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A vibronic theory of unpolarized infrared absorption and vibrational circular dichroism (VCD) is presented
that is valid in the limit of vibrational resonance with low-lying electronic states (LLESs). The theory is
developed within the complete adiabatic vibronic coupling formalism that describes both the correlation of
electron density to nuclear positions and the correlation of electron current density to nuclear velocities. It is
found that additional terms contribute to the electric-dipole and magnetic-dipole transition moments that become
zero in the limit where all excited electronic states in the molecule are much higher in energy relative to
fundamental vibrational transitions. Two correction terms appear that are extensions of the lowest-order non-
Born-Oppenheimer expansion term when vibronic detail is included in the energy denominators. One term
is a resonance term with respect to the energy difference between the electronic and vibrational transitions,
and the other is a nonresonance term. Under the assumption that vibrational sublevels in LLES are not
significantly changed from those in the ground electronic state, the two correction terms can be reduced to
a simple frequency-dependent factor that becomes unity in the limit that electronic-state transitions are much
higher than vibrational transition energies. The theory is applied to the case of transitions to LLESs that are
electric-dipole forbidden and magnetic-dipole allowed, and the relation of these expressions to recent
experimental results of VCD enhanced by such LLESs is discussed.

I. Introduction

The theory of unpolarized infrared (IR) absorption and
vibrational circular dichroism (VCD) is well-established.1-6 The
theory has been developed within the framework of several
traditional assumptions. The most fundamental of these is that
the manifold of excited electronic states in the molecule is much
higher in energy than the manifold of fundamental vibrational
transitions. In particular, there is an absence of low-lying
electronic excited states (LLESs) that may be close to or within
the manifold of vibrational transitions. Relaxing this assumption
requires a modification of the theory of unpolarized IR and VCD
intensities.

The vibronic coupling theory (VCT) of VCD intensities,
including demonstration of the formal equivalence of the
position and velocity forms of IR absorption, was first published
in 1983.4 Subsequently, the theory of the velocity form of IR
intensity and VCD was formulated in terms of adiabatic
dependence on nuclear velocities, as well as the traditional
nuclear positions.7 It was shown that the lowest-order correction
to the Born-Oppenheimer (BO) approximation provides a
correlation between vibrationally induced electroncurrent
densityin an electronic state and theVelocitiesof the nuclei.
This is the dynamic analogue of the correlation between electron
probability density and nuclear positions that is found within
the BO approximation. This level of theory is called the
complete adiabatic (CA) approximation because the complex
electronic wave function, which depends parametrically on both
the nuclear positions and the momenta, can be factored from
the vibrational wave function. More recently, this theory has
been extended to the electron transition current density that can
be visualized for transitions between any pair of states in
molecules8 and in particular for pure electronic transitions9 and

pure vibrational transitions.10 In the case of vibrational transi-
tions, the electron transition current density, a vector field, is
the electron motion complement to the nuclear displacement
vectors associated with the molecular vibrational motion of a
particular normal mode.

Starting from the VCT theory of VCD, it has been shown
that the formal sum over states associated with the expression
for the electronic contribution to the magnetic-dipole transition
moment can be avoided by introduction of a magnetic field
perturbation (MFP).5,6 This is most recently calculated using
coupled Hartree-Fock perturbation theory. Similarly, VCD can
be formulated in terms of a nuclear velocity perturbation (NVP)3

where origin independence is guaranteed by use of an electronic
wave function with nuclear velocity gauges on atomic orbitals.
Analogously, the MFP theory can be formulated using magnetic-
field gauge-invariant atomic orbitals, and it is this form of the
theory that is currently available in the VCD intensity subroutine
of Gaussian 98 and Gaussian 03.11 The NVP formulation of
VCD has not yet been programmed.

IR intensities are proportional the absolute square of the
electric-dipole transition moment. The position form of this
transition moment can be expressed fully within the BO
approximation, and the lowest-order BO correction term van-
ishes. Conversely, the velocity form of this transition moment
is described equivalently with the lowest-order BO correction
term and the BO approximation contribution vanishes. Com-
putationally, the velocity formulation of the IR intensity is found
to be less accurate than the position form, and the two only
become identical in the limit of the exact electronic wave
function. The magnetic-dipole transition moment is expressed
in direct analogy to the velocity form of the electric-dipole
transition moment and, hence, is fully described to the first order
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by the non-BO correction term. In this paper, it is shown that
as the energy of the electronic states in a molecule approach
those of the vibrational states, the separation between these two
intensity mechanisms is lost and new non-BO contributions
appear for all three of these formulations of transition moments.

