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A vibronic theory of unpolarized infrared absorption and vibrational circular dichroism (VCD) is presented
that is valid in the limit of vibrational resonance with low-lying electronic states (LLESs). The theory is
developed within the complete adiabatic vibronic coupling formalism that describes both the correlation of
electron density to nuclear positions and the correlation of electron current density to nuclear velocities. It is
found that additional terms contribute to the electric-dipole and magnetic-dipole transition moments that become
zero in the limit where all excited electronic states in the molecule are much higher in energy relative to
fundamental vibrational transitions. Two correction terms appear that are extensions of the lowest-order non-
Born—Oppenheimer expansion term when vibronic detail is included in the energy denominators. One term
is a resonance term with respect to the energy difference between the electronic and vibrational transitions,
and the other is a nonresonance term. Under the assumption that vibrational sublevels in LLES are not
significantly changed from those in the ground electronic state, the two correction terms can be reduced to
a simple frequency-dependent factor that becomes unity in the limit that electronic-state transitions are much
higher than vibrational transition energies. The theory is applied to the case of transitions to LLESs that are
electric-dipole forbidden and magnetic-dipole allowed, and the relation of these expressions to recent
experimental results of VCD enhanced by such LLESs is discussed.

I. Introduction pure vibrational transition¥. In the case of vibrational transi-
tions, the electron transition current density, a vector field, is

_The theory of unpolarized infrared (IR) absorption and {he electron motion complement to the nuclear displacement
vibrational circular dichroism (VCD) is well-establish&d: The vectors associated with the molecular vibrational motion of a
theory has been developed within the framework of several particular normal mode.

traditional assumptions. The most fundamental of these is that . .

the manifold of excited electronic states in the molecule is much th Stt‘?r:t"}g frorln the VCT trt1etory of VCDt ('jt hii i)r‘]een shown_
higher in energy than the manifold of fundamental vibrational f ath € Ior;na sum ?V_Erts. a ?S tz;ssoma € t'WId' Ie fxprgts_,smn
transitions. In particular, there is an absence of low-lying or the electronic contribution 1o theé magnetic-dipole transition

electronic excited states (LLESs) that may be close to or within mometr:t can E&g@'?ﬁq k_)y 'erdUCt'onl()f al mlagngtlc .ﬂeld
the manifold of vibrational transitions. Relaxing this assumption Perturbation (MFP:° This is most recently calculated using

requires a modification of the theory of unpolarized IR and VCD coupled Hartrge Fock perturbation theory. Similarly, VCD can
intensities. be formulated in terms of a nuclear velocity perturbation (NVP)
The vibronic coupling theory (VCT) of VCD intensities where origin independence is guaranteed by use of an electronic
including demonstration of the formal equivalence of tr,le wave function with nuclear velocity gauges on atqmic orbital§.
position and velocity forms of IR absorption, was first published Analogously, the MFP theory can be formulated using magnetic-

in 19834 Subsequently, the theory of the velocity form of IR field gauge-invariant atomic orbitals, and it is this form of the

intensity and VCD was formulated in terms of adiabatic theory that is currently available in the VCD intensity subroutine
dependence on nuclear velocities, as well as the traditional of Gaussian 98 and Gaussian ©3The NVP formulation of

nuclear positiong.It was shown that the lowest-order correction VCD has not yet been programmed.

to the Born-Oppenheimer (BO) approximation provides a IR intensities are proportional the absolute square of the
correlation between vibrationally induced electrenrrent electric-dipole transition moment. The position form of this
densityin an electronic state and thelocitiesof the nuclei. transition moment can be expressed fully within the BO
This is the dynamic analogue of the correlation between electronapproximation, and the lowest-order BO correction term van-
probability density and nuclear positions that is found within ishes. Conversely, the velocity form of this transition moment
the BO approximation. This level of theory is called the is described equivalently with the lowest-order BO correction
complete adiabatic (CA) approximation because the complex term and the BO approximation contribution vanishes. Com-
electronic wave function, which depends parametrically on both putationally, the velocity formulation of the IR intensity is found
the nuclear positions and the momenta, can be factored fromto be less accurate than the position form, and the two only
the vibrational wave function. More recently, this theory has become identical in the limit of the exact electronic wave
been extended to the electron transition current density that canfunction. The magnetic-dipole transition moment is expressed
be visualized for transitions between any pair of states in in direct analogy to the velocity form of the electric-dipole
molecule§ and in particular for pure electronic transitiérasd transition moment and, hence, is fully described to the first order
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by the non-BO correction term. In this paper, it is shown that terms to the wave functions and transition moments for LLESs

as the energy of the electronic states in a molecule approachare presented, and in the following section a reasonable

those of the vibrational states, the separation between these twapproximation is introduced that simplifies the expression of

intensity mechanisms is lost and new non-BO contributions these correction terms relative to the standard vibronic coupling

appear for all three of these formulations of transition moments. formulation of IR and VCD intensities. Further sections of the
Motivation for pursuing this theoretical development has Paper deal with the consequences of these LLES-correction

arisen over the years from experimenta| studies invo|ving '.[ermsl, inClUding approaches to their calculation and experimental

enhanced or unusually large VCD intensities associated with isolation.

molecules possessing transition metals or rare earth metals. In .

