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The character table of the fully nonrigid water pentamer, (H2O)5, is derived for the first time. The group of
all feasible permutations is the wreath product group S5[S2] and it consists of 3840 operations divided into
36 conjugacy classes and irreducible representations. We have shown that the full character table can be
constructed using elegant matrix type generator algebra. The character table has been applied to the water
pentamer by obtaining the nuclear spin statistical weights of the rovibronic levels and tunneling splittings of
the fully nonrigid pentamer. We have also obtained the statistical weights and tunneling splittings of a semirigid
deuterated pentamer that exhibits pseudorotation with an averagedC5h (G10) symmetry used in the assignment
of vibration-rotation-tunneling spectra. It is also shown that the previously considered group G320 for water
pentamer of feasible permutations is a subgroup of the full group and is the direct product of wreath product
C5[S2] and the inversion group. The correlation tables have been constructed for the semirigid (G10) to nonrigid
(G3840) groups for the rotational levels and tunneling levels. The nuclear spin statistical weights have also
been derived for both the limits and through the use of subduced representations the corresponding information
can be obtained for G(320) as well from G(3840).

1. Introduction

Laser spectroscopy and dynamics of water clusters have been
the topic of numerous studies for many years.1-12 Water clusters
are particularly intriguing owing to the interplay of hydrogen
bonding and floppy motions that result in novel quantum
tunneling dynamics.1-15 Some of the water clusters also exhibit
chirality in their equilibrium geometries and thus quantum
tunneling among chiral isomers has received attention.2,3,11One
of the reasons for so much activity and interest in studying water
clusters is that such studies could provide significant insight
into aqueous process in chemistry and biology.2 Many of these
studies have been motivated by compelling need to understand
liquid water, and how molecular clusters evolve into liquid state.

The pentamer of water, (H2O)5, has received considerable
attention2,6-9 owing to its interesting dynamics, chirality, and
the fact that the pentagonal rings of water molecules occur in
nature as calthrate hydrates and solvation of hydrophobic groups
in biosystems. Furthermore, a five-membered cluster of water
seems to have a dominant population and role in liquid water
simulations. For these reasons, (H2O)5 has been the focus of
several spectroscopic studies.6-9 Liu et al.8 have employed
terahertz laser spectroscopy for detailed analysis of vibration-
rotation-tunneling spectra of (D2O)5. The spectra revealed that,
although the pentamer exhibits a chiral asymmetric five-member
ring geometry as its equilibrium structure (shown in Figure 1),
the observed spectra of (D2O)5 are consistent with a pseudoro-
tation model that yields averaged rotational constants that
correspond to an achiral quasi-planarC5h oblate top geometry.
The authors8 have also noted that facile flipping motions of

protons are feasible owing to low barriers and that should yield
a nonrigid pentamer, especially for the protonated form. In a
more recent study Keutsch and Saykally2 have shown that for
the pentamer, which has a chiral equilibrium structure, allows
for very facile torsional tunneling motions and thus bifurcation
tunneling splitting which connects 32 degenerate minima have
been observed in (H2O)5 although somewhat reduced compared
to (H2O)3. The most recent study on water clusters by Goldman
and Saykally1 deals with diffusion Monte Carlo methods for
ground vibrational properties of water clusters.

As noted by the above survey, water clusters in general and
the water pentamer in particular exhibit nonrigid tunneling
motions among several potential minima separated by sur-
mountable energy barriers. Although the extent of tunneling
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Figure 1. Equilibrium Geometry of (H2O)5 in its cyclic chiral form
with no symmetry.
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would depend on the actual barriers, there is a compelling need
to consider the molecular symmetry groups of the nonrigid
cluster from semirigid to fully nonrigid limits. Longuet-Higgins16

has formulated the symmetry groups of nonrigid molecules as
permutation-inversion groups by including all feasible permu-
tations of the nuclei under such fluxional or tunneling motions.
Up to now, the full character table of the fully nonrigid (H2O)5
pentamer has not been obtained. The present author has shown
that the groups of nonrigid molecules can be expressed as wreath
product groups and as generalized wreath products.15,17-20 These
groups have also been used in a number of chemical applications
such as enumeration of isomers,23,24 weakly bound van der
Waals, or hydrogen-bonded complexes such as (NH3)2, (H2O)2,
(C6H6)2, etc.,12-15,21polyhedral structures,25,26spectroscopy,13,14,21,22

and clusters.27 King25,26has applied the wreath product groups
to represent the symmetries of four-dimensional analogues of
polyhedra. Thus, apart from the current motivation of (H2O)5,
there is considerable interest in the wreath product groups of
higher order and their character tables. The present author15 has
applied combinatorial methods without the construction of the
character tables for the spin statistics of protonated forms of
water clusters. However, the character tables, tunneling split-
tings, and correlation of the rotational and rovibronic levels from
semirigid to fully nonrigid limits have not been considered as
character tables of the larger groups such as the one for fully
nonrigid (H2O)5 have not been derived. Wales and co-
workers31-33 have considered both BLYP computations with
double-ú basis and permutation-inversion groups of water trimer
to pentamer. In particular for the (H2O)5 pentamer cluster, Wales
and Walsh32 have considered the permutation-inversion group
on the basis of computed energetics of the various rearrangement
pathways. The group that they have obtained by allowing the
single flip and bifurcation tunneling mechanisms for the cyclic
global minimum is a group of order 320 denoted by them as
G320. In this investigation, we show that this group is a subgroup
of the wreath product S5[S2] X I that we have considered here,
and in fact it is the direct product C5 [S2] X I, where only the
permutations in the cyclic group C5 are included. We also show
that all of the results that we have obtained can be reduced to
the G320 group by the use of subduced representations.

In this study, we have considered the development of the
character table of the nonrigid (H2O)5 in its full nonrigid limit.
By this it is meant that all possible “flippings” or permutations
of the protons on each water molecule are considered. Since
the barriers for such motions are surmountable depending on
the experimental conditions, the full group would comprise of
all feasible permutations of protons arising from the flipping
motion on each water molecule and the permutations of the
water molecules. The resulting group is shown to be the wreath
product S5[S2], where the group Sn is a permutation group of
n! operations, and the square bracket symbol stands for wreath
products. We show that the fully nonrigid (H2O)5 exhibits a
group of 3840 operations divided into 36 conjugacy classes and
36 irreducible representations. We have obtained the character
table of this group for the first time, and we have applied the
character table to correlate the rotational levels and nuclear spin
statistical weights from a semirigid (H2O)5 to a fully nonrigid
(H2O)5. The nuclear spin statistical weights show that only some
of the tunneling levels are significantly populated.

