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A versatile crystal-growth simulation program, based on the Monte Carlo algorithm, is introduced. It enables
the handling of any crystallographic orientation. The crystal is modeled by a set of molecular interactions,
which are obtained from molecular mechanics calculations. The motherphase is parametrized by its bulk
thermodynamic properties. As an example, the program was used to simulate the growth of various fat crystals.
The results show the importance of the details of the crystal structure, its energetics, and the actual growth
conditions upon the crystal morphology. The model intends to fill the gap which exists by the fact that
supersaturation, temperature, concentration, and dissolution free energy are not taken into account by the
established morphology prediction models.

1. Introduction

Morphology prediction is an important analytical tool in
materials science. Various methods exist and are available in
commercial software.1 These include the geometrically based
Bravais-Friedel-Donnay-Harker,2,3 the attachment energy
based growth morphology,4 and the surface energy based
equilibrium morphology methods.5 These methods produce a
static morphology, disregarding the kinetic processes that take
place during crystal growth.

Currently, the most successful morphology prediction algo-
rithms usually apply the attachment energy as the growth-
controlling parameter. This energy denotes the amount of energy
that is lost when a crystal is cut along the plane of a
crystallographic orientation. The growth rate of that orientation
is presumed to be proportional to its attachment energy.
Although this principle works reasonably well for a lot of
crystals, many cases are known for which this method of
prediction fails. Moreover, it is well known that crystal
morphologies are heavily influenced by several physical pa-
rameters not reflected by the attachment energy, which can all
be translated into the driving force,∆µ, for crystallization, often
expressed in terms of the relative supersaturation,σ. The
parameter that determines the effective driving force depends
on the nature of the motherphase, which can be a pure melt, a
solution, or the vapor phase (sublimation growth). For growth
from a solution, the driving force is determined by the
concentration and the temperature. For sublimation growth, the
vapor pressure plays the dominant role. In any case, the enthalpy
and entropy of the growing species, both in the motherphase
and in the crystal, determine∆µ.

Besides these principal parameters, other effects are known
to play a role on the growth rates of the crystal face orientations.

These include surface reconstruction, impurities, dislocations,
interaction of the solvent with the surface and orientational
effects in the solvent-surface interaction layer,6 and, especially
for vapor growth, surface diffusion. All of these effects have
been approached by modeling methods but are out of the scope
of this work.

Of the two parameters, enthalpy and entropy, the latter is
difficult to calculate, and in chemical modeling, entropy is the
archetypal fudge factor for explaining differences between
predictions and experiments. In our approach the entropy is a
parameter in the model. Experimentally, the entropy can be
obtained from solubility data.

In this work, we introduce an energetic model suitable for
discrete Monte Carlo crystal growth taking entropy and kinetics
(as determined by the driving force) into account. The model
is derived to describe a system where growth units (GU) can
exist in two phases, the crystal phase and the motherphase. The
GUs in the crystal phase can only be in discrete positions as
defined by the crystal structure without any imperfections. GUs
in the motherphase are taken into account by their mean
thermodynamic bulk terms. In our approach, we do not consider
(surface) diffusion contributions. Such a model has been
employed by many authors for relatively simple crystal
structures.7-11 The crystal model studied mostly up to now is
the Kossel model describing a simple cubic crystal.7 Our aim
is to generalize the description of the crystal phase and
motherphase for the purpose of the implementation of a program
that can deal with any crystal structure growing or etching in
any motherphase. Moreover, for morphology prediction, the
implementation should be able to simulate growth in any
crystallographic direction in order to obtain the growth rate for
all the relevant crystal faces. This paper describes in full detail
the thermodynamic model and some of the key technical details
used in our implementation, which meet the mentioned objec-
tives resulting in the program MONTY.12

MONTY has already been used for various morphology
studies including the validation by comparison to earlier Monte
Carlo simulations based on the Kossel crystal structure and AB-
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layered structures13 and the basic morphology ofγ-aluminum-
(III) hydroxide.14 The latter studies were performed in combi-
nation with an extended connected net analysis leading to the
explicit determination of the relevant edge energies for 2D
nucleation, consistent with the Monte Carlo results. The program
was also applied successfully to paracetamol in water.15 Here,
we restrict to the validation studies done for three types of fats,
crystallizing in different crystal structures. Typically, fats define
a class of materials for which the traditional morphology
prediction models do not work well. A solid theoretical
background is already established and is supported by experi-
mental observations.16,17

2. Theory and Implementation of MONTY

2.1. Event Chances.The widely used Monte Carlo algorithm
uses the basic principle of sampling a representative part of the
phase space of the particular system of interest. Random moves
are either accepted or rejected based on a chance that is related
to the energy change involved with that move. To be able to
simulate a multiphase system, we should consider the Gibbs
ensemble.18 As is done by many authors, however, we shall
impose rigorous simplifications on our model to decrease
simulation time and to be able to sample a significant part of
phase space, enabling good statistics. Crystal growth phenomena
can be reproduced well on a discrete crystal lattice without
considering the continuous movements of molecules and
atoms.7-11 The discrete model implies that growth and etch
events can only occur to and from the bulk crystallographic
positions without variation of molecular orientations. Also,
throughout this work, we assume that the simulated systems
are sufficiently large to justify the assumption that the bulk-
phase free energies are constant during the course of the
simulation. Our trial moves in the simulation are restricted to
immediate exchanges of GUs between the crystal phase and
the motherphase. This restriction defines a semi-Gibbs ensemble
similar to how the semigrand canonical ensemble is defined in
relation to the grand canonical ensemble.18 In our ensemble,
the exchange of GUs between the bulk phases is determined
by the difference in chemical potential,∆µ. Hence