the first full paper published on VCD, the VCD spectra of two !I- Theoretical Background

rare earth complexes with+)-camphorato-type ligands are IR intensities are expressed theoretically as the dipole

presented, one of praseodymium and the other eurofidine strengthD. For a transition of the molecule between the 0 and

two otherwise identical complexes have nearly identical IR the 1 levels of theth vibrational mode in the ground electronic

spectra and similar but significantly different VCD spectra state g, one can write

owing possibly to the presence of magnetic-digelétransitions

in the IR region of the spectrum. There is a hint of a small Dy, gOa= |m’gla|ﬂ/;|lpgoaﬂ]2 (1)
bisignate electronic circular dichroism (CD) band, with no '
associated absorption band, in the Eu(lll) complex. The dipole strength is the absolute square of the electric-dipole

A more dramatic example is the observation several years transition moment, always a positive quantity. The subsgtipt
later of the IR and VCD spectra of Zn(ll), Co(ll), and Ni(ll)  refers to a molecule-based Cartesian coordinate system where
complexes of )-sparteine in the CH stretchirig.Here, all repeated occurrence of a Greek subscript, as present here,
three complexes exhibit nearly the same IR absorption spectrumimplies summation over all three Cartesian directions. Fhe
whereas the VCD of all three complexes are significantly component of the electric-dipole moment operator in the position
different from one another. The Zn(ll) complex possesses a form is given by
typical VCD spectrum, whereas the Co(ll) and Ni(ll) VCD
spectra are different from that of Zn(ll) and one another and Ug = ﬂﬁE +ﬂﬂN = _zerjlg + ZZJGRJ[; (2)
are enhanced by nearly an order of magnitude. The VCD spectra ]
of Co(ll) and Ni(ll) are superimposed on broad backgrounds
of IR electronic CD of completely different character for the
two complexes. The fact that the IR spectrum is virtually the
same for all three complexes implies that thed transitions
are still strongly electric-dipole forbidden and magnetic-dipole
allowed and, therefore, make an insignificant contribution to
an electric-dipole transition moment. We have repeated these
measurements recently with Fourier transform VCD instrumen-
tation and have extended the measurements into the mid-IR
region where there is no discernible underlying electronic CD
intensity!* Here again, the IR spectra are nearly identicaland . . g, . n_ 5o
the VCD spectra are different for all three complexes. The zn- 8 = 5 T = _Zerjﬂ + ZZJeRJﬂ B
(I1) complex is not enhanced and the Co(ll) and Ni(ll) VCD J 7
spectra are enhanced differently by approximately one order of <t o©

Z;]pjﬁ + ZVPJ/j (4)
] J

where the sums are over the products of the charges and
positions of the electrons and nuclei of the molecule.

IR intensities can also be expressed in the dipole velocity
formalism, where the dipole strength is defined as

Dgl,gOa = wa_2| BlpglaWﬂ'ngOa (3)

wherew, is the angular vibrational frequency of normal mode
a and the electric-dipole velocity operator is defined as

magnitude over that of the Zn(Il) complex.

Other examples of transition metal complexes with enhanced
VCD are confined mainly to small ligands, such as azide and where the velocity dipole operator is obtained from the product
cyanide, in metalloproteins, such as myoglobin and hemoglobin. of the charge and the velocity of the electrons and the nuclei in
VCD associated with the lone stretching vibrations of these the molecule and where the velocity can also be obtained from
ligands gives rise to enhanced VCD with a ratio of VCD to IR  the ratio of the momentum to the mass of each particle.
intensity of approximately of 1&. These vibrational modes gain The intensity of a VCD band is defined as the rotational
VCD intensity from their chiral environment and borrow strength
intensity from low-lyingd—d transitions in the low-spin Fe(ll)
center of these heme proteitfsi® More examples of transition RMOa = Im[DIJgoawﬂPPgla glalmﬁ|‘Pgan]] (5)
metal enhanced VCD have been obtained recently from
measurements in our laboratory, and these will be reported inwhere the magnetic-dipole moment operator is expressed in the
future publications. notation of eqs 2 and 4 as

The remainder of this paper is organized as follows. First, a
theoretical background section is presented to establish basic E N € Ze
definitions and nomenclature for vibronic coupling formalism ™ = Mg Tmg = _zz_eﬁyérjypjé + Z_eﬂyéRJpré

. : T2mc 2Mc

under the usual assumption of an absence of LLESs. In section (6)
I, the expressions for the transition moments needed for IR
and VCD intensities are also defined and presented usingandeg,s is the alternating tensor that+sl for even permutations
standard VCT. Both the position and velocity forms of the of xyzand—1 for odd permutations. The rotational strength is
electric-dipole transition moment are included because identical the scalar product of two different transition moments, the
correction terms for LLESs are derived for these two formula- electric-dipole and the magnetic-dipole transition moments. As
tions of IR intensities. In Section IV, the lowest-order correction such, the rotational strength can assume both positive and
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negative, as well as 0, values. Alternatively, the rotational where the subscripts on the operators refer to the wave function
strength can be defined using the velocity form of the electric- on which the operator will be applied. From standard quantum
dipole transition moment as mechanical perturbation theory, the perturbed vibronic wave

a . . A a . function is now given by
Rgl,gO = Wy Re[mpgo |/f"/3|lp91 Ij:E]pgl |m/3|lpgo q] (7)

While this form of the rotational strength possesses the W r, R) =9, R) ¢ (R) +

advantage of immediate origin independence, it is not often used, hZ\ﬁy;s| AORy o |1 T, |0/ORY | e,
in preference to eq 5, because of the higher computational z — Ydr, R) ¢.(R)
accuracy of calculation of the electric-dipole transition moment  si=zev MA} Es,— Eev

and, hence, IR intensities, in the position, rather than the (14)
velocity, dipole form. However, we provide this formalism as

an alternative for reasons to be made clear in the following. o .