2. Wreath Product Group S5[S2] for (H 2O)5

Although the theory of wreath product groups and the related
mathematical details have been described in sufficient details

elsewhere,17,18 we provide here the salient points so that the
work is sufficiently self-contained for (H2O)5. All our illustra-
tions will thus be restricted only to (H2O)5. Suppose G is a group
of permutations of some nuclei and H be another permutation
group of nuclei. For the case of (H2O)5, the group G consists
of the permutations of the oxygen nuclei in the fully nonrigid
limit where they are allowed to exchange and H is the
permutations of the protons owing to the facile flipping motion.
Thus, the group G is the set of 5! permutations of five O nuclei,
and H is the group S2 of protons on each water molecule that
correspond to the flipping motion which exchanges these
protons. In general, the permutation Sn group28-30 consists of
n! permutations ofn objects of a set of chosen nuclei, denoted
by Ω to represent the rigid framework. Note that the notation
Sn that we use here differs from the point group Sn that
corresponds to ann-fold improper axis of rotation. All references
to Sn in this work would mean the permutation group ofn!
operations. As the oxygen atoms get permuted, they also carry
with them the protons attached to them, and thus, they induce
permutations of the protons also. Consequently, the overall
group of (H2O)5 becomes the wreath product of G with H,
denoted by G[H], which becomes S5[S2] in this case. The wreath
product group G[H] is defined as the set of permutations

such that the product of two permutations is defined as

where

An element of G[H] is represented by (g; h1, h2,.....hn), where
gεG and hiεH. Thus, the group G[H] contains|G||H|n elements
wheren is the order ofΩ. In the case of (H2O)5, the full nonrigid
permutation group’s order is given by

The group S5[S2] is isomorphic with

where five copies of the same group S2 are multiplied,× symbol
stands for direct product, whereas∧ symbol represents a
semidirect product.

The conjugacy classes of the wreath product S5[S2] group
are obtained as matrix types from the permutation cycle type
or orbit structure of g in S5 and the conjugacy class information
of S2. Let a permutation gεS5 generate a1 cycles of length 1, a2
cycles of length 2,.....a5 cycles of length 5 upon its action on
the setΩ. The cycle type of g is then denoted byTg ) (a1, a2,
..., a5). To illustrate a permutation (12)(345) of the oxygen nuclei
would have the cycle type (0,1,1,0,0) as it generates one cycle
of length 2 and one cycle of length 3. Since there are only two
conjugacy classes for S2, we may denote them by C1 and C2.
The cycle type of an element in the wreath product S5[S2] can
be expressed by a 2× 5 matrix, T(g;π) also known as the cycle
type of (g;π). It is obtained by investigating the orbit structure
of g and the conjugacy class of S2. That is, suppose aik of the
cycle products of g belong to the conjugacy class Ci, we obtain

{(g;π)| π mapping ofΩ into H, gεG}

(g;π)(g;π′) ) (gg′;ππg′)

πg(i) ) π(g-1i), ∀ iεΩ

ππ′(i) ) π(i)π′(i), ∀ iεΩ

|S5[S2]| ) 5! (2!)5 ) 3840

S5[S2] ) (S2 × S2 × S2 × S2 × S2) ∧ S5′

5528 J. Phys. Chem. A, Vol. 108, No. 26, 2004 Balasubramanian



the cycle type of (g;π), which represents the conjugacy class
of S5[S2] as

Table 1 shows all of the cycle matrix types for the conjugacy
classes of the nongroup of (H2O)5, viz., the S5[S2] group. Let
P(m) denote the number of partitions of integer m with the
convention that P(0)) 1. Let 5 be partitioned into ordered pairs
as there are only 2 conjugacy classes in the S2 group, denoted
by (n) ) (n1,n2) such that∑ini ) n. Hence the number of
conjugacy classes of S5[S2] is given by

The ordered partitions of 5 into 2 parts are (5,0), (0,5), (4,1),
(1,4), (3,2), and (2,3) since the S2 group has 2 conjugacy classes.
Substituting the values of P(5)) 7, P(4)) 5, P(3)) 2, P(2))
2, and P(0)) 1 in the above expression, we obtain the number
of conjugacy classes of S5[S2] as 2× 7 + 2 × 4 + 2 × 3 × 2

) 36. All 36 conjugacy classes of the S5[S2] group are shown
in Table 1. The number of elements in each conjugacy class of
Sn[S2] is given by

To illustrate consider the number of elements in the tenth
conjugacy class with the matrix type

is given by

TABLE 1: Conjugacy Classes of the S5[S2] Group

no matrix type permutation number of elements no matrix type permutation number of elements

1 [5 0 0 0 0
0 0 0 0 0] 110 1 2 [4 0 0 0 0

1 0 0 0 0] 182 5

3 [3 0 0 0 0
2 0 0 0 0] 1622 10 4 [2 0 0 0 0

3 0 0 0 0] 1423 10

5 [1 0 0 0 0
4 0 0 0 0] 1224 5 6 [0 0 0 0 0

5 0 0 0 0] 25 1

7 [3 1 0 0 0
0 0 0 0 0] 1622 20 8 [3 0 0 0 0

0 1 0 0 0] 164 20

9 [2 1 0 0 0
1 0 0 0 0] 1423 60 10 [2 0 0 0 0

1 1 0 0 0] 1424 60

11 [1 1 0 0 0
2 0 0 0 0] 1224 60 12 [1 0 0 0 0

2 1 0 0 0] 12224 60

13 [0 1 0 0 0
3 0 0 0 0] 25 20 14 [0 0 0 0 0

3 1 0 0 0] 234 20

15 [2 0 1 0 0
0 0 0 0 0] 1432 80 16 [2 0 0 0 0

0 0 1 0 0] 146 80

17 [1 0 1 0 0
1 0 0 0 0] 12232 160 18 [1 0 0 0 0

1 0 1 0 0] 1226 160

19 [0 0 1 0 0
2 0 0 0 0] 3222 80 20 [0 0 0 0 0

2 0 1 0 0] 226 80

21 [1 2 0 0 0
0 0 0 0 0] 1224 60 22 [0 2 0 0 0

1 0 0 0 0] 25 60

23 [1 1 0 0 0
0 1 0 0 0] 12224 120 24 [0 1 0 0 0

1 1 0 0 0] 234 120

25 [1 0 0 0 0
0 2 0 0 0] 1242 60 26 [0 0 0 0 0

1 2 0 0 0] 242 60

27 [1 0 0 1 0
0 0 0 0 0] 1242 240 28 [1 0 0 0 0

0 0 0 1 0] 128 240

29 [0 0 0 1 0
1 0 0 0 0] 242 240 30 [0 0 0 0 0

1 0 0 1 0] 2 8 240

31 [0 1 1 0 0
0 0 0 0 0] 2232 160 32 [0 1 0 0 0

0 0 1 0 0] 226 160

33 [0 0 1 0 0
0 1 0 0 0] 4 32 160 34 [0 0 0 0 0

0 1 1 0 0] 4 6 160

35 [0 0 0 0 1
0 0 0 0 0] 52 384 36 [0 0 0 0 0

0 0 0 0 1] 10 384

T(g;π) ) aik (1 e i g 2, 1e k g 5)

∑
n

P(n1)P(n2)

n!2n

∏
i,k

aik!(2k)aik

[2 0 0 0 0
1 1 0 0 0]

5!(2!)5

2!(2.1)21!(2.1)11!(2.2)1
) 60
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Thus, 5!25 ) 3840 operations are divided into 36 conjugacy
classes with number of elements in each class obtained using
the above formula. All conjugacy classes together with their
cycle types and the number of elements in each class are shown
in Table 1.

