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In this paper is presented a theory according to whichall of the elements of the nonadiabatic coupling matrix,
τjk(q,æ), are created at thesingular points of the system. (These points are known also as points of conical
intersections.) For this purpose, we consider the angular distribution of the angular components,τæjk(qj∼0,æj),
at the close vicinity of their singularities, namely, around thejth singularity pointsqj ) 0. It is shown that
these distributions determine the intensity of the entire field created by the nonadiabatic coupling matrix at
every point in the region of interest. To support these statements, the three lower states of the H+ H2 system
(which in our example form three conical intersections) and the third and fourth states of the Na+ H2 system
(which in our example form four conical intersections) are considered. From ab initio treatments, we obtain
the above-mentioned angular distributions and, having those, create the field at every desired point employing
vector-algebra. The final results are compared with ab initio calculations.

I. Introduction

This paper is part of a collection of papers to honor our friend
and colleague Professor Gert D. Billing. What makes this paper
somewhat special is the fact that the subject considered here
was started together with Professor Billing (and Professor John
Avery) while one of the authors (M.B.) spent part of his
Sabbatical at the Department of Chemistry at the University of
Copenhagen.1,2

In recent years, efforts were invested to study the nature of
the electronic nonadiabatic coupling terms (NACTs).3-11 The
NACTs are characterized by two features: They are vectors12,13

(in contrast to potentials that are scalars), and they may become
singular14 (in contrast to potentials that do not). If arranged in
matrices, they acquire a third interesting feature, namely, that
the matrices are antisymmetric.

Because NACTs follow from the Born-Oppenheimer treat-
ment12 and because they appear in the nuclear Schro¨dinger
equation that follows, they are on the same footing as the
potential energy surfaces. Therefore, so it seems, the ordinary
way to get acquainted with the NACTs is to study their spatial
structuressomewhat reminiscent of the way potential energy
surfaces are studiedsand then eventually to apply them.
However, as it turns out, this idea is somewhat naive because
thesingularityof the NACTs adds a newdimensionin the study
of molecular processes. Being singular hints toward the pos-
sibility that the NACTs are a kind of field that has its origin at
these singular points,1,2,15 which produce nonlocal effects. In
what follows, this field is termed as themolecular field. The
intriguing idea to categorize the singularity points of the NACTs

as sources for a field is somewhat reminiscent of the fields
produced by charged particles (electrons, protons, etc.) and the
spatial distribution of the NACTs as the spatial intensity of the
field. The aim of this paper is to show, by applying ab initio
calculations, that a theory of this kind is plausible.

Although we mentioned charges as possible sources for a
field, the sources for the present (molecular) field are not electric
charges. As is now known, the NACTs fulfill (extended) Curl
equations13 and therefore have their origin, just like the
electromagnetic vector potential, in magnitudes that are pseudo
magnetic fields. This possibility becomes most apparent when
considering two isolated states that form a (single) singularity.
Such an analysis performed a few years ago shows that the two-
state NACT, τ (see below for proper definitions), can be
simulated as a vector potential formed by an infinitely long and
narrow solenoid. In other words,τ was assumed to fulfill the
equation15

whereH is modeled as a (pseudo) magnetic field produced by
an “electric current” along a solenoid. BecauseH is nonzero
only inside the solenoid and because the solenoid is very narrow,
it can be, mathematically, presented as

where (q, æ) are polar coordinates in a plane perpendicular to
the solenoid,δ(q) is the Dirac delta function, andf(æ) is some
function of the angleæ chosen in such a way as to satisfy certain
features, as will be discussed below.

The fact thatτ fulfills eq 1 implies, semiclassically, that it
results from a quasi-electric current that flows along the
solenoid. The solenoid according to the model is formed from
a line of degeneracy points known by the nameseam. In what
follows, we term the degeneracy points as points of conical
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intersection and use the acronym ci (see refs 16 and 17 for
detailed studies regarding the ci’s and their importance for solid-
state physics and molecular physics).

As long as our system behaves as a two-state Hilbert
subspace, the above equations are fulfilled and the relevant
theory follows accordingly (see also the next section). However,
in general, the two-state approximation soon breaks down, and
as a result, the ordinary Curl equation has to be replaced by a
more general equation, the extended Curl equation, which,
among other things, contains nonlinear terms.13 In what follows,
we discuss this extension for three states and employ ab initio
results to study its relevance.

The Hilbert subspace, in a given region, is formed from a
group of states where eachadjacentpair forms one (or several)
ci(s).18 According to its definition, a Hilbert subspacecannot
contain two adjacent states that do not form at least one ci. In
other words, adjacent states that do not form a ci with states
within the subspace are excluded. Nonadjacent states (e.g., the
first and third) usually do not form a ci, but this by no means
implies that the corresponding NACT (in this particular example,
τ13) is identically zero. This subject is discussed extensively in
the third section.

II. Theory

II.1. Introductory Remarks. The magnitudes to be discussed
in the present paper areτæjk/q, the angular component ofτ, and
τqjk, the radial component, both defined as12

where q and æ are the two corresponding (nuclear) polar
coordinates in the plane of interest and the|úk(se|q,æ)〉 functions
are the eigenfunctions of an electronic HamiltonianHe(se|q,æ):

Hereuk(q,æ) is thekth electronic eigenvalue andse stands for
the electronic coordinate.