To develop further the electric-dipole and magnetic-dipole Here, the wave function is no longer fa(_:torable |nto_the_: product
transition moments defined above, the molecular wave function ©f electronic and nuclear wave functions due principally to
is first factored into electronic and vibrational parts, and the CPUPling of vibrational levels between different electronic states.
nuclear dependence of the ensuing electronic wave function isH HOWeVver, separation can be reestablished by first writing the
expanded to first order in the nuclear variables. The molecular NUclear kinetic perturbation term as
Hamiltonian at the level of the BO approximation can be written
as a sum of separate electronic and nuclear parts

0 .
T, =—ih R 15
HBO — HE + HN (8) ( N)perturb Z(aRA’a) A, 0 ( )

elec

The Schrdinger equation then becomes
where the classical form of the nuclear velocity is used for that
HgoWelr R) = Eo W (1, R) = Eq (1, R) ¢e(R) (9) part of the wave function that is associated with the nuclear

) _ motion and the quantum mechanical form of the nuclear
with the usual dependence of the electronic and nuclear wavemomentum operator, the coupling operator, is left for the

functions on the electron and nuclear coordinates. This level of glectronic wave function
approximation is called the adiabatic approximation because the

electronic wave function is separated from the nuclear wave .

function and depends parametrically on the positions of the W (r, R, R) = 9(r, R) ¢.(R) +

nuclei. It_ is possible to express the adiab_a_tic erendence _of the @Sw/aRA’aWemsuwev[RAﬂ
electronic wave function on nuclear position in terms of first- ik wdr, R) ¢(R) (16)
order time-independent perturbation theory, called the Herzberg stZev E,,— Eo
Teller expansion, as
@ 2| (AH/OR, ol LR o The wave function is now complex and able to support the
Pr,R) = weo(r) + z i : (/)so(r) existence of vibrationally induced electron current density by
& ESO — Eeo specifying nonzero values for the nuclear velocity, in analogy
(10) to magnetically induced electronic current density in the

presence of finite magnetic fields.

where the superscripts or subscripts O refer to the equilibrium = Next, the vibronic detail from the energy denominator is
nuclear position of the electronistate of the molecule and  removed, which permits summing over the excited vibronic
repeated Greek subscripts are summed ayems mentioned  states to closure and evaluation of wave functions and energies
above. This equation can also be expressed as at the equilibrium nuclear configuration of state e. This yields

0 0 0 a wave function factored into electronic and nuclear parts
Pr, R) =y (r) + zZ@/}s (09 0R )oRa s (1) (11) carrying parametric dependence on both the nuclear positions

e and nuclear velocities.

and can be further reduced, if desired, by summing over the
excited state electronic manifold to closure leaving only a Taylor (r R R) —
expansion of the first-order dependence of the electronic wave = "
function on nuclear positions, namely,

Pelr, R) =y (r) + Z[awe(r)/aRA,aloRA,a (12)

BIEVSRILD
BRI RS S 0 (R

(17)

To extend the formalism to the lowest order beyond the BO
adiabatic approximation, we include nuclear kinetic energy The real part of the electronic wave function expresses the usual
coupling between the electronic and nuclear motion as a BO adiabatic dependence on nuclear position, while the

perturbation term to the BO adiabatic Hamiltonian as imaginary part expresses the first-order non-BO dependence of
the electronic wave function on nuclear velocity. By expanding
H+ Hg + Hy + (TN)perturb: the BO electronic wave function to first order in the nuclear

2

He + Hy — Z—
MA

9
) ( (13) function on both nuclear position and nuclear velocity can be
R o etled IRaa/ nuc expressed ds

) position, the lowest-order dependences of the electronic wave
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: W, lu," |V, = Z Nos Saalb 1 Qul b’ (25)
v (r,R,R)= weo(r) + ZZ EJ"SO|(31/JE/3RA,OL)OERM + go 17 g off “Ax,a"Pg alPg
e

with an analogous expression of for the velocity-dipole formal-

. @’SOI(BwJBRA,a)oQ 0 ism. From eq 2, one can write
iA . S Rao|ts (N} ¢eR) (18) m n N
EX- E, o
Naﬁ N BT = ZAE(S&/S (26)
‘Aaf R=0

v (r,R,R)=
The corresponding expressions for magnetic-dipole transition
weo(r) + ZZ@USO|(31/)43RA,(1)0@/’SO(V) X moments start with the definition of the atomic axial tensor
e (AAT) given by
inR
R, L he 6o(R) (19) [ o7l My | W "= T o, W O Ty W 0=

Ned 0
- E, 2 MaﬁAsAmamsgﬁ Pl 0 (27)

As has been previously stated, this wave function is factored ) i
into an e|ectr0nic partl dependlng parametnca”y on nuclear Where the e|eCtr0nIC and nUC|eaI‘ pal‘tS Of the AAT are deflned
positions and velocities, and contains both BO and non-BO &S
terms. Because it is factored and has parametric nuclear A A A

P ; ; ; ; M, =1, +J (28)
dependence, it is still an adiabatic wave function, and to ap ap op
distinguish it from the normal definition of an adiabatic wave

function it has been referred to as the CA wave functioi. and where
a E a A a a
Ill. Transition Moments, Polar Tensors, and Axial EIJ90 |mﬂ |ng1 = zluﬂ SAa,aEbgl |Pa|¢90 0 (29
Tensors
The dipole strength and rotational strength, defined above W o im|W "= ZJaﬁASAa,a@glaPanoaD (30)
for unpolarized IR absorption and VCD intensities, respectively,

are defined in terms of electric- and magnetic-dipole transition

moments. The electric-dipole transition moment can be written @"d where the nuclear AAT is given explicitly by

conveniently as sums over atomic contributions, which can in am.N 7 e
turn be written as products of atomic polar tensors (ATRg} J AP = RO 31)
multiplied by s vectors and nuclear vibrational transition of ORnJreg 2¢ W W

moments. Assuming a fundamental vibrational transition from

level O to level 1 of the normal modgin the ground electronic ~ as determined by eq 6. Finally, the relation between position

state, one can write the electric-dipole transition moments asand momentum transition matrix elements for normal coordi-
nates in the harmonic approximation can be used.