Next we obtain the character table of the S5[S2] group with
a combinatorial matrix generating function that uses matrix type
polynomials. All possible irreducible representations of the
S5[S2] group can be derived using induced representations from
a smaller group to a larger group. The irreducible representations
of the Sn group28,30are represented by the partitions ofn, denoted
by [n1 n2...nm], wheren1, n2...nm is a partition ofn. Thus, the
irreducible representations of the S5 group are given by [5],
[41], [32], [312], [22 1], [213], and [15], whereas the S2 group
has only [2] and [12] representations. The irreducible representa-
tions of S5[S2] are constructed by first forming the outer tensor
(outer direct) products of the irreducible representations of S2

five times, then finding the inertia factor of each such product,
and subsequently inducing the representation from the inertia
factor group to the whole group. First the unique outer products
for the irreducible representations of S2 × S2 × S2 × S2 × S2

are constructed as

The inertia factor groups (subgroup of S5) of the above six
products are S5′, S4x S1′ (identity group), S3x S2′, S2x S3′, S1x
S4′ and S5′ respectively. All representations of the S5[S2] groups
are obtained by multiplying the unique outer products of
irreducible representations as obtained above with the irreducible
representations of the factor group G′ for each product and then
inducing the whole representation into S5[S2]. The irreducible
representations are given by

where F1# F2#....F5 is the outer tensor product of the irreducible
representations (F1, F2, ..., F5) from the group S2, # is the outer
product, F′ is an irreducible representation of the factor group
G′, X represents an inner product, and thev stands for an induced
representation to the whole group G[H]. Table 2 shows all 36
irreducible representations thus enumerated for the S5[S2] group
together with labels for the irreducible representations according
to the dimensions of the representations.

The character table of the S5[S2] group is generated using
the generating functions as polynomials of matrix cycle types.
The present author18 has developed a general algorithm for the
characters of the wreath product groups. Let PG

ø be the
generalized character cycle index polynomial of the irreducible
representationø of the factor subgroup G′ of G, given by

Let T(M)i be the matrix type of the representation of the inertia
factor. The generating function for the irreducible representation
F* of Sn[S2] is obtained by the replacement

In the above expression, every si is replaced by the correpsond-
ing matrix typeT(M)i, where all algebraic manuiputalions are
done with the cycle type matrices. We have introducedx, X,

and- opertaions for additions, multiplications, and subtractions
to contrast that these are not ordinary matrix multiplications,
etc.

We shall illustarte this procedure with a few examples.
Consider the G1 irerducible representation given by ([2]5) X
[41]′. The generalized character cycle index of [41]′, the factor
group irreducibe representation, is given by

For the representation [2], the matrix type expressionsT(M)i

are given as follows:

[2]#[2]#[2]#[2]#[2], [2]#[2]#[2]#[2]#[12], [2]#[2]#[2]#

[12]#[12], [2]#[2]# [12]#[12]. [12] and [2]#[12]# [12]#[12]#

[12] and [12]#[12]#[12] [12]#[12]

F* ) (F1#F2#......F5) X F′ v S5[S2]

PG
ø )

1

|G|∑gεG

ø(g)s1
b1 s2

b2......sn
bn

T(G[H])F* ) PG
ø (si f T(M)i)

TABLE 2: Irreducible Representations of the S5[S2] Group

label irreducible representation dimension

A1 ([2]#[2]#[2]#[2] #[2]) X [5]′ 1
G1 ([2]#[2]#[2]#[2] #[2]) X [41]′ 4
H1 ([2]#[2]#[2]#[2]#[2]) X [32]′ 5
I1 ([2]#[2]#[2]#[2]#[2]) X [312]′ 6
H2 ([2]#[2]#[2]#[2]#[2]) X [221]′ 5
G2 ([2]#[2]#[2]#[2] #[2]) X [213]′ 4
A2 ([2]#[2]#[2]#[2] #[2]) X [15]′ 1
G1 ([2]#[2]#[2]) X [3]′ #([12] X [1]′ 4
A3 ([12]#[12]#[12]#[12] #[12]) X [5]′ 1
G3 ([12]#[12]#[12]#[12] #[12]) X [41]′ 4
H3 ([12]#[12]#[12]#[12] #[12]) X [32]′ 5
I2 ([12]#[12]#[12]#[12] #[12]) X [312]′ 6
H4 ([12]#[12]#[12]#[12] #[12]) X [221]′ 5
G4 ([12]#[12]#[12]#[12] #[12]) X [213]′ 4
A4 ([12]#[12]#[12]#[12] #[12]) X [15]′ 1
H5 ([2]4) X [4]′ #([12] X [1]′) 5
R1 ([2]4) Xs [31]′ #([12] X [1]′) 15
M1 ([2]4) X [22]′ #([12] X [1]′) 10
R2 ([2]4) X [212]′ #([12] X [1]′) 15
H6 ([2]4) X [14]′ #([12] X [1]′) 5
H7 ([12]4) X [4]′ #([2] X [1]′) 5
R3 ([12]4) X [31]′ #([2] X [1]′) 15
M2 ([12]4) X [22]′ #([2] X [1]′) 10
R4 ([12]4) X [212]′ #([2] X [1]′) 15
H8 ([12]4) X [14]′ #([2] X [1]′) 5
M3 ([2]3) X [3]′ #([12]2 X [2]′) 10
W1 ([2]3) X [21]′ #([12]2 X [2]′) 20
M4 ([2]3) X [13]′ #([12]2 X [2]′) 10
M5 ([2]3) X [3]′ #([12]2 X [12]′) 10
W2 ([2]3) X [21]′ #([12]2 X [12]′) 20
M6 ([2]3) X [13]′ #([12]2 X [12]′) 10
M7 ([12]3) X [3]′ #([2]2 X [2]′) 10
W3 ([12]3) X [21]′ #([2]2 X [2]′) 20
M8 ([12]3) X [13]′ #([2]2 X [2]′) 10
M9 ([12]3) X [3]′ #([2]2 X [12]′) 10
W4 ([12]3) X [21]′ #([2]2 X [12]′) 20
M10 ([12]3) X [13]′ #([2]2 X [12]′) 10

PS5

[41] ) 1
120

[4s1
5 + 20s1

3s2 + 20s1
2s3 - 20s2s3 - 24s5]

T(M)1
[2] ) 1

2[[1 0 0 0 0
0 0 0 0 0] x [0 0 0 0 0

1 0 0 0 0]]
T(M)2

[2] ) 1
2[[0 1 0 0 0

0 0 0 0 0] x [0 0 0 0 0
0 1 0 0 0]]

