1,2) ¢i (we could, of course, choose any other circles or other
of this atom. For reason of convenience, we choose the polarcontours) as shown by the schematic picture at the top of each
coordinatesd, ¢), and the results related to the various NACTs column. It is important to emphasize that in these figures are
are presented in terms of these coordinates. The calculationg®résented the two components ©§(q,¢), namely,z,25(d.¢)
are done along circles that are fixed by assigning the position @1d7q23(q,¢)-
of their centers and their radij. As a result, the various As is noticed, a very encouraging fit is obtained, and the rest
calculatedr matrix elements are presented as a functioof is told by the results themselves. Still, we want to mention again
(={0, 27}) for fixed g values. As an example for the application that even the slight deviations are not necessarily due to the
of eq 17, we show in Figure 1 the vector analysis for the case inadequacy of the vectefalgebra but could be attributed to the
of a system of two ci’s. The positions of the ci’s are marked by background noise produced mainly by the (1,2) ci. For instance,
filled diamonds, i.e.#, and the position of the center of the the largest deviations are obtained along the circle itk
circle along which the calculations have to be done is marked 0.2 A, and this is because the (1,2) ci foree£q,¢) to be zero
by a filled circle, i.e.,®. We also present small circles with at the (1,2) ci pointthe location of the center of the
radii § around each of the ci's: Along these circles are circle—whereas the unperturbeads(q,¢) is, undoubtedly, dif-

o The upper subspace is, of course, much more interesting
mainly because we encounter here two ci’'s, and this presents
an interesting challenge for the vectalgebra approach.

In Figure 3 is given the virgin distributionf,s(¢23)
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¢ [ rad

Figure 2. Ab initio angular component,:(¢|g=qo) as a function of
@ as calculated for the $bystem, folRyy = 0.74 A, along three circles
centered at the (1,2Ds, ci. The circles designate the two fixed
hydrogens, the square designates the (D3) ci, the diamonds
designate the two symmetrical (2,8, ci's, and the straight line
perpendicular to the HH axis connects the midpoint between the two
hydrogens and th®s, ci point. The full line is forge = 0.1 A, the
dotted line is forgqy = 0.2 A, and the dashed line is fop = 0.35 A.

It is noted that the values af,1(¢p|0e=0.1 A) are close to 0.5 and the
values ofr,12(¢|g=0.35 A) are significantly different from those with
go=0.1and 0.2 A.

T 3n/2 2n

¢ [ rad

Figure 3. Ab initio angular component,»s(¢23ds=0.02 A) as
calculated for the kisystem, folRqy = 0.74 A, along a circle of radius
g3 = 0.02 A. The circle surrounding the (2,3) ci is the circular contour
along whichrz,23(¢23]023) is calculated. The presented ci, together with
the other symmetric ci, serves as the (Byin distribution to form
the full (2,3) molecular field.

ferent from zero at this point. The effect of this (1,2) ci
diminishes as the radiugincreases.

Ill.1.2. Na + H, System.We recently completed an extensive
study of this systeft and found two features that allow us to
test our two-state vecteralgebra approach for a much more
complicated situation.

Within this study, the four lowest states of this system,
namely, 2A', 22A', 32A’, and 4A’, were treated numerically.

Vibok et al.

For this purpose, we concentrated on configurations for which
the distanceRuu, between the two hydrogens, is fixed, namely,
Run = 2.18 au, and allowed the sodium to be free and serve as
the test particle. The main findings for our present purpose are
that the third and fourth states form a quasi two-state Hilbert
subspace coupled ligur (3,4) ci's. In other words, this system
furnishes a unique opportunity to apply vectedgebra for a
relatively complicated system with four sources (singularities).

The four ci's and the various circles along which the
calculations were done are presented in Figure 5a,b. Out of these
four ci's, two of them areC,, ci's located on the symmetry
line orthogonal to the HH axis at distancesof 1.580 au and
1.145 au from the HH axis (they are designatedigsand
bottomci’s, respectively) and twéwin C; ci’s located on both
sides of the just mentioned symmetry line at a distance=of
1.533 au from the HH axis and at an angle of 220 this,
symmetry, line (they are designatedsadewardci’s).