ljsgla| Pa|¢g0aD: |1591‘?"‘Qa|¢goa|:': iwuﬁ@gjﬁ'Qal(ngaD (32)

The electronic parts of these transition moments can be
developed further; however, the nuclear parts are already fully
a . a a . E a a - N a ’ ’
(Wao litglWor T= W ool | Wy U WgqTlis Wy U= expressed in terms of simple algebraic expressions in the
Z PraﬂAsAuaEjﬁgla|Pa|¢goaD(21) harmonic approximation. For the electric-dipole transition
’ ’ moment, substitution of eq 11 or 19 into eq 20 yields

‘]Ijgoa|ﬂﬁ|qjgla|]= BngaWﬂE'ngla[H_ BIJganﬁN|1p91aD=
2 Pros a9t 1Qul900"(20)

where thesvectors are defined either in terms of nuclear position [p la|ﬂﬂE|1p JO=

or velocity and convert the nuclear function dependence from ’ X 0 E  O0ee 0O a a

Cartesian Raq, Rao) to normal Qa, Pa = Q,) coordinates 222@’9 V‘ﬁ e (e Ka%’ 8RA,u)0|3Aa,amﬁgl |Qa|¢90 U
&9

. (aRAa) _ (aFgAu) _ (a' Aa) 22) (33)
Aa.a 9Qq Jo=0 Q4 Jo=0 9Py Jp=o and the following expression for the electronic part of the ATP,

The ATP represents the derivative of the electric-dipole transi- E. =2 0wy lmp L0y JoR, )0 (34)
tion moment of the entire molecule with respect to the Cartesian ol ;g o p e e g hel

displacement or velocity vector of thigh atom. The ATP can

also be divided into electron and nuclear contributions by writing The factor of 2 arises from substitution into the electronic wave
function in the transition moment and the fact the wave functions

P, aﬁA =E, aﬁA + NaﬂA or P, aﬁA =E, aﬁA + NaﬁA (23) are real and Hermitian, allowing interchange of the wave
' ' ' ' functions in the matrix elements. As has been shown previously,
The corresponding parts of the electric-dipole transition moment the imaginary part of the wave function in eq 18 or 19 makes

in the position formalism are given by no contribution to IR intensities using the position form of the
electric-dipole moment operator.

W o g | Py O ZEr’aﬂAsAa’amﬁglﬂQanoaD (24) On the other hand, the velocity form of the electric-dipole

transition moment derives none of its intensity from the real
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(BO) part of eq 18 or 19 and is expressed entirely by the  Equation 18 can be rewritten with retained vibronic detail in
imaginary (non-BO) part of these equations. The transition the non-BO term as
moment is given by

Wer, R) =9 (1) deR) +

el Vs = 210 IR )R a0 (1) Pl R) +
- @golﬂﬁﬂWeomijyeo'(BWQIaRA,u)OBAa,a@glﬂPa|¢goa[j SZSZ s ‘A, a/0-"MAa,at’'s ev!
i 0 .
ezgz E 0_ E 0 . Elas |(awe/aRA,a)0msu| RA,(1|¢GVD 0
SO ih s (r) osy(R) (40)
(35) 0 0 S S
st=ev Esu - Eev
and the corresponding expression for the electronic part of the
ATP is This wave function can be used to obtain more general
expressions for the transition moments in eqgs 33, 35, and 38
0 Epy Oy © hat represent fundamental vibrational transitions of normal
lis | (0 JOR, )] t p
E aﬂA = Zihzzﬁy}g g 1V e 0 9RA0)o (36) modea in the ground electronic state labeled g, where state e
B & EC— Ego will now be taken to represent an excited electronic state. The

required wave functions, taking into account the complex nature

Equations 36 and 34 are formally equivalent as shown by use ©f €d 40 and dropping the explicit functional dependence of
of the hypervirial relation the electronic and vibrational wave functions, are

(B~ &) Woo' = Vgbe0' + 3§ 100 Raa)o Rt b’ +
Bl g O Sy D @7 T 2,2, 11V
_ e (3¢ R oMby Pel b0 Baca
a condition satisfied only by exact electronic wave functions. ih Ve Poy (41)
The electronic contribution to the magnetic-dipole transition ev=g0 Eel — Ego0
moment can be written in an analogous fashion by substitution
of eq 19 into eq 29. v, = wg%gla +
0 0, a
m’gla|mﬂE|qjgoaD= GZQZ Ey)e |(an/3RA,a)0mgasAa,awe d)gl +
0 0 0
_ W 1My e T | (39 f IR oS a1 Pal b _ (0% d R o Wgr” PalfeBpa
2ih z PR— if z - . Yo by (42)
&9 Ee - Eg ev=gl Eev — Egl
(38)
and the electronic contribution to the AAT is given by Insertion of these wave functions into the electronic contribu-

tion of eq 20 for the electric-dipole transition moment yields

B 1My 19 T (91 0Ry ool
g "' g/ Aa/0 (39)

