Novel Pyramidal $\mathbf{M B}_{7}(\mathbf{M}=\mathbf{L i}, \mathbf{N a}, \mathbf{K}, \mathbf{R b}$, or $\mathbf{C s})$ Species: Structure and Aromaticity

Qian-Shu Li* and Liang-Fa Gong
Department of Chemistry, School of Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China

Received: January 1, 2004; In Final Form: March 11, 2004

Abstract

The structures and stabilities of a series of pyramidal $\mathrm{MB}_{7}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$ species were studied by using ab initio (MP2/6-311+G*) and density functional theory (B3LYP/6-311+G* and B3PW91/6-311+G*) methods. It is found that most MB_{7} species (except RbB_{7} and CsB_{7} at the MP2 level) are minima at the $C_{7 v}$ symmetric structure, which corresponds to a complex of an M^{+}cation with a planar heptagonal B_{7}^{-}ring. Nucleus-independent chemical shift and molecular orbital analyses confirm that the planar heptagonal $\mathrm{B}_{7}{ }^{-}$ ring exhibits aromatic nature. The stabilization of the planar B_{7}^{-}ring is mainly attributed to the electrostatic interaction.

1. Introduction

Aromaticity usually refers to benzene and relevant organic compounds which have specific stability and possess $(4 n+2)$ π electrons. The concept of aromaticity has been extended to heterosystems ${ }^{1-4}$ and organometallic species. ${ }^{5-7}$ Recently, the purely metallic $\mathrm{MAl}_{4}^{-}(\mathrm{M}=\mathrm{Li}, \mathrm{Na} \text {, or } \mathrm{Cu})^{8}$ and gaseous NaGa_{4}^{-}and $\mathrm{NaIn}_{4}{ }^{-}$systems ${ }^{9}$ were studied and found to have two delocalized π electrons and thus aromaticity. Aromaticity was also found in heterosystems $\mathrm{XAl}_{3}^{-}(\mathrm{X}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$, and $\mathrm{Pb})^{10}$ and 10 -valence-electron $\mathrm{X}_{3}{ }^{-}(\mathrm{X}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga})$ systems. ${ }^{11}$ Besides, Boldyrev et al. confirmed the specific stability of the planar square $\mathrm{Hg}_{4}{ }^{6-}$ cluster in the $\mathrm{Na}-\mathrm{Hg}$ amalgams by using the multifold aromaticity concept. ${ }^{12}$ Alexandrova and Boldyrev discussed σ aromaticity of the small alkali-metal and alkaline-earth-metal clusters and the specific stabilities of $\mathrm{Li}_{3}{ }^{+}$and $\mathrm{Li}_{3}{ }^{-}$ ions. ${ }^{13}$

There are many reports on the B_{n} clusters in experimental and theoretical studies. Alexandrova et al. ${ }^{14}$ and Zhai et al. ${ }^{15}$ investigated the electronic structures and chemical bonding of $\mathrm{B}_{6}{ }^{-}$and $\mathrm{B}_{6}{ }^{14}$ and $\mathrm{B}_{5}{ }^{-}$and $\mathrm{B}_{5}{ }^{15}$ using anion photoelectron spectroscopy and ab initio calculation. Ma et al. studied the geometry, chemical bonding, and aromaticity of $\mathrm{B}_{6}, \mathrm{~B}_{6}{ }^{+}, \mathrm{B}_{6}{ }^{-}$, and $\mathrm{B}_{6}{ }^{2-}$ isomers using the B3LYP/6-31+(G) density functional theory (DFT) method. ${ }^{16}$ Our group performed theoretical studies on $\mathrm{B}_{4}, \mathrm{~B}_{4}{ }^{+}$, and $\mathrm{B}_{4}{ }^{-}$isomers with ab initio and DFT methods ${ }^{17}$ and predicted the structures and stabilities of $\mathrm{B}_{5}, \mathrm{~B}_{5}{ }^{+}$, and $\mathrm{B}_{5}{ }^{-}$with the B3LYP/6-311+G* and MP2/6-311+G* methods. ${ }^{18}$ We also investigated the stabilities of $\mathrm{B}_{6}, \mathrm{~B}_{6}{ }^{+}$, and $\mathrm{B}_{6}{ }^{-}$isomers at the HF/6-311(+)G*, B3LYP/6-311(+)G* and MP2/6-311(+)G* levels of theory. ${ }^{19}$ It is reported that octahedron the B_{6} unit in metal polyboron compounds ${ }^{20-22}$ is the common building block. In addition to the B_{n} clusters, our group ${ }^{23}$ has also investigated aromaticity for pyramidal MB_{6} ($\mathrm{M}=\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca}$, and Sr) clusters. In the present work, we study the structure and stability for the pyramidal alkali-metal$\mathrm{B}_{7}\left(\mathrm{MB}_{7}\right)\left(C_{7 v}\right.$ symmetry) $(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs$)$ systems.

