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Rate constants for the thermal dissociation of Si2H6 are predicted with a novel transition state model. The
saddle points for dissociation on the Si2H6 potential energy surface are lower in energy than the corresponding
separated products, as confirmed by high level ab initio quantum mechanical calculations. Thus, the dissociations
of Si2H6 to produce SiH2 + SiH4 (R1) and H3SiSiH + H2 (R2) both proceed through tight inner transition
states followed by loose outer transition states. The present “dual” transition state model couples variational
phase space theory treatments of the outer transition states with ab initio based fixed harmonic vibrator
treatments of the inner transition states to obtain effective numbers of states for the two transition states
acting in series. It is found that, at least near room temperature, such a dual transition state model is generally
required for the proper description of each of the dissociations. Only at quite high temperatures, i.e., above
2000 K for (R1) and 600 K for (R2), does a single fixed inner transition state provide an adequate description.
Similarly, only at quite low temperatures (below 100 and 10 K for (R1) and (R2), respectively) does a single
outer transition state provide an adequate description. Pressure dependent rate constants are obtained from
solutions to the multichannel master equation. These calculations confirm that dissociation channel (R2) is
negligible under conditions relevant to the thermal chemical vapor deposition (CVD) processes. Rate constants
for the chemical activation reactions, SiH2 + SiH4 f Si2H6 (R-1) and SiH2 + SiH4 f H3SiSiH + H2 (R3),
are also evaluated within the dual transition state model. It is found that reaction R3 is the dominant channel
for low pressures and high temperatures, i.e., below 100 Torr for temperatures above 1100 K.

1. Introduction

Silane and disilane are routinely used as the source gases for
silicon chemical vapor deposition (CVD) processes. Numerous
researchers have studied the kinetics of their reactions as part
of their efforts at modeling silicon CVD processes.1-6 As a
result, the gas-phase chemical kinetic mechanism is by now quite
well established. There are, however, some important unresolved
issues. In particular, some aspects of the thermal decomposition
of Si2H6 and its reverse reactions have not yet been understood.
The relevant elementary reactions are as follows:

Three reactions (Si2H6 decomposition, SiH2 + SiH4, and H3-
SiSiH+ H2) are listed above, and each reaction has two product
channels. The greatest uncertainty in the implementation of

models for these reactions involves the estimation of the branch-
ing ratios for each reaction pair. Rate constants for thermal
decomposition of Si2H6 have been measured in static reactors7-11

and in shock tubes.12,13However, experimental information on
the rate constant for reaction R2 is very limited. For the reaction
of SiH2 with SiH4, the rate constant for the overall decay of
SiH2 has been measured by several researchers.18-26 However,
no direct experimental information is available for (R3), with
only one estimated value available from the shock tube
experiment of Mick et al.13 There does not appear to be any
experimental information available for reactions R-2 and R-3.

Branching ratios for these three reaction pairs are essential
for the understanding of the thermal silicon CVD processes and
the primary purpose of the present study is to clarify the
branching fractions of these reactions. Several researchers have
performed RRKM calculations for the thermal decomposition
of Si2H6.14-21 According to these calculations, reaction R1
dominates, with reaction R2 being only a minor channel due to
its higher heat of reaction. However, there are several limitations
in these calculations.

The energy profile along the reaction coordinate for the
reaction of SiH2 + SiH4 is complicated as shown by Ignacio
and Schlegel,28 Sakai and Nakamura,29 and Becerra et al.18

Ignacio and Schlegel have found two transition states (first order
saddlepoints) and three second-order saddlepoints (two imagi-
nary frequencies) all at the HF/6-31G(d) level. Sakai et al. have
found two transition states and two minima at the MP2/6-311G-
(d,p) level. They suggest that these two transition states must
be passed through sequentially to proceed from SiH2 + SiH4

* Corresponding author. Phone: (+81)-3-5841-7295. Fax: (+81)-3-
5841-7488. E-mail: matsumot@chemsys.t.u-tokyo.ac.jp.

† Department of Chemical System Engineering, The University of Tokyo.
‡ Sandia National Laboratories.
§ Environmental Science Center, The University of Tokyo.

Si2H6 f SiH2 + SiH4 (R1)

Si2H6 f H3SiSiH + H2 (R2)

SiH2 + SiH4 f Si2H6 (R-1)

SiH2 + SiH4 f H3SiSiH + H2 (R3)

H3SiSiH + H2 f Si2H6 (R-2)

H3SiSiH + H2 f SiH2 + SiH4 (R-3)

4911J. Phys. Chem. A2005,109,4911-4920

10.1021/jp044121n CCC: $30.25 © 2005 American Chemical Society
Published on Web 05/14/2005



to Si2H6. In contrast, Becerra et al. have found two minima and
two transition states but suggest that the two transition states
correlate with two alternative (parallel) paths from reactants to
products. Recent ab initio calculations22 provide a high level
potential energy surface for the decomposition of Si2H6, and
thus for each of the reactions of interest here. As part of the
present analysis we will provide an improved description of
the relevance of the various saddlepoints on the potential energy
surface and provide further high level estimates for their
energies.