A few decades ago, it was verified that any system of
electronic eigenfunctions that forms a Hilbert space and for any
pair of Cartesian nuclear coordinates (x, y) the corresponding
NACT matrices fulfill the following equation:13

known as the extended Curl equation (to distinguish it from
the ordinary Maxwellian Curl equation). In the present paper,
we consider only two (polar) coordinates, and in this case, eq
5 reduces to

This equation was proved to exist,approximately, also for a
group of states that forms a Hilbert subspace at a given region.18b

The Curl equation (as well as the extended version) is discussed
frequently in the literature and will not be elaborated in this
article.6,7,19 Equation 6, as applied for a Hilbert subspace, is
one of the subjects in the present study.

II.2. Treatment of the Two-State System in a Plane. II.2.1.
General Theory. In the case of a subspace of two states, the

commutator in eq 6 becomes zero so that the equation reduces
to the more familiar form

whereτ, in this case, is a 2× 2 vector matrix of the form

It is noticed that, in this case, theτ matrix contains only one
nonzero term,τ, and therefore the Curl equation for the matrix
τ becomes the Curl equation for this matrix elementτ )
(τq, τæ/q)

Equation 8 is valid at every point except at the singularity point.
To include this point (assuming we have only one point like
this), eq 8 is extended to become (see also eq 1)

In what follows, we considerτæ as the only unknown function
(thus, we ignore the fact thatτq is also unknown), so that its
solution can be shown to be (by substitution)

where h(q) is the Heaviside function. Becauseq is always
positive,h(q) can be ignored and eq 10 becomes

To determinef(æ), we consider eq 11 in the limit ofq f 0.
From numerous ab initio calculations, it is verified thatτq in
the intervalq ∼ 0 is finite and therefore

Becauseτæ is known to be quantized (reminiscent of the Bohr-
Sommerfeld quantization but applied to a spin), we have a
similar quantization forf(æ):20

In what follows (and because of eq 12),f(æ) is defined as the
Virgin angular component related to a given ci. The reason being
that usually any part of a NACT is affected by neighboring
NACTs, except for a section located at aninfinitely small region
surrounding its own ci.

So far, we discussed onlyτæ(q∼0,æ) [)f(æ)]. As for τq, the
situation is somewhat different. Numerical studies show that
τq(q) is finite asq f 021 and therefore is orders of magnitude
smaller thanτæ(æ)/q (in this region). Because a single ci for
the two-state Hilbert subspace is rare if it exists at all, it is not
clear whether the nonzeroτq values in the close vicinity ofq ∼
0 that are obtained by the ab initio calculation are essentially
produced by other ci’s or by the ci under consideration.
Therefore, in what follows, we assume that theVirgin radial
component,τq(æ,q), is always identically zero.

τλjk ) 〈új| ∂

∂λ
úk〉; λ ) q, æ; j (*k) ) {1, ...,N} (3)
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The situation in the close vicinity of each ci is summarized
as follows:

The rest is just algebra.
Before completing this section, we return to eq 2 in order to

make a connection between the findings regardingf(æ) and the
pseudo magnetic fieldH along the seam. Becausef(æ) is
quantized, this implies thatH is quantized as well. In other
words, the quantization we encounter forτ has its origin in the
quantization of the pseudo magnetic field that exists along the
seam. This situation, which is reminiscent of Dirac’s quantiza-
tion of the magnetic monopole, was discussed, to some extent,
in ref 15.

II.2.2. Application of Vector-Algebra To Form the Two-
State Molecular Field. In the previous section, we analyzed a
system with a single ci (see eq 14). Next we consider the
situation where the two states form several ci’s. In this case,
just like in electrodynamics, vector-algebra is employed to add
up the contributions of the various ci’s to obtain the resultant
intensity of the field at a given point.

For this purpose, we first derive the mathematical expression
for the field due to a ci located at an arbitrary point (qj0, æj0).
The procedure is as follows: Havingτ ) [fj(æj)/qj, 0], we present
it in terms ofCartesiancomponents(τx, τy) and then shift the
solution to the point of interest, namely, (0, 0)f (xj0, yj0) [≡(qj0,
æj0)]. Once completed, the solution is transformed back to polar
coordinates. The derivation, presented elsewhere, yields for a
given point P(q,æ) (as measured from the new origin) the
following results:1,2

where the connection between the various coordinates is as
follows:

It is noticed that forqj0 f 0 (and thereforeæj f æ) the
solution in eq 15 yields [τæ(q,æ)/q, τq(q,æ)] ≡ [fj(æj)/q,
τq f 0], which is the solution for the case where the ci is at the
origin. A similar situation is encountered asq . qj0. Here, too,
æj f æ and thereforeτq f 0.

We attached to each ci a differentf(æ) function, i.e.,fj(æj),
to indicate that each such ci (in this case thejth one) may form
a differentvirgin distribution.