[^0]
2. Computational Methods

Geometry optimization and vibrational frequency calculation were performed at the B3LYP, B3PW91, and MP2 levels of theory. B3LYP and B3PW91 are two DFT methods, ${ }^{24-26}$ and MP2 is the second-order Møller-Plesset perturbation theory. ${ }^{27}$ The $6-311+\mathrm{G}^{*}$ basis sets ${ }^{28}$ were used for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and K , and the relativistic effective core potential with the LANL2DZ basis set was chosen for $\mathrm{Rb}(Z=37)$ and $\mathrm{Cs}(Z=55) . .^{29,30}$ Natural bond orbital (NBO) $)^{31-33}$ analysis and nucleus-independent chemical shift (NICS) ${ }^{34-36}$ analysis (Table 4) were carried out at the B3LYP/6-311G*//B3LYP/6-311+G* level and the GIAO B3LYP/6-311G*//B3LYP/6-311+G* level, respectively. The molecular orbital (MO) calculations were performed at the B3LYP/6-311G*//B3LYP/6-311+G* level. All MO diagrams were plotted by using the MOLDEN 3.4 program, ${ }^{37}$ and all calculations were completed in the framework of Gaussian 98 program packages. ${ }^{38}$

3. Results and Discussion

The optimized geometry parameters for the planar anionic $\mathrm{B}_{7}{ }^{-}\left(D_{7 h}\right)$ ring and pyramidal $\mathrm{MB}_{7}\left(C_{7 v}\right)$ species are compared in Table 1. Total energies including the zero-point energies and the numbers of imaginary frequencies for $\mathrm{MB}_{7}\left(C_{7 v}\right)$ species are shown in Table 2.
3.1. Structure and Stability of the Pyramidal $\mathrm{MB}_{7}\left(C_{7 v}\right)$ Species. It can be seen that the calculated $B-B$ bond length is almost identical in B_{7}^{-}and MB_{7} (Table 1), and that the $\mathrm{M}-\mathrm{B}$ bond lengths are longer than the sum of covalent radii of the corresponding metal atom (M) and B atom. The covalent radius of the metal atom is $1.22,1.57,2.02,2.16$, and $2.35 \AA$ for Li , $\mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, and Cs, respectively. ${ }^{39}$ The covalent radius of boron is $0.88 \AA .{ }^{39} \mathrm{NBO}$ analysis shows that the average Wiberg bond index (WBI) of the adjacent B atoms is 1.46 in the MB_{7} species, which is similar to that in the $D_{7 h}$ symmetric B_{7}^{-}ring (1.47), while the WBI of M-B bond is near zero. These results imply that the cationic ions have little effect on the structure of the planar heptagon anionic $\mathrm{B}_{7}^{-}\left(D_{7 h}\right)$ cluster, and that there is no direct covalent bonding between the alkali-metal atom (M) and B atom. The NBO analyses show that natural charges of all the alkali metals are positive, and the charges of all the boron atoms