These prior ab initio calculations clearly indicate that the
saddlepoint energies for both reactions R1 and R2 are lower
than the energies of the corresponding separated products. This
finding implies significant errors when applying a fixed transi-
tion state RRKM model. The limitations in the use of a fixed
transition state were commented on by Moffat et al.16,17in their
nonlinear regression of RRKM calculations to experimental
results. In particular, they noted that the use of a fixed transi-
tion state and weak collision efficiencies leads to uncertainties
in the temperature extrapolation of the high-pressure rate
constants. Becerra et al.18 in their RRKM modeling of reactions
R1 and R-1, concluded even more strongly that a fixed transi-
tion state for the SiH2 + SiH4 reaction is inadequate. Their
more detailed exposition notes “that a transition state tightening
effect occurs as the temperature increases between 300 and 660
K.”

Smirnov20 has performed RRKM calculations for reactions
R1 and R2 including a treatment of the pressure dependence.
He suggests that, because the energies of the saddlepoints on
the potential energy surface are lower than the energies of the
separate products, the transition state bottlenecks are located
not at the saddlepoints but are moved toward the products for
low energy collisions. At high energies the bottlenecks were
postulated to be close to the energy maximum. He has avoided
the ambiguities of fixed transition state models by using
experimentally estimated Arrhenius preexponential factors and
energy barriers for reactions R1 and R2 to generate sums of
states for the transition states via inverse Laplace transforms.
However, the lack of direct experimental data for reaction R2
makes this analysis somewhat unreliable.

Even though these limitations in a fixed transition state
RRKM model have been noted, it has not yet been shown how
to correctly derive the rate constants for complicated potential
energy surfaces, in which reactants first form a weakly bonded
adduct, and then pass over a saddlepoint whose energy is lower
than that of the reactants. The prior RRKM analyses were also
limited in the accuracy of the estimated transition state energies.
One general conclusion of the prior RRKM modeling was that
reaction R1 dominates over reaction R2. This result was
primarily due to the lower heat of reaction for reaction R1.
However, recent G3//B3LYP calculations indicated that the
difference in the reaction enthalpies between reactions R1 and
R2 is only 1.9 kcal/mol.22 Thus, reaction R2 may become
competitive with reaction R1 at high temperatures, particularly
when the correct enthalpy of reaction and a proper treatment of
the multiple transition states are incorporated. A reexamination
of the branching ratios is certainly warranted.

Each of the reactions relevant to the thermal decomposition
of disilane is, of course, pressure dependent. This pressure
dependence has been examined in the prior RRKM calculations
(see, e.g., refs 16-18). The study by Moffat et al.16,17indicated
that under some conditions relating to thermal CVD of silicon,
reaction R3 is important as a competitor with reaction R-1.
Swihart et al.27 have incorporated pressure dependent rate

estimates for the Si2H6 system in their modeling of particle-
growth during thermal CVD. They found that the total pressure
has a large effect on the formation of silicon nanoparticles at
low pressure, but little effect at atmospheric pressure. This
finding was attributed to the pressure dependences of (R-1) and
(R3).

In this paper, a novel two transition state model is employed
to obtain a proper description of the thermal decomposition of
disilane over a wide range of temperatures and pressures. In
this two transition state model the “outer” or loose transition
state is treated with phase space theory,30-32 whereas the “inner”
or tight transition state is treated as a fixed transition state (at
the saddlepoint). The partition functions for the fixed inner
transition states and for the Si2H6 complex are generally
evaluated on the basis of rigid rotor harmonic oscillator
assumptions but do employ one-dimensional hindered rotor
treatments as necessary. The pressure dependences of the various
reactions are studied with master equation simulations imple-
menting the two transition state model for the microcanonical
rate coefficients. Among other things, these simulations yield
a clarification of the temperature and pressure dependences of
the chemical activation reaction, (R3), and the stabilization
reaction, (R-1).

2. Potential Energy Surface

The various stationary points on the Si2H6 potential energy
surface have been determined with density functional theory
employing the Becke-3 Lee-Yang-Parr functional33 and the
6-311++G(d,p) basis set.34 For reaction R1 we find three first
order (“transition states”) and two second-order saddlepoints.
The structures for these saddlepoints and for the separated
products are illustrated in Figure 1, and the corresponding
geometrical parameters are listed in Table 1. Corresponding high
level energy estimates are reported in Table 2. These high level
estimates are obtained from G3//B3LYP35 calculations22 and
from basis set extrapolation36 of quadratic configuration interac-
tion calculations with perturbative inclusion of the triples
correction (QCISD(T))37 employing the Dunning correlation
consistent triple-ú (cc-pvtz) and quadruple-ú (cc-pvqz) basis
sets.38 The T1 diagnostics39,40 for the QCISD(T) calculations,
also reported in Table 2, are generally about 0.015 and thus do
not suggest any major uncertainties in the QCISD(T) based
energy estimates. The present transition state models for the
inner transition state employ the basis set extrapolated QCISD-
(T) energies.

Each of the first order saddlepoints have been previously
determined at either the HF or MP2 levels of theory.18,28,29How-
ever, a complete description of their kinetic relevance is still
lacking. Here, as appropriate and necessary, reaction path
following calculations have been performed to verify the con-
nections between the various saddlepoints. The geometry labels
provided in Figure 1 correspond with those provided in ref 28.

