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The character table of the fully nonrigid water pentamerQ(}d, is derived for the first time. The group of

all feasible permutations is the wreath product grogj®s and it consists of 3840 operations divided into

36 conjugacy classes and irreducible representations. We have shown that the full character table can be
constructed using elegant matrix type generator algebra. The character table has been applied to the water
pentamer by obtaining the nuclear spin statistical weights of the rovibronic levels and tunneling splittings of
the fully nonrigid pentamer. We have also obtained the statistical weights and tunneling splittings of a semirigid
deuterated pentamer that exhibits pseudorotation with an ave@ag€@:,) symmetry used in the assignment

of vibration-rotation-tunneling spectra. It is also shown that the previously considered grefioGwater
pentamer of feasible permutations is a subgroup of the full group and is the direct product of wreath product
Cs[S;] and the inversion group. The correlation tables have been constructed for the semiggptd (®nrigid

(Gssa9) groups for the rotational levels and tunneling levels. The nuclear spin statistical weights have also
been derived for both the limits and through the use of subduced representations the corresponding information
can be obtained for G(320) as well from G(3840).

1. Introduction

Laser spectroscopy and dynamics of water clusters have been

the topic of numerous studies for many yelrs.Water clusters @ ..

are particularly intriguing owing to the interplay of hydrogen '

bonding and floppy motions that result in novel quantum

tunneling dynamic$:1> Some of the water clusters also exhibit

chirality in their equilibrium geometries and thus quantum

tunneling among chiral isomers has received atteifdAOne o) 1

of the reasons for so much activity and interest in studying water ‘ ]

clusters is that such studies could provide significant insight N [ ]

into aqueous process in chemistry and biolé@#any of these

studies have been motivated by compelling need to understand

liquid water, and how molecular clusters evolve into liquid state. o®

The pentamer of water, @@)s, has received considerable

attentior?:6-° owing to its interesting dynamics, chirality, and

the fact that the pentagonal rings of water molecules occur in Figure 1. Equilibrium Geometry of (HO)s in its cyclic chiral form

nature as calthrate hydrates and solvation of hydrophobic groupsVith no symmetry.

in biosystems. Furthermore, a five-membered cluster of water ) . . .

seems to have a dominant population and role in liquid water proton§ are feasible owing tq low barriers and that should yield

simulations. For these reasons (% has been the focus of a nonrigid pentamer, especially for the protonated form. In a

several spectroscopic studfeg. Liu et al® have employed ~ More recent study Keutsch and Saykélave shown that for

terahertz laser spectroscopy for detailed analysis of vibration the pentamer, which has a chiral equilibrium structure, allows

rotation-tunneling spectra of @)s. The spectra revealed that, 0F Very facile torsional tunneling motions and thus bifurcation

although the pentamer exhibits a chiral asymmetric five-member tUnneling splitting which connects 32 degenerate minima have

ring geometry as its equilibrium structure (shown in Figure 1), P€en observed in (#®)s although somewhat reduced compared

the observed spectra of §0)s are consistent with a pseudoro-  © (H20)s. The most recent study on water clusters by Goldman

tation model that yields averaged rotational constants that and Saykally deals with diffusion Monte Carlo methods for

correspond to an achiral quasi-plai@y, oblate top geometry. ~ 9round vibrational properties of water clusters.

The author have also noted that facile flipping motions of As noted by the above survey, water clusters in general and
the water pentamer in particular exhibit nonrigid tunneling

*To whom correspondence should be addressed. E-mail: kbala@ Motions among several potential minima separated by sur-
ucdavis.edu. Fax: 925-422-6810. mountable energy barriers. Although the extent of tunneling
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would depend on the actual barriers, there is a compelling needelsewheré/ 18 we provide here the salient points so that the
to consider the molecular symmetry groups of the nonrigid work is sufficiently self-contained for (#0)s. All our illustra-
cluster from semirigid to fully nonrigid limits. Longuet-Higgitfs tions will thus be restricted only to @®)s. Suppose G is a group
has formulated the symmetry groups of nonrigid molecules as of permutations of some nuclei and H be another permutation
permutatior-inversion groups by including all feasible permu- group of nuclei. For the case of {§8)s, the group G consists
tations of the nuclei under such fluxional or tunneling motions. of the permutations of the oxygen nuclei in the fully nonrigid
Up to now, the full character table of the fully nonrigid {Bl)s limit where they are allowed to exchange and H is the
pentamer has not been obtained. The present author has showpermutations of the protons owing to the facile flipping motion.
that the groups of nonrigid molecules can be expressed as wreatlThus, the group G is the set of 5! permutations of five O nuclei,
product groups and as generalized wreath prodééfs?® These and H is the group Sof protons on each water molecule that
groups have also been used in a number of chemical applicationscorrespond to the flipping motion which exchanges these
such as enumeration of isom@?f&? weakly bound van der  protons. In general, the permutation @ouF®3° consists of
Waals, or hydrogen-bonded complexes such assi\kH,0),, n! permutations oh objects of a set of chosen nuclei, denoted
(CeHe)2, etc.1271521polyhedral structure®;?6 spectroscopis1421.22 by Q to represent the rigid framework. Note that the notation
and clusterd? King?>26has applied the wreath product groups S, that we use here differs from the point group tat

to represent the symmetries of four-dimensional analogues of corresponds to an-fold improper axis of rotation. All references

polyhedra. Thus, apart from the current motivation os@ht, to & in this work would mean the permutation group rdf
there is considerable interest in the wreath product groups of operations. As the oxygen atoms get permuted, they also carry
higher order and their character tables. The present dathas with them the protons attached to them, and thus, they induce

applied combinatorial methods without the construction of the permutations of the protons also. Consequently, the overall
character tables for the spin statistics of protonated forms of group of (HO)s becomes the wreath product of G with H,
water clusters. However, the character tables, tunneling split- denoted by G[H], which becomeg[S;] in this case. The wreath
tings, and correlation of the rotational and rovibronic levels from product group G[H] is defined as the set of permutations
semirigid to fully nonrigid limits have not been considered as