Motivation for pursuing this theoretical development has
arisen over the years from experimental studies involving
enhanced or unusually large VCD intensities associated with
molecules possessing transition metals or rare earth metals. In
the first full paper published on VCD, the VCD spectra of two
rare earth complexes with (+)-camphorato-type ligands are
presented, one of praseodymium and the other europium.12 The
two otherwise identical complexes have nearly identical IR
spectra and similar but significantly different VCD spectra
owing possibly to the presence of magnetic-dipolef-f transitions
in the IR region of the spectrum. There is a hint of a small
bisignate electronic circular dichroism (CD) band, with no
associated absorption band, in the Eu(III) complex.

A more dramatic example is the observation several years
later of the IR and VCD spectra of Zn(II), Co(II), and Ni(II)
complexes of (+)-sparteine in the CH stretching.13 Here, all
three complexes exhibit nearly the same IR absorption spectrum
whereas the VCD of all three complexes are significantly
different from one another. The Zn(II) complex possesses a
typical VCD spectrum, whereas the Co(II) and Ni(II) VCD
spectra are different from that of Zn(II) and one another and
are enhanced by nearly an order of magnitude. The VCD spectra
of Co(II) and Ni(II) are superimposed on broad backgrounds
of IR electronic CD of completely different character for the
two complexes. The fact that the IR spectrum is virtually the
same for all three complexes implies that thed-d transitions
are still strongly electric-dipole forbidden and magnetic-dipole
allowed and, therefore, make an insignificant contribution to
an electric-dipole transition moment. We have repeated these
measurements recently with Fourier transform VCD instrumen-
tation and have extended the measurements into the mid-IR
region where there is no discernible underlying electronic CD
intensity.14 Here again, the IR spectra are nearly identical and
the VCD spectra are different for all three complexes. The Zn-
(II) complex is not enhanced and the Co(II) and Ni(II) VCD
spectra are enhanced differently by approximately one order of
magnitude over that of the Zn(II) complex.

Other examples of transition metal complexes with enhanced
VCD are confined mainly to small ligands, such as azide and
cyanide, in metalloproteins, such as myoglobin and hemoglobin.
VCD associated with the lone stretching vibrations of these
ligands gives rise to enhanced VCD with a ratio of VCD to IR
intensity of approximately of 10-3. These vibrational modes gain
VCD intensity from their chiral environment and borrow
intensity from low-lyingd-d transitions in the low-spin Fe(II)
center of these heme proteins.15,16More examples of transition
metal enhanced VCD have been obtained recently from
measurements in our laboratory, and these will be reported in
future publications.

The remainder of this paper is organized as follows. First, a
theoretical background section is presented to establish basic
definitions and nomenclature for vibronic coupling formalism
under the usual assumption of an absence of LLESs. In section
III, the expressions for the transition moments needed for IR
and VCD intensities are also defined and presented using
standard VCT. Both the position and velocity forms of the
electric-dipole transition moment are included because identical
correction terms for LLESs are derived for these two formula-
tions of IR intensities. In Section IV, the lowest-order correction

terms to the wave functions and transition moments for LLESs
are presented, and in the following section a reasonable
approximation is introduced that simplifies the expression of
these correction terms relative to the standard vibronic coupling
formulation of IR and VCD intensities. Further sections of the
paper deal with the consequences of these LLES-correction
terms, including approaches to their calculation and experimental
isolation.

II. Theoretical Background

IR intensities are expressed theoretically as the dipole
strength,D. For a transition of the molecule between the 0 and
the 1 levels of theath vibrational mode in the ground electronic
state g, one can write2

The dipole strength is the absolute square of the electric-dipole
transition moment, always a positive quantity. The subscriptâ
refers to a molecule-based Cartesian coordinate system where
repeated occurrence of a Greek subscript, as present here,
implies summation over all three Cartesian directions. Theâ
component of the electric-dipole moment operator in the position
form is given by

where the sums are over the products of the charges and
positions of the electrons and nuclei of the molecule.

IR intensities can also be expressed in the dipole velocity
formalism, where the dipole strength is defined as2

whereωa is the angular vibrational frequency of normal mode
a and the electric-dipole velocity operator is defined as

where the velocity dipole operator is obtained from the product
of the charge and the velocity of the electrons and the nuclei in
the molecule and where the velocity can also be obtained from
the ratio of the momentum to the mass of each particle.