In essence, structures B through E correlate with different
torsional states of the same transition state. Structures B and E
are both first-order saddlepoints (i.e., “transition states”), with
structure E having the lowest energy. Structure C is a torsional
maximum obtained by rotating the SiH2 moiety in structure E
by 180° relative to the SiH4 moiety. Similarly structure D is a
torsional maximum obtained by performing the same rotation
from structure B. Alternatively, structure C is obtained by
performing a relative rotation by 60° of the two SiH3 moieties
in structure B, whereas structure D is obtained by performing
the same rotation in structure E. Note that structure A from ref
28 is absent here because, at the B3LYP/6-311++G(d,p) level,
structure B is found to haveCs symmetry.
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The treatment of these two torsional motions in the rate
evaluations is complicated by the fact that the motion from
structure E to structure B involves two coupled torsional
motions. As a result, a coupled two-dimensional treatment is
required for a completely accurate treatment. However, such a
treatment is beyond the scope of this work. Instead, an

approximate treatment involving a product of two uncoupled
1-dimensional hindered rotors for the SiH3‚‚‚SiH3 and SiH2‚‚‚
SiH4 torsions is implemented here. This treatment reduces to
the correct partition function at low temperature and at high
temperature with only modest errors expected for intermediate
temperatures.

The torsional potential employed for the SiH3‚‚‚SiH3 mode
is designed to reproduce the difference in potential between
configurations E and D and also the harmonic frequency of 71
cm-1 for the corresponding mode in configuration E. Mean-
while, the torsional potential for the SiH2‚‚‚SiH4 mode is
assumed, incorrectly, to lead to configuration B. This incorrect
assumption is introduced to obtain a torsional potential that has
two minima and two maxima, over the range of torsions
considered in geometries B through E. The parameters in the
SiH2‚‚‚SiH4 torsional potential are designed to reproduce the
difference in potential between configurations E and B and also
the harmonic frequency of 326 cm-1 for the corresponding mode
in configuration E. Again, these assumptions yield a torsional
partition function that should be correct at low temperatures,
because it reproduces the harmonic potential in the lowest energy
state, and at high temperatures, because it has the correct
restriction in torsional angles.

Sakai and Nakamura29 have suggested that the process from
reactants to products via structure E requires the sequential
passage over two separate first-order saddlepoints. We have
located those two saddlepoints and the corresponding two long-
range complexes at the MP2/6-311G(d,p) level41,42as in ref 29.
However, at the B3LYP/6-311++G(d,p) level it is not clear
whether the second minimum and second saddlepoint exist. In
particular, reaction path following from the first saddlepoint
appears to lead to complex 2 (in Sakai and Nakamura’s
notation). However, attempts to optimize this geometry with
tight convergence criteria led directly to the Si2H6 minimum.
Similarly, attempts to locate the second saddlepoint were
unsuccessful. Nevertheless, the potential is clearly quite flat from
the region of the first saddlepoint in toward the Si2H6 complex
and a variational treatment of the region between the two
“apparent” saddlepoints would be valuable at some point.
However, because such an analysis is likely to yield only modest
corrections, due to the expected lower energy for the second
saddlepoint, such an analysis is reserved for future work.
Reaction path following from structure B, indicates that for this
geometry there is no second minimum and saddlepoint, with
the reaction path going smoothly and sharply down to the Si2H6.

Becerra et al.18 have come to a somewhat different conclusion
regarding the presence or absence of two sequential transition
states. Their structure LM1 corresponds with complex 2 of Sakai
and Nakamura, and the transition state TS1 corresponds with

Figure 1. Transition state and second-order saddle point geometries
for SiH2 + SiH4 at the B3LYP/6-311++G(d,p) level.

TABLE 1: Geometric Parameters of the Transition State
and Second-Order Saddle Point for SiH2 + SiH4 Calculated
at the B3LYP/6-311++G(d,p) Levela

structure in
Figure 1

B C D E D-lr SiH4 SiH2

symmetry Cs Cs Cs Cs Cs C3V C2V
R(2-1) 2.455 2.675 2.649 2.739 2.996 1.484 1.527
R(3-1) 1.480 1.477 1.482 1.476 1.475 1.484 1.527
A(312) 99.73 93.15 107.50 98.72 98.63 109.47 91.50
R(4-1) 1.480 1.482 1.482 1.481 1.475 1.484
A(412) 99.73 115.70 107.5 111.44 98.63 109.47
D(4123) 242.62 246.90 240.72 243.77 244.85 240.00
R(5-1) 1.492 1.482 1.486 1.482 1.482 1.484
A(512) 129.40 115.70 115.55 115.22 124.41 109.47
D(5123) 121.31 113.10 120.36 116.67 122.43 120.00
R(6-2) 1.678 1.726 1.524 1.620 1.739
A(621) 43.33 34.65 47.36 33.89 24.00
D(6213) 238.69 180.02 239.64 185.96 237.58
R(7-2) 1.501 1.513 1.495 1.520 1.522
A(721) 108.99 100.99 74.84 71.13 74.44
D(7213) 182.74 130.18 4.41 310.50 8.19
R(8-2) 1.501 1.513 1.495 1.522 1.522
A(821) 108.99 100.99 74.84 67.75 74.44
D(8213) 294.64 229.82 114.86 55.32 106.97

a Bond lengths are in angstroms; bond angles and dihedral angles
are in degrees.