character tables of the larger groups such as the one for fully {(g;7)| = mapping ofQ into H, G}

nonrigid (HO)s have not been derived. Wales and co- ) ) )
worker$-33 have considered both BLYP computations with such that the product of two permutations is defined as
double¢ basis and permutation-inversion groups of water trimer , ,

to pentamer. In particular for the ¢B)s pentamer cluster, Wales (@)(g) = (99 77y

and WalsF? have considered the permutation-inversion group

on the basis of computed energetics of the various rearrangementVhere

pathways. The group that they have obtained by allowing the

single flip and bifurcation tunneling mechanisms for the cyclic (i) = (g 1), DieQ
global minimum is a group of order 320 denoted by them as » N
Gazo In this investigation, we show that this group is a subgroup ar' (i) = q(i)7' (i), U ieQ

of the wreath productspS;] X | that we have considered here,
and in fact it is the direct products@S;] X I, where only the
permutations in the cyclic groups@re included. We also show
that all of the results that we have obtained can be reduced to
the Gz group by the use of subduced representations.

In this study, we have considered the development of the
character table of the nonrigid §8)s in its full nonrigid limit.
By this it is meant that all possible “flippings” or permutations I S
ofythe protons on each Wgter moIecEIF:e zgre corl?sidered. SinceThe group §[S;] is isomorphic with
the barriers for such motions are surmountable depending on _ ,
the experimental conditions, the full group would comprise of SIS =G xS XSS XHYAS
all feasible permutations of protons arising from the flipping ) . o
motion on each water molecule and the permutations of the Where five copies of the same groupae multiplied,x symbol
water molecules. The resulting group is shown to be the wreathStands for direct product, whereas symbol represents a
product S[S;], where the group Sis a permutation group of ~ Semidirect product.
n! operations, and the square bracket symbol stands for wreath 1h€ conjugacy classes of the wreath produg63 group
products. We show that the fully nonrigid 48)s exhibits a are optalned as matrix types from the permutation cycle.type
group of 3840 operations divided into 36 conjugacy classes and®" orbit structure of gin Sand the conjugacy class information
36 irreducible representations. We have obtained the characte®f - Let a permutation €5 generate acycles of length 1, 2
table of this group for the first time, and we have applied the cycles of length 2,....sacycles of length 5 upon its action on
character table to correlate the rotational levels and nuclear spinthe Set®. The cycle type of g is then denoted By = (ay, &,

An element of G[H] is represented by (g, l,,.....hy), where
geG and keH. Thus, the group G[H] contair&||H|" elements
wheren is the order of2. In the case of (kD)s, the full nonrigid
permutation group’s order is given by

ISJS,]| = 5! (2!)° = 3840

statistical weights from a semirigid ¢89)s to a fully nonrigid ..., &). To illustrate a permutation (12)(345) of the oxygen nuclei
(H;0)s The nuclear spin statistical weights show that only some Would have the cycle type (0,1,1,0,0) as it generates one cycle
of the tunneling levels are significantly populated. of length 2 and one cycle of length 3. Since there are only two

conjugacy classes for,Swe may denote them by;@Gnd G.
The cycle type of an element in the wreath produgsg can
2. Wreath Product Group Ss[S] for (H 20)s be expressed by a2 5 matrix, T(gy) also known as the cycle
type of (gyr). It is obtained by investigating the orbit structure
Although the theory of wreath product groups and the related of g and the conjugacy class of.S hat is, supposeyaof the
mathematical details have been described in sufficient details cycle products of g belong to the conjugacy clagsi@ obtain
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TABLE 1: Conjugacy Classes of the gS;] Group

no matrix type permutation number of elements no matrix type permutation number of elements

1 [5 0000 110 1 2 [4 0000 182 5
00000 10000

3 [30000 162 10 4 [20000 143 10
2 0000 13 0 0 0 Q)

5 [1 0000 1204 5 6 [0 0 0 0 (] 2 1
40000 50000

7 31000 1622 20 g8 [300 0 0 164 20
00000 01000

9 [2 1000 1423 60 10 [2000 0 1924 60
10000 11000

117 11000 1204 60 12 [1 0000 12224 60
20000 21000

13 [01000 2 20 14 [ooo0o0 0 234 20
30000 31000

15 [20100 143 80 16 [2 0000 1% 80
00000 00100

17 [t1o0100 1223 160 18 [1 00 0 1226 160
10000 10100

19 [oo100 3222 80 20 [0 000 2% 80
20000 20100

21 [12000 1204 60 22 [0 200 2 60
00000 |1 0 00 Q

23 [r1000 12024 120 24 [01000 234 120
01000 11000

25 [10000 1242 60 26 [0 000 O 242 60
02000 12000

27 [1 0010 1242 240 28 [100 0 0 128 240
00000 00010

29 [ooo010 242 240 30 [000 00 28 240
10000 10010

31 [0 1100 2232 160 32 [o100 0 2% 160
00000 00100

33 (00100 4 160 34 [0 00 0 0 46 160
01000 01100

35 [00007 5 384 36 [000 00 10 384
00000 000 01

the cycle type of (gr), which represents the conjugacy class = 36. All 36 conjugacy classes of thg[S;] group are shown
of &[S;] as in Table 1. The number of elements in each conjugacy class of
] S[S7] is given by
Tom) =8, (1=<i=22,1<k=5)
ni2"

Table 1 shows all of the cycle matrix types for the conjugacy
classes of the nongroup of £§8)s, viz., the S[S;] group. Let au
P(m) denote the number of partitions of integer m with the naik!(2k)
convention that P(OF 1. Let 5 be partitioned into ordered pairs Lk
as there are only 2 conjugacy classes in thgrSup, denoted
by (n) = (ny,n) such thatyin = n. Hence the number of
conjugacy classes ofsf$;] is given by