I =2 Z
aﬁ e=g Eeo —_ Ego mpg:lal/"BEllpgoaD: ZZ ZEy}go‘/"ﬂE‘Weo‘]]ﬂ)eol(alpg/aRA.a)O[D&gla‘Qa‘q)gOaD—'—
0, E 0 0 a E

Here, only the imaginary part of eq 19 contributes and the BO " By g e T (09 IR ) o | P Mbeyl Pal byo D+
contribution vanishes. Thus, at this level of vibronic detail, there LOZ Ee — Ego
is complete separation between BO gnd non-B.Ol contributions _ B 10 IR o it 11 O 1P e Tl
to the electric-dipole and magnetic-dipole transition moments m; Z Sa (43)
for pure vibrational transitions. o Eo — Eg’
IV. Lowest-Order Vibronic Theory Including LLESs In contrast to eq 33, this equation contains three terms instead

of one. The first arises from within the BO approximation, and

From the equations above, it is clear that IR and VCD the next two are due to non-BO contributions that normally do
intensities can be written as perturbation expressions involving not appear at the lowest level of the position form of the electric-
sums over all electronic states. In particular, the electronic APTs dipole transition moment. For the two non-BO terms, the first
in egs 34 and 36 and the electronic AAT in eq 39 that describe arises from substitution of the non-BO part of eq 41 for the
the electronic contributions to the electric-dipole and magnetic- initial vibronic state, g0, whereas the second term represents
dipole moments, respectively, are expressed, directly or indi- substitution of the non-BO part of eq 42 for the final state, g1.
rectly, with perturbation terms that contain energy denominators In the absence of LLESs where the separation between excited
of the difference between the equilibrium-position energy of electronic states is large compared to the vibronic sublevel
the excited electronic state s and the originating electronic stateenergies, eq 43 reduces to the standard expression given in eq
e. It is also clear, as a result of the omission of vibronic detail 33. This is accomplished by removing vibronic detail from the
in the energy denominators, that these expressions break dowrdenominators in eq 43 and summing over excited vibronic states
in the limit where the energy of one or more LLESs s approachesto closure. The two non-BO terms, when the electronic matrix
the state e or lies very close to, or within, the manifold of elements are put in the same form (see the following), have
vibration transitions being measured. opposite signs, cancel, and make no contribution.
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The corresponding expression for the velocity form of the address this point. Using the approximation of eq 46 in eq 43
electric-dipole transition moment starting from the electronic and invoking harmonic oscillator selection rules yields
part of eq 21 is given by

w2 Elqj A= BIJg1a|/4/;E|lpgoaD: 2; ZEy’goW/fEWeOWeo\(BWJaRAa)omgla|Qa|¢goam
gl B g0
h WgolﬂBElweomjy}eol (awg/BRA,a)OmaSglallpevmevl Pal¢gOaD+ h @go\#gEWeOWeol (aWQ/aRA‘a)O[ﬂa&glal¢g1a[ﬂa§gla| Pa‘fngaDJr
| |
ezgoz S Z Z EX— E +ho,
g |9 IR oM e it 19 s | Pol P [Pl bgo” ) ih;Zw;uawaaka)om}gﬂ;wgomgla¢g1a|pa|¢gomgoa|¢goa15
S Ac,a
EL°— Eglo Axa E0—ES — ho,

(47)

Here, the two non-BO terms in this equation do not cancel when \yhere we can explicitly evaluate the vibronic energy difference
the vibronic detail is removed and the electronic matrix elements i, the denominator. This expression can be simplified further
are brought into the same form. Both represent the entire py converting the electronic matrix elements to the same form
corrected contribution to the transition moment. The corre- by interchanging wave functions, with a change of sign of the
sponding two terms in eq 43 serve only to correct the main BO pyclear-derivative matrix element but not the dipole-moment
term. o ) _matrix element, and taking into account of the normalization
Similarly, substitution of eqs 41 and 42 into the electronic of the vibrational wave functions,
contribution of eq 27 for the magnetic-dipole transition moments

yields nglaVlﬂE'lnga
(30 M W g = 22;@ug"wﬁwe"mpﬁ(awg/aRA,a)omasgﬁQawgoam

i |——ﬂagol mBEl'I/JeODEerl (3wg/aRA,a)ODBglal¢evma’evl Pa‘¢gOaD+ &9

" 2.2 o 7SS 0y 0T 00 SR )

&g
Ey}gol (awelaRA,(x)ODEy}eol mBEleOD]&glal Pal(pev[ﬂajevl(ﬁgoa 1 1 a a
o o Saa (45) 0 - o msgl |Pa|¢go SAOL,a (48)
Eev - Egl Eeg + hwa Eeg - h(l)a

This equation closely follows the velocity form of the electric- It is now even easier to see that this equation reduces to eq 33
dipole transition moment in eq 44. Equations 44 and 45 reduce when the energy difference between the excited and the ground
to the standard expressions given in egs 35 and 38, respectivelyelectronic states is large compared to vibrational energy spac-
by eliminating the vibronic detail in the denominators, as was ings. The non-BO term simply vanishes. Despite the simplifying

described for the reduction of eq 43 to eq 33. nature of the approximation leading to eq 48, the combination
_ _ o of excited-state energies and particular vibrational normal-mode
V. Vibronic Energy Approximation frequencies mixes the contributions of the electrons and nuclei