TABLE 1: Calculated Bond Lengths (\AA) and Angles (deg) and the Sum of Covalence Radii ((A) for the $\mathrm{B}_{7}{ }^{-}\left(D_{7 h}\right)$ and Pyramidal $\mathbf{M B}_{7}(\mathbf{M}=\mathbf{L i}, \mathbf{N a}, \mathbf{K}, \mathbf{R b}$, or $\mathbf{C s})$ Species ${ }^{a}$

species						
	level	$r(\mathrm{M}-\mathrm{B})$	$r(\mathrm{~B}-\mathrm{B})$	$\angle(\mathrm{BMB})$	$\angle(\mathrm{BBB})$	covalence radii for M and B^{b}
$\mathrm{~B}_{7}^{-}\left(D_{7 h}\right)$	B3LYP		1.547		128.57	1.76^{c}
	B3PW91		1.549		128.57	
	MP2		1.566		128.57	
$\mathrm{LiB}_{7}\left(C_{7 v}\right)$	B3LYP	2.372	1.546	38.0	128.57	2.10
	B3PW91	2.377	1.548	38.0	128.57	
	MP2	2.415	1.565	37.8	128.57	
$\mathrm{NaB}_{7}\left(C_{7 v}\right)$	B3LYP	2.783	1.547	32.27	128.57	2.45
	B3PW91	2.786	1.549	32.28	128.57	
	MP2	2.818	1.566	32.27	128.57	
$\mathrm{~KB}_{7}\left(C_{7 v}\right)$	B3LYP	3.191	1.545	28.0	128.57	2.90
	B3PW91	3.173	1.547	28.2	128.57	
	MP2	3.167	1.565	28.6	128.57	
$\mathrm{RbB}_{7}\left(C_{7 v}\right)$	B3LYP	3.470	1.546	25.7	128.57	3.04
	B3PW91	3.448	1.548	25.9	128.57	
$\mathrm{CsB}_{7}\left(C_{7 v}\right)$	B3L2	3.507	1.565	25.8	128.57	
	B3PW91	3.704	1.546	24.1	128.57	3.23
	3.672	1.548	24.3	128.57		
	MP2	3.735	1.565	24.2	128.57	

${ }^{a}$ The $6-311+\mathrm{G}^{*}$ basis set was used for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and K ; the LANL2DZ basis set was used for Rb and Cs. ${ }^{b}$ Reference 39. ${ }^{c}$ The covalence radius of boron is $0.88 \AA$, ref 39 .

TABLE 2: Total Energies $(E)^{a}$ and Zero-Point Energies $(\mathbf{Z P E s})^{b}$ for $\mathrm{MB}_{7}\left(C_{7 v}\right)$ Species $(\mathbf{M}=\mathbf{L i}, \mathbf{N a}, \mathrm{K}, \mathbf{R b} \text {, or } \mathbf{C s})^{c}$

species	B3LYP		B3PW91		MP2	
	$\mathrm{E}^{\text {a }}$	ZPE ${ }^{\text {b }}$	$\mathrm{E}^{\text {a }}$	ZPE ${ }^{\text {b }}$	$\mathrm{E}^{\text {a }}$	$\mathrm{ZPE}^{\text {b }}$
LiB_{7}	-181.22077	16.6 (0)	-181.11102	16.5 (0)	-180.52037	16.7 (0)
NaB_{7}	-335.97789	15.4 (0)	-335.83221	15.2 (0)	-334.90282	16.4 (0)
KB_{7}	-773.61913	15.0 (0)	-773.46091	14.9 (0)	-772.37500	16.6 (0)
RbB_{7}	-197.54335	14.6 (0)	-197.46482	14.5 (0)	-196.62988	16.6 (2)
CsB_{7}	-193.55736	14.3 (0)	-193.48255	14.2 (0)	-192.65500	17.1 (2)

${ }^{a}$ Total energies in hartrees. ${ }^{b}$ Zero-point energies in kilocalories per mole. The integers in parentheses are the number of imaginary frequencies (NIMAG). ${ }^{c}$ The $6-311+\mathrm{G}^{*}$ basis set was used for B, Li, Na , and K ; the LANL2DZ basis set was used for Rb and Cs .
are negative. Therefore, it can be concluded that the electrostatic interaction is dominant in these clusters. The change trend of WBI for metal-boron bonds is that the lighter the metal, the greater the M^{+}effects on the planar heptagon $\mathrm{B}_{7}{ }^{-}$ring. From the viewpoint of atomic charge, it seems that the MB_{7} species $\left(C_{7 v}\right)$ is a complex of cationic ion M^{+}and planar heptagon anion $\mathrm{B}_{7}^{-}\left(D_{7 h}\right)$.

