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In this article is discussed a new diabatization procedure which is expected to be reliable and, also, relatively
easy to implement. This procedure takes into account the two main ingredients related to diabatization: (1)
The sizeN of the smallest (relevant) group of states that forms a Hilbert subspace (this fact enforces the
dimension of the adiabatic-to-diabatic transformation matrix to beN). (2) The total energyE which determines
the number of open states,p, within this group ofN states. The main emphasis in this manuscript is on the
case thatN is arbitrary butp is equal to 2. The various derivations as well as the final results are accompanied
by numerical examples extracted from three- to five-state ab initio calculations for the H+ H2 system.

I. Introduction

It is well accepted that in order to study electronic non-
adiabatic processes the treatment has to be carried out within
the diabatic framework.1-15,29 The main difficulty with the
diabatic framework is that its size,N, may become too large
(and eventually even infinitely large) to prevent any sensible
quantum mechanical treatment for the molecular system of
interest. In a recent publication, we discussed the possibility to
rigorously reduce the sizeN by employing energy arguments.16

To be more specific, we suggested to use an energy criterion to
determine the size of the diabatic potential matrix that has to
be employed for solving the relevant nuclear Schro¨dinger
equation (SE). The energy criterion is introduced while being
in theadiabaticframework and it recommends limiting the size
of the diabatic manifold to be∼q whereq is the number of
adiabatic states which, for a given energyE, are classically
reachable. Although, to be more flexible, it was suggested to
carry out the calculations employingp states wherep is an
integer along the intervalq e p e N. In what follows, the
leading dimension isp; however, we expectp ∼ q.

As a result of a rigorous, but not trivial, theoretical treatment,
the following was established.16 Assuming that theN × N
adiabatic-to-diabatic transformation (ADT) matrixA is given,
it is enough to consider only the upper, left-hand side, square
sub-matrix,A(p) (which is of dimensionp × p) so that the
correspondingdiabatic potential matrix,W(p) becomes

whereu(p) is the (diagonal) adiabatic potential matrix. Since
W(p) in eq 1, is in general not symmetric (unlessp ) N), this
outcome contradicts a basic requirement of quantum mechanics,
namely that the potential matrix has to be Hermitean. Although

one way to correct for this mishap is to symmetrizeW(p) this is
not what we have in mind.

This issue is the main subject to be considered in the present
article. Our treatment is limited to the case thatp ) 2 butN is
arbitrary; in the numerical examples are considered values of 3
e N e 5. In the next section is introduced a novel, two-state
ADT angle, which, in principle is valid for anyN (thus is
N-dependent). This angle is then applied to perform the relevant
ADT - a treatment accompanied by a numerical study applied
to the five lower adiabatic states of the H+ H2 system, namely,
to the 12A′, 22A′, 32A′, 42A′, and 52A′ electronic states (see
section III). The resulting diabatic matrices are analyzed in
section IV and the conclusions are summarized in section V.

II. The Extended Euler Matrix as a Model for the ADT
Matrix

II.1. Introductory Comments. In deriving a model for the
A-matrix, we have to make sure that it is able to form a matrix
with the following features:

(1) The matrix has to be orthogonal at any point in
configuration space.

(2) Its elements are cyclic functions with respect to a single
given parameter,λ, so that starting with a diagonal (unit) matrix
the model-matrix has to become diagonal again after one cycle
(it does not have to be the unit matrix)

(3) While becoming diagonal it has to contain aneVennumber
(-1)s along the diagonal.

The first condition is due to the fact thatA is a solution of
the following first order differential equation:14,17

whereτ(s) is theN × N matrix which contains the electronic
nonadiabatic coupling terms (NACTs):

Here the grad-operator is expressed in terms of (mass-scaled)
nuclear coordinates andúk(se|s); k ) j,i are the relevant adiabatic
eigenfunctions.

Equation 2 has to be solved along contours to be designated
asΓ. Its solution is given in the form:14a,17c
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W(p) ) A(p)u(p)(A(p))-1 (1)

∇A(s) + τ(s)A(s) ) 0 (2)

τji ) 〈új|∇úi〉; i,j ) {1,N} (3)
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where it is assumed that its initial matrix,A(s ) s0), is the unit
matrix andP is the ordering operator. For a closed contour,
the relevant ADT matrix,A(Γ), becomes independent of any
particular point alongΓ but depends onΓ itself. This final matrix
along the closed contour is designated as theD-matrix and takes
the form

It was shown that this matrix is diagonal (like the initial unit
matrix) but is not necessarily a unit matrix. For a real basis set
the diagonal elements ofD(Γ) are (1.13,18 In addition it was
shown that the number of (-1)’s, to be labeled as K,has tobe
even (or zero).19

In this article we intend to present the generalN × N ADT
matrix A as a product of single angleN × N rotation matrices.
The resulting matrix becomes, in case ofN ) 3, similar to the
Euler matrix,20 and therefore will be termed, forN > 3, as the
extended Euler matrix.19 In what follows this matrix is labeled
asA(N) or simply A.