whereNmothandNcrystare the number of GUs in the motherphase
and crystal phase, respectively. In this equation, we neglect the
change in total Gibbs free energyG as a result of a change of
the interface between the two bulk phases. The Gibbs free
energy of the GU in either phase,Gphaseis given by

where H is the enthalpy,U is the internal energy,S is the
entropy, andV denotes the volume. The temperature,T, and
pressure,P, are assumed to be homogeneous throughout the
system.

When different components of the crystal are present in the
motherphase, the free energy for componenti is given by

This subscripted expression is only needed for cocrystallizing
compounds, where the different GUs have different free energies
in the motherphase. For simplicity and convenience, these
subscripts are further omitted in this work as we will deal with

crystals of pure molecular compounds only. Hence, the follow-
ing equations in this work only apply to pure crystals that do
not include different molecules such as solvent molecules or
cocrystallizing compounds. For those types of crystal, the
respective individual bulk terms should be adapted in all
expressions.

It is important to note that a discrete model for the solid phase
implies a discrete number of surface-site configurations which
lead to a discrete number of GU configurations. The number
of possible configurations of the GUs at the crystal surface is
determined by the number of GUs, labeled byi, in the unit cell
and by the number of ways these GUs can be surrounded by
their neighbors. Thus, in the discrete model, every GU can form
a maximum ofji bonds, which defines a limited set of molecular
interactions, also called the crystal graph, which is further
discussed in section 2.4. Each possible state is defined by the
combination of the individual states of these bonds, which can
either be formed or not, depending on whether the respective
neighboring GU is present or not. Therefore the total number
of possible states of GUi is 2ji, and the total number of GU
configurations,Nconf, becomes

including the nonbonded states in the motherphase. This number
defines the maximum number of possible energy states under
consideration during the simulation. For a particular statej of
GU i, the short-hand notationi2j is used. The energy of that
GU in the crystal which is equal to the total interaction energy
with its neighboring GUs is denoted asUi2j.

Generally, the translational and rotational contributions to the
entropy are much larger for the motherphase than for the crystal
phase. This implies that we can neglect the differences in entropy
of the GUs at various sites at the crystal surface. Thus, the
entropic part of the free-energy difference between the moth-
erphase and the crystal phase is fully described by the entropy
difference between the bulk phases, irrespective of the position
at the surface. Accordingly, the difference in Gibbs free energy
for an event at a particular surface sitei2j with an effective
change in motherphase energyUi2j

moth,eff becomes

where

and

In our model,Ui2j
moth,eff is assumed to depend linearly on the site

energy. Effectively, a GU that attaches to the surface loses a
fraction of its motherphase interaction energy, which is pro-
portional to the amount of energy gained at the crystal surface
according to

where Ucryst is the bulk crystal interaction energy per GU,
yielding
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If we assume that every growth and etch event is microscopi-
cally reversible,19 we can relate their probabilities by the
Boltzmann factor corresponding to the energy difference
involved with that event. Hence, by use of eq 5, the expression
for the growth and etch probability ratio at the particular crystal
site i2j becomes

A thorough statistical thermodynamic basis for the derivation
of eq 10 is given in Appendix A. The microscopic equilibrium
condition defined by eq 10 is not enough to determine
probabilities for the growth and etch events to be used in the
Monte Carlo simulation since it only relates the ratio between
the chances of growth and etch events. To proceed, various
schemes are possible, which can roughly be classified in three
classes. The first scheme is that of Metropolis et al.20 Here,
any event that causes energy to be released is always accepted,
whereas trials that cost energy may only happen at a probability
determined by the corresponding Boltzmann factor. Another
choice for the probabilities, often used in crystal growth
simulations, is obtained by assuming a constant flux of GUs
arriving at the crystal surface only determined by the driving
force.7 This implies that every growth trial is accepted with the
same probability, independent of the site where it attaches, while
detachment is determined by the energetics of the site. A less
obvious choice would be to assume an equal probability of
etching for every GU at the surface, which is typically used for
dissolution or etching simulations.21,22 In our model, to allow
full freedom of choice, we introduce two parametersλ1 andλ2.
The site dependence of the probabilities is modeled byλ1. A
site-independent attachment probability is obtained forλ1 ) 0,
and a site-independent detachment probability forλ1 ) 1.
Similarly, a choice 0e λ2 e 1 models the∆µ dependence of
the probabilities. The condition for microscopic reversibility (see
eq 10) is maintained for any value of theλ parameters even
outside this range, but this seems a rather unphysical choice.
The introduction of theλ parameters results in the following
chances for the growth and etch events

whereâ ) (kBT)-1 and the difference in energy of the bulk
phases is given by∆U ) Umoth - Ucryst. The relation between
the thermodynamic parameters in these expressions and the
driving force for crystallization is given by

Theλ parameters do not alter the equilibrium condition, which
is only determined by the ratio of the probabilities. However,
the relative rates of different growth and etch events do change
dramatically with varyingλi. Ideally, the particular choices of
λi should be optimized for the description of the kinetic behavior
of the crystal surface in the simulation. A first interpretation of
the effect of the variation ofλi is given by Cuppen et al.23 A
further refinement would be to consider separateλi2j terms for
each of the exchange states, although then kinetic behavior of
all those states should be known.