T(M)3
[2] ) 1

2[[0 0 1 0 0
0 0 0 0 0] x [0 0 0 0 0

0 0 1 0 0]]
T(M)4

[2] ) 1
2[[0 0 0 1 0

0 0 0 0 0] x [0 0 0 0 0
0 0 0 1 0]]

T(M)5
[2] ) 1

2[[0 0 0 0 1
0 0 0 0 0] x [0 0 0 0 0

0 0 0 0 1]]
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Replacing every si by T(M)i in the expression forPS5

[41] we
obtain

By use of the matrix manipulations for the cycle types where
the multiplication of two matrix cycle types is interpreted as
ordinary matrix additions, we can simplify the above expression
as

The expression thus obtained above for the G1 representation
generates the character values in that the coefficients of the
various matrix types when sorted out according to the order of
the conjugacy classes in Table 1 gives the character values
multiplied by the order of the corresponding conjugacy class
with the order of the group (3840) factored out. Consequently,
the following string of coefficients is obtained after dividing
the coefficients in the above expression by the order of each
conjugacy class:

This string yields the character vales for the G1 representation.
In this manner, we obtain the character string for all 36
representations shown in Table 2. This of course involves
considerable algebraic manipulations for all 36 irreducible
representations, and all of these character values were computed
manually. The character table thus constructed is shown in Table
3.

As can be seen from Table 3, the character table of S5[S2] or
G3840contains 36 irreducible representations. There are four one-
dimensional, four four-dimensional, eight five-dimensional, two
six-dimensional, ten 10-dimensional, four 15-dimensional, and
four 20-dimensional irreducible representations in the group
which satisfy

The above condition is a requirement of the great orthogonality
theorem. Moreover, we have ensured that all of the character
values of 36 irreducible representations are orthogonal to each
other by a computer code. This exhaustive checks involved 630
pairs of checks, and all of these checks produced correct zero
overlaps for the irreducible representations shown in Table 3
confirming that the numbers are correct. Another important
check is that the sum of squares of numbers multiplied by the
corresponding orders of conjugacy classes in any row should
add up to 3840. This result was also used to verify the
correctness of all numbers in Table 3. All of these facts aid to
confirm that the numbers in Table 3 are correct.

3. Nuclear Spin Statistics and Tunneling Splittings of
Rotational/Rovibronic Levels and of (H2O)5 from
Semirigid to Fully Nonrigid Limits

We consider the use of the character table for the water
pentamer in the fully nonrigid limit. Liu et al.8 have obtained
vibrational-rotation-tunneling spectra of the deuterated water
pentamer, (D2O)5. In its deuterated form, the cluster behaves
as a quasi-planar oblate top with an averagedC5h symmetry.
We call this a semirigid structure in that the equilibrium
geometry of the completely rigid structure, which is shown in
Figure 1, is ofC1 symmetry and it’s chiral. The tunneling
motions in the deuterated form in the ground state are restricted
to certain pseudorotations, which yield an overall averaged
symmetry ofC5h or a G10 molecular symmetry group as noted
by Liu et al.8 For the fully protonated form, quantum tunneling
among all 32 possible minima that arise from the flipping of
the hydrogen atoms which yield 25 ) 32 permutations has been
observed. Thus, we provide complete analysis of the rotational
levels, tunneling splittings, and nuclear spin statistical weights
of the rovibronic levels in both the semirigid and fully nonrigid
wreath product group limits of (H2O)5.

Table 4 shows the correlation of the rotational levels of the
pentamer in both the semirigid and nonrigid groups. Note that,
the fully rigid structure (Figure 1) has onlyC1 symmetry, and
thus, all of the irreducible representations of the nonrigid group
will correlate into the rigid structure. Moreover, it is highly
unlikely that the cluster will retain its rigidC1 geometry in view
of quantum tunneling. Liu et al.8 have contrasted the parts of
the degenerate representation E1 and E2 in the C5h symmetry,
since the accidental degeneracies may be split by Corriolis
coupling. However, for the analysis of nuclear spin statistical
weights or the tunneling splittings, it is not necessary to make
the distinction between the degenerate parts of the E1 and E2

GFG1
) 1

5!{4{1
2([1 0 0 0 0

0 0 0 0 0] x [0 0 0 0 0
1 0 0 0 0])}5

+ 20

{1
2([1 0 0 0 0

0 0 0 0 0] x [0 0 0 0 0
1 0 0 0 0])}31

2([0 1 0 0 0
0 0 0 0 0] x

[0 0 0 0 0
0 1 0 0 0]) - 20

1
2([0 1 0 0 0

0 0 0 0 0] x [0 0 0 0 0
0 1 0 0 0]) ×

1
2([0 0 1 0 0

0 0 0 0 0] x [0 0 0 0 0
0 0 1 0 0]) -

24
1
2([0 0 0 0 1

0 0 0 0 0] x [0 0 0 0 0
0 0 0 0 1])}

GFG1
) 1

5!
1

25{4[5 0 0 0 0
0 0 0 0 0] + 20[4 0 0 0 0

1 0 0 0 0] +

40[3 0 0 0 0
2 0 0 0 0] + 40[2 0 0 0 0

3 0 0 0 0] +

20[1 0 0 0 0
4 0 0 0 0] + 4[0 0 0 0 0

5 0 0 0 0] + 40[3 1 0 0 0
0 0 0 0 0] +

40[3 0 0 0 0
0 1 0 0 0] + 120[2 1 0 0 0

1 0 0 0 0] +

120[2 0 0 0 0
1 1 0 0 0] + 120[1 1 0 0 0

2 0 0 0 0] +

120[1 0 0 0 0
2 1 0 0 0] + 40[0 1 0 0 0

3 0 0 0 0] +

40[0 0 0 0 0
3 1 0 0 0] + 80[2 0 1 0 0

0 0 0 0 0] +

80[2 0 0 0 0
0 0 1 0 0] + 160[1 0 1 0 0

1 0 0 0 0] +

160[1 0 0 0 0
1 0 1 0 0] + 80[0 0 1 0 0

2 0 0 0 0] +

80[0 0 0 0 0
2 0 1 0 0] - 160[0 1 1 0 0

0 0 0 0 0] -

160[0 1 0 0 0
0 0 1 0 0] - 160[0 0 1 0 0

0 1 0 0 0] -

160[0 0 0 0 0
0 1 1 0 0] - 384[0 0 0 0 1

0 0 0 0 0] -

384[0 0 0 0 0
0 0 0 0 1]}

{4 4 4 4 4 4 2 2 2 2 2 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0-
1-1-1-1-1-1}

4 × 12 + 4 × 42 + 8 × 52 + 2 × 62 + 10× 102 + 4 ×
152 + 4 × 202 ) 3840
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TABLE 3: Character Table of the S5[S2] Group with 36 Irreducible Reps

110 182 1622 1423 1224 25 1622 164 1423 1424 1224 12224 25 234 1432 146 12232 1226