Thevirgin distributions fj(¢;), for three ci’s, namely, for the
top ci, the bottom ci, and one of the sideward ci’s, are shown
in Figure 6. It is noticed that all of them are of the elliptic tyffe
(in contrast to the circular JakiTeller typé*9). These virgin
distributions are interesting by themselves. For instance, the two
ci's on the symmetry line behave essentially orthogonal to each
other; namely, the main distribution of the top ci is parallel to
the HH axis, whereas the main distribution of the bottom ci is
along the symmetry line. The distributions of the sideward ci's
are somewhat different. They are of the elliptic kind, but their
main distribution is not along the line parallel to the HH axis
(nor along the symmetry line) but along a line that is rotated
by about 10 from the HH axis.

We return again to Figure 5 to discuss the various circles
along which the calculations were performed. In Figure 5a are
given three circles with their centers at the ori@i(0,0) (defined
as the crossing point between the symmetry line and a line
parallel to the HH axis that passes through the two sideward
ci's) and with radiig = 0.16, 0.30, and 0.40 au. Figure 5b
presents a similar situation, but this time the center of the one
presented circle, with the radius= 0.25 au, is shifted, from
the originO(0,0) downward by 0.135 au. In this way, we could
get results for a circle that surrounds only the two ci’s located
on the symmetry line.

The model results and the ab initio ones are compared in
Figure 7. In fact, like in the previous #ystem, the results
speak for themselves. It is noticed that, although the ab initio
distributions are frequently quite complicated and show a lot
of structure, the vecteralgebra approach produces functions
that are capable of following very accurately the ab initio
wiggles.

I11.2. Numerical Studies of the Three-State SystemThe
study of the three-state system is not as extensive as that of the
previous two-state system for two reasons: (a) We only have
one system available that presents truly three coupled states,
namely, the H+ H, system (for Nat+ Hj, we found that any
two-state system is only weakly coupled to a third state). (b)
Even for the one available system, we present only a few results
because the full study is not completed yet.

The magnitude that most characterizes a three-state system
is 713(q,p) for the simple reason that #3(q,p) is identically
zero, the three-state subspace breaks up into two two-state
subspaces (as discussed earlier). We also recaltti{gty) is
formed as a result of the mutual interaction betweexa,¢)
andr,3(q,p) (see eq 19c). It is important to realize that if this
mutual interaction is zero (it happens when the two functions
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0 /2 T 3n/2 2n 0 /2 g 3n/2 2n 0 /2 T 37/2 2r

¢ [/ rad ¢ [/ rad ¢ /| rad

Figure 4. Final results for the H+ H, system: A comparison between ab initio and veetagebra results for thexs(¢|g) NACT as calculated

along two circles centered at thiy, ci (the schematic picture of each circle is given at the top of the relevant column). In parts a, ¢, and e are
presented the angular components(¢|qg), and in parts b, d, and f are presented the radial comporgs{g|q). Full lines are ab initio calculations;
dashed lines are vectoalgebra calculations.

@
(3) (4)

(a) (b)

Figure 5. Four (3,4) conical intersections of the NaH, system: (a) three concentric circles with their center®,0) surrounding different
numbers of conical intersections; (b) a circle with its centéd@,—0.135) surrounding the two conical intersections located on the symmetry line.

712(0,¢) andr,3(q,¢) do not overlap)riz becomes zero, although  be formed by vectoralgebra as applied to the shirgin
according to eq 19c only Curl af3 (and notr;3) becomes zero. distributionsfio(@12) andfa3(@23).

Still, becauser;3 does not have a source of its own, the fact ~ We start with the first issue, and for this sake, we derive
that Curlziz = 0 implies thatry3 = O. each side of eq 19c independently. The left-hand side, namely,
The subject we intend to study here is related to eq 19c. We the Curl itself, is calculated in two steps: first are derived the

discuss two issues: (1) Having the ab initiex(q,p) and two components of13(q,¢) (see eq 3) by employing MOLPRO
723(0,), it will be shown that their vector product, indeed, forms and, second, are calculated numericallyqf@nd¢g derivatives
Curl 713 (2) The same treatment is repeated by employing of 713,(d,¢) and r13(d,¢), respectively, to form the required
712(0,¢) and 723(q,¢) as obtained from the vecterlgebra; Curl function. The right-hand side is obtained by employing
namely, we intend to show that approximately Guglcan also the ab initio components afi2(q,) andr23(q,p) as calculated
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Figure 6. Three ab initio angular componentgsa(¢z4/qss—0.01 au) as calculated for the NaH, system folRyy = 2.18 au: (a),34(¢34/034=0.01

au) calculated for the upper (3,4) ci on the symmetry line;z{h)¢34/0:4=0.01 au) calculated for the sideward (3,4) ci; €¢34(¢34/03.=0.01 au)

calculated for the lower (3,4) ci on the symmetry line. The three presented curves, together with the second sideward ci, serve as the four (3,4)
virgin distributions to form the full (3,4) molecular field.