2.2. Sampling Efficiency.The original, well-known impor-
tance sampling algorithm by Metropolis et al.20 uses the
acceptance chance for trials of increasing energy. This sampling
method applies an acceptance factor, which results in the
rejection of a certain amount of trials during a simulation.
Especially at near-equilibrium conditions, this means that a
considerable amount of attempts is rejected and therefore this
method is not very efficient. A much more efficient sampling
method in terms of CPU cycles vs Monte Carlo events can be
devised, which accepts every trial. Such a method is found in
the so-calledn-fold way, which was introduced by Bortz et al.24

and which has been used by many authors since then. It makes
use of the limited number of states of the GUs, as defined by
eq 4. The sum of all the probabilities of all the possible events
of etching and growth at the surface,Qn, is determined at each
MC step labeled byn. Events are chosen randomly according
to their probabilities from the complete set of possible events
and are always accepted. Obviously, a time correction has to
be applied, as was also documented by the same authors. They
showed that an independent stochastic time increase∆tn at trial
n should be taken as

whereRn is a random number within the interval (0,1) andτ is
an elementary time scale for the events. The random contribution
to the stochastic time increase can, however, be omitted for
sufficiently long simulations. SinceQn andRn are not correlated,
it holds that the total real time that has passed afterNMC events
is given by

whereNMC is the total number of Monte Carlo events performed
during the simulation. The time increase, thus, simplifies to

which also circumvents the numerical problems that occur for
values ofRn close to 0. It should be noted that fluctuations of
the growth speed are greatly reduced by this approximation,
which we regard as an additional advantage, since this allows
shorter simulation times for equally reproducible results.

2.3. Solid-to-Solid Condition.Many discrete Monte Carlo
simulations of crystal growth utilize the solid-on-solid (SOS)
condition.7 This more or less pragmatic condition applied to
the Kossel and related models implies that GUs can only attach
to the surface at sites for which all the sites below it are
occupied. This condition avoids overhangs and inclusions. In
the present case, however, the model is abstracted to such an
extent that this restriction cannot be applied straightforwardly,
as the concept of height is no longer defined. Therefore, as an
alternative, we introduce the solid-to-solid (STS) condition,
which implies that GUs are merely restricted to attach to the
surface, forming at least one bond, instead of strictly on top of
it. This allows for overhangs and inclusions, which can change
the growth behavior dramatically but only at very high super-
saturations. We believe that this approach mimics true growth
conditions better. The STS method does not allow the nucleation
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of new crystals in the motherphase. This is clearly an artificial
condition, since nucleation of new crystals can always occur in
experimental conditions with sufficiently high supersaturations
but is less relevant for the purpose of morphology prediction.
The use of an STS model is convenient, since growth can only
take place at the boundary layer; this allows for an implementa-
tion of a limited data structure. To maintain equilibrium for
∆µ ) 0, etching of a fully bound (bulk) GU is prohibited as
well.

2.4. Parametrization from the Crystal Graph. To simulate
the growth of a particular crystal face (hkl), periodic boundary
conditions have to be applied along the plane directions.
However, the use of such 2D periodic boundary conditions for
any orientation (hkl) is tedious, since a lot of calculational effort
is needed to determine the environment of growth sites at the
domain borders, throughout the simulation. In our implementa-
tion, the (001) face in the simulation reference frame is taken
as the growth direction which is parallel to the reciprocal lattice
vector (hkl) of the crystal. Periodic boundary conditions apply
along two directions [100] and [010] perpendicular to it. The
transformed unit cell is called a slice cell, spanned by new lattice
vectorsu, v, andw. The resulting slice cell is chosen to have
an identical volume to the original cell and all angles closest to
90°. Since the formal space-group information is lost by creating
a slice cell, each GU in the slice cell is treated as a unique
entity without considering symmetry, without loss of generality.
To determine all possible statesUi2j, the bond energies are
parametrized through a convenient file format (crystal graph
format, .cgf) which is also used in our connected net analysis
program FACELIFT-2.5025 and the structural isotropy analysis
program ISOTROPY-0.06.26 The crystal graph specifies the
energy of the interactions between pairs of GUs. The interaction
energy is defined as the energy released by bringing the GUs
from infinite distance into their crystallographic positions. This
can be calculated as the difference in energy between the pair
of GUs at their crystallographic positions and the sum of the
intramolecular energies of the individual GUs. Several molecular
mechanics programs have been modified to automate the
creation of crystal graphs, since obtaining the separate inter-
actions without automation generally requires a lot of manual
labor. Among others, these programs include GULP27 (not fully
automated yet) and most importantly the open force field
implemented in Cerius2,1 which allows full crystal graph
generation through an undocumented call via the command line
interface. A computationally effective algorithm is needed to
determine the chance for a growth or etch move during the
simulation. For this purpose, a lookup table strategy is adopted.
The index in the table is determined by the binary representation
of the integer number which is created by taking the on/off status
of each bond as the respective bits.