The average $\mathrm{B}-\mathrm{B}$ bond length of the MB_{7} species is 1.546 \AA (B3LYP), $1.548 \AA$ (B3PW91), and $1.566 \AA$ (MP2), which is shorter than the single $B-B$ bond length of $1.59 \AA^{40}$ in B_{2}. The WBI of the $\mathrm{B}-\mathrm{B}$ bond, 1.46 , in the MB_{7} species indicates that the $\mathrm{B}-\mathrm{B}$ bond is strong between the standard single and the standard double bonds, and the bonding electrons among the $\mathrm{B}-\mathrm{B}$ bonds are highly delocalized in the planar heptagonal ring. On one hand, there exists torsion action between the $B-B$ σ bonds in the planar B_{7}^{-}ring; on the other hand, the multicentered bonds and the delocalized bonds try to compensate for the electron deficiency and thus contribute to the special stablility of the planar $\mathrm{B}_{7}{ }^{-}$ring. It is reasonable to assume that a pyramidal $\mathrm{MB}_{7}\left(C_{7 v}\right)$ structure could exist.

It is seen that the $\mathrm{MB}_{7}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs})\left(C_{7 v}\right)$ clusters are minima on the potential surfaces at all methods except for $\mathrm{RbB}_{7}\left(C_{7 v}\right)$ and $\mathrm{CsB}_{7}\left(C_{7 v}\right)$ species at the MP2 level (Table 2). Table 3 gives the energy change in the reaction $\mathrm{MB}_{7}\left(C_{7 v}\right) \rightarrow$ $\mathrm{M}^{+}+\mathrm{B}_{7}^{-}\left(D_{7 h}\right.$ or $\left.C_{2 v}\right)$ at the B3LYP/6-311+G* level. In this reaction, the $\mathrm{B}_{7}{ }^{-}$cluster was assumed to be either the planar $D_{7 h}$ symmetric structure or the pseudoplanar hexagon-capped $C_{2 v}$ symmetric structure (at the global minimum on the potential

TABLE 3: Zero-Point-Corrected B3LYP Energies (kcal/ mol) for Hypothetical $\mathbf{M B}_{7} \rightarrow \mathbf{M}^{+}+\mathbf{B}_{7}^{-}$Reactions ($\mathbf{M}=\mathbf{L i}$, $\mathbf{N a}, \mathbf{K}, \mathbf{R b}$, or $\mathbf{C s})^{a}$

	LiB_{7}	NaB_{7}	$\mathrm{~KB}_{7}$	RbB_{7}	CsB_{7}
$\mathrm{MB}_{7} \rightarrow \mathrm{M}^{+}+\mathrm{B}_{7}^{-}\left(D_{7 h}\right)^{b}$	163.3	136.0	116.1	103.6	96.5
$\mathrm{MB}_{7} \rightarrow \mathrm{M}^{+}+\mathrm{B}_{7}^{-}\left(C_{2 v}\right)^{c}$	86.5	59.1	39.3	26.8	19.8

${ }^{a}$ The $6-311+\mathrm{G}^{*}$ basis set was used for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and K ; the LANL2DZ basis set was used for Rb and Cs. ${ }^{b}$ The anionic $\mathrm{B}_{7}{ }^{-}\left(D_{7 h}\right)$ is the perfect planar structure with $D_{7 h}$ symmetry. ${ }^{c}$ The global minimum anionic B_{7}^{-}is a quasi-planar hexagonal pyramidal structure with $C_{2 v}$ symmetry.