Before we relate to the general case we discuss two cases,
namely,N ) 2 andN ) 3.

II.2. The Two-Dimensional System. A(2)(γ12) is well-known
to be of the form17

whereγ12(s|Γ) is17

Next we consider what happens when the contourΓ becomes
a closed contour. For this particular case, we define the angle
R12(Γ), which is given in the form:

The angleR12(Γ) is also known as thetopological phase. In
case the two states are isolated from the rest of the states that
form the Hilbert space (this happens if in the given region all
the NACTs that connect these two states with rest of the Hilbert
space are small enough)21,22 R12(Γ) becomes i.e.,R12(Γ) ) nπ
wheren is an integer or zero. This situation is termed by us as
quantizationconditionsreminiscent of the Bohr-Sommerfeld
quantization law13,18 but more relevant for spin states.

The above-mentionedD-matrix is obtained by replacing, in
eq 6, the phase,γ12(s|Γ), by its value at the end of the closed
contour, namely,R12(Γ). For the isolated case just mentioned,
the D-matrix becomes18

where we assumed that the contourΓ, in eq 8, surrounds one
point of conical intersection (ci).

II.3. The Three-Dimensional System.In case ofN ) 3 we
encounter the matrixA(3), with nine elements. However,A(3)

has to be an orthogonal matrix where the ortho-normality
conditions require the fulfillment of six relations. This leaves
three free unknowns which, according to Euler, are three angles
of rotation, namely,γ12, γ13, and γ23. Consequently, it was
suggested to construct the 3-stateA-matrix as a product of three

rotation matrices. For this purpose we define the following three
matrices,Q12

(3)(γ12), Q23
(3)(γ23), andQ13

(3)(γ13) where for instance,
Q13

(3)(γ13) is given in the form:

(the other two are of a similar structure with the respective
cosine and sine functions at the appropriate positions). One way
of presentingA(3)is20

which following the multiplication takes the form:

Here (and elsewhere)ckj ) cos(γkj) and skj ) sin(γkj). It is
important to notice that deriving the matrixA(3) in this way
guarantees that the matrix is orthogonal (as it is a product of
three orthogonal matrixes).

The relevantD(3)-matrix is obtained fromA(3), as before, by
replacing theγij angles calculated at the end point of the closed
contour (i.e.,γkj(s)s0|Γ) by Rkj(Γ).

As mentioned earlier theD(3)-matrix is expected to be
diagonal, a condition that can be achieved if and only ifRkj(Γ)
) nkjπ wherenkj are integers (or zero).

To obtain the threeγjk angles, eq 12a is substituted in eq 2
and it can be shown that the three angles have to satisfy the
following three coupled first order differential equations20

Next we examine, briefly, the possible signs of the diagonal
elements ofD(3). Because of the product in eq 11a, these
diagonal elements take the form19

where all the terms that contain sine-functions are, obviously,
zero (sin ((nπ) ≡ 0)

This expression shows that theD(3)-matrix, may have either
three (+1)s in the diagonal (it happens when all cosine functions
are either positive or negative) or two (-1)s and one (+1)
(which happens when one or two of the three cosine functions
are negative). For the first case to happen, the contour has to
surround an even number ofcis for each pair ofadjacentstates
(or not to surround anyci) whereas the second case applies for
all other situations. It is straightforward to see that according
to this model,K is either 2 or 0 as, indeed, is required. It is
important to mention that eqs 14 were successfully applied for
model systems20b as well as for ab initio ones.20c

TheA-matrix can be written also in a slightly different form

which due to the lack of commutation relations yields a different
presentation for theA-matrix

Q13
(3)(γ13) ) ( cosγ13 0 sin γ13

0 1 0
-sin γ13 0 cosγ13

) (10)

A(3) ) Q12
(3)Q13

(3)Q23
(3) (11a)

A(3) ) ( c12c13 s12c23 - c12s13s23 s12s23 + c12s13c23

-s12c13 c12c23 + s12s13s23 c12s23 - s12s13c23

-s13 -c13s23 c13c23
) (12a)