The expressions for the electric- and magnetic-dipole transi- {0 the transition moment in a nonseparable way, in keeping with
tion moments can be simplified by invoking an approximation the spirit of the non-BO nature of the included correction terms

regarding the nature and energy of the excited-state vibrationalfor LLESS. The BO and non-BO terms in eq 48 can be brought
wave functions. This approximation holds well for LLESs that, iNto closer form in the following way. The momentum (velocity)

as a result of their small energy denominators, have the potentialViPrational matrix element in the non-BO term can be converted
to make large contributions to the transition moment. It can be {0 the position form of this matrix element by using eq 32. After

argued that any excited electronic state that lies above the ground?@mbining the energy terms over a common denominator, one
electronic state by a small energy is not likely to have potential 0btains
energy surfaces that differ significantly from those of the ground

state. This is particularly true for metal-centeredd or f—f mpglaV/tﬂE'lnga
:Lansnmns that have little effect on the vibrational motion of 22ZWgo|ﬁ‘ﬁE|’/)eODE/Jeo|(31/}9/3RA,a)oEAa,a %
e molecule. A possible exception to this assumption may arise &
for molecules whose metal center possesses enough symmetry P
that the ground electronic state or the LLESs are degenerate. 1+ ¢ [9..21Q.d.20 (49)
Under this circumstance, the molecule will distort its geometry (wego)z _ waz g1 T<al”’g0

in the degenerate state such that the degeneracy is broken by
the Jahna-Teller effect. Under the assumption that the Jahn

Teller effect is not large compared to the splitting imposed by One further algebraic simplification yields

the coordination geometry of the complex, the following ap A, Enp a
approximation can be invoked: ot It Wgo
0, E,, Oy, O (weq ’
by = ¢eva = ¢gva (46) ZSZZEJ% |ﬂﬁ 1Y e |(awg/aRA,a)OBAu,a TZ x
9 weg Wy
This approximation may still work well for many vibrational QﬁglalQa|¢goaD (50)

modes in molecules with JahiTeller distortion, but only direct
comparisons between theory and experiment will be able to In eq 49, the first term is the BO contribution and the second
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is the non-BO correction. In the limit where the electronic energy in the same way. The corresponding expression for the velocity
spacing is large relative to the vibrational energy spacing, the form of the electronic ATP given is

correction term vanishes and this expression again reduces to A

the standard vibronic expression given by eq 33. Equation 50 Ev,aﬁ (wa) =

is the_ ge_nerallzed expression for the_ pos_ltlon form of the . El”go|ﬂﬂE|we0Weo|(31/’g/3RA,a)oEF (weo 2
electric-dipole transition moment taking into account the iA

possible close approach of an excited electronic state to the & E° l(w 02— .2
energy region of vibrational transitions. Equations 49 and 50 & &
represent two equivalent algebraic ways of expressing the The hypervirial equation given in eq 37 exactly converts the
frequency-dependent correction associated with the presence ofiew generalized expressions for the velocity form of the APT
a LLES. One is the standard term plus a correction term, andin eq 54 to the corresponding position form in eq 51 and vice
the other is a modified standard term in a more compact versa. Neglecting the vibrational frequency term in the denomi-

representation. nators of these expressions reduces them to their standard forms
From eq 50, it is now possible to write a generalization of in €qs 34 and 36. _ _ o
the electronic ATP given in eq 34 as The generalized expressions for the electronic contribution

to the magnetic-dipole transition moment follow closely the
corresponding expressions for the velocity form of the electric-

A —
Erop (@) = ) , dipole transition moment.
(a)eg
E
2% 0 g T T (0 aRy Jo————— | (B1) Wiy W=
&g ,(weg T Wy : 0. E, O O
Ihzz@g |mﬂ W)e D:Eyje |(8wg/8RA,a)ODX
&9

Here, the ATP is no longer independent of the normal modes
of the molecule as indicated by its parametric dependence on
the vibrational frequency of theth normal mode. As mentioned
above, inclusion of vibronic detail in BO correction terms
introduces an interdependence of the vibrational motion on the
electronic response of the molecule. Thus, in the presence of
LLESs, one must envision setof electronic ATPs for each
atomA in the molecule, one for each normal moalenstead

of just one such ATP for each atom as in eq 34. The factor in W, mﬂE|ng0aD:
brackets in eq 51 depends on both the frequencies of the excited

1

1
+ ) |3§gla| Pa|¢g0a (55)

Eey +ho, E, —ho

Combining the two energy terms over a common denominator
and factoring out the pure electronic energy difference, one
obtains

electronic states and the individual vibrational modes in a . BJDQO|mﬁE|weODEDe()'(awg/aRA,a)OBAa,a
nonseparable way. Z'hz 5 x
Similar steps can be carried out for the electronic contribution one Eeq
to the velocity form of the electric-dipole transition moment. (Weq 2
Here, both the matrix elements of the dipole velocity and nuclear (D" Pal g0 T (56)
derivative change sign upon interchange of electronic wave (weg 2 waz
functions needed to bring the two non-BO terms of eq 44 into
the same form, Finally, the general form of the electronic contribution to the
AAT is given by
IEIIg].aL[’{ﬂE'lIIgOa[': |uﬂA(wa) =
: 0. E 0 0
|heZgZ W lits 196 M [(99 o ORA )o[Baga X _ Ij(;g°|mﬂE|1pEODEjoeo|(awglaRAva)oEF (eg)
1 1 2ih 5 l " 5 (57)
+ (1" Palpgo T (52) 0 Eeg (0eg)” — g
Eeg0 + hw, Eego — ho

This expression reduces to the traditional form given in eq 39

o ) . upon neglect of the vibrational frequency term in the denomina-
Combining the energy denominators and factoring out the pure i of eq 57.