TABLE 4: Harmonic Frequencies (cm^{-1}) and Their IR Intensities ($\mathrm{km} \mathrm{mol}^{-1}$) in Parentheses for the MB_{7} Species ($\mathrm{M}=\mathrm{Li}$, Na , and K), at the B3LYP/6-311 $+\mathrm{G}^{*}$ and MP2/ 6-311 + G* Levels

	LiB_{7}, B3LYP	LiB_{7}, MP2	NaB_{7}, B3LYP	NaB_{7}, MP2	KB_{7}, B3LYP	KB_{7} MP2
ω_{1}	$373(0)$	$359(0)$	$173(0)$	$179(2)$	$142(0)$	$151(2)$
ω_{2}	$188(0)$	$185(0)$	$169(0)$	$182(0)$	$154(0)$	$168(0)$
ω_{3}	$406(10)$	$402(14)$	$240(18)$	$238(21)$	$187(1)$	$196(18)$
ω_{4}	$288(0)$	$292(0)$	$250(0)$	$246(0)$	$225(0)$	$202(0)$
ω_{5}	$352(0)$	$387(0)$	$301(0)$	$607(0)$	$284(0)$	$769(0)$
ω_{6}	$398(0)$	$399(0)$	$382(0)$	$379(0)$	$366(0)$	$356(0)$
ω_{7}	$744(1)$	$723(1)$	$739(0)$	$718(0)$	$739(0)$	$717(0)$
ω_{8}	$913(35)$	$945(90)$	$911(26)$	$949(171)$	$912(64)$	$950(192)$
ω_{9}	$1278(0)$	$1244(0)$	$1277(0)$	$1239(0)$	$1279(0)$	$1244(0)$
ω_{10}	$1428(0)$	$1482(0)$	$1417(0)$	$1492(0)$	$1491(0)$	$1503(0)$

TABLE 5: Harmonic Frequencies (cm^{-1}) and Their IR Intensities ($\mathrm{km} \mathrm{mol}^{-1}$) in Parentheses for $\mathbf{R b B}_{7}, \mathrm{CsB}_{7}\left(\boldsymbol{C}_{7 v}\right)$, and $\mathrm{B}_{7}^{-}\left(D_{7 h}\right)^{a}$

ω	RbB_{7}, B3LYP	RbB_{7}, MP2	CsB_{7}, B3LYP	$\mathrm{B}_{7}{ }^{-}$, HF^{-}	$\mathrm{B}_{7}{ }^{-}$, B3LYP	$\mathrm{B}_{7}{ }^{-}$, MP2
ω_{1}	$118(0)$	$117(2)$	$112(0)$			
ω_{2}	$129(0)$	$\mathrm{i} 363(0)$	$109(0)$		$1221 \mathrm{i}(0)$	$452 \mathrm{i}(0)$
ω_{3}	$140(15)$	$133(16)$	$121(14)$	$180(0)$		
ω_{4}	$206(0)$	$335(0)$	$196(0)$	$252(0)$	$159(0)$	$139(0)$
ω_{5}	$251(0)$	$949(224)$	$211(0)$	$319(0)$	$170(0)$	335
ω_{6}	$358(0)$	$159(0)$	$350(0)$	$504(0)$	$340(0)$	713
ω_{7}	$738(0)$	$716(0)$	$738(0)$	$767(0)$	$735(0)$	1159
ω_{8}	$910(17)$	$1027(0)$	$910(16)$	$926(196)$	$907(8)$	$945(352)$
ω_{9}	$1276(0)$	$1292(0)$	$1276(0)$	$1334(0)$	$1271(0)$	1235
ω_{10}	$1415(0)$	$1500(0)$	$1415(0)$	$1426(0)$	$1409(0)$	1495

${ }^{a}$ The $6-311+\mathrm{G}^{*}$ basis set was used for B; the LANL2DZ basis set was used for Rb and Cs .
surface). The energy change shows that all the MB_{7} species lie below the sum of energies of M^{+}and B_{7}^{-}; therefore, the reaction is endothermic. Furthermore, the lighter the metal, the higher the dissociation energy. The energy change of the reaction also shows that the $D_{7 h}$ symmetric B_{7}^{-}structure is unstable compared with the $C_{2 v}$ symmetric structure in the ${ }^{1} \mathrm{~A}_{1}$ state.