With this modified expression, we can now extend the
solution of eq 15 to any number of ci’s. Becauseτæ(q,æ) and
τq(q,æ) are scalars, the solution in the case ofN ci’s is obtained
by summing up the contributions of all ci’s:1,2

Equation 17 yields the two components ofτ(q,æ) for a
distribution of two-state ci’s expressed in terms of theVirgin
distributions of the NACTs at their ci’s. These functions have
to be obtained from ab initio treatments; however, the entire
field is formed by eq 17.

II.3. Treatment of the Three-State System in a Plane.The
three-stateτ matrix is given in the form

and the corresponding three-state Curl equations become2

As is noticed, the extension from two states to three states is
much more involved than just adding another equation. Com-
paring eq 19 with eq 6′ (or with eq 8) shows already some of
the difficulties with this extension. In the two-state case, all we
have to do is employ vector-algebra to obtain the components
of τ, but no differential equations have to be solved. In the three-
state system, the vector-algebra may at most yield a first guess
for the inhomogeneity terms related to the Curl equations of
the variousτ matrix elements, but then to obtain theτ elements
themselves, one is forced to solve differential equations.
Moreover, these differential equations are nonlinear, which may
introduce additional complications.

The three equations in eq 19 contain six unknown functions,
namely, (τæjk, τqjk); k > j, j ) 1, 2. Thus, to solve them, we
need to find another three equations (this subject was recently
discussed in refs 21 and 22). The present paper differs from
the ones just mentioned by the fact that these (differential)
equations will not be solved. Here we only apply vector-algebra
to validate the relevance of the equations themselves.

Before we start with the numerical part, we discuss an
important feature given in eq 19. We argued on several
occasions that singularities can be formed only between two
adjacent states and therefore only the NACTs;τjj+1 values are
formed by their own singularities, whereas the other NACTs,
of the kind τjk (k * j + 1), have to be formed in a different
way. Equation 19c implies that such a NACT, namely,τ13, is
formed by the mutual interaction of the first two NACTs,τ12

and τ23. If these two NACTs do not interact, namely, do not
overlap in the region of interest,τ13 becomes identically zero
in that region. This finding can be expressed in a different
way: If τ13 is zero at every point in the region of interest, then
the two first equations become decoupled, and as a result, the
assumed three-state Hilbert subspace breaks up into two two-
state Hilbert subspaces: one subspace between the two lower
states and one subspace between the two upper spaces. In other
words, having two groups of ci’ssone group that couples the
two lower states and one group that couples the two upper
statessdoes not necessarily guarantee that the three states form
a real three-state Hilbert space.

The case in whichτ13 is zero at every point in the region of
interest has also practical implications because in this situation

τ(q∼0,æ) ) {τæ(q∼0,æ)/q, τq(q∼0,æ)} ) {f(æ)/q, 0} (14)

τq(q,æ) ) -fj(æj)
1
qj

sin(æ - æj)

τæ(q,æ) ) fj(æj)
q
qj

cos(æ - æj) (15)

qj ) x(q cosæ - qj0 cosæj0)
2 + (q sin æ - qj0 sin æj0)

2

cosæj )
q cosæ - qj0 cosæj0

qj
(16)

τq(q,æ) ) -∑
j)1

N

fj(æj)
1

qj

sin(æ - æj)

τæ(q,æ) ) q∑
j)1

N

fj(æj)
1

qj

cos(æ - æj) (17)

τ ) (0 τ12 τ13

-τ12 0 τ23

-τ13 -τ23 0 ) (18)

Curl τ12 ) [τ23 × τ13] (19a)

Curl τ23 ) [τ13 × τ12] (19b)

Curl τ13 ) [τ12 × τ23] (19c)
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the calculation ofτ12 andτ23 will be carried out, independently,
using, as before, vector-algebra only.

III. Numerical Results

This section is divided into two parts: In the first part, we
show to what extent the straightforward vector-algebra is
capable of producing the two-state NACTs. This treatment will
be carried out for two systems: (a) for the two upper states
(the second and third) of the H+ H2 system [in this case are
encountered two ci’s, and we sum up the components of the
two respective NACTs (employing eq 17) and compare the
results with ab initio calculations] and (b) for the third and the
fourth states of the Na+ H2 system [in this case we have four
ci’s and, again, we sum up the components of all of them and
compare with ab initio calculations].

In the second part, we discuss some aspects for the three-
state subspace as obtained for the H+ H2 system. Recently,
we completed a detailed study of this system, and it was shown
that increasing the nuclear region surrounding theD3h ci, the
two-state approximation soon breaks down so that the minimal
Hilbert subspace has to be formed by three states.10a,bFor the
sake of completeness, we just add that continuing to increase
this region leads slowly to the deterioration of the three-state
subspace as well, and it soon becomes clear that at least five
states are required etc.10c The present study concentrates onτ13

or, to be more precise, on Curlτ13 as given in eq 19c.
To carry out the proposed numerical treatment, we first have