20000
3 PP R

To illustrate consider the number of elements in the tenth
conjugacy class with the matrix type

0

The ordered partitions of 5 into 2 parts are (5,0), (0,5), (4,1)
(1,4), (3,2), and (2,3) since the §roup has 2 conjugacy classes.
Substituting the values of P(5) 7, P(4)= 5, P(3)= 2, P(2)= 5|(2|)5
2, and P(0F 1 in the above expression, we obtain the number S =
of conjugacy classes offS;] as2x 7+2x 4+ 2 x 3 x 2 21(2.1¥11(2.1)'11(2.2)"

' is given by
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Thus, 5!2 = 3840 operations are divided into 36 conjugacy TABLE 2: Irreducible Representations of the S[S;] Group
classes with number of elements in each class obtained using

the ab p 2 Al X | togeth ith thei label irreducible representation dimension
e above formula. conjugacy classes together wi eir -
_cycle types and the number of elements in each class are shown éi E%g%ﬁ%g% zg% g El]l]' Lll
in Table 1. H: ([21#[2)#[2]#[2]#(2]) @ [32] 5
Next we obtain the character table of thgSg] group with Iy ([21#[2]#[2]#[2]#(2]) ® [317' 6
a combinatorial matrix generating function that uses matrix type ~ H: ([2]#[2]#[2]#[2]#(2]) ® [221] 5
polynomials. All possible irreducible representations of the G2 ([2)#2]#[2]#(2) #(2]) © [217 4
S5[S;] group can be derived using induced representations from Az (121#121#2]#2] #[,2]) AR ' !
: ! . €] ([21#(2]#12]) @ [3]' #([17] ® [1] 4
a smaller group to a larger group. The irreducible representations 1 2 '
" As ([17#{17#{17#[1%] #(17) ® [5] 1
of the S grouF®2Care represented by the partitionsptienoted Gs ([1A#1T#[13#[17 #[17]) ® [41] 4
by [n1 na...ny], whereny, ny..nm is a partition ofn. Thus, the Hs ([121#[19#[19#[17] #[17]) @ [32]' 5
irreducible representations of the §roup are given by [5], :_2| ([izlz[izlz[izli[f] z[f]) g [321;] g
[41], [32], [377], [2? 1], [21%), and [P], whereas the Sgroup G 2{1?] #{13 #{12} #{12]] #{1?13 ® {213]], 1
has only [2] and [3] representaﬂong. The |rr¢dUC|bIe representa- 5, (1212413412 #(17)) ® [19) 1
tions of §[S;] are constructed by first forming the outer tensor Hs (1219 ® [4] #([12 ® [1]) 5
(outer direct) products of the irreducible representations,of S R: ([2]%) ®s [31] #([17 ® [1]") 15
five times, then finding the inertia factor of each such product, =~ M ([2];‘) ® [22]2' #([17] ® [1]') 10
and subsequently inducing the representation from the inertia ﬁz ([5]4) g [5}']##(1[32]®®1[1’]) 12
factor group to the whole group. First the unique outer products Hj 5{1]2]?‘) ®[[4}, #&2]]@9 [[1]1)) 5
for the irreducigle representations of 8 S, x S, x S x S Rs (1799 ® [31] #(2) ® [1]) 15
are constructed as M, (179 @ [29' #([2]1 ® [1]) 10
R4 ([17%) ® [22°7 #([2] ® [1]') 15
2 H ([17%) ® [17 #([2] ® [1]') 5
[2]#:[2]#£2]#[2]#[2], [22]#[2]2#[2]#2*[2]#[1 1, [2]42#[2]#£2]# ) M (219 ® @] #(072 ® 219 1
[L71#[17], [21#[2]# [17]#[17]. [17] and [2]#[X]# [L]#[11# W, %2% ® %231]]' #(([[12?22 ®[[2]]')) 20
2 2 2 21112 2 M 213 ® [13]' #([17? [2] 10
[17] and [T]#[17#(17] [17]#(17] Mo @) ® 3T #1172 ® [17) 10
The inertia factor groups (subgroup o§)f the above six Wa ([2]2)@’[21],' #([12]22@’[12],') 20
products are §, Six Sy’ (identity group), X S, SX S5, Six ms Eﬁlz]%)%[[l;% z&%?z g [[Zﬂ ) 18
Sy and S’ respectively. All representations of thg$] groups Wa (123 ® [21] #([22 ® [2])) 20
are obtained by multiplying the unique outer products of Mg ([173) ® [13]' #([2)? ® [2]") 10
irreducible representations as obtained above with the irreducible \'\//lvs EH% 2 g {2]1]#;2*[(2[]22] ?@El[i]Z])) %8
representations of the factor groupf@r each product and then M:o ({179 ® [17 (2 ® (1) 10

inducing the whole representation intg{S]. The irreducible
representations are given by

F* = (F#F#....Fo) ® F 1 §[S] and— opertaions for additions, multiplications, and subtractions

to contrast that these are not ordinary matrix multiplications,
where R# F#....Fs is the outer tensor product of the irreducible  etc.
representations (FF, ..., Fs) from the group § # is the outer We shall illustarte this procedure with a few examples.
product, Fis an irreducible representation of the factor group Consider the Girerducible representation given by (fRI®
G, ® represents an inner product, and tséands for aninduced  [41]'. The generalized character cycle index of [4fe factor
representation to the whole group G[H]. Table 2 shows all 36 group irreducibe representation, is given by
irreducible representations thus enumerated for gf&yroup
together with labels for the irreducible representations according
to the dimensions of the representations.