TABLE 2: High Level Energy Estimates Obtained from
G3//B3LYP Calculations and from Basis Set Extrapolation
of QCISD(T)

G3//B3LYP,
kcal/mol

QCISD(T),
kcal/mol

T1 diagnostics
for QCISD(T)

SiH2 + SiH4
(separate products)

52.08 53.53 0.014 (SiH2),
0.011 (SiH4)

SiH2 + SiH4TS (B) 43.49 43.91 0.015
SiH2 + SiH4 second

order (C)
46.73 48.17 0.015

SiH2 + SiH4 second
order (D)

45.22 46.31 0.017

SiH2 + SiH4TS (E) 42.01 43.38 0.018
SiH2 + SiH4TS (D-lr) 45.23 0.016
H3SiSiH + H2
(separate products)

54.02 55.27 0.016 (H3SiSiH),
0.006 (H2)

H3SiSiH + H2 TS 51.03 51.86 0.013
Si2H6 0 0 0.013
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the second transition state of Sakai and Nakamura, the one that
is absent in the present B3LYP analysis. In their effort to search
for the other sequential transition state structure they considered
a structure, LM2, which, unfortunately, is torsionally rotated
from LM1. As a result, the transition state that they obtain from
structure LM2 (TS2) in fact corresponds with the present
structure B. They appear to have completely missed the present
transition state E, which corresponds to the first of the sequential
structures of Nakamura et al. As a result, they focus on their
TS1, which is not the primary bottleneck for the path to Si2H6

for structures with the torsions of the present structure E.
Here, a second transition state structure corresponding to

geometry D was found at the B3LYP level, with this structure
having only one imaginary frequency. However, this second
structure, labeled D-lr here, corresponds simply to a torsional
rotation between two equivalent long-range complexes. These
complexes are of the form of complex 1 of Sakai and Nakamura,
but with the torsional angles of structure D. Thus, this transition
state structure is essentially irrelevant to the kinetics. There may
indeed be other such long-range torsional structures. We have
not searched for them, because they should also be irrelevant
to the kinetics.

At the B3LYP/6-311++G(d.p) level of theory, only one
transition state is found for the channel leading to H3SiSiH +
H2. The structures for the transition state and the separated
products (H3SiSiH + H2) are illustrated in Figure 2, as are the
structures for Si2H6. The corresponding geometrical parameters
are listed in Table 3, and the high level energy estimates were
also provided in Table 2. The rovibrational properties of the
stationary points needed for the present transition state evalu-
ations are summarized in Table 4, for both reactions R1 and
R2. A one-dimensional hindered rotor treatment is incorporated
for the relative motion of the SiH3 and SiH groups in H3SiSiH
and for the SiH3‚‚‚SiH(H2) motion at the saddlepoint.

The potential energy surface relevant to the thermal decom-
position of disilane, as calculated at the extrapolated QCISD-
(T) level of theory, is depicted in Figure 3. The density func-
tional theory calculations described in this work have been per-
formed with the GAUSSIAN 98 program suite43 whereas the
QCISD(T) calculations have been performed with MOLPRO.44

3. Derivation of Rate Constants

The thermal decomposition of disilane, where the saddlepoints
leading to the product channels, SiH2 + SiH4 and H3SiSiH +

H2, are lower in energy than the corresponding separated
products, requires a two transition state treatment for each of
the channels. An “inner” transition state precedes the formation
of a long-range van der Waals complex and an “outer” transition
state, at large separation between the product fragments,
connects the long-range minimum to the product fragments, as
indicated in Figure 3. These two transition states act in series
and an approximate “dual” transition state model can be obtained
under certain reasonable assumptions. In particular, if one
assumes statistical probabilities for passing through each of these
transition states upon each encounter, and further assumes that
the flux between the two transition states is much greater than
the flux at the transition states, then one arrives at an effective
transition state sum of states given by30,45,46

HereNTS is the effective sum of states for the dual transition
state model,Nouter is the sum of states for the outer transition
state, andNinner is the sum of states for the inner transition state
located at the saddlepoint on the potential energy surface. For
the SiH2 + SiH4 channel, the inner transition state is E in Figure
1 and the outer transition state corresponds to the van der Waals
adduct decomposing to SiH2 and SiH4 without a reverse barrier.
For the H3SiSiH + H2 channel, the inner transition state is
structure A in Figure 2, and the outer transition state corresponds
to its van der Waals adduct decomposing to H3SiSiH + H2

without a reverse barrier. For both channels, the outer transition
state needs to be determined variationally.