to reveal the positions of the ci’s. Our way of doing that5,10,11

is somewhat different from the “orthodox” way.23 Namely, we
fix the distance between two atoms and use the third atom as a
test particle to locate ci’s. The search is done in a given plane,
and therefore the relevant coordinates are the planar coordinates
of this atom. For reason of convenience, we choose the polar
coordinates (q, æ), and the results related to the various NACTs
are presented in terms of these coordinates. The calculations
are done along circles that are fixed by assigning the position
of their centers and their radiiq. As a result, the various
calculatedτ matrix elements are presented as a function ofæ
(){0, 2π}) for fixed q values. As an example for the application
of eq 17, we show in Figure 1 the vector analysis for the case
of a system of two ci’s. The positions of the ci’s are marked by
filled diamonds, i.e.,(, and the position of the center of the
circle along which the calculations have to be done is marked
by a filled circle, i.e.,b. We also present small circles with
radii q̃j around each of the ci’s: Along these circles are

calculated the respective ab initio virgin distributionsfj(æj)
[)τæ(q̃j∼0,æj)] to be employed in eq 17.

Finally, we make the following comments: No details are
given regarding the ab initio calculations. They were presented
in the appropriate papers (see ref 10 for H+ H2 and ref 11 for
Na + H2).

III.1. Numerical Studies of Two-State Systems. III.1.1.
H + H2 System.We concentrate on configurations for which
the distance,RHH, between two hydrogens is fixed to beRHH )
0.74 Å and allow the third hydrogen to be free. For these
configurations, the H3 system is characterized by two important
features: it possesses an equilateral ci known as theD3h ci,
which couples its two lower states, namely, 12A′ and 22A′, and
therefore is assigned as (1,2)D3h ci, and two isosceles ci’s,
which couple the second and third states, namely, 22A′ and 32A′,
the two upper states. These two ci’s were shown to beC2V ci’s
and therefore are labeled as (2,3)C2V ci’s.

Because the H3 system lacks (3,4) ci’s,10c the Hilbert subspace
of three states covers a relatively extensive region in the
configuration space around the (1,2)D3h ci. As for the possibility
of forming two-state Hilbert subspaces, it was shown that the
lower two-state subspace is damaged significantly by the two
upper (2,3) ci’s.10a,b On the other hand, the upper two states
can be shown to form a subspace upon a much more extensive
region. This subspace is, indeed, perturbed by the lower (1,2)
D3h ci but only within a relatively small region around the (1,2)
D3h ci. Thus, for our purposes, the two upper states of the H3

system can be considered, approximately, as a two-state Hilbert
subspace in a region that excludes (1,2)D3h ci (and its close
vicinity).

There is not much interest in showing the vector-algebra
approach for the two lower states (in a small region around the
D3h ci) because these two states form only one ci. Still, our
approach implies, based on previous studies, thatτæ12(q,æ) ∼
0.5 just like the valueτæ12(q∼0,æ) ∼ 0.54a,6,7,10(we remind the
reader that byτæ we mean the angular component ofτ multiplied
by q). The deviations are at most(10% as long as we are not
too close to the two (2,3) ci’s (see Figure 2). In case the circle
surrounds the (2,3) ci’s, this approximation fails along a
relatively large angular interval, whereτæ12 changes sign and
becomes negative.

The upper subspace is, of course, much more interesting
mainly because we encounter here two ci’s, and this presents
an interesting challenge for the vector-algebra approach.

In Figure 3 is given the virgin distributionf23(æ23)
()τæ23(q̃23∼0,æ23)), as calculated forq̃23 ) 0.02 Å (see also
ref 10). Having these twof23(æ23) functions, we are now in
position to calculate the resulting molecular field. In Figure 4
are presented the results along the three circles centered at the
(1,2) ci (we could, of course, choose any other circles or other
contours) as shown by the schematic picture at the top of each
column. It is important to emphasize that in these figures are
presented the two components ofτ23(q,æ), namely,τæ23(q,æ)
andτq23(q,æ).

As is noticed, a very encouraging fit is obtained, and the rest
is told by the results themselves. Still, we want to mention again
that even the slight deviations are not necessarily due to the
inadequacy of the vector-algebra but could be attributed to the
background noise produced mainly by the (1,2) ci. For instance,
the largest deviations are obtained along the circle withq )
0.2 Å, and this is because the (1,2) ci forcesτ23(q,æ) to be zero
at the (1,2) ci pointsthe location of the center of the
circleswhereas the unperturbedτ23(q,æ) is, undoubtedly, dif-

Figure 1. Schematic figure to show the various vectors due to two
sources (ci’s) for constructing theæ andq components ofτ(æ|q), the
NACT along a circle centered at an arbitrary point. Around each
(the jth) source is drawn an infinitesimal circle along which are given
the ab initio (undisturbed) values ofτæj(æj|qj∼0) ) fj(æj).
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ferent from zero at this point. The effect of this (1,2) ci
diminishes as the radiusq increases.

III.1.2. Na + H2 System.We recently completed an extensive
study of this system11 and found two features that allow us to
test our two-state vector-algebra approach for a much more
complicated situation.

Within this study, the four lowest states of this system,
namely, 12A′, 22A′, 32A′, and 42A′, were treated numerically.