The character table of thes[S;] group is generated using
the generating functions as polynomials of matrix cycle types.
The pl’esent auth&has deVeIOped a general algorithm for the For the representaﬁon [2], the matrix type expressmm)i
characters of the wreath product groups. Le¥ BPe the are given as follows:
generalized character cycle index polynomial of the irreducible
representationy of the factor subgroup ®f G, given by

1
p[8451] = H)[4515 + 20s’s, + 20s,°s; — 20s,5; — 245]]

112 0 0 0 O 0000Q0

1 T(M),? =5 ® ]
%Z_ZX(Q)#% ..... sﬁ” 2:00000: :10000:

Gl m_1[o1 000 . [0o000(C

, , N M=o ooo0d®lo1oo00

Let T(M); be the matrix type of the representation of the inertia - CHE .
factor. The generating function for the irreducible representation 2 1Mffloo100 fooo o d
F* of Sy[S] is obtained by the replacement T(M)s “Sllooooo © 00100
T(GIH)™ = P4(s — T(M),) M) m_1[00010,[0000 o]'

4 2([l0000Q0Q "|00O0 10

In the above expression, everysreplaced by the correpsond- ] . )
ing matrix typeT(M);, where all algebraic manuiputalions are (M) 2] 21 00001 D 0000 0]
done with the cycle type matrices. We have introduée®, 5 210 0000 |10 00 0 1]
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Replacing every jsby T(M); in the expression foP[;;l] we
obtain

N
or

$ N —— @ O

N oo ==F o o o

By use of the matrix manipulations for the cycle types where
the multiplication of two matrix cycle types is interpreted as
ordinary matrix additions, we can simplify the above expression

as
oo =542 0609+ 0009
955009500049
436009480009 50 0049"
95100913 50009
24; 05 5q+ 220000
24, 955+ 0 000"
957009 5 000q"
450300+ 0000
164; 0300+ 0000
*J5 0200 900000
165 670 ~265 100 -
1645 9 30046 0004d-
400 0.0 9]

The expression thus obtained above for ther&resentation

generates the character values in that the coefficients of the
various matrix types when sorted out according to the order of

multiplied by the order of the corresponding conjugacy class
with the order of the group (3840) factored out. Consequently,
the following string of coefficients is obtained after dividing

J. Phys. Chem. A, Vol. 108, No. 26, 2008531

This string yields the character vales for the i@presentation.

In this manner, we obtain the character string for all 36
representations shown in Table 2. This of course involves
considerable algebraic manipulations for all 36 irreducible
representations, and all of these character values were computed
manually. The character table thus constructed is shown in Table
3.

As can be seen from Table 3, the character table;&;5or
Gssaocontains 36 irreducible representations. There are four one-
dimensional, four four-dimensional, eight five-dimensional, two
six-dimensional, ten 10-dimensional, four 15-dimensional, and
four 20-dimensional irreducible representations in the group
which satisfy

Ax PP+Ax P +8x5+2x6°+10x 100+ 4 x
1524 4 x 20° = 3840

The above condition is a requirement of the great orthogonality
theorem. Moreover, we have ensured that all of the character
values of 36 irreducible representations are orthogonal to each
other by a computer code. This exhaustive checks involved 630
pairs of checks, and all of these checks produced correct zero
overlaps for the irreducible representations shown in Table 3
confirming that the numbers are correct. Another important
check is that the sum of squares of numbers multiplied by the
corresponding orders of conjugacy classes in any row should
add up to 3840. This result was also used to verify the
correctness of all numbers in Table 3. All of these facts aid to
confirm that the numbers in Table 3 are correct.

3. Nuclear Spin Statistics and Tunneling Splittings of
Rotational/Rovibronic Levels and of (H,O)s from
Semirigid to Fully Nonrigid Limits

We consider the use of the character table for the water
pentamer in the fully nonrigid limit. Liu et &.have obtained
vibrational-rotation-tunneling spectra of the deuterated water
pentamer, (PO)s. In its deuterated form, the cluster behaves
as a quasi-planar oblate top with an avera@sgdsymmetry.

We call this a semirigid structure in that the equilibrium
geometry of the completely rigid structure, which is shown in
Figure 1, is of C; symmetry and it's chiral. The tunneling
motions in the deuterated form in the ground state are restricted
to certain pseudorotations, which yield an overall averaged
symmetry ofCs, or a Go molecular symmetry group as noted
by Liu et al® For the fully protonated form, quantum tunneling
among all 32 possible minima that arise from the flipping of
the hydrogen atoms which yiel& 2 32 permutations has been
observed. Thus, we provide complete analysis of the rotational
levels, tunneling splittings, and nuclear spin statistical weights
of the rovibronic levels in both the semirigid and fully nonrigid
wreath product group limits of (}D)s.

Table 4 shows the correlation of the rotational levels of the
pentamer in both the semirigid and nonrigid groups. Note that,
the fully rigid structure (Figure 1) has on{y; symmetry, and

Sthus, all of the irreducible representations of the nonrigid group

will correlate into the rigid structure. Moreover, it is highly
unlikely that the cluster will retain its rigi€; geometry in view
of quantum tunneling. Liu et &have contrasted the parts of

the coefficients in the above expression by the order of each o degenerate representationdgd B in the Cs, symmetry

conjugacy class:

{444444222222221111110000000000
1-1-1-1-1-1)

since the accidental degeneracies may be split by Corriolis
coupling. However, for the analysis of nuclear spin statistical
weights or the tunneling splittings, it is not necessary to make
the distinction between the degenerate parts of thartel &
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TABLE 3: Character Table of the Sg[S;] Group with 36 Irreducible Reps
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TABLE 3 (Continued)

322 226 1224 25 12224 24 1242 24 124 128 2# 28 23 2% 42 46 5 10
80 80 60 60 120 120 60 60 240 240 240 240 160 160 160 160 384 384