1 5 10 10 5 1 20 20 60 60 60 60 20 20 80 80 160 160

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
A3 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
A4 1 -1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
G1 4 4 4 4 4 4 2 2 2 2 2 2 2 2 1 1 1 1
H1 5 5 5 5 5 5 1 1 1 1 1 1 1 1 -1 -1 -1 -1
I1 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0
H2 5 5 5 5 5 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
G2 4 4 4 4 4 4 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1
G3 4 -4 4 -4 4 -4 2 -2 -2 2 2 -2 -2 2 1 -1 -1 1
H3 5 -5 5 -5 5 -5 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1
I2 6 -6 6 -6 6 -6 0 0 0 0 0 0 0 0 0 0 0 0
H4 5 -5 5 -5 5 -5 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
G4 4 -4 4 -4 4 -4 -2 2 2 -2 -2 2 2 -2 1 -1 -1 1
H5 5 3 1 -1 -3 -5 3 3 1 1 -1 -1 -3 -3 2 2 0 0
R1 15 9 3 -3 -9 -15 3 3 1 1 -1 -1 -3 -3 0 0 0 0
M1 10 6 2 -2 -6 -10 0 0 0 0 0 0 0 0 -2 -2 0 0
R2 15 9 3 -3 -9 -15 -3 -3 -1 -1 1 1 3 3 0 0 0 0
H6 5 3 1 -1 -3 -5 -3 -3 -1 -1 1 1 3 3 2 2 0 0
H7 5 -3 1 1 -3 5 3 -3 -1 1 -1 1 3 -3 2 -2 0 0
R3 15 -9 3 3 -9 15 3 -3 -1 1 -1 1 3 -3 0 0 0 0
M2 10 -6 2 2 -6 10 0 0 0 0 0 0 0 0 -2 2 0 0
R4 15 -9 3 3 -9 15 -3 3 1 -1 1 -1 -3 3 0 0 0 0
H8 5 -3 1 1 -3 5 -3 3 1 -1 1 -1 -3 3 2 -2 0 0

3222 226 1224 25 12224 234 1242 242 1242 128 242 2 8 2232 226 4 32 4 6 52 10

80 80 60 60 120 120 60 60 240 240 240 240 160 160 160 160 384 384

A1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
A3 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1
A4 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1
G1 1 1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1
H1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 0 0
I1 0 0 -2 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 0 1 1
H2 -1 -1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 0 0
G2 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 -1 -1
G3 1 -1 0 0 0 0 0 0 0 0 0 0 -1 1 1 -1 -1 1
H3 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 0 0
I2 0 0 -2 2 2 -2 -2 2 0 0 0 0 0 0 0 0 1 -1
H4 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0 0
G4 1 -1 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 -1 1
H5 -2 -2 1 -1 1 -1 1 -1 1 1 -1 -1 0 0 0 0 0 0
R1 0 0 -1 1 -1 1 -1 1 -1 -1 1 1 0 0 0 0 0 0
M1 2 2 2 -2 2 -2 2 -2 0 0 0 0 0 0 0 0 0 0
R2 0 0 -1 1 -1 1 -1 1 1 1 -1 -1 0 0 0 0 0 0
H6 -2 -2 1 -1 1 -1 1 -1 -1 -1 1 1 0 0 0 0 0 0
H7 -2 2 1 1 -1 -1 1 1 1 -1 1 -1 0 0 0 0 0 0
R3 0 0 -1 -1 1 1 -1 -1 -1 1 -1 1 0 0 0 0 0 0
M2 2 -2 2 2 -2 -2 2 2 0 0 0 0 0 0 0 0 0 0
R4 0 0 -1 -1 1 1 -1 -1 1 -1 1 -1 0 0 0 0 0 0
H8 -2 2 1 1 -1 -1 1 1 -1 1 1 -1 0 0 0 0 0 0

110 182 1622 1423 1224 25 1622 164 1423 1424 1224 12224 25 234 1432 146 12232 1226

1 5 10 10 5 1 20 20 60 60 60 60 20 20 80 80 160 160

M3 10 2 -2 -2 2 10 4 2 0 -2 0 -2 4 2 1 1 -1 -1
W1 20 4 -4 -4 4 20 2 -2 2 -2 2 -2 2 -2 -1 -1 1 1
M4 10 2 -2 -2 2 10 -2 -4 2 0 2 0 -2 -4 1 1 -1 -1
M5 10 2 -2 -2 2 10 2 4 -2 0 -2 0 2 4 1 1 -1 -1
W2 20 4 -4 -4 4 20 -2 2 -2 2 -2 2 -2 2 -1 -1 1 1
M6 10 2 -2 -2 2 10 -4 -2 0 2 0 2 -4 -2 1 1 -1 -1
M7 10 -2 -2 2 2 -10 4 -2 0 -2 0 2 -4 2 1 -1 1 -1
W3 20 -4 -4 4 4 -20 2 2 -2 -2 2 2 -2 -2 -1 1 -1 1
M8 10 -2 -2 2 2 -10 -2 4 -2 0 2 0 2 -4 1 -1 1 -1
M9 10 -2 -2 2 2 -10 2 -4 2 0 -2 0 -2 4 1 -1 1 -1
W4 20 -4 -4 4 4 -20 -2 -2 2 2 -2 -2 2 2 -1 1 -1 1
M10 10 -2 -2 2 2 -10 -4 2 0 2 0 -2 4 -2 1 -1 1 -1
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representations of the semirigid group, and it is suggested that
the tunneling levels obtained using the correlation may be further
contrasted according to other perturbations such as Corriolis
coupling. Hence we do all our analysis of tunneling splittings
in C5 and S5[S2] groups. In fact, the C5 group is sufficient for
the correlation of levels, as the horizontal plane does not
generate any new permutation of the proton nuclei. As seen
from Table 4, we obtain a pattern for the rotational levels into
tunneling levels both in the semirigid and nonrigid limits. There

is a period of 5 that arises from the symmetry of the semirigid
molecule. A large number of tunneling levels arise for each of
the rotational level in the fully nonrigid limit. However, as we
show below, only a few of those levels are populated by nuclear
spins for the protonic form of the pentamer although for the
deuterated form more tunneling levels are populated.