For this purpose, we concentrated on configurations for which
the distance,RHH, between the two hydrogens, is fixed, namely,
RHH ) 2.18 au, and allowed the sodium to be free and serve as
the test particle. The main findings for our present purpose are
that the third and fourth states form a quasi two-state Hilbert
subspace coupled byfour (3,4) ci’s. In other words, this system
furnishes a unique opportunity to apply vector-algebra for a
relatively complicated system with four sources (singularities).

The four ci’s and the various circles along which the
calculations were done are presented in Figure 5a,b. Out of these
four ci’s, two of them areC2V ci’s located on the symmetry
line orthogonal to the HH axis at distances ofr ∼ 1.580 au and
1.145 au from the HH axis (they are designated astop and
bottomci’s, respectively) and twotwin Cs ci’s located on both
sides of the just mentioned symmetry line at a distance ofr )
1.533 au from the HH axis and at an angle of 12.2° off this,
symmetry, line (they are designated assidewardci’s).

TheVirgin distributions,fj(æj), for three ci’s, namely, for the
top ci, the bottom ci, and one of the sideward ci’s, are shown
in Figure 6. It is noticed that all of them are of the elliptic type24a

(in contrast to the circular Jahn-Teller type24b). These virgin
distributions are interesting by themselves. For instance, the two
ci’s on the symmetry line behave essentially orthogonal to each
other; namely, the main distribution of the top ci is parallel to
the HH axis, whereas the main distribution of the bottom ci is
along the symmetry line. The distributions of the sideward ci’s
are somewhat different. They are of the elliptic kind, but their
main distribution is not along the line parallel to the HH axis
(nor along the symmetry line) but along a line that is rotated
by about 10° from the HH axis.

We return again to Figure 5 to discuss the various circles
along which the calculations were performed. In Figure 5a are
given three circles with their centers at the originO(0,0) (defined
as the crossing point between the symmetry line and a line
parallel to the HH axis that passes through the two sideward
ci’s) and with radii q ) 0.16, 0.30, and 0.40 au. Figure 5b
presents a similar situation, but this time the center of the one
presented circle, with the radiusq ) 0.25 au, is shifted, from
the originO(0,0) downward by 0.135 au. In this way, we could
get results for a circle that surrounds only the two ci’s located
on the symmetry line.

The model results and the ab initio ones are compared in
Figure 7. In fact, like in the previous H3 system, the results
speak for themselves. It is noticed that, although the ab initio
distributions are frequently quite complicated and show a lot
of structure, the vector-algebra approach produces functions
that are capable of following very accurately the ab initio
wiggles.

III.2. Numerical Studies of the Three-State System.The
study of the three-state system is not as extensive as that of the
previous two-state system for two reasons: (a) We only have
one system available that presents truly three coupled states,
namely, the H+ H2 system (for Na+ H2, we found that any
two-state system is only weakly coupled to a third state). (b)
Even for the one available system, we present only a few results
because the full study is not completed yet.

The magnitude that most characterizes a three-state system
is τ13(q,æ) for the simple reason that ifτ13(q,æ) is identically
zero, the three-state subspace breaks up into two two-state
subspaces (as discussed earlier). We also recall thatτ13(q,æ) is
formed as a result of the mutual interaction betweenτ12(q,æ)
andτ23(q,æ) (see eq 19c). It is important to realize that if this
mutual interaction is zero (it happens when the two functions

Figure 2. Ab initio angular componentτæ12(æ|q)q0) as a function of
æ as calculated for the H3 system, forRHH ) 0.74 Å, along three circles
centered at the (1,2)D3h ci. The circles designate the two fixed
hydrogens, the square designates the (1,2)D3h ci, the diamonds
designate the two symmetrical (2,3)C2V ci’s, and the straight line
perpendicular to the HH axis connects the midpoint between the two
hydrogens and theD3h ci point. The full line is forq0 ) 0.1 Å, the
dotted line is forq0 ) 0.2 Å, and the dashed line is forq0 ) 0.35 Å.
It is noted that the values ofτæ12(æ|q0)0.1 Å) are close to 0.5 and the
values ofτæ12(æ|q0)0.35 Å) are significantly different from those with
q0 ) 0.1 and 0.2 Å.

Figure 3. Ab initio angular componentτæ23(æ23|q23)0.02 Å) as
calculated for the H3 system, forRHH ) 0.74 Å, along a circle of radius
q23 ) 0.02 Å. The circle surrounding the (2,3) ci is the circular contour
along whichτæ23(æ23|q23) is calculated. The presented ci, together with
the other symmetric ci, serves as the (2,3)Virgin distribution to form
the full (2,3) molecular field.
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τ12(q,æ) andτ23(q,æ) do not overlap),τ13 becomes zero, although
according to eq 19c only Curl ofτ13 (and notτ13) becomes zero.
Still, becauseτ13 does not have a source of its own, the fact
that Curlτ13 ) 0 implies thatτ13 ) 0.