The intensity of a VCD band is defined as the rotational
strength

where the magnetic-dipole moment operator is expressed in the
notation of eqs 2 and 4 as

andεâγδ is the alternating tensor that is+1 for even permutations
of xyzand-1 for odd permutations. The rotational strength is
the scalar product of two different transition moments, the
electric-dipole and the magnetic-dipole transition moments. As
such, the rotational strength can assume both positive and
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negative, as well as 0, values. Alternatively, the rotational
strength can be defined using the velocity form of the electric-
dipole transition moment as

While this form of the rotational strength possesses the
advantage of immediate origin independence, it is not often used,
in preference to eq 5, because of the higher computational
accuracy of calculation of the electric-dipole transition moment
and, hence, IR intensities, in the position, rather than the
velocity, dipole form. However, we provide this formalism as
an alternative for reasons to be made clear in the following.

To develop further the electric-dipole and magnetic-dipole
transition moments defined above, the molecular wave function
is first factored into electronic and vibrational parts, and the
nuclear dependence of the ensuing electronic wave function is
expanded to first order in the nuclear variables. The molecular
Hamiltonian at the level of the BO approximation can be written
as a sum of separate electronic and nuclear parts

The Schro¨dinger equation then becomes

with the usual dependence of the electronic and nuclear wave
functions on the electron and nuclear coordinates. This level of
approximation is called the adiabatic approximation because the
electronic wave function is separated from the nuclear wave
function and depends parametrically on the positions of the
nuclei. It is possible to express the adiabatic dependence of the
electronic wave function on nuclear position in terms of first-
order time-independent perturbation theory, called the Herzberg-
Teller expansion, as

where the superscripts or subscripts 0 refer to the equilibrium
nuclear position of the electronice state of the molecule and
repeated Greek subscripts are summed overxyzas mentioned
above. This equation can also be expressed as

and can be further reduced, if desired, by summing over the
excited state electronic manifold to closure leaving only a Taylor
expansion of the first-order dependence of the electronic wave
function on nuclear positions, namely,

To extend the formalism to the lowest order beyond the BO
adiabatic approximation, we include nuclear kinetic energy
coupling between the electronic and nuclear motion as a
perturbation term to the BO adiabatic Hamiltonian as

where the subscripts on the operators refer to the wave function
on which the operator will be applied. From standard quantum
mechanical perturbation theory, the perturbed vibronic wave
function is now given by

Here, the wave function is no longer factorable into the product
of electronic and nuclear wave functions due principally to
coupling of vibrational levels between different electronic states.
However, separation can be reestablished by first writing the
nuclear kinetic perturbation term as

where the classical form of the nuclear velocity is used for that
part of the wave function that is associated with the nuclear
motion and the quantum mechanical form of the nuclear
momentum operator, the coupling operator, is left for the
electronic wave function

The wave function is now complex and able to support the
existence of vibrationally induced electron current density by
specifying nonzero values for the nuclear velocity, in analogy
to magnetically induced electronic current density in the
presence of finite magnetic fields.

Next, the vibronic detail from the energy denominator is
removed, which permits summing over the excited vibronic
states to closure and evaluation of wave functions and energies
at the equilibrium nuclear configuration of state e. This yields
a wave function factored into electronic and nuclear parts
carrying parametric dependence on both the nuclear positions
and nuclear velocities.

The real part of the electronic wave function expresses the usual
BO adiabatic dependence on nuclear position, while the
imaginary part expresses the first-order non-BO dependence of
the electronic wave function on nuclear velocity. By expanding
the BO electronic wave function to first order in the nuclear
position, the lowest-order dependences of the electronic wave
function on both nuclear position and nuclear velocity can be
expressed as7
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ṘA,R (15)

Ψev(r , R, R4 ) ) ψe(r , R) φev(R) +

ip ∑
su*ev

∑
A

〈ψs|∂/∂RA,R|ψe〉〈φsu|φev〉ṘA,R
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As has been previously stated, this wave function is factored
into an electronic part, depending parametrically on nuclear
positions and velocities, and contains both BO and non-BO
terms. Because it is factored and has parametric nuclear
dependence, it is still an adiabatic wave function, and to
distinguish it from the normal definition of an adiabatic wave
function it has been referred to as the CA wave function.1-3,7