2.5. Relation to Experimental Conditions.The driving force
∆µ for crystallization is defined by

wherea is the activity of the GUs in the motherphase. For crystal
growth from ideal solutions, the activity can be replaced by the
mole fractionx of the GUs. If the ratiox/xeq is close to unity
we can approximate eq 17 as

whereσ is the relative supersaturation andxeq is the equilibrium

mole fraction. Bothσ and∆µ are commonly used as parameters
for crystal growth experiments and simulations. The relation
between the experimentally relevant parameters in our model,
Ui2j, Umoth, ∆S, and∆V and the driving force∆µ/kBT will be
discussed.

From eqs 11 and 12, it can be seen that, given the values for
Ui2j, the growth behavior of a crystal can be simulated as a
function of any of the thermodynamic parameters temperature,
motherphase energy, and entropy. Moreover, the kinetic be-
havior can be tuned by changingλi. Ui2j can be calculated from
molecular mechanics force fields, as explained in section 2.4.
The motherphase could be modeled using a similar approach,
but experimental data can also be used. For growth from a
solvent, for instance, the dissolution enthalpy and entropy can
be derived from solubility data. The solubilityxeq is related to
the dissolution Gibbs free energy according to

but more sophisticated methods such as the expanded Hansen
approach (ref 28 and references therein) may also be used.
Crystal growth can be achieved by changing the appropriate
parameters of a system as compared to equilibrium (for which
∆µ ) 0), like lowering the temperature, increasing the pressure,
increasing the solute concentration (i.e., lowering the entropy),
or lowering the motherphase interaction energyUmoth. The latter
can only be achieved experimentally by changing the solvent.
A change of any of these parameters changes the driving force
for crystallization∆µ according to eq 13. Thus, our approach
allows for the simulation of several kinds of experimental
conditions in a direct way.

2.6. Interpretation of Simulation Results.The linear growth
rate of a face (hkl) is determined by

wheredhkl is the interplanar distance between growth slices,
Ngrowth andNetchare the total number of growth and etch events
during the simulation, andNslice is the total number of GUs in
the growth slice. The total simulation timetNMC passed after
NMC events is found by adding the individual event time intervals
as defined in eq 16

where〈∆t〉 is the average time interval between two consecutive
(growth or etch) events. Althoughτ may depend on the
orientation (hkl), we neglect this dependence. The crystal-
lographic prefactordhkl/Nslice in eq 20 ensures that the growth
rate is independent of the 2D area of the simulation surface. In
the most recent versions of MONTY, the spiral growth
mechanism is also implemented.15 Currently, this enlarges the
computational load considerably.

In the present approach, growth on defect-free crystal surfaces
is simulated, allowing only 2D nucleation. The particular
property of interest is the barrier for 2D nucleation. From this
barrier, the effective-edge free energy,γ, can be determined,
which can be utilized to estimate the growth speed of a face as
a function of the supersaturation based on the classical analytical
expressions for the growth speed29 for any growth mechanism
that is determined by this edge free energy. For the determination
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of the effective nucleation barrier, we have to determine at which
conditions the surface starts to grow in a rough fashion. This
can be achieved by plotting the sticking fraction,Shkl, against
∆µ. Traditionally, in the random rain model (λ1 ) λ2 ) 0) for
growing crystals (∆µ > 0), the sticking fraction is defined as

Typically, for growth strongly limited by the 2D-nucleation
mechanism, the sticking fraction as a function of the driving
force shows an S-like shape, where the roughening transition
is marked by a sudden increase from 0 to 1 in the sticking
fraction for a certain∆µ > 0. In Appendix B, an expression
for the growth rate in terms of the sticking fraction is derived.

As already stated, for growth rate vs driving force curves,
theλ parameters, should be chosen to mimic the actual growth
kinetics. The morphology of a crystal could then ultimately be
obtained directly, by measuring the growth rates of all the
relevant crystal faces, according to eq 20. It can be shown, that
the most efficient sampling is achieved forλ1 ) λ2 ) 0.5 to
determine the roughening transition. In this work, we therefore
apply those values and stick to the measure given by eq 22.

3. Validation Simulations

3.1. Morphology of Crystals of Three Different Fats.The
crystal morphologies of various classes of pure fat compounds
were studied in recent work based on a connected net analy-
sis.16,30,31,32,17The results of these studies will be validated using
the results of our Monte Carlo approach. Traditional morphology
prediction models already showed considerable deviations from
the experimental morphologies for all these classes of fat
crystals.17 Figure 1 shows the differences between the experi-
mental morphologies and the “growth morphology” as calculated
with default settings in Cerius2,1 with a limited “Bond-Energy
List”, which was necessary to complete the calculation within
a reasonable amount of time. Hollander et al.16 showed that a

much better agreement between theory and experiment is
obtained by calculating the edge free energies of the various
faces based on an analysis of their connected nets. Many of the
occurring faces with high indices prove not to be connected
and are thus nonflat faces. For the details of a connected net
analysis, we refer to Grimbergen et al.33 The results suggest
that the use of the attachment energy as the growth-controlling
parameter is not always valid, as was shown in more detail for
one of the fats considered here by Boerrigter et al.34 and
reconsidered in a subsequent paper.17 In the latter paper, the
morphology for each of the three classes of fats treated here
was explained in detail on the basis of a connected net analysis
and edge energy analysis.