In this study, phase space theory (PST)30,31,32 is used to
calculateNouter and a direct count of the quantum rigid-rotor
harmonic-oscillator rovibrational states for the saddlepoint is
employed to calculateNinner (but, with one or two of the modes
treated as one-dimensional hindered rotors as discussed in the
potential energy surfaces section). In PST the transition state
involves two freely rotating fragments, whose vibrational modes
are assumed to be identical to those of the fragments. The
rotational modes are approximated as free rotations. An attrac-
tive fragment-fragment potential of the formR-n is used, where
n is usually 6 for neutral reactions,R is the separation between

Figure 2. Transition state geometry for H3SiSiH + H2 at the B3LYP/
6-311++G(d,p) level.

TABLE 3: Geometric Parameters of the Transition State
for H 3SiSiH + H2 Calculated at the B3LYP/6-311++G(d,p)
Levela

structure in
Figure 2

TS H3SiSiH H2 Si2H6

symmetry C1 CS Dh D3h

R(2-1) 2.362 2.410 0.744 2.354
R(3-1) 1.487 1.493 1.487
A(312) 107.61 109.68 110.38
R(4-1) 1.487 1.488 1.487
A(412) 108.66 114.07 110.38
D(4123) 243.00 239.05 240.00
R(5-1) 1.486 1.493 1.487
A(512) 115.39 109.68 110.38
D(5123) 122.26 118.09 120.00
R(6-2) 1.653 1.527 1.487
A(621) 77.64 88.93 110.38
D(6213) 297.24 300.95 60.00
R(7-2) 1.550 1.487
A(721) 104.76 110.38
D(7213) 326.24 300.00
R(8-2) 1.496 1.487
A(821) 109.64 110.38
D(8213) 217.87 180.00

a Bond lengths are in angstroms, bond angles and dihedral angles in
degrees.

1
NTS

) 1
Nouter

+ 1
Ninner

(1)
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the centers-of-mass of the two fragments, andC is a coefficient
for the potential:

Effective energy barriers are calculated as a function of the
orbital angular momentum quantum number of the two frag-
ments,l, andNouterdenotes the total number of these vibrational-
rotational-orbital states that have a radial kinetic energy greater
than that of thel-dependent effective barrier. The allowedl’s
must also be consistent with the triangular inequality in the total
angular momentum, the total fragment angular momentum, and
the orbital angular momentum. The position of the outer
transition state,R+, is defined by the position of the energy
maximum on the effective potential (centrifugal+ potential
energy) surface. TheR+ varies withl, and there are a number
of suchR+(l)′ s for each given total angular momentum,J.

Here, for (R1), the value for the parameterC in eq 2 is
determined from a fit to the high-pressure limiting rate constant
for the reaction of SiH2 with SiH4, k-1 + k3, near room
temperature as derived by Becerra et al.18 from RRKM
calculations using a fixed transition state. The resulting value
of C is 6.0 × 105 cm-1 Å6 for reaction R1, which is in

reasonable agreement with expectations from the literature.47

For (R2), there are no good experimental data to fit, and we
simply employ the same value forC. However, at least for 400
K and above, the predictions for (R2) are largely independent
of the outer transition state treatment, and thus of the corre-
sponding value chosen forC.

The rotational symmetry numbers employed for the reactant,
products and transition states are reported in Table 4. The
rotational symmetry numbers for the outer transition states were
taken to be equal to the product of those for the corresponding
bimolecular fragments. These symmetry numbers yield a
reaction path degeneracy of 6 for the inner transition state in
the dissociation to form SiH2 + SiH4 and a reaction path
degeneracy of 8 for the reverse reaction. This degeneracy
corresponds to the possible loss of any one of the 6 H atoms
from the complex or alternatively, for the reverse addition
reaction, to the attack of any one of the H atoms in SiH4 by the
SiH2 group from two different possible orientations. The
contributions from the different relative orientations of the two
SiH3 groups are incorporated with the hindered rotor treatments
of the Si2H6 and of the inner transition state.

For the dissociation to form H3SiSiH these symmetry numbers
yield a reaction path degeneracy of 12, corresponding to the
six different pairs of H2 that can be lost and the two different
orderings for each H2 pair. For the reverse reaction these
symmetry numbers yield a reaction path degeneracy of four,
corresponding to the two different sides of attack and the two
different orientations of H2. Note that the symmetry number of
1.5 for the inner transition state arises from the product of 3
for the hindered rotor treatment of the SiH3‚‚‚SiH(H2) mode,
and a factor of1/2 arising from the presence of two enantiomers.

The micro canonical rate constant,k(E,J), takes the standard
RRKM form,

whereF(E,J) is the density of states of the reactants, andh is
Planck’s constant. The density of states for the Si2H6 complex
was obtained from rigid-rotor harmonic oscillator assumptions
for all but the SiH3‚‚‚SiH3 torsional mode, for which a one-

TABLE 4: Parameters for the Rate Constant Calculations

Si2H6 SiH4 SiH2 inner TS H3SiSiH H2 inner TS

frequencya/cm-1 380 922 1025 98i 369 4418 1042i
380 922 2042 512 388 337
423 922 2042 632 428 409
636 980 648 717 423
636 980 890 868 582
855 2234 913 932 692
928 2242 954 956 815
945 2242 959 2039 893
945 2242 1020 2177 938
959 1175 1286 973
959 1742 2213 1016
2209 2051 1698
2218 2059 2044
2218 2238 2170
2218 2256 2211
2228 2272 2217
2228 2223

no. of hindred rotors 1 0 0 2 1 0 1
rotational constants/cm-1 1.434 2.849 7.894 1.570 2.079 60.408 1.363

0.1672 2.849 6.987 0.1386 0.1783 60.408 0.1716
0.1672 2.849 3.706 0.1381 0.1741 0 0.168

rotational symmetry no. 18 12 2 3 3 2 1.5

a Vibrational frequencies calculated at the B3LYP/6-311++G(d,p) level. Imaginary frequencies are shown as i.