The subject we intend to study here is related to eq 19c. We
discuss two issues: (1) Having the ab initioτ12(q,æ) and
τ23(q,æ), it will be shown that their vector product, indeed, forms
Curl τ13. (2) The same treatment is repeated by employing
τ12(q,æ) and τ23(q,æ) as obtained from the vector-algebra;
namely, we intend to show that approximately Curlτ13 can also

be formed by vector-algebra as applied to the H3-virgin
distributionsf12(æ12) and f23(æ23).

We start with the first issue, and for this sake, we derive
each side of eq 19c independently. The left-hand side, namely,
the Curl itself, is calculated in two steps: first are derived the
two components ofτ13(q,æ) (see eq 3) by employing MOLPRO
and, second, are calculated numerically theq andæ derivatives
of τ13æ(q,æ) and τ13q(q,æ), respectively, to form the required
Curl function. The right-hand side is obtained by employing
the ab initio components ofτ12(q,æ) andτ23(q,æ) as calculated

Figure 4. Final results for the H+ H2 system: A comparison between ab initio and vector-algebra results for theτ23(æ|q) NACT as calculated
along two circles centered at theD3h ci (the schematic picture of each circle is given at the top of the relevant column). In parts a, c, and e are
presented the angular componentsτæ23(æ|q), and in parts b, d, and f are presented the radial components,τq23(æ|q). Full lines are ab initio calculations;
dashed lines are vector-algebra calculations.

Figure 5. Four (3,4) conical intersections of the Na+ H2 system: (a) three concentric circles with their centers atO(0,0) surrounding different
numbers of conical intersections; (b) a circle with its center atO(0,-0.135) surrounding the two conical intersections located on the symmetry line.
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by MOLPRO and forming the relevant vector products. The
calculations were carried out along circles with different radii
q that have their centers at the (1,2)D3h ci. To have results for
a series of different radii is important because of the strong effect
furnished by the two (2,3)C2V ci’s (see Figure 2) onτ12(q,æ).

The results of theses two different calculations are presented
and compared in parts a and c of Figure 8 for circles with two
different radii, i.e.,q ) 0.20 and 0.35 Å, respectively. It is
noticed that for all practical purposes the two different calcula-
tions yield the same results.

To carry out the study of the second case, we employ, as
mentioned earlier, values obtained from the virgin distributions
and vector-algebra. Thus, the left-hand side of eq 19c is
calculated as before, and only the right-hand side is produced
differently, employing magnitudes that follow from vector-
algebra. For this purpose, we need the values ofτ12 andτ23. It
is important to emphasize that this procedure is expected to
succeed at situations where the components ofτ12 andτ23 are
not damaged too much by each other, an assumption that is
only in part fulfilled for the H3 system.

We discussed extensively the required values ofτ23 (also
shown in Figure 4) and only to a limited extent the values of
τ12. So now we extend somewhat our considerations concerning
τ12. From previous studies, we know that the virgin shape of
τæ12(æ|q) is on average a constant, namely,f12(æ12) ) 0.5,4a,6,7,10

and it holds as long as the circle around the (1,2)D3h ci is not
too close to the (2,3) ci’s and does not surround them.10 In
Figure 2 is presentedτæ12(æ|q) as a function ofæ for three
different values ofq. It is noticed that the basic assumption
regardingτæ12 ∼ 0.5 is fulfilled as long as the just mentioned
conditions are met (see how dramaticallyτæ12 is changed for
the case ofq ) 0.35 Å). As for the radial component, on the
basis of ab initio calculations, it is known to be not only
relatively small11b (in particular, as compared toτæ12/q) but also
oscillating around zero, and therefore we assume it, throughout
the numerical treatment, to be zero, i.e.,τq12(æ|q) ≡ 0.

Once having theunperturbedcomponents ofτ12 andτ23, the
right-hand side of eq 19c can be obtained as in the previous
case. Calculations were done for the previously mentioned two

Figure 6. Three ab initio angular componentsτæ34(æ34|q34)0.01 au) as calculated for the Na+ H2 system forRHH ) 2.18 au: (a)τæ34(æ34|q34)0.01
au) calculated for the upper (3,4) ci on the symmetry line; (b)τæ34(æ34|q34)0.01 au) calculated for the sideward (3,4) ci; (c)τæ34(æ34|q34)0.01 au)
calculated for the lower (3,4) ci on the symmetry line. The three presented curves, together with the second sideward ci, serve as the four (3,4)
Virgin distributions to form the full (3,4) molecular field.

Figure 7. Final results for the Na+ H2 system: A comparison between
ab initio and model results for theτ34(æ|q) NACT as calculated along
four circles presented in Figure 5. In parts a, c, e, and g are presented
the angular components,τæ34(æ|q), and in parts b, d, f, and h are
presented the radial components,τq23(æ|q). Full lines are the results
due to ab initio calculations; dashed lines are the results due to vector-
algebra calculations.
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circles, and the results are presented in Figure 8b,d, where they
are compared again with those obtained by the Curl expression
on the left-hand side of eq 19c. A reasonable good fit is obtained
for the smallerq value, where the circle is relatively far both
from the two (2,3) ci’s and from the center where the (1,2)D3h

ci is located (see Figure 8c). In other words, it is seen that the
unperturbed (1,2) and (2,3) NACTs are, indeed, responsible for
the (1,3) Curl equation. A somewhat less satisfying fit is
obtained for the circle with the larger radius, namely,q ) 0.35
Å (see Figure 8d). Whereas a reasonable agreement is achieved
as long asæ is outside the angular intervalæ ) [135°, 225°],
it fails along this interval. The reason is directly associated with
the assumption thatτæ12(æ|q) ∼ 0.5 for anyq and æ. From
Figure 2, it is seen that when the circle surrounds also the (2,3)
ci’s, this assumption breaks down, in particular, along the above-
mentioned angular range because of the strong interaction
betweenτæ12 and τæ23. More about this subject and how to
correct for this mishap will be discussed elsewhere.