by MOLPRO and forming the relevant vector products. The ] e o L e
calculations were carried out along circles with different radii o @ E
g that have their centers at the (123, ci. To have results for 05PN 7
a series of different radii is important because of the strong effect ™'} 3
furnished by the two (2,3%;, ci's (see Figure 2) om1x(q,¢). 2ol ]
The results of theses two different calculations are presented  7’f 3
and compared in parts a and c of Figure 8 for circles with two asf ]
different radii, i.e.,q = 0.20 and 0.35 A, respectively. It is - : : : ";‘; : : :

noticed that for all practical purposes the two different calcula-
tions yield the same results.

To carry out the study of the second case, we employ, as
mentioned earlier, values obtained from the virgin distributions
and vector-algebra. Thus, the left-hand side of eq 19c is
calculated as before, and only the right-hand side is produced
differently, employing magnitudes that follow from vector
algebra. For this purpose, we need the values pandz,s. It
is important to emphasize that this procedure is expected to
succeed at situations where the components; p&ndz,3 are
not damaged too much by each other, an assumption that is ;
only in part fulfilled for the H system. 0

We discussed extensively the required valueggf(also
shown in Figure 4) and only to a limited extent the values of
712. SO now we extend somewhat our considerations concerning
t12. From previous studies, we know that the virgin shape of
7,12¢|0d) is on average a constant, namd{y(¢,,) = 0.526.7.10
and it holds as long as the circle around the ()g) ci is not
too close to the (2,3) ci's and does not surround tA&mm.
Figure 2 is presented,12(¢|qd) as a function ofp for three
different values ofg. It is noticed that the basic assumption
regardingr,12 ~ 0.5 is fulfilled as long as the just mentioned
conditions are met (see how dramaticaty. is changed for

T34 ()

P S S
LI B B L B B

“7rI/2I‘7rII37:'/2‘I27r 70‘I7r;2“7lrll37ll'/2ll27r
the case ofy _=_Q.35 A). As for th_e _radial component, on the ¢ / rad ¢ / rad
basis of ab initio calculations, it is known to be not only

relatively smaf*® (in particular, as compared #9:./q) but also Figure 7. Final results for the Net H, system: A comparison between
oscillating around zero, and therefore we assume it, throughout@p initio and model resuits for the.(¢|q) NACT as calculated along

o

: : _ four circles presented in Figure 5. In parts a, ¢, e, and g are presented
the numerlcf’:ll treatment, to be zero, i&uo(¢|q) = 0. the angular components,z4(¢|d), and in parts b, d, f, and h are

~ Once having theinperturbeccomponents of1, andzzs, the  presented the radial componentsis(¢|q). Full lines are the results
right-hand side of eq 19c can be obtained as in the previous due to ab initio calculations; dashed lines are the results due to vector
case. Calculations were done for the previously mentioned two algebra calculations.
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® to our approach, follows from straightforward application of
vector-algebra. The situation, in the case of three-state NACTS,
is much more complicated: It is not only that the relevant Curl
equations are not homogeneous (see egs 19), but we have to
consider three such equations (instead of two): two equations
for 712 and 723, which are formed by sources connected to
degeneracy between adjacent states, and ongsfarhich lacks

a source and results from the interaction betwegrand z,s,

as is evident from eq 19c. In the present paper, we just refer to
713 and study the behavior of its Curl equation.

The numerical study is carried out by comparing the ab initio
results obtained from MOLPRO with the results that follow from
the vector-algebra based on the angular NACTs calculated (by
MOLPRO) in the close vicinity of the relevant ci’'s. These types
of angular NACTs are termed asrgin NACTs because very
close to their own ci’s all NACTs are basically pure two-state
NACTs (immaterial how many ci’'s are in its vicinity). The
vector-algebra that is applied is described in Figure 1 and
explicitly presented in egs 16 and 17.

+ .