M3 1 1 2 2 0 0 -2 2 0 0 0 0 1 1 -1 -1 0 0
W, -1 -1 0 0 0 0 0 0 0 0 0 0o -1 -1 1 1 0 0
Ma 1 1 -2 =2 0 0 2 2 0 0 0 0 1 1 -1 -1 0 0
Ms 1 1 -2 =2 0 0 2 2 0 0 0 0 -1 -1 1 1 0 0
W2 -1 -1 0 0 0 0 0 0 0 0 0 0 1 1 -1 -1 0 0
Me 1 1 2 2 0 0 -2 2 0 0 0 0 -1 -1 1 1 0 0
M2 1 -1 2 2 0 0 -2 2 0 0 0 0 1 -1 1 -1 0 0
W3 -1 1 0 0 0 0 0 0 0 0 0 0o -1 1 -1 1 0 0
Mg 1 -1 =2 2 0 0 2 2 0 0 0 0 1 -1 1 -1 0 0
Mo 1 -1 -2 2 0 0 2 -2 0 0 0 0 -1 1 -1 1 0 0
W, -1 1 0 0 0 0 0 0 0 0 0 0 1 -1 1 -1 0 0
Mo 1 -1 2 2 0 0 -2 2 0 0 0 0 -1 1 -1 1 0 0

TABLE 4: Tunneling Splittings of Rotational Levels to the Semirigid to Fully Nonrigid (H 20)s
K semirigid Csn) nonrigid (S[S])

0 Ay Ar+ Az + As+ Ag+ Hi+ Ha + Ha + Ha + Hs -+ He + Hy + Hg +
211+ 215+ 2M; + 2M; + 2Ms + 2My + 2Ms + 2Ms + 2M, +
2Mg + 2Mg + 2Mio+ 3R; + 3R, + 3Ry + 3Ry + AWy + 4W, + 4W; +
4W,

1 A+ E (A1 + Az + Ag+ A+ Hi+ Ho + Hy + Hy -+ Hs + Hg + Hy + Hg +
211+ 21, + 2M; + 2M; + 2Ms + 2My + 2Ms + 2Ms + 2M, +
2Mg + 2Mg + 2Mio+ 3Ry + 3R, + 3Rs + 3Ry + 4W; + 4W, + 4W; +
4Wy) + (G1+ Gy + Gs+ Ga + Hy + Ha + Ha + Hy + Hs + He + Hy + Hg +
li+ 12+ 2My + 2M, + 2M3 + 2My + 2Ms + 2Mg + 2M; + 2Mg +
2Mg + 2M10+ 3Ry + 3R, + 3Rs + 3Ry + AW, + 4W, + 4W; + 4W,)

2 A+ E+E (A1+ Az + As+ Ag+ Hi+ Ho + Ha+ Hy + Hs + Hg + Hy + Hg +
211+ 215+ 2M; + 2M; + 2Ms + 2My + 2Ms + 2Ms + 2My +
2Mg + 2Ms + 2Mso+ 3Ry + 3R, + 3Ry + 3Ry + 4W; + 4W, + 4W; +
4W,) + 2(G1+ Go + Gs + Gs + Hy + Hy + Ha + Ha + Hs + He + Hy +
He + 11+ |2+ 2M; + 2M; + 2Ms + 2My + 2Ms + 2Ms + 2M; +
2Mg + 2Mg + 2M1o+ 3Ry + 3R + 3Rs + 3Ry + 4Wy + 4W, + 4W; + 4W,)

3 AL+ E + 26 (A1+ A2+ As+ Ag+ Hi + Ha + Ha + Ha + Hs + Hs + Hy + Hg + 21, +
212+ 2My + 2M; + 2M3 + 2My + 2Ms + 2Mg + 2My + 2Mg +
2Mg + 2Mio+ 3Ry + 3R, + 3Rs + 3Rs + 4W; + 4W5 + 4W; +
4Wy) + 3(GL+ Gz + Gs+ Gy + Hy + Hy + Ha + Ha + Hs + Ho + Hy +
He + 11+ I+ 2M;1 + 2M; + 2Ms + 2Ms + 2Ms + 2Ms + 2M7 + 2Mg +
2Mg + 2M10+ 3Ry + 3R, + 3Rs + 3Ry + AW, + 4W, + 4W; + 4W,)

4 A+ 2E; + 26, (A1 + Az + Ag+ Ag+ Hi + Ho + Hy + Hy -+ Hs + Hg + Hy + Hg +
211+ 215+ 2M; + 2M; + 2Ms + 2My + 2Ms + 2Ms + 2M; + 2Mg +
2Mg + 2Mao+ 3Ry + 3R, + 3Rs + 3Ry + 4Ws + AW, + AW + 4W,) +
4G+ G2+ Gy + Gy + Hy + Ha + Ha+ Hy + Hs + Hg + Hy + Hg +
l1+ 12+ 2My + 2M; + 2M3 + 2My + 2Ms + 2Mg + 2My + 2Mg + 2Mg +
2Mio+ 3Ry + 3R + 3Rs + 3Ry + 4W, + 4W, + 4W; + 4W,)

5 2A + 2B + 26, 2(A1+ A2+ Ag+ Ag+ Hi+ Ho + Ha+ Hy + Hs + Hg + Hy + Hg +
211+ 215+ 2M; + 2M; + 2Ms + 2My + 2Ms + 2Mg + 2M; + 2Mg +
2Mg + 2M3o+ 3Ry + 3R, + 3Rs + 3Ry + AW, + 4W5 + 4W; + 4W,) +
4(Gr+ Gy + Gy + G+ Hi+ Ha + Ha + Hy + Hs + He + Hy + Hg +
l1+ 12+ 2My + 2M; + 2M3 + 2My + 2Ms + 2Mg + 2M; + 2Mg +
2Mg + 2Mao+ 3Ry + 3R, + 3Rs + 3Ry + 4Ws + AW, + 4Ws + 4W,)