The calculated harmonic vibrational frequencies and their intensities are listed in Tables 4 and 5. It can be seen that the planar heptagonal B_{7}^{-}ring $\left(D_{7 h}\right)$ structure is a local minimum at the HF/6-311+G* level (Table 5); however, it is the secondorder saddle point on the potential energy surface at the B3LYP and MP2 levels. Following the direction of the imaginary vibrational modes, we obtained a bent C_{s} symmetric structure, which is a local minimum at the B3LYP level or a transition state at the MP2 level. At the HF level, the C_{s} symmetric structure is also a local minimum. The pseudoplanar hexagoncapped structure of $\mathrm{B}_{7}^{-}\left(C_{2 v},{ }^{1} \mathrm{~A}_{1}\right)$ is found to be the global minimum at all methods. But, it could be expected that the planar heptagonal B_{7}^{-}ring with $D_{7 h}$ symmetry may be stabilized by combining with a cation, $\mathrm{M}^{+}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs$)$, forming the $\mathrm{MB}_{7}\left(C_{7 v}\right)$ species. Except for the three doubly imaginary frequencies in Table 5, the rest of the lowest frequencies are large enough, which proves that MB_{7} is a

Figure 1. Molecular orbitals of pyramidal $\mathrm{MB}_{7}\left(C_{7 v}\right)(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs$)$ and bare $\mathrm{B}_{7}{ }^{-}\left(D_{7 h}\right)$ from the HOMO down to the sixth valence molecular orbital (HOMO - 6).
genuine minimum. The vibrational mode corresponds to the metal-ring deformation (except for the RbB_{7} and CsB_{7} species at the MP2/6-311+G* level), and hardly affects the ring structure as such. The most intensive frequency corresponds to the in-plane deformation of the heptagonal ring in these MB_{7} species, which is a candidate for spectroscopic identification. Moreover, the calculated frequencies of the bare planar $\mathrm{B}_{7}{ }^{-}$ring are identifiable in the $\mathrm{MB}_{7}\left(C_{7 v}\right)$ species (Tables 4 and 5).
3.2. Aromaticity of the $\mathrm{MB}_{7}\left(C_{7 v}\right)(M=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs) Species. The MOs of $\mathrm{MB}_{7}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs})\left(C_{7 v}\right)$
and $\mathrm{B}_{7}^{-}\left(D_{7 h}\right)$ are similar to each other, which are shown in Figure 1. The doubly degenerate HOMOs are two π-bonding orbitals, which are mainly composed of the out-of-plane 2 p orbitals. HOMO -2 is also a π-bonding orbital, mainly formed from the out-of-plane 2 p orbitals of all B atoms. HOMO - 1 and HOMO -6 are two multicentered centripetal σ orbitals, which are comprised mainly of the 2 p and 2 s orbital in-ring plane. All together, there are three π-bonding MOs and two multicenter σ MOs. It is the $\pi \mathrm{MOs}$ that give the agreement with the famous $(4 n+2)$ Hückel rule and render the pyramidal

TABLE 6: NICS Values for $\mathbf{M B}_{7}$ and $\mathbf{B}_{7}{ }^{-}$Species ${ }^{a}$

LiB_{7}	NaB_{7}	$\mathrm{~KB}_{7}$	RbB_{7}	CsB_{7}	$\mathrm{~B}_{7}^{-}\left(C_{2 v}\right)$	$\mathrm{B}_{7}^{-}\left(D_{7 h}\right)$	
$\mathrm{NICS}(0.0)$	-44.23	-41.08	-40.87	-39.36	-39.38	+1.57	-49.92

${ }^{a}$ The NICS (ppm) is calculated at the GIAO B3LYP/6-311G* level of theory on the B3LYP geometry. Each ghost atom is placed on the geometric centers. During the optimization of geometries, the $6-311+G^{*}$ basis set is used for $\mathrm{B}, \mathrm{Li}, \mathrm{Na}$, and K , and the LANL2DZ basis set is used for Rb and Cs .
MB_{7} species aromatic. The two multicenter σ MOs also render the cluster σ aromatic.