∇γ12 ) -τ12 - tanγ13(τ23cosγ12 + τ13sin γ12)

∇γ23 ) τ23sin γ12 - τ13cosγ12

∇γ13 ) - (cosγ13)
-1(τ23cosγ12 + τ13sin γ12)

(13a)

Dij
(3) ) δijcosRjncosRjm; j * n * m; j ) 1,2,3 (14)

A(3) ) Q12
(3)Q23

(3)Q13
(3) (11b)

A(s|Γ) ) P exp{- ∫s0

s
τ(s′|Γ) ds′} (4)

D(Γ) ) P exp{- IΓt(s′|Γ) ds′} (5)

A(2)(γ12(s|Γ)) ) ( cosγ12(s|Γ) sin γ12(s|Γ)
-sin γ12(s|Γ) cosγ12(s|Γ) ) (6)

γ12(s|Γ) ) - ∫s0

s
ds τ12(s|Γ) (7)

γ12(s0|Γ) ≡ R12(Γ) ) IΓ ds τ12(s|Γ) (8)

D(2)(Γ) ) (-1 0
0 -1) (9)
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and a different set of equations for the three anglesγ12, γ13,
andγ23:

In general, the two sets of equations yield different results
for the three angles,γ12, γ13, andγ23; however, as long as we
are interested only in the elements of theA-matrix, eq 13a and
13b are expected to yield identical results. In what follows eqs
13a and 13b are applied to deriveapproximatesolutions for
the A-matrix and in this case we may get different results due
to the two presentations, but as will be seen, each of the solutions
applies for a differentphysicalsituation.

In principle we may derive more sets of equations (for other
permutations see ref 20b) but here, and in what follows, we are
interested only in those permutations where the first matrix on
the left-hand side isQ12

(N)(γ12). This choice guarantees thatγ12

is priVilegedby a differential equation where its own NACT,
τ12 is the isolatedfree term. This fact ensures that whenever
the region under consideration contains one or several (1,2)cis,
the correspondingγ12 angle has features which connect it, in a
straightforward way, withτ12. This feature is, of course, expected
when the region, surrounded byΓ, is dominated byτ12 but, as
will be shown here, even in cases whenτ12 is not the only NACT
in the region, still this particularγ12 is dominated byτ12.

II.4. The N-Dimensional System.Like in the previous three-
state case, here too, we are interested in products similar to those
given in eq 11a or 11b, namely, where the first matrix on right-
hand side isQ12

(N)(γ12). Therefore, we treat theN-dimensional
case for anA-matrix given in the form

where we recall that in general we haveN(N - 1)/2 angles of
the type γkj; k > j as unknowns and thatQ12

(N)(γ12) is, for
instance forN ) 5, of the form:

Our next task is not to present the first order differential
equations for all theN(N - 1)/2 angles but only to derive the
equation forγ12. To achieve that we substitute eq 15 in eq 2,

perform the necessary differentiations, and then multiply the
outcome from the right-hand side by (Ã(N))†; thus

where we mention thatÃ(N) is itself an orthogonal matrix (it is
a product of orthogonal matrices) so thatÃ(N)(Ã(N))† ) I (N).
Equation 17 can be further simplified by multiplying it from
the left-hand side byQ12

(N)(γ12)†. Next considering any of the
two equations forγ12 (we have only two equations but the values
of γ12 are not necessarily the same), we get

whereZjk
(i) ≡ Zjk

(i)(γ13,...,γN-1N), namely none of them depend on
γ12 and the prime sign (under the summation symbol) implies
that the summation does not contain the term (jk) ) (12) (in
other wordsZ12

(i) ≡ 0).
As mentioned we have two different equations forγ12. As

an example we consider, explicitly, what happens in the case
of N ) 3.

(1) For the caseÃ(3)(γ13, γ23) ) Q13
(3)(γ13)Q23

(3)(γ23), it can be
shown, employing eq 12a, that

(2) For the (permuted) case,Ã(3)(γ23,γ13) ) Q23
(3)(γ23)Q13

(3)(γ13),
it can be shown, employing eq 12b, that

Although eq 18 is an interesting result (and, following it, the
same applies to eq 19a and eq 19b), it is not in a practical form
for an arbitrary value ofN. The main reason being that, forN
> 3 deriVing the differential equations for theN(N - 1)/2 angles
is a formidable task. In fact it is much easier to derive the
A-matrix by solving the exponentiated line integral as given in
eq 4. However having the explicit elements of theA-matrix
does not necessarily yield the angleγ12. Still while considering
the algebraic expressions of the elements of the various matrices
for N ) 3, we revealed some interesting features which seem
to yield the requiredγ12 angle. In particular we get from eq
12a the following result:

As a result of this finding we may encounter two difficulties.
(1) From eq 12b we find another relation forγ12, namely:

Since there is no reason to believe that the two expressions yield,
in general, identical numerical values, the question to be asked
is which of the two values should be preferred. (2) The second
possible difficulty is related to the extension of these relations
for N > 3, or in other words: do these relations hold forN >
3?