Next we consider the nuclear spin statistics of the pentamer
both in its protonated and deuterated forms. Following this we
shall consider the correlation of rovibronic levels into tunneling

TABLE 3 (Continued)

3222 226 1224 25 12224 234 1242 242 1242 128 242 2 8 2232 226 432 46 52 10

80 80 60 60 120 120 60 60 240 240 240 240 160 160 160 160 384 384

M3 1 1 2 2 0 0 -2 -2 0 0 0 0 1 1 -1 -1 0 0
W1 -1 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 0 0
M4 1 1 -2 -2 0 0 2 2 0 0 0 0 1 1 -1 -1 0 0
M5 1 1 -2 -2 0 0 2 2 0 0 0 0 -1 -1 1 1 0 0
W2 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0
M6 1 1 2 2 0 0 -2 -2 0 0 0 0 -1 -1 1 1 0 0
M7 1 -1 2 -2 0 0 -2 2 0 0 0 0 1 -1 1 -1 0 0
W3 -1 1 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1 0 0
M8 1 -1 -2 2 0 0 2 -2 0 0 0 0 1 -1 1 -1 0 0
M9 1 -1 -2 2 0 0 2 -2 0 0 0 0 -1 1 -1 1 0 0
W4 -1 1 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0
M10 1 -1 2 -2 0 0 -2 2 0 0 0 0 -1 1 -1 1 0 0

TABLE 4: Tunneling Splittings of Rotational Levels to the Semirigid to Fully Nonrigid (H 2O)5

K semirigid (C5h) nonrigid (S5[S2])

0 A1 A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
2I1 + 2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 +
2M8 + 2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 +
4W4

1 A1 + E1 (A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
2I1 + 2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 +
2M8 + 2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 +
4W4) + (G1 + G2 + G3 + G4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
I1 + I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4)

2 A1 + E1 + E2 (A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
2I1 + 2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 +
2M8 + 2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 +
4W4) + 2(G1 + G2 + G3 + G4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 +
H8 + I1 + I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 +
2M8 + 2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4)

3 A1 + E1 + 2E2 (A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 + 2I1 +
2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 +
4W4) + 3(G1 + G2 + G3 + G4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 +
H8 + I1 + I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4)

4 A1 + 2E1 + 2E2 (A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
2I1 + 2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4) +
4(G1 + G2 + G3 + G4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
I1 + I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 + 2M9 +
2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4)

5 2A1 + 2E1 + 2E2 2(A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
2I1 + 2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4) +
4(G1 + G2 + G3 + G4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
I1 + I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4)

n (A1 + 2E1 + 2E2) + Dn-5 2(A1 + A2 + A3 + A4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
2I1 + 2I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 +
2M9 + 2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4) +
4(G1 + G2 + G3 + G4 + H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 +
I1 + I2 + 2M1 + 2M2 + 2M3 + 2M4 + 2M5 + 2M6 + 2M7 + 2M8 + 2M9 +
2M10 + 3R1 + 3R2 + 3R3 + 3R4 + 4W1 + 4W2 + 4W3 + 4W4) + Dn-5
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levels together with the nuclear spin statistical weights. From
the character table we can construct the combinatorial generating
functions to enumerate the nuclear spin functions that transform
according to the given irreducible representation. This informa-
tion can be sorted out into nuclear spin multiplets from which
we can derive the frequencies of various irreducible representa-
tions in all nuclear spin functions. Then we shall use the Pauli
exclusion principle for the protons, which are fermions, and
thus, the overall function must be antisymmetric. For the bosons
such as deuterium nuclei, the overall function must be sym-
metric. Let us illustrate the technique with (D2O)5. Let us
represent threems functions of the D nucleus byλ, µ, andν,
where these labels representms ) -1, 0, and+1, respectively.
Let us consider the G1 representation in character Table 3 for
which we obtain the GGCI of the representation as

The3D nuclear spin generating function is obtained by replacing
every sk in the above expression by (λk + µk +νk). Thus we
obtain

Once the above expression is simplified, the coefficient of a
typical termλiµjνk yields the number of3D nuclear spin functions
containing i spin functions withms ) -1, j functions with
ms ) 0, andk spin functions withms ) +1 that transform
according to the G2 irreducible representation. We sort the spin
functions according to their totalMF nuclear spin quantum
numbers which yield the various nuclear spin multiplets for
(D2O)5 corresponding to the G1 irreducible representation. We
can obtain the corresponding results for the protonated form of
water pentamer by replacing everysk by (Rk + âk) in the cycle
index polynomial (above) for the G2 representation. The results
thus obtained are shown in Table 4 for both (H2O)5 and (D2O)5.

We can also obtain the total nuclear spin statistical weights
from the nuclear spin species enumerated in Table 5. As seen
from Table 5 and as expected, the proton nuclear spin multiplets
occur with fewer frequencies as compared to the deuterium spin
species. The nuclear spin statistical weights are obtained by first
finding the frequencies of each of the irreducible representations.
This is accomplished by multiplying the spin multiplicity by
the frequency of each multiplet and then adding the all of the
numbers. Consequently, we have obtained the frequencies of
the various irreducible representations for the H and D nuclear
spin functions as follows:

The overall nuclear spin statistical weights are obtained using
the above frequencies and stipulating that the overall wave
function must be antisymmetric for the fermions in compliance
with the Pauli exclusion principle for (H2O)5. This means the
overall wave function must transform as the A3 irreducible
representation for (H2O)5 in Table 3 which has the character
values of-1 for all odd exchanges of nuclei. The nuclear spin
statistical weights of the tunneling levels are thus obtained as
A1(1), A2(0), A3(21), A4(0), G1(0), G2(0), G3(24), G4(0), H1-
(0), H2(0), H3(15), H4(3), H5(3), H6(0), H7(15), H8(0), I1 (0),
I2(6), M1(0), M2(6), M3(6), M4(0), M5(3), M6(0), M7(10), M8-
(1), M9 (0), M10(0),R1(0), R2(0), R3(15), R4(3), W1(0), W2(0),
W3(8), and W4(0). The nuclear spin statistical weights of the
deuterated forms are obtained likewise with the exception that
the overall wave function must be symmetric as (D2O)5 consists
of bosons, and thus, the total wave function must transform as
A1. By using this together with the frequencies of the irreducible
representations, we have obtained the nuclear spin statistical
weights of the deuterated and protonated forms, which are
shown in Table 6.

As noted by Liu et al.,8 the VRT spectra exhibit averaged
rotational constants that seem to fit into a semirigid psuedoro-
tation model of (D2O)5. This corresponds to an averaged quasi-
planar structure for (D2O)5 or aC5h symmetry. Since D nuclei
are heavier, all possible tunneling motions may not be feasible,
and thus, we have also obtained the nuclear spin statistical
weights and group theoretical tunneling analysis of both
protonated and deuterated forms in theC5h symmetry. Since
the horizontal plane does not generate any new nuclear
permutations of protons (deuterium nuclei), it suffices to analyze
the nuclear spin statistical weights and tunneling splittings in
the C5 subgroup. If the weights are needed for each of the
degenerate components of the E1 and E2 representations
individually, the total weights are divided by 2. Thus, we have
provided our analysis primarily in C5 and further in fully
nonrigid S5[S2] groups.