The crystal structures of the pure fats under study are
representatives of three different classes of homologously
isomorphous fat structures with varying fatty acid chain lengths,
indicated by the number of carbon atoms in the chain,n. These
classes are theâ-CnCnCn-, â′-CnCn+2Cn-, and â′-CnCnCn-2-
triacylglycerols, wheren is always even and for which the short
notationsâ-n.n.n, etc., are further used. In order of chronological
appearance, the crystal structures forâ-16.16.16 (space group
P1h)35 and forâ′-10.12.10 (space groupIc2a)36 were determined
by Van Langevelde et al. and that ofâ′-16.16.14 (spacegroup
C2)37 was elucidated by Sato et al.

The crystallographic data of these structures were used for
the molecular mechanics calculations as follows. The energies
of all fats were minimized using the consistent valence force
field (CVFF),38 using the “smart minimizer” of Cerius2.39 Ewald
summation was used for both the van der Waals interactions
and the Coulomb interactions, with the accuracy set to 1× 10-4

kcal/mol. The convergence was set to RMS force) 1.0× 10-3

kcal/mol Å, max force) 5.0× 10-3 kcal/mol Å, ∆E ) 1.0×
10-4 kcal/mol, RMS displacement) 1.0 × 10-5 Å, max
displacement) 5.0× 10-5 Å, RMS stress) 1.0× 10-3 GPa,
max stress) 5.0 × 10-3GPa (the “high convergence” option
in Cerius2). Van de Streek et al. successfully used these settings
to predict the crystal structure ofâ′2-10.12.10.40,41The molecular
interactions (see section 2.4) were calculated by using the open
force field of Cerius2 resulting in the crystal graphs. The specific
numerical results as well as a full extended connected net
analysis can be found in refs 16 and 17.

The connected net analysis provides a selection of faces that
are most likely to appear on the morphology of the crystals.
All those faces found were simulated using MONTY 0.963 and
0.975 as well as some additional nonflat faces with small indices.
The latter nonflat faces were considered to test whether such
faces indeed grow already rough at very small driving forces.
For theâ′ structures, the surfaces consisted of 50× 50 slice
cells. Each data point was obtained after an equilibration stage
of 200 000 Monte Carlo events followed by a total of 1 000 000
events in the sampling stage. A temperature of 300 K was used.
The â crystal was simulated with the following values for the
respective parameters: 40× 40 slice cells, 100 000 relaxation
events, 100 000 sampling events, and 313 K. No solvent
interaction energy data were available; hence a value forUmoth

of 0 was taken for the simulation. This will certainly influence
the absolute values of the edge free energies but is expected to
have a negligible effect on their relative values. The use of the
parameterUmoth was already successfully demonstrated in the
case of paracetamol.15 Furthermore,∆V was taken as 0, which
is assumed to be a good approximation for growth from solvents.
In all simulations, the efficient sampling technique was used
where the kinetic parameters were set toλ1 ) λ2 ) 0.5. The

Figure 1. Schematic overview of experimental (bottom) and calculated
(top) attachment energy morphologies from left to right:â-16.16.16,
â′-10.12.10, andâ′-16.16.14. The indicesl of the experimental crystals
could not be determined because the crystals are extremely thin. The
difference in attachment energies between visible faces never exceeds
a factor of 25. On the other hand, the aspect ratio of the experimental
plank-shaped crystals can have values up to length-width-thickness
) 1000:300:1, except for the rightmost crystal, which is mainly bound
by the{11l} form causing a lozenge shape. The small seemingly top
facet on the lower side of that crystal is due to accidental damage.17

The {21l} faces on â′-10.12.10 were found only at the lowest
supersaturations. Usually these faces roughen causing the slightly
exaggerated dotted shape.32 The 00l faces will be designated as basal
faces, theh0l (h * 0) faces as side faces, and the other faces as top
faces. The indices differ somewhat from the ones in ref 17 as the latter
ones are based on a full connected net analysis and the present ones
are determined by the attachment-energy module in the Cerius2 package.

Shkl )
Ngrowth - Netch

Ngrowth
(22)
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effective supersaturation was, thus, only varied by variation of
the entropy, i.e., the concentration in the solution.

3.2. Results and Discussion.We will make a distinction
between basal, side, and top faces as indicated in the caption to
Figure 1. Figures 2-4 show the typical S-shaped growth rate
curves obtained from the simulations for various crystal faces
as a function of the supersaturation. These curves show the
driving force needed for unhindered growth as a pronounced
onset of the sticking fraction. For values below this threshold
supersaturation, which depends on the edge free energy, 2D
nuclei cannot reach the critical size. Effectively, the surface does
not grow, and thus, the sticking fraction is zero. At the onset of
the S-curve, occasionally, a 2D nucleus can reach its critical
size. Here, the surface is growing slowly by the 2D nucleation
mechanism. At increasing supersaturation, the size of the critical
nucleus decreases, which causes the sticking fraction to increase
gradually. At supersaturations above the threshold, the size of
the critical nucleus is sufficiently small to allow unhindered
growth. There, the edge free energy becomes equal to zero. Note
that a zero edge free energy in a single direction along the face
is already enough for a face to roughen.16,17 The transition is
interpreted as the kinetic roughening transition.