n (A:+ 2E + 2E) + D™5 2(A1+ A2+ As+ Ag+ Hi+ Ha+ Ha+ Ha + Hs + Hg + Hy + Hg +
211+ 215+ 2M; + 2M; + 2Ms + 2My + 2Ms + 2Mg + 2M; + 2Mg +
2Mg + 2M1o+ 3Ry + 3R + 3Rs + 3Re + AW, + 4Ws + 4W; + 4W,) +
4(G1+ Go+ Gy + Gy + Hy + Ho + Ha + Hy + Hs + Hg + Hy + Hg +
l1+ 12+ 2My + 2M; + 2M3 + 2My + 2Ms + 2Mg + 2My + 2Mg + 2Mg +
2Mio+ 3Ry + 3R, + 3Rs + 3Ry + 4W, + 4W, + 4W5 + 4W,) + D"

representations of the semirigid group, and it is suggested thatis a period of 5 that arises from the symmetry of the semirigid
the tunneling levels obtained using the correlation may be further molecule. A large number of tunneling levels arise for each of
contrasted according to other perturbations such as Corriolisthe rotational level in the fully nonrigid limit. However, as we
coupling. Hence we do all our analysis of tunneling splittings show below, only a few of those levels are populated by nuclear
in Cs and $[S;] groups. In fact, the €group is sufficient for spins for the protonic form of the pentamer although for the
the correlation of levels, as the horizontal plane does not deuterated form more tunneling levels are populated.
generate any new permutation of the proton nuclei. As seen Next we consider the nuclear spin statistics of the pentamer
from Table 4, we obtain a pattern for the rotational levels into both in its protonated and deuterated forms. Following this we
tunneling levels both in the semirigid and nonrigid limits. There shall consider the correlation of rovibronic levels into tunneling
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levels together with the nuclear spin statistical weights. From  We can also obtain the total nuclear spin statistical weights
the character table we can construct the combinatorial generatingrom the nuclear spin species enumerated in Table 5. As seen
functions to enumerate the nuclear spin functions that transformfrom Table 5 and as expected, the proton nuclear spin multiplets
according to the given irreducible representation. This informa- occur with fewer frequencies as compared to the deuterium spin
tion can be sorted out into nuclear spin multiplets from which species. The nuclear spin statistical weights are obtained by first
we can derive the frequencies of various irreducible representa-finding the frequencies of each of the irreducible representations.
tions in all nuclear spin functions. Then we shall use the Pauli This is accomplished by multiplying the spin multiplicity by
exclusion principle for the protons, which are fermions, and the frequency of each multiplet and then adding the all of the
thus, the overall function must be antisymmetric. For the bosons numbers. Consequently, we have obtained the frequencies of
such as deuterium nuclei, the overall function must be sym- the various irreducible representations for the H and D nuclear

metric. Let us illustrate the technique with {D)s. Let us
represent threens functions of the D nucleus b¥, u, andv,
where these labels represemt= —1, 0, and+1, respectively.
Let us consider the Grepresentation in character Table 3 for
which we obtain the GGCI of the representation as

11
GFg, =g ;{43110 + 20s,%s, + 40s,°s,” + 40s,"s,” +

20s,%s," + 4s,° + 40s,%,% + 40s°s, + 1205,%s,° +
120s,"s,s, + 1205,%s,* + 1205,%s,s, + 40s,” + 40s,’s, +
80s;"sy’ + 80s;'s; + 1605;°8;7s, + 1605,°5,5; + 80,’s;” +
80s,’s; — 160s,°s,” — 1605,°s; — 160s,s,” — 1605,5, —
384s.” — 384s,}
The®D nuclear spin generating function is obtained by replacing

every s in the above expression byX(+ u* +v¥). Thus we
obtain

POt = S AG + 4+ )+ 200+ + )G + P+

v + 40Q + u 4+ v)°(A2 + 1P+ 172+ 400 + u +
VA2 + 1+ 7%+ 2000 + u + v)?(0F + P+ A+
AR% + 12+ v)° + 400 + u + v)°(A2 + WP + VAP +
400, + 1+ )’ + 1t + vH + 120Q + 1+ v)AR2 +
W2+ v+ 1200 + u + v) A2+ i+ A+ ut +
v 4+ 120@ + 1 + 1)’ (A2 + p® + v+ 120Q + u +
VA2 + 1+ v200 + it + vh) + 4007 + WP+ A% +
402 + u® + V300 + 1t + v + 80 + 1 + v)* (A3 +
w2+ )2+ 800 + u + v)* (A% + 1® + 1% + 160¢0 + u +
WAA2 4 12+ A3+ 1B+ )2+ 1600 + u + v)(A2 +
w2+ VA% + u® + 1% 8042 + u® + V23 + 1P + v+
80(A2 + u? + vA2(A° + u® + %) — 1600 + 1 +
VA3 + 1+ 1% — 1600 + 1t + )3+ ud + )2 -
160Q* + u* + vH(A° + u® + %) — 384Q° + u° + v°)? —
38441 + 1™ + 19
Once the above expression is simplified, the coefficient of a
typical termAiuivK yields the number olD nuclear spin functions
containingi spin functions withms = —1, j functions with
ms = 0, andk spin functions withms = +1 that transform
according to the girreducible representation. We sort the spin
functions according to their totd{lr nuclear spin quantum

numbers which yield the various nuclear spin multiplets for
(D20O)s corresponding to the Grreducible representation. We

spin functions as follows:

T, = 21A, + 0A,+ A; + 0A, + 24G, + 0G, + 0G, +
0G, + 15H, + 3H, + OH, + OH, + 15H, + OH, + 3H, +
OHg + 61, + Ol, + 6M, -+ OM, + 10M; + 1M, + OM, +

OM; + 6M, + OMg + 3Mg + OM, o+ 15R, + 3R, +
OR, + OR, -+ 8W, + OW, + OW, + OW,

T, = 252A, + 6A,+ 21A, + 0A, + 504G, + 84G, +
24G, + 0G, + 420H, + 210H, + 15H, + 3H, + 378H, +
45H, + 90H, + OH, + 3361, + 61, + 315M, + 36M, +
336M, + 120M, + 168M, + 60M, + 210M, + 21M, +
150M, + 15M,,+ 630R, + 315R, + 90R, + 18R, +