IV. Conclusions

This paper belongs to a group of papers1,2,15,21,22that are
devoted to the idea that the components of the NACTs behave
like a (Maxwellian) vector potential and as a result their features
can be derived by solving the relevant electrodynamics equa-
tions. According to our approach, the field created by the
NACTs, which we termed themolecular field, has its source(s)
at the degeneracy points, namely, at the points of the ci’s. We
considered two types of NACTs: two-state NACTs that are
formed by a two-state Hilbert subspace and three-state NACTs
that are formed by a three-state Hilbert subspace. For the two-
state NACTs, the relevant Curl equation is zero (except at the
source points), and therefore their spatial distribution, according

to our approach, follows from straightforward application of
vector-algebra. The situation, in the case of three-state NACTs,
is much more complicated: It is not only that the relevant Curl
equations are not homogeneous (see eqs 19), but we have to
consider three such equations (instead of two): two equations
for τ12 and τ23, which are formed by sources connected to
degeneracy between adjacent states, and one forτ13, which lacks
a source and results from the interaction betweenτ12 andτ23,
as is evident from eq 19c. In the present paper, we just refer to
τ13 and study the behavior of its Curl equation.

The numerical study is carried out by comparing the ab initio
results obtained from MOLPRO with the results that follow from
the vector-algebra based on the angular NACTs calculated (by
MOLPRO) in the close vicinity of the relevant ci’s. These types
of angular NACTs are termed asVirgin NACTs because very
close to their own ci’s all NACTs are basically pure two-state
NACTs (immaterial how many ci’s are in its vicinity). The
vector-algebra that is applied is described in Figure 1 and
explicitly presented in eqs 16 and 17.

To perform this study, we considered two systems, namely,
H + H2 and Na+ H2. The two-state study was done for the
two ci’s formed by the second and third states of the H+ H2

system and the four ci’s formed by the third and fourth states
of the Na+ H2 system. The three-state study was done for the
three states of the H+ H2 system, whereas within the two-
state study, the relevant molecular fieldsτ23 of H + H2 andτ34

of Na + H2 were calculated directly (by applying vector-
algebra); in the case of the three-state study, we derived Curl
τ13 (and notτ13 itself) but again employing vector-algebra as
dictated by eq 19c.

The comparison between the ab initio calculations and the
analytical results undoubtedly indicates that, indeed, themo-
lecular fieldsare created by sources located at the degeneracy
points formed by the Born-Oppenheimer adiabatic states.

This finding has a very important implication on what the
NACTs really are. The NACTs were always considered as
coupling terms withrandomvalues something of the kind that
are reminiscent of potential energy surfaces. Now we see that
in the case of NACTs they are governed by very basic laws of
physics, and in fact all we have to know is the location of the
ci’s in a given region and the correspondingVirgin distributions;
the rest are Maxwell equations, which in the present two-state
case are “solved” by employing vector-algebra.

The treatment in this paper is applicable for planar geometries.
Although it looks as if the planar geometry is far from the
general case, our point of view is that the general case can be
presented in terms of a series of parallel planes that are close
enough to each other but any plane can, still, be treated
independently.

Before concluding this paper, we refer briefly to one
assumption that enabled the construction of this model, namely,
that ci’s seem to produce small enough radial components ofτ,
namely, τq, that eq 14 (in particular, the last part of it) is
approximately valid. It could very well be thatτq is not really
that small, but the fact that the model was able to produce these
kinds of results implies thatτq is not large enough to ruin its
successful application.
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Figure 8. Results for the H+ H2 system as calculated for the two
circles centered at theD3h ci. In parts a and b are presented the results
for Curl τ13(æ|q)0.2 Å), and in parts c and d are presented the results
for Curl τ13(æ|q)0.35 Å). Full lines present the results due to the left-
hand side of eq 19c (mentioned also as the Maxwellian Curl), and dotted
lines present the results due to the right-hand side of eq 19c, namely,
the vectorial product. In parts a and c, the vectorial product is formed
from magnitudes formed by ab initio calculations, and in parts b and
d, the vectorial product is formed from magnitudes obtained by vector-
algebra calculations.

Numerical Applications to H+ H2 and Na+ H2 J. Phys. Chem. A, Vol. 108, No. 41, 20048597



References and Notes

(1) Avery, J.; Baer, M.; Billing, G. D.Mol. Phys.2002, 100, 1011.
(2) Baer, M.; Mebel, A. M.; Billing, G. D.Int. J. Quantum Chem.