electronic energy difference yields
VI. Bandwidth of Electronic Transitions

BIJgulaV‘,BE'lngaE': The generalized expressions for the transition moments and
@gowﬂﬂwe‘)@eﬂ(aw R0 Bana tensors given above possess a resonance denomina}tor that
2ihz Z X becomes 0 when frequency separation between the excited and
&9 EO ground electronic state equals that of the vibrational transition.
5 To avoid this unrealistic outcome, the bandwidth of the
a a associated states needs to be taken into account. The ground
o2 2 (pg1 Palépgo T (53) electronic state has negligible bandwidth, compared to any of
~ Wa the excited electronic states, because it cannot decay to a lower
state. The excited states in general appear to have large
Here the same correction factor appears that is present in eq 5®andwidths compared to individual vibrational transitions. To
where the reduction to the standard expression in eq 35 followsavoid infinities in the resonance denominator, an imaginary
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Figure 1. The real part of the frequency-dependent expression in the square brackets of eqs 58 and 59 as a function of vibrational frequency in
wavenumbers. All three curves refer to a LLES at 2000 ¢rthe curvef(x) uses an electronic damping factor of 50 ¢nand a vibrational

damping factor 5 cm'. For fy(x), these values change to 50 and 15 &mespectively, while the corresponding values fi@(x) are 200 and 15

cm?t

damping termil’¢, is added to each occurrence of the electronic lower in energy relative to the LLES, the correction term in
frequency difference between the electronic states e and g, andbositive. A plot of the real part of one plus the correction term
a damping terniy, is added to each occurrence of the vibration (the quantity in square brackets in egs 58 and 59) as a function
frequency for mode. Thus, for the electronic contribution to  of vibrational frequency for different choices of electronic and
the position form of the electric-dipole transition moment one vibrational bandwidths for a LLES at 2000 ctnis shown in

writes Figure 1. The expressions for the transition moments given in
egs 58 and 59 can be inserted into the expressions for the dipole
BllglawﬂEPPgoaD: 22 Ejog°|yﬂE|1pe°D]joe°|(8¢9/3Q3)0Dx strength and rotational strength given above to calculate IR and
&9 VCD intensities.
(@y+i7)° . . .
14+ — — @gla@awgoam (58) \é:gclgrcgvr\:;l_)g?gtehgagnet|c-D|pole-AIIowed Excited
(Weg T 119" — (w, T iyy)

The expressions developed above do not depend on the nature
Similarly, for the magnetic-dipole transition moment, the of the excited electronic states. An interesting and relatively
expression is common case is when a LLES is electric-dipole forbidden and
magnetic-dipole allowed. This occurs for the-d transitions
IEInga|mﬁE|1PgoaD= in transition metals with unfilled levels, and similarly for the
0y E . Orry, O f—f transition in rare earth elements. In the limit of pure
ih Wy 1My 1e e Ka%mQﬁ)ODX magnetic-dipole character, there is no effect of these LLES
& E 04+ Al transitions on the electric-dipole transition moments, ATPs_,_or
€g e IR intensities. On the other hand, the magnetic-dipole transition
(w, + i)/a)2 moments will be significantly affected, and the more general
1+ IIjbgla|Pa|¢goaD (59) expressions just developed must be utilized to calculate the
(Weg 1T = (W, + iy, corresponding AATs and VCD intensities.
When considering low-lying electroné-d or f—f transitions,
The resonance frequency expression between the excitedthe formalism developed in this paper could be rederived starting
electronic states and the vibrational state, in the large bracketsfrom degenerate, rather than nondegenerate, Rayt€ghro
is written as the sum of unity, representing the standard dinger perturbation theory. However, little value is seen at this
expression, plus a correction term that vanishes when thetime from this approach because for most chiral coordination-
excited-state energy is much larger than the vibrational energy.geometry perturbations, necessary for VCD, the symmetry of
Another interesting limit is when the energy of a LLES goes to the degenerate metal-centered states is usually broken well
0. In this case, the correction term has a limitdf that cancels beyond any electronic degeneracy and carrying that notation
the+1 representing the standard expression, and the contributionwould serve little purpose. There may be some relatively rare
of that state to the transition moment vanishes. If the vibrational cases of twofold- or threefold-symmetric chiral metal complexes
frequency is higher in energy than that of the LLES, the where such an approach might prove useful in the description
correction term is negative, and when vibrational frequency is of the LLESSs.
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The generalized expression for the electronic contribution to of the standard expressions that take into account the possible
the AAT given in eq 57 written as a sum of the conventional, occurrence of LLESs in molecules. The standard expressions
frequency-independent termgg”, given in eq 39, plus a  will show intensity enhancement in the IR, VCD, or both,
frequency-dependent correction term and omitting the bandwidth depending on the nature of the LLES. The new terms derived
terms, is given by here provide a source of additional intensity enhancement from