These two questions will be treated in the next section. For
this purpose we employ results obtained from a recent five-
state study related to the H+ H2 system.

III. The Derivation of the γ12-Angle for an N-State
System

III.1. Comments Concerning ab Initio Calculations. The
NACTs and the potential energy surfaces (PES) required for

A(3) ) ( c12c13 - s12s13s23 s12c23 c12s13 + s12c13s23

- s12c13 - c12s13s23 c12c23 -s12s13 + c12c13s23

-c23s13 -s23 c13c23
)

(12b)

∇γ12 ) -τ12 - tanγ23(-τ13cosγ12 + τ23sin γ12)

∇γ23 ) -(τ13sin γ12 + τ23cosγ12)

∇γ13 ) (cosγ23)
-1(-τ13cosγ12 + τ23sin γ12)

(13b)

A(N)(γ12, γ13,...,γN-1N) ) Q12
(N)(γ12)Ã

(N)(γ13,...,γN-1N) (15)

Q12
(N)5)(γ12) ) ( cos(γ12) sin(γ12) 0 0 0

-sin(γ12) cos(γ12) 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

) (16)

∇(Q12
(N)(γ12)Ã

(N)(γ13,...,γN-1N)) +

τQ12
(N)(γ12)Ã

(N)(γ13,...,γN-1N) ) 0

∇(Q12
(N)(γ12)) + τQ12

(N)(γ12) +

Q12
(N)(γ12)(∇Ã(N)(γ13,...))Ã

(N)(γ13,...)
† ) 0 (17)

∇γ12
(i) ) -τ12 - ∑

jk

′Zjk
(i)∇γjk; i ) 1,2 (18)

∇γ12
(1) ) -τ12 + sin γ13∇γ23 (19a)

∇γ12
(2) ) -τ12 + sin γ23∇γ13 (19b)

γ12 ) γ12
(1) ) -tan-1(A21/A11) (20a)

γ12 ) γ12
(2) ) tan-1(A12/A22) (20b)
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the present studies are calculated at the state-average CASSCF
level using 6-311G** (3df,3pd) basis set23a extended with
additional diffuse functions. In order properly to take into
account the Rydberg states we added, to the basis set, one s
diffuse function and onep diffuse function in an even tempered
manner,23b with the exponents of 0.0121424 and 0.046875,
respectively. We used the active space including all three
electrons distributed on 9 orbitals. Usually five different
electronic states (depending on the case) namely, 12A′, 22A′,
32A′, 42A′, and 52A′ were computed by the state-average
CASSCF method with equal weights. Convergence test were
carried out with respect to the number of states. All ab initio
calculations were carried out employing MOLPRO. Previous
studies on this system were presented in refs 22, 24, and 25.

We report here on results as calculated for the situation where
two Hydrogen atoms are fixed so that their interatomic distance
is RHH ) 0.74 Å and the third atom is free to move to probe
the values of the NACTs at the various points in configuration
space. With this approach we detected the well-knownequi-
lateral D3h ci that couples the two lower states of this system,
the two C2V cis that couple the second and the third states and
a secondD3h ci that couples the fourth and the fifth state. It is
important to mention that in the region inspected by us we did
not find any (3,4)cis. The positions of the variouscis are,
schematically, shown in Figure 1.

We usually report on results along circular contours and
consequently, in the present article, are discussed results related
to five circles. Four of them are centered at theD3h point (the
position of the (1,2)ci) with radii q ) 0.2, 0.28, 0.4 0.5 Å. The
fifth circle has a radius q) 0.3 Å and is centered at a point
shifted toward the right from the (1,2)ci-point (designated as
× in Figure 1). The first two (out of the five) circles surround
only the (1,2)ci, the third and the fourth circles surround the
(1,2) ci and thetwo (2,3) cis and the fifth circle surrounds the
(1,2) ci andoneof the (2,3)cis.