III. Transition Moments, Polar Tensors, and Axial
Tensors

The dipole strength and rotational strength, defined above
for unpolarized IR absorption and VCD intensities, respectively,
are defined in terms of electric- and magnetic-dipole transition
moments. The electric-dipole transition moment can be written
conveniently as sums over atomic contributions, which can in
turn be written as products of atomic polar tensors (ATPs)PRâ

A

multiplied by s vectors and nuclear vibrational transition
moments. Assuming a fundamental vibrational transition from
level 0 to level 1 of the normal modea in the ground electronic
state, one can write the electric-dipole transition moments as

where thesvectors are defined either in terms of nuclear position
or velocity and convert the nuclear function dependence from
Cartesian (RAR, ṘAR) to normal (Qa, Pa ) Q̇a) coordinates

The ATP represents the derivative of the electric-dipole transi-
tion moment of the entire molecule with respect to the Cartesian
displacement or velocity vector of theAth atom. The ATP can
also be divided into electron and nuclear contributions by writing

The corresponding parts of the electric-dipole transition moment
in the position formalism are given by

with an analogous expression of for the velocity-dipole formal-
ism. From eq 2, one can write

The corresponding expressions for magnetic-dipole transition
moments start with the definition of the atomic axial tensor
(AAT) given by

where the electronic and nuclear parts of the AAT are defined
as

and where

and where the nuclear AAT is given explicitly by

as determined by eq 6. Finally, the relation between position
and momentum transition matrix elements for normal coordi-
nates in the harmonic approximation can be used.

The electronic parts of these transition moments can be
developed further; however, the nuclear parts are already fully
expressed in terms of simple algebraic expressions in the
harmonic approximation. For the electric-dipole transition
moment, substitution of eq 11 or 19 into eq 20 yields

and the following expression for the electronic part of the ATP,

The factor of 2 arises from substitution into the electronic wave
function in the transition moment and the fact the wave functions
are real and Hermitian, allowing interchange of the wave
functions in the matrix elements. As has been shown previously,
the imaginary part of the wave function in eq 18 or 19 makes
no contribution to IR intensities using the position form of the
electric-dipole moment operator.

On the other hand, the velocity form of the electric-dipole
transition moment derives none of its intensity from the real
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(BO) part of eq 18 or 19 and is expressed entirely by the
imaginary (non-BO) part of these equations. The transition
moment is given by

and the corresponding expression for the electronic part of the
ATP is

Equations 36 and 34 are formally equivalent as shown by use
of the hypervirial relation,

a condition satisfied only by exact electronic wave functions.
The electronic contribution to the magnetic-dipole transition

moment can be written in an analogous fashion by substitution
of eq 19 into eq 29.

and the electronic contribution to the AAT is given by

Here, only the imaginary part of eq 19 contributes and the BO
contribution vanishes. Thus, at this level of vibronic detail, there
is complete separation between BO and non-BO contributions
to the electric-dipole and magnetic-dipole transition moments
for pure vibrational transitions.

IV. Lowest-Order Vibronic Theory Including LLESs

From the equations above, it is clear that IR and VCD
intensities can be written as perturbation expressions involving
sums over all electronic states. In particular, the electronic APTs
in eqs 34 and 36 and the electronic AAT in eq 39 that describe
the electronic contributions to the electric-dipole and magnetic-
dipole moments, respectively, are expressed, directly or indi-
rectly, with perturbation terms that contain energy denominators
of the difference between the equilibrium-position energy of
the excited electronic state s and the originating electronic state
e. It is also clear, as a result of the omission of vibronic detail
in the energy denominators, that these expressions break down
in the limit where the energy of one or more LLESs s approaches
the state e or lies very close to, or within, the manifold of
vibration transitions being measured.

Equation 18 can be rewritten with retained vibronic detail in
the non-BO term as

This wave function can be used to obtain more general
expressions for the transition moments in eqs 33, 35, and 38
that represent fundamental vibrational transitions of normal
modea in the ground electronic state labeled g, where state e
will now be taken to represent an excited electronic state. The
required wave functions, taking into account the complex nature
of eq 40 and dropping the explicit functional dependence of
the electronic and vibrational wave functions, are

Insertion of these wave functions into the electronic contribu-
tion of eq 20 for the electric-dipole transition moment yields