0 E 0 0 the vibronic detail in the denominators of the BO correction
A g 1My~ 19 Mg |(91 o ORA )0 terms, which are normally neglected as unimportant.
o (@) = 2Ihz E O X Previous expressions for VCD through the magnetic-dipole
oo eg transition moment and IR intensity through the velocity form
a)a2 of the electric-dipole transition moment involve corrections
1+— (60) terms to the BO approximation as explained previously. The
(cueg 2 waz final expressions, through the reasonable approximation of no
vibronic detail for excited electronic states, are factorable
The correction term in eq 60 is less than a 1% correction for contributions of the electronic and nuclear motion to the
electronic states when the transition energy for state e is 1 ordere|ectronic part of the transition moment. This is the essence of
of magnitude, or more, greater than the vibrational energy of the CA approximation where one uses expressions that are non-
theath normal mode of the molecule. As a result, as a reasonablepg in origin but adiabatic in the factored separation of electronic
approximation, it is necessary to include the correction term gnq nuclear contributions. The new correction terms from LLESs
only for LLESs. The standard term and the correction term are introduced in this paper involve terms that are both non-BO
written in terms of AAT symbols in eq 61 where the primed  and nonadiabatic in the sense that contributing electronic excited

term is the frequency-dependent correction term. states and excited vibrational states appear together in the same
A —_ A A terms in a nonfactorable form. This prevents the clean definition
lag (@) = log™ 1 log (@) (61) of the electronic ATPs and AATSs in terms of pure electronic
An approximation for the correction term is given in eq 62 where Properties. Rather, these tensors now carry a frequency depen-
only LLESs labeled 'eare included in the summation. dence for the particular vibrational mode considered, and the
ATPs and AATs change in their contributions from one
Iaﬂ'A(wa) = vibrational mode to another. This dependence of the AAT on
the frequency of the vibrational mode is plotted in Figure 1.
Ey}go|m/;EWeO[MJUefOKaU)g/aRA,a)oEF v, quency ) po g
(62) Several interesting features can be discerned from the
E..l |.(w6* 02 — .2 dependence of the AAT correction term on the frequency of
g g é the vibrational mode shown in Figure 1. It is clear that,

Another division of these equations that is useful to consider independent of choices of bandwidth for the electronic or
is to separate further the standard AAT tensgy,, into terms vibrational states, there is a dramatic rise in intensity as
involving electronic states that are far from vibrational energies resonance is approached followed by a sigmoidal change in sign
from the state or states that are low-lying and needed for the passing through zero at exact resonance. This makes the VCD
correction term in eq 62. This expression for the AAT is given intensity very sensitive to the transition energy of the LLES,
by when comparing experiment to theoretical calculation. The

A A A A magnitude of the correction term relative to unity is modulated
log (@g) =l (=€) +1,57(€) + 1,5 (w,)  (63) by the choice of bandwidths. The final AAT is obtained by

Here, the first two terms depend only on the electronic energies adding the nuclear contr_|but|on to the AAT that also mOd'f.'eS
the effect of the correction term. Clearly from the correction

in the usual way, and the last term is the same as that in eq 62. . . . . o
For the case of two molecules that possess identical bondingterm, increases in the size of the electronic cont_rlbutlon to the
properties but differ in the presence or absence of LLESS, sayA.AT can be reallzgd by up to an orqler of magmtud_e_over the
transition metal complexes with these properties, the first term size of the _AAT without the correction term. And itis clear_
in eq 64 applies to the molecule with no LLESs, whereas two that even without the correction term, considerable increase in
correction terms apply to an otherwise identical molecule with the size of the AAT can be present frpm the energy denominator
LLESs. The first correction term can be calculated using that is part of the standard expression for the AAT.
standard VCD algorithms, whereas the second correction term AS expressed by egs 63 and 64, one can envision three levels
must be added for each LLES and each vibrational mode underOf contribution to the electronic part of an AAT or the rotational
consideration. strength when a magnetic-dipole-allowed LLES is presentin a
If only the magnetic-dipole transition moment needs correc- Molecule: (1) There is the contribution that would be present
tion for a LLES, this separation of correction carries directly in the absence of such a state. In the case of LLES fler
forward to the rotational strength in a linear manner. Thus, using Of f—f transitions in transition or rare earth elements, respec-

the same notation as used for the AAT, the rotational strength tively, one can consider a molecule containing such metal atoms
can be written as where thed shell orf shell is filled or high-spin half-filled, and

where such transitions cannot occur. (2) There is the contribution
Ry1.40 (@) = Ry1 g0 (€7 €) + Ryy 10'(€) + Ryy g0 (w,) (64) due to a LLES that arises routinely within the standard
) . formalism. Both contribution 1 and contribution 2 can be
and no corrections are needed for the ATPs and the dipole cqicyjated with existing programs on the basis of the standard
strength. theory of VCD because such programs depend explicitly or
implicitly on all the excited electronic states defined by the
calculational scheme. In particular, use of the MFP VCD
The expressions for the transition moments and tensors calculations produce contributions for each of these two sources.
developed for IR and VCD intensities represent generalizations (3) The third contribution is the new correction term that

VII. Discussion
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depends on the relative sizes of the squares of the frequenciegeneral expressions for the APT and AAT contain a frequency-

of the LLES and the vibrational mode of the molecule. This dependent correction term that is unity in the absence of LLESS,

contribution is currently not present in any existing VCD but for such states large intensity enhancements may arise as

calculational formalism. Most likely, it cannot be calculated resonance between the LLES energy and the vibrational energy

using the existing MFP methodology. From the present perspec-is approached. For a sufficiently close approach, damping terms

tive, it appears that this contribution may only be calculated by for the electronic and vibrational states must be included to avoid

an approach where the contributions of individual LLESs and vanishing energy denominators in the correction terms. Interfer-

particular vibrational transitions are explicitly taken into account. ence between VCD intensity of electronic and vibrational origin
Several examples of VCD bands or spectra enhanced by theoccurring at the same point in the spectrum is also possible

presence of LLESs have been reported in the literature. Thethat would produce distorted vibrational band shapes.

clearest example is that of the transition metal complexes of

sparteine, first observed by Mason and co-workers in 1980 for ) ) )

CH stretching vibratior$ and most recently in our laboratory Acknowledgment. National Science Foundation Grant CHE-
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