420W, + 210W, + 168W, -+ 120W,

The overall nuclear spin statistical weights are obtained using
the above frequencies and stipulating that the overall wave
function must be antisymmetric for the fermions in compliance
with the Pauli exclusion principle for (#D)s. This means the
overall wave function must transform as the #Areducible
representation for (D)5 in Table 3 which has the character
values of—1 for all odd exchanges of nuclei. The nuclear spin
statistical weights of the tunneling levels are thus obtained as
Al(l)r A2(0)1 A@(Zl), A4(0), G]_(O), GZ(O), (}3)(24)1 Gﬂ(o)! Hl'

(0)1 HZ(O)r H3(15), H4(3)7 H5(3)v HG(O)! H7(15)1 |_t3(0)1 Il (0)1
|2(6)! M]_(O), M2(6)1 M3(6)! M4(O)v M5(3)1 MG(O)v M7(lo)x M8'

(1), Mo (0), M1o(0),Ru(0), Re(0), Re(15), Ra(3), W1(0), W(0),
W3(8), and W(0). The nuclear spin statistical weights of the
deuterated forms are obtained likewise with the exception that
the overall wave function must be symmetric as@p consists

of bosons, and thus, the total wave function must transform as
A;. By using this together with the frequencies of the irreducible
representations, we have obtained the nuclear spin statistical
weights of the deuterated and protonated forms, which are
shown in Table 6.

As noted by Liu et al® the VRT spectra exhibit averaged
rotational constants that seem to fit into a semirigid psuedoro-
tation model of (BO)s. This corresponds to an averaged quasi-
planar structure for (BD)s or a Cs, symmetry. Since D nuclei
are heavier, all possible tunneling motions may not be feasible,
and thus, we have also obtained the nuclear spin statistical
weights and group theoretical tunneling analysis of both
protonated and deuterated forms in B symmetry. Since
the horizontal plane does not generate any new nuclear
permutations of protons (deuterium nuclei), it suffices to analyze
the nuclear spin statistical weights and tunneling splittings in
the G subgroup. If the weights are needed for each of the
degenerate components of thg Bnd E representations
individually, the total weights are divided by 2. Thus, we have

can obtain the corresponding results for the protonated form of provided our analysis primarily in £and further in fully

water pentamer by replacing evesyby (ak + ) in the cycle
index polynomial (above) for the Bepresentation. The results
thus obtained are shown in Table 4 for both@) and (B3:0)s.

nonrigid S[S;] groups.
Table 7 shows the correlation of the rovibronic levels from
the semirigidCs, symmetry to fully nonrigid §S,] correlation
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TABLE 5: Proton and Deuterium Spin Species of (HO)s and (D.O)s

sym proton species deuterium species sym proton species deuterium

A1 3A1(1), 7A1(1) ,11A1(1) 1A1(5) 5A1(7) A 1(2) 11A1(6) Gs none 3(33(1) 5(33(1) 7G3(1) 9(33(1)
13A1(2) 15A1(4) 17A1(1)

Az none 1A,(1) 5A(1) Hs none SH3(1) Ha(1) "Ha(1)

Az 1A3 3A3(l), 7A3(1) 11A3(1) I none 1|2(1) 5|2(1)

A none none b none SHy(1)

G, 3G1 561 7Gl gGlllGl 1G1(4) 3G1(6) 5G1(12) 7G1(1O) Gy none none
9G1(11)1Gy(7) 13G1(6) *5Ga(3)
171G, (2)19G, (1)

Hi 3H1%HH, TH4(5) 3H4(5) H1(12) Hs 1H5(1) °Hs(1) °Hs(1) 3H5(9) °Hs(6) "Hs(10) *Hs(6)
TH1(9)°H1(11)'Hy(6) 1Hg(7) 13H5(3) %Hs(3) 1'Hs(1)
13H1(5) **Ha(2) 1'Ha(1) Hs(1)

Iy Y, 81, 3,(10) 515(7) 711(12) °14(6) R 3Ry, 5Ry,7R, 1R (4) *Ry(13) 5Ry(17) 'Ry(18)
9 (7) B11(2) ¥14(2) 9R;(14) 11R;(10) 3Ry(6) 15Ry(3)

17R1(1)

Ha H, TH,(3) 3Ha(4) SH4(8) "H2(6) M1 IM;5M, IM1(1) *M1(9) SM1(8) 'M1(11)

H,(6) 1H,(3) 1H,(2) M1(7) M1(6) 3M1(2) *M1(1)

Gy none 3G2(4) 562(3) 7G2(4) ng(Z) MGz(l) Ry R, 1R2(5) 3R2(8) 5R2(13) 7R2(10)

°Ra(9) 'Rz(4) Rx(2)

He none 1H6(l) 3H5(2) 5H5(3) 7H5(2) gHe(l) Ms none M 5(6) M 5(4) ™ 5(6) ™M 5(3)

1Ms(3) 1Ms(1) 5Ms(1)

Hz 3H7 1H7(2) 3H7(:|.) 5H7(4) 7H7(2) W, none 1W2(2) 3W2(7) 5W2(8) 7W2(8)
H7(3) HH(1) *H(1) M,(5) LIW,(3) 23Wy(1)

Rs none le(l) 3R3(4) 5R3(4) 7R3(4) Msg none M 5(2) M 5(2) M 5(4)
°Rs(2) *'Ry(1) Mg(2) "M¢(2)

M. none M 2(2) M z(l) M 2(3) M7 M7 M+ M 7(7) M 7(5) ™ 7(8) ™M 7(4)
"M2(1) *M2(1) LM /(4) 33M(1) 13M (1)

R4 none 3R4(2) °R4(1) "Ra(1) Ws none WW3(2) SW3(6) "W5(7) *W4(6)