In contrast to eq 33, this equation contains three terms instead
of one. The first arises from within the BO approximation, and
the next two are due to non-BO contributions that normally do
not appear at the lowest level of the position form of the electric-
dipole transition moment. For the two non-BO terms, the first
arises from substitution of the non-BO part of eq 41 for the
initial vibronic state, g0, whereas the second term represents
substitution of the non-BO part of eq 42 for the final state, g1.
In the absence of LLESs where the separation between excited
electronic states is large compared to the vibronic sublevel
energies, eq 43 reduces to the standard expression given in eq
33. This is accomplished by removing vibronic detail from the
denominators in eq 43 and summing over excited vibronic states
to closure. The two non-BO terms, when the electronic matrix
elements are put in the same form (see the following), have
opposite signs, cancel, and make no contribution.
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The corresponding expression for the velocity form of the
electric-dipole transition moment starting from the electronic
part of eq 21 is given by

Here, the two non-BO terms in this equation do not cancel when
the vibronic detail is removed and the electronic matrix elements
are brought into the same form. Both represent the entire
corrected contribution to the transition moment. The corre-
sponding two terms in eq 43 serve only to correct the main BO
term.

Similarly, substitution of eqs 41 and 42 into the electronic
contribution of eq 27 for the magnetic-dipole transition moments
yields

This equation closely follows the velocity form of the electric-
dipole transition moment in eq 44. Equations 44 and 45 reduce
to the standard expressions given in eqs 35 and 38, respectively,
by eliminating the vibronic detail in the denominators, as was
described for the reduction of eq 43 to eq 33.

V. Vibronic Energy Approximation

The expressions for the electric- and magnetic-dipole transi-
tion moments can be simplified by invoking an approximation
regarding the nature and energy of the excited-state vibrational
wave functions. This approximation holds well for LLESs that,
as a result of their small energy denominators, have the potential
to make large contributions to the transition moment. It can be
argued that any excited electronic state that lies above the ground
electronic state by a small energy is not likely to have potential
energy surfaces that differ significantly from those of the ground
state. This is particularly true for metal-centeredd-d or f-f
transitions that have little effect on the vibrational motion of
the molecule. A possible exception to this assumption may arise
for molecules whose metal center possesses enough symmetry
that the ground electronic state or the LLESs are degenerate.
Under this circumstance, the molecule will distort its geometry
in the degenerate state such that the degeneracy is broken by
the Jahn-Teller effect. Under the assumption that the Jahn-
Teller effect is not large compared to the splitting imposed by
the coordination geometry of the complex, the following
approximation can be invoked:

This approximation may still work well for many vibrational
modes in molecules with Jahn-Teller distortion, but only direct
comparisons between theory and experiment will be able to

address this point. Using the approximation of eq 46 in eq 43
and invoking harmonic oscillator selection rules yields

where we can explicitly evaluate the vibronic energy difference
in the denominator. This expression can be simplified further
by converting the electronic matrix elements to the same form
by interchanging wave functions, with a change of sign of the
nuclear-derivative matrix element but not the dipole-moment
matrix element, and taking into account of the normalization
of the vibrational wave functions,

It is now even easier to see that this equation reduces to eq 33
when the energy difference between the excited and the ground
electronic states is large compared to vibrational energy spac-
ings. The non-BO term simply vanishes. Despite the simplifying
nature of the approximation leading to eq 48, the combination
of excited-state energies and particular vibrational normal-mode
frequencies mixes the contributions of the electrons and nuclei
to the transition moment in a nonseparable way, in keeping with
the spirit of the non-BO nature of the included correction terms
for LLESs. The BO and non-BO terms in eq 48 can be brought
into closer form in the following way. The momentum (velocity)
vibrational matrix element in the non-BO term can be converted
to the position form of this matrix element by using eq 32. After
combining the energy terms over a common denominator, one
obtains

One further algebraic simplification yields

In eq 49, the first term is the BO contribution and the second
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is the non-BO correction. In the limit where the electronic energy
spacing is large relative to the vibrational energy spacing, the
correction term vanishes and this expression again reduces to
the standard vibronic expression given by eq 33. Equation 50
is the generalized expression for the position form of the
electric-dipole transition moment taking into account the
possible close approach of an excited electronic state to the
energy region of vibrational transitions. Equations 49 and 50
represent two equivalent algebraic ways of expressing the
frequency-dependent correction associated with the presence of
a LLES. One is the standard term plus a correction term, and
the other is a modified standard term in a more compact
representation.