%

0
[T12,723

T T e e 0 T e To perform this study, we considered two systems, namely,
H + H; and Na+ H,. The two-state study was done for the

_ two ci's formed by the second and third states of the-HH,
Figure 8. Results for the Ht- H, system as calculated for the two — gystem and the four ci's formed by the third and fourth states

¢ / rad ¢ / rad

circles centered at thes, ci. In parts a and b are presented the results )
for Curl 7135(¢|g=0.2 A), and in parts ¢ and d are presented the results of the Na+ H, system. The three-state study was done for the

for Curl 715(¢|q=0.35 A). Full lines present the results due to the left- thrée states of the H H, system, whereas within the two-
hand side of eq 19¢ (mentioned also as the Maxwellian Curl), and dotted State study, the relevant molecular fields of H + H, andzs,

lines present the results due to the right-hand side of eq 19c, namely,of Na + H, were calculated directly (by applying vector

the vectorial product. In parts a and c, the vectorial product is formed algebra); in the case of the three-state study, we derived Curl

from magnitudes formed by ab initio calculations, and in parts b and .. . (and notzs itself) but again emploving vectsmlgebra as
d, the vectorial product is formed from magnitudes obtained by vector d?(szt(at ed by el; 19¢ ) 9 ploying 9

algebra calculations. ) o )
The comparison between the ab initio calculations and the

circles, and the results are presented in Figure 8b,d, where theyanalytical results undoubtedly indicates that, indeed,ntioe

are compared again with those obtained by the Cur expression|eCU|ar fieldsare created by sources located at the degeneracy
on the left-hand side of eq 19¢c. A reasonable good fit is obtained Points formed by the BornOppenheimer adiabatic states.

for the smallerq value, where the circle is relatively far both This finding has a very important implication on what the
from the two (2,3) ci's and from the center where the (D2) NACTSs really are. The NACTs were always considered as
ci is located (see Figure 8c). In other words, it is seen that the coupling terms withrandomvalues something of the kind that
unperturbed (1,2) and (2,3) NACTSs are, indeed, responsible for are reminiscent of potential energy surfaces. Now we see that
the (1,3) Curl equation. A somewhat less satisfying fit is in the case of NACTs they are governed by very basic laws of
obtained for the circle with the larger radius, namejys 0.35 physics, and in fact all we have to know is the location of the
A (see Figure 8d). Whereas a reasonable agreement is achievedi's in a given region and the correspondiriogin distributions;

as long asp is outside the angular interval = [135°, 225’], the rest are Maxwell equations, which in the present two-state
it fails along this interval. The reason is directly associated with case are “solved” by employing vectealgebra.

the assumption that,12(¢|q) ~ 0.5 for anyq and ¢. From The treatment in this paper is applicable for planar geometries.
Figure 2, it is seen that when the circle surrounds also the (2,3) although it looks as if the planar geometry is far from the
ci's, this assumption breaks down, in particular, along the above- general case, our point of view is that the general case can be
mentioned angular range because of the strong interactionpresented in terms of a series of parallel planes that are close

betweenz,1, and 7,23 More about this subject and how 10 enough to each other but any plane can, still, be treated
correct for this mishap will be discussed elsewhere. independently.

Before concluding this paper, we refer briefly to one
assumption that enabled the construction of this model, namely,
This paper belongs to a group of pagér2122that are that ci’'s seem to produce_small (_anough radial components _of
devoted to the idea that the components of the NACTs behavenamely, zq, that eq 14 (in particular, the last part of it) is

like a (Maxwellian) vector potential and as a result their features @Pproximately valid. It could very well be thag is not really

can be derived by solving the relevant electrodynamics equa-that small, but the fact that the model was able to produce these
tions. According to our approach, the field created by the Kinds of results implies that, is not large enough to ruin its
NACTSs, which we termed themolecular field has its source(s) ~ successful application.

at the degeneracy points, namely, at the points of the ci's. We

considered two types of NACTs: two-state NACTs that are ~ Acknowledgment. A.V. and M.B. acknowledge the OTKA
formed by a two-state Hilbert subspace and three-state NACTsgrant (T037994) and the Szent-Gggi Albert grant for
that are formed by a three-state Hilbert subspace. For the two-supporting this research. M.B. also thanks A.V. for her warm
state NACTSs, the relevant Curl equation is zero (except at the hospitality during his stay at the Department of Physics,
source points), and therefore their spatial distribution, according University of Debrecen.
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