2002, 90, 1577.
(3) Baer, M.; Billing, G. D. The Role of Degenerate States in

Chemistry.AdV. Chem. Phys.2002, 124.
(4) Yarkony, D. R.J. Chem. Phys.1996, 105, 10456.
(5) Mebel, A. M.; Baer, M.; Lin, S. H.J. Chem. Phys.2000, 112,

10703. Mebel, A. M.; Baer, M.; Rozenbaum, V. M.; Lin, S. H.Chem. Phys.
Lett. 2001, 336, 135. Mebel, A. M.; Halasz, G. J.; Vibok, A.; Alijha, A.;
Baer, M.J. Chem. Phys.2002, 117, 991.

(6) Abrol, R.; Kuppermann, A. J.Chem. Phys.2002, 116, 1035.
(7) Kuppermann, A.; Abrol, R.AdV. Chem. Phys.2002, 124, 283.
(8) Englman, R.; Yahalon, A.AdV. Chem. Phys.2002, 124, 197.
(9) Child, M. S.AdV. Chem. Phys.2002, 124, 1.

(10) (a) Halasz, G. J.; Vibok, A.; Mebel, A. M.; Baer, M.J. Chem.
Phys.2003, 118, 3052. (b) Halasz, G. J.; Vibok, A.; Mebel, A. M.; Baer,
M. Chem. Phys. Lett.2002, 358, 163. (c) Baer, M.; Vertesi, T.; Halasz, G.
J.; Vibok, A.; Suhai, S.Faraday Discuss.2004, 127, in press.

(11) Vibok, A.; Halasz, G. J.; Vertesi, T.; Suhai, S.; Baer, M.; Toennies,
J. P.J. Chem. Phys.2003, 119, 6588.

(12) Born, M.; Oppenheimer, J. R.Ann. Phys. (Leipzig)1927, 84, 457.
Born, M. Gott. Nachr. Math. Phys.1951, Kl., 1.

(13) Baer, M.Chem. Phys. Lett.1975, 35, 112.
(14) Hellmann, H.Einfuhrung in die Quantenchemie; Franz Deutiche:

Leipzig, 1937. Feynman, R.Phys. ReV. 1939, 56, 340.
(15) Baer, M.Chem. Phys. Lett.2001, 349, 84.

(16) Englman, R.The Jahn-Teller Effect in Molecules and Crystals;
Wiley-Interscience: New York, 1972.

(17) Bersuker, I. B.Chem. ReV. 2001, 101, 1067. Bersuker, I. B.;
Polinger, V. Z.Vibronic Interactions in Molecules and Crystals; Springer:
New York, 1989.

(18) (a) Baer, M.Chem. Phys. Lett.2000, 329, 450. (b) Baer, M.;
Englman, R.Chem. Phys. Lett.2001, 335, 85.

(19) Kryachko, E. S.AdV. Quantum Chem.2003, 44, 119. Koppel, H.
Faraday Discuss.2004, 127, in press. Rebentrost, F. InTheoretical
Chemistry: AdVances and PerspectiVes; Henderson, D., Eyring, H., Eds.;
Academic Press: New York, 1981; Vol. II, p 32. Mead, C. A.; Truhlar, D.
G. J. Chem. Phys.1982, 77, 6090. Chapuisat, X.; Nauts, A.; Dehareug-
Dao, D. Chem. Phys. Lett.1983, 95, 139. Petrongolo, C.; Hirsch, G.;
Buenker, R.Mol. Phys.1990, 70, 825, 835. Sidis, V.AdV. Chem. Phys.
1992, 82 (Vol. II), 73. Vertesi, T.; Vibok, A.; Halasz, G. J.; Yahalom, A.;
Englman, R.; Baer, M.J. Phys. Chem. A2003, 107, 7189. Pacher, T.;
Cederbaum, L. S.; Ko¨ppel, H.AdV. Chem. Phys.1993, 84, 293.

(20) Baer, M.; Alijah, A.Chem. Phys. Lett.2000, 319, 489. Baer, M.;
Lin, S. H.; Alijah, A.; Adhikari, S.; Billing, G. D.Phys. ReV. A 2000, 62,
032506-1. (b) Adhikari, S.; Billing, G. D.; Alijah, A.; Lin, S. H.; Baer, M.
Phys. ReV. A 2000, 62, 032507-1.

(21) Hu, S.; Halasz, G. J.; Vibok, A.; Mebel, A. M.; Baer, M.Chem.
Phys. Lett.2003, 367, 177.

(22) Baer, M.Chem. Phys. Lett.2002, 360, 243.
(23) Longuet-Higgins, H. C.Proc. R. Soc. London, Ser. A1975, 344,

147.
(24) (a) Baer, M.; Mebel, A. M.; Englman, R.Chem. Phys. Lett.2002,

354, 243. (b) Baer, M.; Englman, R.Mol. Phys.1992, 75, 283.

8598 J. Phys. Chem. A, Vol. 108, No. 41, 2004 Vibók et al.