Table 7 shows the correlation of the rovibronic levels from
the semirigidC5h symmetry to fully nonrigid S5[S2] correlation

GFG1
) 1

5!
1

25
{4s1

10 + 20s1
8s2 + 40s1

6s2
2 + 40s1

4s2
3 +

20s1
2s2

4 + 4s2
5 + 40s1

6s2
2 + 40s1

6s4 + 120s1
2s2

3 +

120s1
4s2s4 + 120s1

2s2
4 + 120s1

2s2
2s4 + 40s2

5 + 40s2
3s4 +

80s1
4s3

2 + 80s1
4s6 + 160s1

2s3
2s2 + 160s1

2s2s6 + 80s2
2s3

2 +

80s2
2s6 - 160s2

2s3
2 - 160s2

2s6 - 160s4s3
2 - 160s4s6 -

384s5
2 - 384s10}

PG1 ) 1
3840

[4(λ + µ + ν)10 + 20(λ + µ + ν)8(λ2 + µ2 +

ν2) + 40(λ + µ + ν)6(λ2 + µ2 + ν2)2 + 40(λ + µ +
ν)4(λ2 + µ2 + ν2)3 + 20(λ + µ + ν)2(λ2 + µ2 + ν2)4 +
4(λ2 + µ2 + ν2)5 + 40(λ + µ + ν)6(λ2 + µ2 + ν2)2 +

40(λ + µ + ν)6(λ4 + µ4 + ν4)1 + 120(λ + µ + ν)2(λ2 +
µ2 + ν2)3 + 120(λ + µ + ν)4(λ2 + µ2 + ν2)(λ4 + µ4 +
ν4) + 120(λ + µ + ν)2(λ2 + µ2 + ν2)4 + 120(λ + µ +

ν)2(λ2 + µ2 + ν2)2(λ4 + µ4 + ν4) + 40(λ2 + µ2 + ν2)5 +
40(λ2 + µ2 + ν2)3(λ4 + µ4 + ν4) + 80(λ + µ + ν)4(λ3 +

µ3 + ν3)2 + 80(λ + µ + ν)4(λ6 + µ6 + ν6) + 160(λ + µ +
ν)2(λ2 + µ2 + ν2)(λ3 + µ3 + ν3)2 + 160(λ + µ + ν)2(λ2 +
µ2 + ν2)(λ6 + µ6 + ν6) 80(λ2 + µ2 + ν2)2(λ3 + µ3 + ν3)2 +

80(λ2 + µ2 + ν2)2(λ6 + µ6 + ν6) - 160(λ2 + µ2 +
ν2)2(λ3 + µ3 + ν3)2 - 160(λ4 + µ4 + ν4)(λ3 + µ3 + ν3)2 -
160(λ4 + µ4 + ν4)(λ6 + µ6 + ν6) - 384(λ5 + µ5 + ν5)2 -

384(λ10 + µ10 + ν10)]

ΓH ) 21A1 + 0A2 + A3 + 0A4 + 24G1 + 0G2 + 0G3 +
0G4 + 15H1 + 3H2 + 0H3 + 0H4 + 15H5 + 0H6 + 3H7 +
0H8 + 6I1 + 0I2 + 6M1 + 0M2 + 10M3 + 1M4 + 0M5 +

0M6 + 6M7 + 0M8 + 3M9 + 0M10 + 15R1 + 3R2 +
0R3 + 0R4 + 8W1 + 0W2 + 0W3 + 0W4

ΓD ) 252A1 + 6A2 + 21A3 + 0A4 + 504G1 + 84G2 +
24G3 + 0G4 + 420H1 + 210H2 + 15H3 + 3H4 + 378H5 +
45H6 + 90H7 + 0H8 + 336I1 + 6I2 + 315M1 + 36M2 +
336M3 + 120M4 + 168M5 + 60M6 + 210M7 + 21M8 +
150M9 + 15M10 + 630R1 + 315R2 + 90R3 + 18R4 +

420W1 + 210W2 + 168W3 + 120W4
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of (H2O)5. Note that the correlation from the fully rigid chiral
equilibrium structure with C1 symmetry would involve every
irreducible representation of the S5[S2] nonrigid group and hence
it is straightforward. The correlation table shown in Table 7

reveals that the A1 rovibronic level is split into many tunneling
levels. However, only some of the tunneling levels have nonzero
nuclear spin statistical weights and would thus be populated.
They are A1, A3, H3, H4, H5, H7, I2, M2, M3, M5, M7, M8, R3,
R4, and W3 tunneling levels, as seen from Table 7. Thus,
primarily 15 tunneling levels have nonzero nuclear spin popula-
tions for (H2O)5 in its fully nonrigid ground state. The excited
rovibronic states of (H2O)5 would of course have E1 and E2

symmetries that correlate according to the tunneling species in
Table 7. Note that E1 and E2 representations have the same spin
statistics and tunneling patterns owing to the accidental degen-
eracy of the 2 irreducible representations which yield the same
cycle index polynomials. To observe nuclear spin multiplets,
one needs much higher resolution spectra that have the
capabilities to resolve hyperfine structural patterns. Such spectra
are available on smaller clusters, and it is hoped that, in the
future, hyperfine structures in higher clusters may become
observable.

Wales and Walsh32 have considered a group of 320 permuta-
tion-inversion operations for the water pentamer. These opera-
tions include only the single flip and bifurcation tunneling
mechanisms as obtained on the basis of energetics of reaction
pathways. This group when inversion operation is factored out
becomes a group of order 160. It can be easily shown that this
group of order 160 is the wreath product C5[S2], which contains
(2!)55 ) 160 operations. When the inversion operation is
included, the group becomes the direct product C5[S2] × I and
this contains 320 operations. The group C5[S2] is a subgroup
of S5[S2]. Thus, all of the results that we have obtained in the
larger group, which is definitely more difficult to deal with,

TABLE 5: Proton and Deuterium Spin Species of (H2O)5 and (D2O)5

sym proton species deuterium species sym proton species deuterium

A1
3A1(1), 7A1(1),11A1(1) 1A1(5) 5A1(7) 9A1(2) 11A1(6)

13A1(2) 15A1(4) 17A1(1)
G3 none 3G3(1) 5G3(1) 7G3(1) 9G3(1)

A2 none 1A2(1) 5A2(1) H3 none 3H3(1) 5H3(1) 7H3(1)
A3

1A3
3A3(1), 7A3(1) 11A3(1) I2 none 1I2(1) 5I2(1)

A4 none none H4 none 3H4(1)
G1

3G1
5G1

7G1
9G1

11G1
1G1(4) 3G1(6) 5G1(12) 7G1(10)
9G1(11)11G1(7) 13G1(6) 15G1(3)
17G1(2)19G1(1)

G4 none none

H1
3H1

5H1
7H1

1H1(5) 3H1(5) 5H1(12)
7 H1(9)9H1(11)11H1(6)
13H1(5) 15H1(2) 17H1(1)

H5
1H5(1) 5H5(1) 9H5(1) 3H5(9) 5H5(6) 7H5(10) 9H5(6)

11H5(7) 13H5(3) 15H5(3) 17H5(1)
19H5(1)

I1
1I1

5I1
3I1(10) 5I1(7) 7I1(12) 9I1(6)
11I1(7) 13I1(2) 15I1(2)

R1
3R1, 5R1,7R1

1R1(4) 3R1(13) 5R1(17) 7R1(18)
9R1(14) 11R1(10) 13R1(6) 15R1(3)
17R1(1)

H2
3H2

1H2(3) 3H2(4) 5H2(8) 7H2(6)
9H2(6) 11H2(3) 13H2(2)