Figure 3. Potential energy surface relevant to the thermal decomposi-
tion of disilane, as calculated at the extrapolated QCISD(T) level.

k(E,J) )
NTS(E,J)

hF(E,J)
(3)

V ) - C

R6
(2)
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dimensional hindered rotor treatment was employed. The
microcanonical rate constant is averaged over a thermal equi-
librium distribution function to obtain the canonical high-
pressure limiting rate constant. To calculate the channel specific
canonical rate constants at lower pressures, microcanonical rate
constants for each channel are averaged over the nonequilibrium
distribution functions. One-dimensional master equations for the
multichannel dissociation of Si2H6 or the multichannel chemical
activation reactions (reactions R-1 and R3) were solved to derive
the nonequilibrium distribution functions for each channel.

An exponential down energy transfer model and Lennard
Jones collision rates were employed in the master equation
simulations. The average energy transferred in downward
collisions〈∆Edown〉 was assumed to be equal to 150 (T/298)0.85

cm-1, where T is in K. This form is representative of typical
results in related studies48-50 and is found to satisfactorily
reproduce the experimental observations for the pressure
dependence of the reaction of SiH2 with SiH4. The parameters
for the Lennard-Jones collision rates were obtained from the
CHEMKIN transport database and are given byσ ) 4.83, 4.08,
and 3.33 Å and byε ) 210, 144, and 95 cm-1 for Si2H6, SiH4,
and Ar, respectively.

In the present study, all the rate constant calculations were
performed with the VARIFLEX program suite developed by
Klippenstein and co-workers.51-55 VARIFLEX is a program
package for the calculations of the rate constants for multi-
channel, muti-well reactions on the basis of variable reaction
coordinate transition state theory (VRC-TST). Here,Nouter is
calculated according to quantum phase space theory with a
constant integration step size of 1 for the angular momentum
variables.Ninner is evaluated via a direct count of quantum states
at the inner fixed transition state. Both of these evaluations are
performed at the energy,E, and total angular momentum,J,
resolved level. Channel specific thermal rate constants for the
SiH2 + SiH4 reactions (k-1 andk3) were calculated by solving
the multichannel master equations. Rate constants for the
dissociation channels (k1 and k2) were evaluated at the same
time. Rate constants for the chemical activation reactions H3-
SiSiH + H2 (k-2 andk-3) may be obtained from those for the
reverse reaction multiplied by the relevant equilibrium constants.
The parameters required for the rate constant calculations in
VARIFLEX are summarized in Tables 2 and 4.

4. Results and Discussion

We have considered two separate transition state models in
the calculations of the rate constants. In the “fixed transition
state” model (F-TST), only the inner transition state is taken
into account; i.e.,NTS is equated withNinner. The previous
RRKM calculations of Si2H6 dissociation14-21 were largely
based on this F-TST model with semiempirical determinations
of the transition states parameters. In the present study,
parameters for the transition states (vibrational frequencies,
moments of inertia, energy barrier height) are taken directly
from the quantum chemical calculations, as listed in Tables 2
and 4. The other transition state model, termed the “dual trans-
ition state” model (D-TST) here, was described in the previous
section. Briefly, in this model, two transition states, an inner
and an outer, are considered andNTS is evaluated from eq 1.

It is interesting to begin with a comparison of the predictions
obtained from the F-TST, D-TST, and PST models for the high-
pressure limiting rate coefficients. The predictions from these
three models are plotted versus temperature in Figures 4 and 5,
for reactions R-1 and R-2, respectively. Interestingly, for reaction
R-1 the D-TST model is seen to differ significantly from both

the F-TST and PST models throughout the important temper-
ature range from 300 to 1500 K. Clearly, neither the inner or
outer transition state models can adequately describe the kinetics
of the SiH2 + SiH4 addition reaction for temperatures of
importance to CVD. In contrast, the F-TST model alone provides
an adequate description of the kinetics of the H3SiSiH + H2

reaction for the key CVD temperature range 700-1500 K. Thus,
in our predictions for the pressure dependent rate coefficients
described below, we consider both the D-TST and F-TST
models for reaction R1, but only the F-TST model for reaction
R2.

4.1. Dissociation of Si2H6. The present predictions for the
high-pressure limiting rate constants for reaction R1 are depicted
in Figure 6. Again, at low temperatures the rate constant
calculated with the F-TST model is considerably larger than
that derived from the D-TST model. As temperature increases
the difference becomes smaller, and above 1500 K, the rate
constants calculated by the two models are in reasonably good
agreement with each other. This finding indicates that the outer
transition state provides the rate-limiting bottleneck at low
temperatures, whereas the inner transition state becomes the
dominant bottleneck at high temperatures. In other words,NTS

is mainly determined byNouterat low temperatures whereasNTS

is almost equal toNinner at high temperatures. This variation in
the dominance of the two transition states is caused by the
difference in the density of states at the inner and the outer
transition states. The outer transition state is loose, with a high

Figure 4. Plots of the temperature dependences of the D-TST, F-TST,
and PST theoretical predictions for the SiH4 + SiH2 high-pressure limit
rate coefficient.