From eq 50, it is now possible to write a generalization of
the electronic ATP given in eq 34 as

Here, the ATP is no longer independent of the normal modes
of the molecule as indicated by its parametric dependence on
the vibrational frequency of theath normal mode. As mentioned
above, inclusion of vibronic detail in BO correction terms
introduces an interdependence of the vibrational motion on the
electronic response of the molecule. Thus, in the presence of
LLESs, one must envision aset of electronic ATPs for each
atomA in the molecule, one for each normal modea, instead
of just one such ATP for each atom as in eq 34. The factor in
brackets in eq 51 depends on both the frequencies of the excited
electronic states and the individual vibrational modes in a
nonseparable way.

Similar steps can be carried out for the electronic contribution
to the velocity form of the electric-dipole transition moment.
Here, both the matrix elements of the dipole velocity and nuclear
derivative change sign upon interchange of electronic wave
functions needed to bring the two non-BO terms of eq 44 into
the same form,

Combining the energy denominators and factoring out the pure
electronic energy difference yields

Here the same correction factor appears that is present in eq 50
where the reduction to the standard expression in eq 35 follows

in the same way. The corresponding expression for the velocity
form of the electronic ATP given is

The hypervirial equation given in eq 37 exactly converts the
new generalized expressions for the velocity form of the APT
in eq 54 to the corresponding position form in eq 51 and vice
versa. Neglecting the vibrational frequency term in the denomi-
nators of these expressions reduces them to their standard forms
in eqs 34 and 36.

The generalized expressions for the electronic contribution
to the magnetic-dipole transition moment follow closely the
corresponding expressions for the velocity form of the electric-
dipole transition moment.

Combining the two energy terms over a common denominator
and factoring out the pure electronic energy difference, one
obtains

Finally, the general form of the electronic contribution to the
AAT is given by

This expression reduces to the traditional form given in eq 39
upon neglect of the vibrational frequency term in the denomina-
tor of eq 57.

VI. Bandwidth of Electronic Transitions

The generalized expressions for the transition moments and
tensors given above possess a resonance denominator that
becomes 0 when frequency separation between the excited and
ground electronic state equals that of the vibrational transition.
To avoid this unrealistic outcome, the bandwidth of the
associated states needs to be taken into account. The ground
electronic state has negligible bandwidth, compared to any of
the excited electronic states, because it cannot decay to a lower
state. The excited states in general appear to have large
bandwidths compared to individual vibrational transitions. To
avoid infinities in the resonance denominator, an imaginary
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damping term,iΓe, is added to each occurrence of the electronic
frequency difference between the electronic states e and g, and
a damping termiγa is added to each occurrence of the vibration
frequency for modea. Thus, for the electronic contribution to
the position form of the electric-dipole transition moment one
writes

Similarly, for the magnetic-dipole transition moment, the
expression is

The resonance frequency expression between the excited
electronic states and the vibrational state, in the large brackets,
is written as the sum of unity, representing the standard
expression, plus a correction term that vanishes when the
excited-state energy is much larger than the vibrational energy.
Another interesting limit is when the energy of a LLES goes to
0. In this case, the correction term has a limit of-1 that cancels
the+1 representing the standard expression, and the contribution
of that state to the transition moment vanishes. If the vibrational
frequency is higher in energy than that of the LLES, the
correction term is negative, and when vibrational frequency is

lower in energy relative to the LLES, the correction term in
positive. A plot of the real part of one plus the correction term
(the quantity in square brackets in eqs 58 and 59) as a function
of vibrational frequency for different choices of electronic and
vibrational bandwidths for a LLES at 2000 cm-1 is shown in
Figure 1. The expressions for the transition moments given in
eqs 58 and 59 can be inserted into the expressions for the dipole
strength and rotational strength given above to calculate IR and
VCD intensities.

VII. Low-Lying Magnetic-Dipole-Allowed Excited
Electronic States

The expressions developed above do not depend on the nature
of the excited electronic states. An interesting and relatively
common case is when a LLES is electric-dipole forbidden and
magnetic-dipole allowed. This occurs for thed-d transitions
in transition metals with unfilledd levels, and similarly for the
f-f transition in rare earth elements. In the limit of pure
magnetic-dipole character, there is no effect of these LLES
transitions on the electric-dipole transition moments, ATPs, or
IR intensities. On the other hand, the magnetic-dipole transition
moments will be significantly affected, and the more general
expressions just developed must be utilized to calculate the
corresponding AATs and VCD intensities.

When considering low-lying electronicd-d or f-f transitions,
the formalism developed in this paper could be rederived starting
from degenerate, rather than nondegenerate, Rayleigh-Schrö-
dinger perturbation theory. However, little value is seen at this
time from this approach because for most chiral coordination-
geometry perturbations, necessary for VCD, the symmetry of
the degenerate metal-centered states is usually broken well
beyond any electronic degeneracy and carrying that notation
would serve little purpose. There may be some relatively rare
cases of twofold- or threefold-symmetric chiral metal complexes
where such an approach might prove useful in the description
of the LLESs.