M1
1M1

5M1
1M1(1) 3M1(9) 5M1(8) 7M1(11)
9M1(7) 11M1(6) 13M1(2) 15M1(1)

G2 none 3G2(4) 5G2(3) 7G2(4) 9G2(2) 11G2(1) R2
3R2

1R2(5) 3R2(8) 5R2(13) 7R2(10)
9R2(9) 11R2(4) 13R2(2)

H6 none 1H6(1) 3H6(2) 5H6(3) 7H6(2) 9H6(1) M5 none 3M5(6) 5M5(4) 7M5(6) 9M5(3)
11M5(3) 13M5(1) 15M5(1)

H7
3H7

1H7(2) 3H7(1) 5H7(4) 7H7(2)
9H7(3) 11H7(1) 13H7(1)

W2 none 1W2(2) 3W2(7) 5W2(8) 7W2(8)
9W2(5) 11W2(3) 13W2(1)

R3 none 1R3(1) 3R3(4) 5R3(4) 7R3(4)
9R3(2) 11R3(1)

M6 none 1M6(2) 3M6(2) 5M6(4)
7M6(2)9M6(2)

M2 none 1M2(2) 3M2(1) 5M2(3)
7M2(1) 9M2(1)

M7
1M7

5M7
3M7(7) 5M7(5) 7M7(8) 9M7(4)
11M7(4) 13M7(1) 15M7(1)

R4 none 3R4(2) 5R4(1) 7R4(1) W3 none 1W3(2) 5W3(6) 7W3(7) 9W3(6)
11W3(4) 13W3(2) 15W3(1)

H8 none none M8 none 1M8(2) 5M8(2) 9M8(1)
M3

3M3
7M3

1M3(6) 3M3(4) 5M3(12)
7M3(7) 9M3(9)11M3(4)
13M3(4) 15M3(1) 17M3(1)

M9
3M9

1M9(2) 3M9(4) 5M9(6) 9M9(5)
11M9(4) 13M9(2) 15M9(1)

W1
3W1

5W1
1W1(5) 3W1(10)5W1(15)
7W1(13)9W1(11)11W1(6)
13W1(3) 15W1(1)

W4 none 1W4(2) 3W4(5) 5W4(6) 7W4(5)
9W4(3) 11W4(1)

M4
1M4

3M4(6) 5M4(4) 7M4(6) 9M4(2) 11M4(2) M10 none 3M10(1) 5M10(1) 7M10(1)

TABLE 6: Nuclear Spin Statistical Weights of (H2O)5
(2H,3D)

sym

nuclear spin
statistical

weights (H)a

nuclear spin
weights

(deuterared)b sym

nuclear spin
statistical

weights (H)a

nuclear spin
weights

(deuterared)b

A1 1 252 R1 0 630
A2 0 6 M1 0 315
A3 21 21 R2 0 315
A4 0 0 H6 0 45
G1 0 504 H7 15 90
H1 0 420 R3 15 90
I1 0 336 M2 6 36
H2 0 210 R4 3 18
G2 0 84 H8 0 0
G3 24 24 M3 6 336
H3 15 15 W1 0 420
I2 6 6 M4 0 120
H4 3 3 M5 3 168
G4 0 0 W2 0 210
H5 3 378 M6 0 60

sym stat (H) stat(D) sym stat (H) stat(D)

M7 10 210 M9 0 150
W3 8 168 W4 0 120
M8 1 21 M10 0 15

a Sum of (stat weights× dimension of reps)) 210. a Sum of (stat
weights× dimension of reps)) 310.
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can be subduced to the wreath product C5[S2]. Since the we
have already illustrated the technique of subduction for the
semirigidC5h symmetry, we believe that this is straightforward
application of group theory to obtain results in the C5[S2] group
from our results for the S5[S2] group.

4. Conclusion

In this study, we have formulated the permutation group of
(H2O)5 as the wreath product S5[S2] with 3840 elements and
its complete character table has been obtained for the first time.
It was shown that the group has 36 conjugacy classes character-
ized by powerful matrix cycle types and 36 irreducible
representations. The character values of the irreducible repre-
sentations were obtained using powerful matrix-cycle type
combinatorial generating functions. The character table thus
constructed was used to generate the nuclear spin multiplets of
both (H2O)5 and (D2O)5 using powerful generating functions.
The tunneling splittings of the rotational levels were also
obtained in the semirigidC5h group and fully nonrigid S5[S2]
groups. We have shown that only 15 tunneling levels have
nonzero nuclear spin statistical weights in the ground rovibronic
state of (H2O)5. We have also obtained the correlation tables
for all rotational and rovibronic levels of (H2O)5 by using the
induced representation techniques. It was shown that more
tunneling levels are obtained in the fully nonrigid limit of (H2O)5
compared to the quasi-planarC5h model for the semirigid (D2O)5
which appears to exhibit restricted pseudorotation. It is hoped
that the present study would stimulate further search for spectra
with higher resolution that contain hyperfine features especially
for (H2O)5.
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TABLE 7: Correlation of Rovibronic Levels Semirigid (H 2O)5 to Fully Nonrigid (H 2O)5 with Nuclear Spin Statistical Weights
in Parenthesis

semirigid(C5h) nonrigid(S5[S2])

A1(208) A1(1) + A2(0) + A3(21) + A4(0) + H1(0) + H2(0) + H3(15) + H4(3) + H5(3) + H6(0) + H7(15) + H8(0) +
2I1(0)+ 2I2(6) + 2M1(0) + 2M2(6) + 2M3(6) + 2M4(0) + 2M5(3) + 2M6(0) + 2M7(10) + 2M8(1) +
2M9(0) + 2M10(0) + 3R1(0) + 3R2(0) + 3R3(15) + 3R4(3) + 4W1(0) + 4W2(0) + 4W3(8) + 4W4(0)

E1 (204) G1(0) + G2(0) + G3(24) + G4(0) + H1(0) + H2(0) + H3(15) + H4(3) + H5(3) + H6(0) + H7(15) + H8(0) +
I1(0) + I2(6) + 2M1(0) + 2M2(6) + 2M3(6) + 2M4(0) + 2M5(3) + 2M6(0) + 2M7(10) + 2M8(1) + 2M9(0) +
2M10(0) + 3R1(0) + 3R2(0) + 3R3(15) + 3R4(3) + 4W1(0) + 4W2(0) + 4W3(8) + 4W4(0)

E2 (204) G1(0) + G2(0) + G3(24) + G4(0) + H1(0) + H2(0) + H3(15) + H4(3) + H5(3) + H6(0) + H7(15) + H8(0) +
I1(0)+ I2(6) + 2M1(0) + 2M2(6) + 2M3(6) + 2M4(0) + 2M5(3) + 2M6(0) + 2M7(10) + 2M8(1) + 2M9(0) +
2M10(0) + 3R1(0) + 3R2(0) + 3R3(15) + 3R4(3) + 4W1(0) + 4W2(0) + 4W3(8) + 4W4(0)
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