HW3(4) BW5(2) Ws(1)

Hg none none M none IMg(2) SMg(2) *Mg(1)

Ms M3 M3 M3(6) *M3(4) SM5(12) Mo Mg Mg(2) 2Mo(4) SM(6) *Mo(5)
"M3(7) *M3(9) 1M3(4) 110 o(4) 13Mo(2) 15Mg(1)
13M 3(4) 15M 3(1) 17M 3(1)

W1 SWy SWy 1W1(5) 3Wl(10) 5W1(15) W, none 1W4(2) 3W4(5) 5W4(6) 7W4(5)
"W1(13)°W1(11)**W1(6) W 4(3) 12W4(1)
Bw1(3)dw1(1)

My M, 3M4(6) M 4(4) 7M4(6) 9M4(2) 11M4(2) Mio none M 10(1) M 10(1) ™ 10(1)

TABLE 6: Nuclear Spin Statistical Weights of (H,O)s

(*H,°D)

nuclear spin nuclear spin
statistical

weights

nuclear spin nuclear spin
statistical weights

sym weights (H} (deuterared) sym weights (H} (deuterared)

reveals that the Arovibronic level is split into many tunneling
levels. However, only some of the tunneling levels have nonzero
nuclear spin statistical weights and would thus be populated.
They are A, A3, H3, Ha, H5, Hz, 12, My, M3, M5, M7, Mg’ R3,

R4, and W4 tunneling levels, as seen from Table 7. Thus,

Ay 1 252 R 0 630 primarily 15 tunneling levels have nonzero nuclear spin popula-
Az 0 6 My 0 315 tions for (HO)s in its fully nonrigid ground state. The excited
ﬁj 2(1) 2& fi 8 312 rovibronic states of (kD)s would of course have Eand &
G 0 504 H, 15 90 symmetries that correlate according to the tunneling species in
Hi 0 420 R 15 90 Table 7. Note that Eand E representations have the same spin
l1 0 336 M 6 36 statistics and tunneling patterns owing to the accidental degen-
(H32 8 2;2 Eé g 13 eracy of the 2 irreducible representations which yield the same
Gz o1 o4 M 6 336 cycle index polynomials. To observe nuclear spin multiplets,
Has 15 15 W, 0 420 one needs much higher resolution spectra that have the
P 6 6 M, 0 120 capabilities to resolve hyperfine structural patterns. Such spectra
Ha 3 3 Ms 3 168 are available on smaller clusters, and it is hoped that, in the
Gs 0 0 We 0 210 future, hyperfine structures in higher clusters may become
Hs 3 378 Ms 0 60
observable.

sym stat (H) stat(D) sym stat (H) stat(D) Wales and Walst have considered a group of 320 permuta-

M- 10 210 My 0 150 tion-inversion operations for the water pentamer. These opera-

W; 8 168 W, 0 120 tions include only the single flip and bifurcation tunneling

Mg 1 21 Mo 0 15

aSum of (stat weights< dimension of repsy 2%°. 2 Sum of (stat
weights x dimension of repsy 3.

mechanisms as obtained on the basis of energetics of reaction
pathways. This group when inversion operation is factored out
becomes a group of order 160. It can be easily shown that this
group of order 160 is the wreath produg{&3], which contains
(2)%5 = 160 operations. When the inversion operation is

of (H20)s. Note that the correlation from the fully rigid chiral
equilibrium structure with €symmetry would involve every  this contains 320 operations. The groug$g] is a subgroup
irreducible representation of the[S;] nonrigid group and hence  of S[S;]. Thus, all of the results that we have obtained in the
it is straightforward. The correlation table shown in Table 7 larger group, which is definitely more difficult to deal with,

included, the group becomes the direct produgsg} x | and
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TABLE 7: Correlation of Rovibronic Levels Semirigid (H ,0)s to Fully Nonrigid (H ,0O)s with Nuclear Spin Statistical Weights
in Parenthesis

semirigidCsn) nonrigid(S[Sz])

A4(208) Ai(L) + Az(0) + As(21) + A4(0) + Hi(0) + Hx(0) + Ha(15) + Ha(3) + Hs(3) + He(0) + H7(15) + Hg(0) +
215(0) + 21(6) + 2M1(0) + 2My(6) + 2M3(6) + 2M4(0) + 2Ms(3) + 2Mg(0) + 2M+(10) + 2Msg(1) +
2Mo(0) + 2M1o(0) + 3Ry(0) + 3Ru(0) + 3Rs(15) + 3Ry(3) + 4W:(0) + 4W,(0) + 4W5(8) + 4W4(0)

E, (204) GI(0) + Gx(0) + G3(24) + G4(0) + Hy(0) + Ha(0) + Ha(15) + Ha(3) + Hs(3) + He(0) + H+(15) + H(0) +
11(0) + 12(6) 4+ 2M1(0) + 2M(6) + 2Ms(6) + 2M4(0) + 2Ms(3) + 2Me(0) + 2M7(10) 4+ 2Mg(L) + 2Me(0) +
2M10(0) + 3Ry(0) + 3Ry(0) + 3Rs(15) + 3Ry(3) + 4W1(0) + 4W,(0) + 4W5(8) + 4W4(0)

E (204) GI(0) + Gx(0) + G3(24) + G4(0) + H(0) + Hao(0) + Ha(15) + Ha(3) + Hs(3) + He(0) + H+(15) + H(0) +
11(0)+ 15(6) + 2M1(0) + 2Mx(6) + 2M3(6) + 2M4(0) + 2Ms(3) + 2Mg(0) + 2M+(10) + 2Mg(1) + 2Mo(0) +
2M10(0) + 3Ry(0) + 3Re(0) + 3Rs(15) + 3Ry(3) + 4W1(0) + 4W,(0) + 4W5(8) + 4W4(0)
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