All three structures show groups of growth curves of different
faces which have an identical growth behavior. The responsible
edge direction, in most cases, is shared among the group
members. Hence, they start to grow at roughly the same
supersaturation.

Several opposite faces on theâ-16.16.16 crystal, which has
inversion symmetry, were simulated to check the consistency.
In the relevant space groupP1h, opposite faces belong to the
same form (set of symmetry related faces) and must, therefore,
show exactly the same curve. This is indeed observed.

The shorter simulations on theâ crystal occasionally show
typical bumps before the onset of the curve. Later work has
shown that this is not a significant peculiarity of the growth
behavior. It is rather a result of the fact that the growth
mechanism is controlled by a strict layer-by-layer mechanism.
Since the 2D nuclei only reach their critical size very occasion-
ally at low ∆µ, longer sampling times are needed to obtain a
smaller standard deviation of the sticking fraction. The curves
of theâ′ simulations, obtained for a much longer sampling time,
are much smoother at a low sticking fraction.

All structures have heavily retarded (001) orientations. The
enormous supersaturations needed to initiate 2D nucleation show
that these faces are very unlikely to grow via this mechanism
under any experimental condition. This was indeed observed
as these faces seem to grow invariably via the spiral growth
mechanism while for the top and side faces spirals are expected
to grow out of the very thin faces and, therefore, to grow via a
2D nucleation mechanism.31 The attachment energy prediction
is in agreement with these results. The side{h0l} and top{hkl}
faces determine the different morphologies and, especially, the
aspect ratios for the various crystal structures. These will be
discussed separately for the three examples studied.

3.2.1.â-16.16.16.For â-16.16.16 (Figure 2), there are four
groups of curves. The first group consists of forms of faces
that grow rough already at a very small supersaturation:{11h1},
{1h10}, and{1h11}. The curves for opposite faces of these forms
coincide up to statistical fluctuations. None of these orientations
was found to be connected nor observed experimentally.16 This
confirms the expected behavior regarding the roughening theory.
However, exceptions are found in the nonconnected net orienta-
tions (213) and (212), which appear on the left-hand side of
the second and largest group of curves that become rough at
about 7 kcal/mol. Their sticking fraction profiles are nearly

Figure 2. Sticking fraction of various faces ofâ-16.16.16. The
roughening transition of the (001) face is out of the range of this graph
at about 60 kcal/mol.

Figure 3. â′-10.12.10 shows very few orientations which do not grow
rough at low supersaturation.

Figure 4. â′-16.16.14. Apart from (001), most faces roughen at a
relatively low supersaturation, close to each other, suggesting a
relatively isotropic morphology. (001) roughens at 62 kcal/mol.
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identical to those of the other members of that group, which
are exactly the weakly connected top faces appearing on the
experimental crystals. The sticking fractions of (213) and
(212) suggest that these faces are stable and stay flat. How-
ever, close examination of the resulting surfaces showed that
these faces rapidly form a sort of roof-like pattern constrained
by the size of the simulation box during the equilibration phase.
The roofs were truncated by{001} and{211} faces. This roof
pattern, therefore, grows at the rate of the fastest of the two,
therefore showing a nearly identical roughening behavior as the
(211) face. This means that the macroscopic crystals will not
show the (213) and (212) faces but rather the (001h) and (211).
Since the third index could not be determined experimentally,
all the remaining faces in the second group of Figure 2 can
indeed be present on the experimental morphology. The third
group at about 13 kcal/mol concerns exclusively the side faces,
and finally we find the extremely stable basal faces{001} at
about 60 kcal/mol.

Summarizing, we can say that the simulation results cor-
respond perfectly to the experimental results in terms of the
order of the curves. The attachment energy method, on the other
hand, produces the never-observed faces (213) and (111) as
the top faces (see Figure 1). This is clearly inconsistent with
both the experimental and simulation results. The simulations
show the{111} faces to be rough and the{213} faces to
develop into two different flat faces. The sides of the crystals
are predicted to be truncated by the{203h} and {305h} forms.
These forms, however, show a similar behavior as (213). They
are highly unlikely to be present on the experimental crystals
because of this breaking-up and since both the extended
connected net theory combined with the determination of Ising
temperatures16,17and our Monte Carlo simulations produce the
{100} and{101h} forms.