Generally, there are energetic (resonance and aromatic stabilization (ASE) energies), ${ }^{36,41}$ magnetic (${ }^{1} \mathrm{H}$ NMR chemical shifts, magnetic susceptibility anisotropies and their exaltations, and NICS), ${ }^{2,35}$ and geometric (bond length equalization) ${ }^{42,43}$ criteria for aromaticity. The NICS, which was proposed by Schleyer and co-workers, is an easy and efficient criterion to identify two- and three-dimensional aromatic nature. Aromaticity is characterized by a negative NICS value, antiaromaticity by a positive NICS, and nonaromaticity by an NICS close to zero.

As listed in Table 6, the NICS (0.0) at the center of the $C_{7 v}$ symmetric $\mathrm{MB}_{7}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs$)$ structure was calculated to be $-44.23,-41.08,-40.87,-39.36$, and -39.38 ppm, respectively, indicating all the MB_{7} species are very aromatic. For the planar anionic $\mathrm{B}_{7}^{-}\left(D_{7 h}\right.$ symmetry $)$, the NICS values at the ring center ($\operatorname{NICS}(0.0)$) or 0.5 or $1.0 \AA$ below (NICS(0.5) or NICS(1.0)) were computed to be $-49.92,-40.42$, and -23.99 ppm , respectively, at the GIAO B3LYP/6-311G*// B3LYP/6-311+G* level. This shows that the anionic planar $\mathrm{B}_{7}{ }^{-}$ ($D_{7 h}$ symmetry) is also very aromatic. The NICS (1.0) value was selected as a criterion to minimize the local contributions in the small-ring cluster. ${ }^{44}$ However, for the global minimum pseudoplanar B_{7}^{-}with $C_{2 v}$ symmetry in its ${ }^{1} \mathrm{~A}_{1}$ ground state, the $\operatorname{NICS}(0.0)$, $\operatorname{NICS}(0.5)$, and $\operatorname{NICS}(1.0)$ were calculated to be +1.57 , +6.177 , and +10.20 ppm , respectively, indicating antiaromaticity. So, it can be concluded that the alkali-metal cation M^{+}affects the planar B_{7}^{-}ring $\left(D_{7 h}\right)$ to a very low degree, but influences the global minimum pseudoplanar $\mathrm{B}_{7}^{-}\left(C_{2 v}\right)$ in the ${ }^{1} \mathrm{~A}_{1}$ state greatly. This proves that the pyramidal $\mathrm{MB}_{7}(\mathrm{M}$ $=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs) species with $C_{7 v}$ symmetry are stable.

4. Summary

The alkali-metal- B_{7} pyramidal $\mathrm{MB}_{7}(\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$, or Cs) ($C_{7 v}$) clusters were investigated theoretically. These compounds are genuine minima except RbB_{7} and CsB_{7} at the MP2 level. From the ion point of the view, they may be taken as a combination between M^{+}and a planar heptagonal anionic $\mathrm{B}_{7}{ }^{-}$ring. The thermochemistry analysis, namely, energy change in dissociation, shows that the MB_{7} species may be observed in a future experiment. And the NBO, NICS, and molecular orbital analyses show that there are two multicenter σ bonds and three occupied delocalized π bonds in the electronic structures. This conforms to the $(4 n+2)$ aromaticity counting rule, indicating the planar heptagonal B_{7}^{-}ring in the pyramidal $\mathrm{MB}_{7}\left(C_{7 v}\right)$ species is very aromatic.