Figure 5. Plots of the temperature dependences of the D-TST, F-TST,
and PST theoretical predictions for the H3SiSiH + H2 high-pressure
limit rate coefficient.
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entropy, whereas the inner transition state is tight, with a low
entropy. As a result, the density of states at the outer transition
state is much higher than that at the inner transition state. When
the available energy is high enough,Nouter is then much greater
thanNinner, andNTS is equal toNinner. On the other hand, when
the available energy,E, is close to the product states, the number
of states at the transition state is larger for the inner transition
state because of larger available energy (i.e., (E - E0,inner) >
(E - E0,outer)).

In Figure 6, literature values ofk1
∞ are also compared with

the present predictions. Both the values of Moffat et al.17 and
Smirnov20 were calculated with F-TST parameters adjusted to
give agreement with the experimental values of Martin et al.9

On the other hand, the most recent evaluation of the rate constant
by Swihart and Carr21 used F-TST parameters obtained from
quantum chemical calculations. Their result in the high-
temperature region is in good agreement with the present F-TST
rate constant. At lower temperatures, the D-TST rate constant
is also in good agreement with the experimental estimate of
Martin et al. This improved agreement indicates the validity of
the D-TST treatment for reaction R1.

For reaction R2, in contrast with reaction R1, the rate
constants derived from the F-TST and D-TST models were
essentially identical above 600 K. This finding indicates that
passage through the inner transition state is the rate determining
step for reaction R2; at least for temperatures of 600 K and
higher. For this channel, the difference between the energy of
the inner transition state and the product state is relatively small
(-3.4 kcal/mol). As a result, the number of states at the inner
transition state is much lower than that at the outer transition
state, except at quite low energies. In this case, the thermal rate
constant reduces to that obtained from the F-TST model at a
much lower temperature, i.e., about 600 K, and the F-TST
treatment is valid for the temperatures of interest here.

The pressure dependences of the rate constantsk1 andk2 are
shown in Figure 7a,b, respectively. Values fork1 derived from
the F-TST treatment (dash lines) and from the D-TST treatment
(solid lines) (for (R1)) are compared in Figure 7a. The F-TST
model predicts larger rate constants, with the greatest difference

at lower pressures. This increasing difference between the F-TST
and D-TST models with decreasing pressure at first seems
counterintuitive given the fact that the rate coefficient should
become independent of the transition state flux in the low
pressure limit. However, the use of a negative energy relative
to products in the F-TST models effectively lowers the
dissociation threshold. This lowering of the dissociation thresh-
old is what results in the increase in its predictions for the low-
pressure limit rate constants.

The rate constants for reaction R2 are plotted in Figure 7b.
These rate constants are calculated with the F-TST model for
reaction R2 and with both the F-TST (dash lines) and D-TST
(solid lines) models for reaction R1. Interestingly, at low
pressures the rate constant for reaction R2 is affected by the
transition state model employed for reaction R1. This depen-
dence arises from the coupling of reactions R1 and R2 in the
multichannel master equation, with the nonequilibrium distribu-
tion function being greatly affected by the particular transition
state model employed for reaction R1. When the F-TST model
is used for reaction R1, the low energy flux to reaction R1 is
overestimated, and the rate constant for reaction R2 is under-
estimated at low pressures, as can be seen in this figure.

Figure 6. Plots of the high-pressure limit rate constant for (R1),k1,
versus the inverse of temperature. The solid line denotesk1 calculated
in this study with the dual transition state model for reaction R1 and
the fixed transition state model for reaction R2; the broken line denotes
k1 calculated in this study with the fixed transition state model for both
reactions R1 and R2;O and the dashed line denotek1 calculated by
Moffat et al.;16,174 and the dashed line denotek1 calculated by Smirnov
et al.;20 / and the dashed line denotek1 calculated by Swihart et al.;21

9 denotes experimental results from Martin et al. in C3H8 at the high-
pressure limit.9

Figure 7. (a) Plots of the pressure dependence of the calculated rate
constant,k1 in silane buffer. The solid line denotes the results obtained
with the dual transition state model for reaction R1 and the fixed
transition state model for reaction R2; the broken line denotes the results
obtained with the fixed transition state model for both reactions R1
and R2. The temperatures considered here are as follows: 1, 700 K; 2,
1000 K; 3, 1200 K; 4, 1400 K. (b) Plots of the pressure dependence of
the calculated rate constant,k2 in silane buffer. The solid line denotes
the results obtained with the dual transition state model for reaction
R1 and the fixed transition state model for reaction R2; the broken
line denotes the results obtained with the fixed transition state model
for both reactions R1 and R2. The temperatures considered here are as
follows: 1, 700 K; 2, 1000 K; 3, 1200 K; 4, 1400 K.
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The contribution of reaction R2 to the thermal dissociation
of Si2H6 is very important in silicon CVD processes. The
calculated branching fraction,k2/(k1 + k2), is plotted in Figure
8 as a function of pressure for a number of temperatures. As
expected, the branching fraction for (R2) increases with increas-
ing temperature and with increasing pressure. At a temperature
of 1400 K the branching fraction is equal to 0.08 in the high-
pressure limit. However, reaction R2 is negligible at pressures
below 100 Torr, as shown in Figure 8.