3.2.2.â′-10.12.10.â′-10.12.10 is the most simple one of the
three structures considered. Figure 3 shows that the side faces
(101), (200), and (201) start to grow at a supersaturation of about
12 kcal/mol. Only the first two are connected. Given these equal
growth rates, the crystal is truncated by the (200) face. The
attachment energy prediction produces the{101} faces. Since
the inclination of the side face could not be determined
experimentally, both are still possible. Hence, for the side faces,
there is no disagreement between the calculated and experi-
mental crystals. The top faces, on the other hand, do show a
striking disagreement between the attachment energy prediction
and the simulation results. Flat-top faces were only found for
growth from dodecane at low supersaturation and were indexed
as {21l}.17 For higher supersaturations, they typically grow
rough, with diffusion limitation leading to dagger-shaped faces
(see also Figure 1). At the onset of diffusion-limited growth,
they could erroneously be indexed as (61l).32 This is in perfect
agreement with the simulation results; the only orientations left
which do not grow rough immediately indeed belong to the
{211} form. However, the face (211) starts to form 2D nuclei
at a supersaturation as low as 2 kcal/mol, which indicates that
it is expected to roughen easily. (112) is calculated to be the
appearing top face on the basis of the attachment energy. The
Hartman-Perdok theory agrees with this as this face has a
connected net. A first analysis of 2D-nucleation on this face,
nevertheless, erroneously resulted in a zero value for the edge
energy, corresponding to a rough face.34 However, a detailed
study of this top face, published earlier, showed that, in
accordance with the presence of a connected net, its edge energy
is not zero but small.17 A rough estimate based on this detailed
analysis leads to an edge energy for 2D nucleation which is

about 10 times as small as compared to the{211} form, resulting
in a face that roughens at supersaturations close to zero beyond
the precision of our simulations. This explains why the only
top faces ever observed as flat faces belong to the{211} form.
All these results agree perfectly with the simulation results,
which show that all other top-face orientations indeed grow
rough immediately, including the{112}. To test the rough
growth for the nonconnected (61l) faces, the (610) and (611)
faces were added to the simulations; they both showed to
roughen already for the lowest supersaturations. This confirms
that the apparent faces with tentative indices (61l) at the onset
of diffusion-limited growth indeed cannot be attributed to flat
faces.

Finally, the (002) basal faces show an onset for 2D nucleation
at roughly 43 kcal/mol. If we use the onset of the sticking
fraction curves as a semiquantitative measure for the growth
rate of the various flat faces, we can compare the aspect ratios
of the â-16.16.16 and theâ′-10.12.10 crystals. If we compare
the side and basal faces, we find a ratio of 13:60 for the
â-16.16.16 and 12:43 for theâ′-10.12.10 crystals. This is in
agreement with the more planklike shape of theâ-16.16.16
crystals. By comparison of the top and side faces, we find a
ratio of 7:13 for theâ-16.16.16 and 2:12 for theâ′-10.12.10
crystals. This explains the far more elongated needle-shaped
crystals of theâ′-10.12.10 crystals.

3.2.3. â′-16.16.14. Figure 4 shows forâ′-16.16.14 a com-
pletely different behavior compared to the other two structures.
The {001} basal faces are, still, by far the most stable faces
resulting in a flat crystal morphology. All side and top faces,
however, have a kinetic roughening transition already in a
relatively small range of supersaturations. This suggests that
these crystals can only be obtained completely faceted at a much
smaller supersaturation than the other two. The relatively small
difference in supersaturation for the onset of roughening between
the side faces and the most stable top faces corresponds well to
the fact that the experimental morphology of these crystals is
that of a lozenge instead of a plank. The attachment-energy
morphology shows{602h} side faces, which are somewhat larger
than the{110} top faces. On the experimental morphology, the
top faces{11l} are the most prominent while the{10l} side
faces are just discernible. As mentioned before, the top face at
the bottom side of the figure is an experimental artifact.
Therefore, the indices predicted by the attachment energy
method do not conflict with the experimental morphology,
although the aspect ratio is wrong. The simulation results
describe the experimental morphology better. At first sight, the
(301h) face appears to be one of the most stable orientations in
accordance with the attachment energy prediction. Closer
inspection, however, shows that all side faces (k ) 0) start
growing slowly already below the onset of the{110} and{111h}
top faces. The onset of these top faces is well defined, showing
no growth below the threshold supersaturation. This results in
a crossing of growth curves. Therefore, for supersaturations
smaller than the onset of the top faces, the crystal will be
truncated by these top faces and above that onset by the side
faces. The experimental morphology of Figure 1 seems to be
grown near the transition point. The cause for the unusual slow
onset of the side faces remains to be explained.

4. Conclusion

The results of our Monte Carlo approach applied to predict
the morphology of fat crystals confirm previous results based
on an extended connected net analysis including the determi-
nation of edge energies perfectly. Caution should, however, be
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taken as the results showed that the sticking fraction is not
always conclusive. Some faces break up in other flat-face
orientations. Besides the sticking fraction, this breaking up
should be taken into account for the proper prediction of the
growth behavior of a crystal face. In the present version of
MONTY, this demands for an interpretation of both the growth
curves and the resulting surfaces.

The implementation of MONTY used in this study simulates
growth via the 2D nucleation mechanism for which the edge
energies determine the onset of the growth-rate curves. Since
crystal faces very often grow via the spiral-growth mechanism,
the results cannot be used directly for the purpose of morphology
prediction in dependence of supersaturation in general. For this,
the actual growth rates of all the relevant faces need to be
calculated for a range of supersaturations taking into account
this alternative mechanism. This was done for the case of
paracetamol where the relevant growth mechanism was deter-
mined experimentally for each face.15 As was mentioned for
the fat crystals, only the basal faces are growing via a spiral-
growth mechanism, implying that the aspect ratio between the
side and top faces is determined only by the 2D nucleation
mechanism.