Figure 1. The real part of the frequency-dependent expression in the square brackets of eqs 58 and 59 as a function of vibrational frequency in
wavenumbers. All three curves refer to a LLES at 2000 cm-1. The curvef(x) uses an electronic damping factor of 50 cm-1 and a vibrational
damping factor 5 cm-1. For fV(x), these values change to 50 and 15 cm-1, respectively, while the corresponding values forfVe(x) are 200 and 15
cm-1
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The generalized expression for the electronic contribution to
the AAT given in eq 57 written as a sum of the conventional,
frequency-independent term,IRâ

A, given in eq 39, plus a
frequency-dependent correction term and omitting the bandwidth
terms, is given by

The correction term in eq 60 is less than a 1% correction for
electronic states when the transition energy for state e is 1 order
of magnitude, or more, greater than the vibrational energy of
theath normal mode of the molecule. As a result, as a reasonable
approximation, it is necessary to include the correction term
only for LLESs. The standard term and the correction term are
written in terms of AAT symbols in eq 61 where the primed
term is the frequency-dependent correction term.

An approximation for the correction term is given in eq 62 where
only LLESs labeled e′ are included in the summation.

Another division of these equations that is useful to consider
is to separate further the standard AAT tensor,IRâ

A, into terms
involving electronic states that are far from vibrational energies
from the state or states that are low-lying and needed for the
correction term in eq 62. This expression for the AAT is given
by

Here, the first two terms depend only on the electronic energies
in the usual way, and the last term is the same as that in eq 62.
For the case of two molecules that possess identical bonding
properties but differ in the presence or absence of LLESs, say
transition metal complexes with these properties, the first term
in eq 64 applies to the molecule with no LLESs, whereas two
correction terms apply to an otherwise identical molecule with
LLESs. The first correction term can be calculated using
standard VCD algorithms, whereas the second correction term
must be added for each LLES and each vibrational mode under
consideration.

If only the magnetic-dipole transition moment needs correc-
tion for a LLES, this separation of correction carries directly
forward to the rotational strength in a linear manner. Thus, using
the same notation as used for the AAT, the rotational strength
can be written as

and no corrections are needed for the ATPs and the dipole
strength.

VII. Discussion

The expressions for the transition moments and tensors
developed for IR and VCD intensities represent generalizations

of the standard expressions that take into account the possible
occurrence of LLESs in molecules. The standard expressions
will show intensity enhancement in the IR, VCD, or both,
depending on the nature of the LLES. The new terms derived
here provide a source of additional intensity enhancement from
the vibronic detail in the denominators of the BO correction
terms, which are normally neglected as unimportant.

Previous expressions for VCD through the magnetic-dipole
transition moment and IR intensity through the velocity form
of the electric-dipole transition moment involve corrections
terms to the BO approximation as explained previously. The
final expressions, through the reasonable approximation of no
vibronic detail for excited electronic states, are factorable
contributions of the electronic and nuclear motion to the
electronic part of the transition moment. This is the essence of
the CA approximation where one uses expressions that are non-
BO in origin but adiabatic in the factored separation of electronic
and nuclear contributions. The new correction terms from LLESs
introduced in this paper involve terms that are both non-BO
and nonadiabatic in the sense that contributing electronic excited
states and excited vibrational states appear together in the same
terms in a nonfactorable form. This prevents the clean definition
of the electronic ATPs and AATs in terms of pure electronic
properties. Rather, these tensors now carry a frequency depen-
dence for the particular vibrational mode considered, and the
ATPs and AATs change in their contributions from one
vibrational mode to another. This dependence of the AAT on
the frequency of the vibrational mode is plotted in Figure 1.

Several interesting features can be discerned from the
dependence of the AAT correction term on the frequency of
the vibrational mode shown in Figure 1. It is clear that,
independent of choices of bandwidth for the electronic or
vibrational states, there is a dramatic rise in intensity as
resonance is approached followed by a sigmoidal change in sign
passing through zero at exact resonance. This makes the VCD
intensity very sensitive to the transition energy of the LLES,
when comparing experiment to theoretical calculation. The
magnitude of the correction term relative to unity is modulated
by the choice of bandwidths. The final AAT is obtained by
adding the nuclear contribution to the AAT that also modifies
the effect of the correction term. Clearly from the correction
term, increases in the size of the electronic contribution to the
AAT can be realized by up to an order of magnitude over the
size of the AAT without the correction term. And it is clear
that even without the correction term, considerable increase in
the size of the AAT can be present from the energy denominator
that is part of the standard expression for the AAT.