References and Notes

(1) Van Zandwijk, G.; Janssen, R. A. J.; Buck, H. M. J. Am. Chem. Soc. 1990, 112, 4155.
(2) Schleyer, P. v. R.; Jiao, H.; Hommes, N. v. E.; Malkin, V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669.
(3) Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity; Wiley: New York, 1994.
(4) Goldfuss, B.; Schleyer, P. v. R. Organometallics 1997, 16, 1543.
(5) Li, X. W.; Pennington, W. T.; Robinson, G. H. J. Am. Chem. Soc. 1995, 117, 7578.
(6) Li, X. W.; Xie, Y.; Schreiner, P. R.; Gripper, K. D.; Crittendon, R. C.; Campana, C. F.; Schaeter, H. F.; Robinson, G. H. Organometallics 1996, 15, 3797.
(7) Robinson, G. H. Acc. Chem. Res. 1999, 32, 773.
(8) Li, X.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S. Science 2001, 291, 859.
(9) Kuznetsov, A. E.; Boldyrev, A. I.; Li, X.; Wang, L. S. J. Am. Chem. Soc. 2001, 123, 8825.
(10) Li, X.; Zhang, H. F.; Wang, L. S.; Kuznetsov, A. E.; Cannon, N. A.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2001, 40, 1867.
(11) Kuznetsov, A. E.; Boldyrev, A. I. Struct. Chem. 2002, 13, 141.
(12) Kuznetsov, A. E.; Corbett, J. D.; Wang, L. S.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2001, 40, 3369.
(13) Alexandrova, A. N.; Boldyrev, A. I. J. Phys. Chem. A 2003, 107, 554.
(14) Alexandrova, A. N.; Boldyrev, A. I., Zhai, H. J.; Wang, L. S.; Steiner, E.; Fowler P. W. J. Phys. Chem. A 2003, 107, 1359.
(15) Zhai, H. J.; Wang, L. S.; Alexandrova, A. N.; Boldyrev, A. I., Steiner, E.; Fowler, P. W. J. Chem. Phys. 2002, 117, 7917.
(16) Ma, J.; Li, Z. H.; Fan, K. N.; Zhou, M. F. Chem. Phys. Lett. 2003, 372, 708.
(17) Jin, H. W.; Li, Q. S. Phys. Chem. Chem. Phys. 2003, 5, 1110.
(18) Li, Q. S.; Jin H. W. J. Phys. Chem. A 2002, 106, 7042.
(19) Li, Q. S.; Jin Q. J. Int. Quantum Chem. 2003, 94, 269.
(20) Burdett, J. K.; Canadell, E.; Miller, G. J. J. Am. Chem. Soc. 1986, 108, 6561 .
(21) Burdett, J. K.; Canadell, E. Inorg. Chem. 1988, 27, 4437.
(22) Thomas, P. F. J. Solid State Chem. 2000, 154, 110.
(23) Li, Q. S.; Jin, Q. J. Phys. Chem. A 2003, 107, 7874.
(24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(25) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
(26) Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244.
(27) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.
(28) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbial Theory; Wiley: New York, 1986.
(29) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
(30) Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.
(31) Carpenter, J. E.; Weinhold, F. J. Mol. Struct.: THEOCHEM 1988, 169, 41.
(32) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88 , 899.
(33) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
(34) Schleyer, P. v. R.; Maerker, C.; Dransfekd, A.; Jiao, H.; Hommes, N. v. E. J. Am. Chem. Soc. 1996, 118, 6317.
(35) Schleyer, P. v. R.; Jiao, H. Pure Appl. Chem. 1996, 68, 209.
(36) Goldfuss, B.; Schleyer, P. v. R.; Hampel, F. Organometallics 1996, 15, 1755.
(37) Schaftenaar, G. MOLDEN 3.7; CAOS/CAMM Center: The Netherlands, 1998.
(38) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; AlLaham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
(39) Periodic Table of Elements; Wiley-VCH: Weinheim, Germany, 1997.
(40) Huber K. P.; Herzberg G. Molecular Spectra and molecular Structure, Vol. 4. Constants of Diatomic molecules; Van Nostrand Reinhold: New York, 1979.
(41) Glukhovtsev, M. J. Chem. Educ. 1997, 74, 132.
(42) Eluvathingal, D. J.; Boggavarapu, K. Inorg. Chem. 1998, 37, 2110.
(43) Krygowski, T. M. J. Chem. Inf. Comput. Sci. 1993, 33, 70.
(44) Schleyer, P. v. R.; Manoharan, M.; Wang, Z. X.; Kiran, B.; Jiao, H.; Puchta, R.; Hommes, N. J. R. v. E. Org. Lett. 2001, 3, 2465.

[^0]: * To whom correspondence should be addressed. Phone: $+86-10-6891-$ 2665. Fax: +86-10-6891-2665. E-mail: qsli@bit.edu.cn.