Even when the growth mechanisms of the various faces are
known, the force fields used to determine the bond energies
can lead to rather different results as was studied by Cuppen et
al.42

Other improvements to the method may be needed to increase
the predictive value of the method. The simplified assumption
of a linear interaction law of the growth units with the solvent,
for example, may be considerably improved by calculating
surface site specific solvent interactions. Furthermore, an
improved kinetic Monte Carlo method could be designed by
including the individual transition states.43-47 Related to this is
a proper choice of the values ofλi in eqs 11 and 12. A first
interpretation of such a choice was discussed in ref 23. Also,
in contrast to some other Monte Carlo methods, no surface
diffusion, which is known to be nonnegligible for vapor growth,
is taken into account. These issues are left for further research.

Even with these shortcomings, a good correlation between
the experimental results is obtained, at least for the cases of the
fat crystals considered here and for other examples referred to.
This suggests that the main trends are already represented well
by the current method. In any case, the results show that, by
using MONTY based on the interaction energies between the
GUs in the crystal, a crystal morphology in dependence of
supersaturation is obtained that is a considerable improvement
of the plain attachment energy approach.

Appendix A
An alternative statistical mechanical approach can be used

to derive the probability ratio of eq 10. In the grand canonical
ensemble, for a one-component system, the standard expression
for the probability for finding a system ofN particles in a state
j48 is

where¥ is the grand canonical partition function.19 This can
be extended to the probability of finding a system withNc GUs
in the crystal phase andNm in the motherphase in a state with
a surface configurationSj with a surface energyU(Sj,Nc,Nm)

The lowest energy levelU(S0,Nc,Nm) corresponds to the most
stable, usually flat, interface withNc solid andNm motherphase
GUs. Assuming microscopic reversibility, the probability ratio
for attachment and detachment for sitei2j becomes

where ∆µ ) µmoth - µcryst. Again, we assume a linear
dependence for the surface-solvent interaction, which in this
approach varies by the complementary energy ofUi2j. Thus

which defines the effective energy change of the GU at the
surface sitei2j, equivalent to eq 9. Since

we obtain after substitution in eq 25 exactly the result given by
eq 10.

Appendix B

Equation 20 gives the growth rate of a face (hkl) applicable
to any kinetic mechanism as parametrized by the parametersλi

in eqs 11 and 12. Here, we derive a relation between the growth
rate and the traditional sticking fraction given by eq 22 which,
in principle, is only relevant forλ1 ) λ2 ) 0 and growth
situations (∆µ > 0).

Starting from equation 20, the total simulation timetNMC can
also be expressed in terms of the average time interval between
two attachments,〈∆tgrowth〉. For that, we determine the total
average event frequency as〈ν〉 ) 〈νgrowth〉 + 〈νetch〉. For the
individual average frequencies, we find〈νgrowth〉 ) (Ngrowth/NMC)-
〈ν〉 and 〈νetch〉 ) (Netch/NMC)〈ν〉 or equivalently

in terms of the individual average time intervals for growth and
etch events, respectively. Substitution into eq 20 yields for the
growth rate

〈∆tgrowth〉 follows from eq 16 and eqs 11 and 12 forλ1 ) λ2 )
0

where〈Ngrowables〉 is the average number of sites at the surface
where a GU can attach. This results in the growth rate expression

The number〈Ngrowables〉 depends on the roughness of the face
(hkl) at the driving force∆µ and temperatureâ ) 1/kT. Thus,
more rough faces tend to grow faster. This expression is more
complicated as compared to the expression traditionally used

Pi2j
growth

Pi2j
etch

) exp(â(∆Ui2j
surf - ∆U) + â∆µ) (25)

∆Ui2j
surf ) (Umoth

Ucryst
- 1)Ui2j (26)

∆µ ) Gmoth - Gcryst ) ∆U - T∆S+ P∆V (27)

〈∆t〉 )
Ngrowth

NMC
〈∆tgrowth〉 )

Netch

NMC
〈∆tetch〉 (28)

Rhkl )
dhkl

Nslice

Ngrowth - Netch

Ngrowth〈∆tgrowth〉
)

dhkl

Nslice
Shkl

1
〈∆tgrowth〉

(29)

〈∆tgrowth〉 ) 1
〈νgrowth〉

) τ
〈∑ Pi2j

growth〉
) τ

〈Ngrowables〉 exp(â∆µ)

(30)

Rhkl ) τ-1dhkl

〈Ngrowables〉
Nslice

Shkl exp(â∆µ) (31)

P(N,j) )
exp(-â(E(j,N) - µN))

¥
(23)

P(Nc,Nm,j) )
exp(-âU(Sj,Nc,Nm) + âµcNc + âµmNm)

¥
(24)
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for MC simulations on the Kossel-SOS model. For this latter
model, the SOS condition reduces〈Ngrowables〉 to 〈Ngrowables〉 )
Nslice. For Kossel-like SOS models, where the growth layer
consists of more than one layer of GUs,〈Ngrowables〉 reduces to
〈Ngrowables〉 ) (1/m)Nslice, wherem is the number of layers in
the slice. In the present approach, however, the SOS condition
is replaced by the STS condition demanding for the more general
expression for the growth rate given by eq 20, which is
applicable to any crystal structure and any value 0e λi e 1.
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