The calculated high-pressure limit rate constants in the 300-
1500 K temperature range are well described by the Arrhenius
forms 1015.24exp(-25940/T) s-1 and 1014.17exp(-26740/T) s-1

for (R1) and for (R2), respectively.
4.2. SiH2 + SiH4 Reaction.The chemical activation reaction

of SiH2 + SiH4 has two channels, reactions R-1 and R3. The
calculations of the rate constant for reaction R3 require transition
states for (R1) and (R2). Although the rate constant for reaction
R-1 can be derived from the rate constant for reaction R1 via
the equilibrium constant, microcanonical rate constants for
reaction R1 are also needed to solve the master equation for
reaction R3. Therefore the rate constants for reactions R-1 and
R3 are calculated at the same time in the VARIFLEX program.
The D-TST model is applied to (R1) and the F-TST model is
used for (R2), as before.

The rate constant for the overall decay of SiH2 in the reaction
of SiH2 with SiH4, k-1 + k3, is compared in Figure 9 with the
experimental results of Becerra et al.18 These results are for
reaction in the presence of Ar buffer gas. The overall agreement
is quite satisfactory, with the pressure dependence in the falloff
region being well reproduced. The negative temperature de-
pendence of the overall decay rate is caused by the negative
temperature dependence ofk-1.

The pressure dependences of the rate constants in SiH4 buffer
gas are depicted in Figure 10a for reaction R-1 and in Figure
10b for reaction R3. As shown in these figures, reaction R-1
has a negative temperature dependence, whereas reaction R3
has a positive dependence. The pressure dependence of reaction
R3 is typical of chemical activation reactions. The rate constant
for reaction R3 goes to zero in the high-pressure limit. In the
high-pressure region, reaction R-1 is the main channel for the
SiH2 + SiH4 reaction. However, at low pressures and at high
temperatures, reaction R3 becomes important. The branching
fraction of k3/(k-1 + k3) is depicted in Figure 11 for several
temperatures. At pressures below 100 Torr and at temperatures

higher than 1100 K, reaction R3 is the dominant channel in the
SiH2 + SiH4 reaction. This finding will greatly affect simulations
of the thermal CVD processes of silicon.

The calculated rate constants in the 300-1500 K temperature
range are roughly described by the Arrhenius forms 10-10.08

exp (575.7/T) cm3 molecule-1 s-1 for k-1 in the high-pressure

Figure 8. Plots of the pressure dependence of the predicted branching
ratio for (R1) and (R2). The temperatures considered here are as
follows: 1, 700 K; 2, 1000 K; 3, 1200 K; 4, 1400 K.

Figure 9. Plots of the pressure dependence of the rate constant,k-1 +
k3 in argon buffer. The temperatures considered here are as follows:
1, 289 K; 2, 361 K; 3, 424 K; 4, 504 K; 5, 582 K; 6, 665 K.2 denotes
experimental results by Becerra et al. at 289 K,9 at 424 K, and1 at
665 K.18

Figure 10. (a) Plots of the pressure dependence of the calculated rate
constant,k-1 in silane buffer. The temperatures considered here are as
follows: 1, 300 K; 2, 500 K; 3, 700 K; 4, 1000 K; 5, 1200 K; 6, 1400
K. (b) Plots of the pressure dependence of the calculated rate constant,
k3 in silane buffer. The temperatures considered here are as follows:
1, 300 K; 2, 500 K; 3, 700 K; 4, 1000 K; 5, 1200 K; 6, 1400 K.
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limit and 10-11.12exp (-370.3/T) cm3 molecule-1 s-1 for k3 in
the low-pressure limit, respectively.

5. Conclusions

Rate constants relevant to the thermal dissociation of Si2H6

have been calculated for the various multichannel unimolecular
dissociations and chemical activation reactions. Quantum chemi-
cal calculations indicate that the energies of the saddlepoints
for reactions R1 and R2 are lower than the energies of the
product states. A dual transition state model was applied to
reaction R1. It is found that reaction R2 is well described by a
fixed transition state model, at least for 600 K and higher,
whereas a dual transition state treatment is required for reaction
R1 for all temperatures considered here (300-1500 K). The
calculated high-pressure limit rate constant for reaction R1 is
in good agreement with the previous experimental and theoreti-
cal estimations. It is confirmed that the contribution of reaction
R2 is negligible under the usual thermal CVD conditions. The
rate constants for the chemical activation reaction of SiH2 +
SiH4 are also evaluated. At low temperatures, reaction R-1 is
the main channel for the pressures relevant to silicon thermal
CVD processes. However, the contribution of reaction R3
becomes larger, and even dominant, at higher temperatures and
at lower pressures.
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