As expressed by eqs 63 and 64, one can envision three levels
of contribution to the electronic part of an AAT or the rotational
strength when a magnetic-dipole-allowed LLES is present in a
molecule: (1) There is the contribution that would be present
in the absence of such a state. In the case of LLES fromd-d
or f-f transitions in transition or rare earth elements, respec-
tively, one can consider a molecule containing such metal atoms
where thed shell orf shell is filled or high-spin half-filled, and
where such transitions cannot occur. (2) There is the contribution
due to a LLES that arises routinely within the standard
formalism. Both contribution 1 and contribution 2 can be
calculated with existing programs on the basis of the standard
theory of VCD because such programs depend explicitly or
implicitly on all the excited electronic states defined by the
calculational scheme. In particular, use of the MFP VCD
calculations produce contributions for each of these two sources.
(3) The third contribution is the new correction term that
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depends on the relative sizes of the squares of the frequencies
of the LLES and the vibrational mode of the molecule. This
contribution is currently not present in any existing VCD
calculational formalism. Most likely, it cannot be calculated
using the existing MFP methodology. From the present perspec-
tive, it appears that this contribution may only be calculated by
an approach where the contributions of individual LLESs and
particular vibrational transitions are explicitly taken into account.

Several examples of VCD bands or spectra enhanced by the
presence of LLESs have been reported in the literature. The
clearest example is that of the transition metal complexes of
sparteine, first observed by Mason and co-workers in 1980 for
CH stretching vibrations13 and most recently in our laboratory
repeated and extended to the mid-IR vibrational frequency range
using Fourier transform instrumentation.14 In these cases, VCD
spectra from three different sparteine complexes were measured.
The Zn(II) complex has no LLESs, whereas the corresponding
Co(II) and Ni(II) complexes have LLESs that are strongly
magnetic-dipole-allowed. These complexes have nearly identical
IR spectra but dramatically different VCD spectra. The first term
in eq 63 corresponds to the AAT for the Zn(II) complex. The
second term carries the contributions that can be calculated using
the conventional AAT expression in eq 39 due to the presence
of the LLESs of the Co(II) and Ni(II) complexes, and the last
term in eq 63 is the new correction term derived in this paper.
This term provides an additional correction that depends on both
the electronic energy of the LLES and the vibrational energy
of the transition in question. If the spacing between the electronic
and vibrational states becomes sufficiently small, electronic and
vibrational bandwidth terms need to be included as shown in
eq 59.

Examples such as the one just cited may allow for isolation
of VCD enhancement contributions from those of the ordinary
VCD intensity. In particular, it is noted that the second and
third enhancement terms in eq 63 differ term by term only by
the frequency correction factor and that comparing VCD
experimental spectra to calculated VCD with and without LLESs
may permit the modeling of correction terms currently not
included in any theoretical formalisms.

Although the need to introduce imaginary damping terms in
the frequency correction factors to avoid infinities in the
frequency denominators has been described in eqs 58 and 59,
a complete bandwidth formalism, including the background
electronic CD intensity, has not been developed at this time.
Such considerations could also lead to interferences between
electronic CD and VCD intensity, sometimes referred to as Fano
terms,17 as previously noted in a theoretical study of electronic
CD intensities.18

It is clear from the development of this paper that VCD
spectra under the conditions of intensity enhancement from
LLESs have contributions from existing theoretical formalism,
from new formalism as derived in this paper, and possibly from
interference effects between electronic CD and VCD as the
strong resonance between electronic and vibrational transitions
is approached and realized.

VIII. Conclusion

In this paper, an extension of the standard theoretical
expressions for IR and VCD intensities is presented. The more

general expressions for the APT and AAT contain a frequency-
dependent correction term that is unity in the absence of LLESs,
but for such states large intensity enhancements may arise as
resonance between the LLES energy and the vibrational energy
is approached. For a sufficiently close approach, damping terms
for the electronic and vibrational states must be included to avoid
vanishing energy denominators in the correction terms. Interfer-
ence between VCD intensity of electronic and vibrational origin
occurring at the same point in the spectrum is also possible
that would produce distorted vibrational band shapes.
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