The results of the various calculations are presented as a
function of the polar coordinate,æ. We recall that the NACTs
are vectors but we are interested only in theirangularcomponent
τæjk(æ|q)/q whereτæjk(æ|q) is given in the form:

It is important to mention that the points (q,æ ) 0) and (q,æ
) π) are the ‘northern’ and the “southern” poles, respectively,
both located on the symmetry line (which is perpendicular to
the HH axis). The various figures and mainly parts c-h of
Figure 1 indicate that most of the “action” (i.e., strong variations
in the NACTs) takes place aroundæ ) π the point closest to
the HH axis.

Figure 1. ADT angles,γ12
(1) (see eq 20a and presented in the upper row of parts) andγ12

(2) (see eq 20b and presented in the lower row of parts), as
obtained for a three-state Hilbert subspace. The calculations are done for the contours shown in the schematic section of the figure and the results
are presented as a function ofæ (the polar coordinate). In each part are presented two curves one as obtained from eq 20 (the dashed line) and one
as solved by eq 13 (the full line). The more interesting results are shown in parts i and j, emphasizing the different characters of the two ADT
angles,γ12

(1) andγ12
(2): the first ends up with atopologicalphaseπ and the second with zero. As for the schematic section: we show the contours

along which were performed the calculations, the position of the two fixed hydrogens (b) and the position of the two different types ofcis: The
single (1,2)ci is presented in terms of a full square, and the two (2,3)cis are shown in terms of full triangles.

τæjk ) 〈új| ∂

∂æ
úk〉; j,k ) {1,N} (21)
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III.2. The γ12-Angle for a Three-State System.The nu-
merical study in this section is related toγ12

(1) as calculated for
the product in eq 11a (presented in the upper row of sub figures)
and γ12

(2) as calculated for the product in eq 11b (presented in
the lower row of parts). In parts a, c, e, g, and i of Figure 1 are
compared results as derived by solving eq 13asfull lineswith
those obtained by applying eq 20asdashed line. In parts b, d,
f, h, and j of Figure 1 are compared results as derived by solving
eq 13b with those obtained by applying eq 20b. The two main
features to be noticed are as follows: (a) The two curves in
each part overlapcompletely, indicating that the simple solutions
in eqs 20a and 20b are relevant for derivingγ12 in each of the
situations. In other words, once theA-matrix is given (namely,
calculated employing eq 4) there is no need to solve eq 13 to
derive theγ12 angles. (b) The curves in the upper parts of Figure
1 differsin most casesssignificantly from their counterparts
given in the lower parts indicating that the twoγ12 angles, as
obtained for the two permutated products in eq 11, relate to
different physical situations.

To understand the source for these differences it is best to
compare the results presented in Figure 1, parts i and j. It is
noticed that the curves in sub-Figure 1i behave similar to those
in the other eight parts presented in Figure 1, namely, their
topological phases (their values at the end of the closed contour)
becomeR12(q) ∼ π whereas the curves in Figure 1j end up
with R12(q) ∼ 0. The explanation is as follows: The variation
of each of the angles along a contour, known as theopen phase,
is associated with a given eigenfunction and the value of such
a phase, at the end of a closed contour, is the corresponding
topologicalphase26,27 (also called the Berry phase). With this
interpretation in mind theγ12-curves presented in the upper parts
of Figure 1 are the open phases related to the ground-state
eigenfunction and the curves presented in the lower parts of
Figure 1 are the open phases related to the upper, first excited,
eigenfunction. Next, in the first four cases presented in parts a,
c, e, and g (see also parts b, d, f, and h) the contours surround
the single (1,2)ci and thetwo (2,3) cis. In these situations the
topological phases of both, the lower and the upper eigenfunc-
tions become∼ π, as indeed is the case (this particular aspect
of the line integral is best explained in ref 20c; see Figure 5 in
that reference and the relevant discussion). However, a different
situation is encountered for parts i and j. Here the contour
surrounds, like before, the (1,2)ci but onlyone(2,3)ci. On the
basis of previous studies,14a,19the topological phase for the lower
state, like in the previous cases, is∼ π but it becomes zero for
the second, upper, state, as is expected in this situation (in this
case, due to the (1,2) and the (2,3)cis, the sign of the second
topological phase is flipped twice).

The fact that our procedure can distinguish between the two
kinds of theγ12 angle is encouraging because it enables to apply
the correct ADT angle for each process. To study the (1f 2)
transition we employγ12

(1), as obtained from the product (1,2)-
(1,3)(2,3) and to study the (2f 1) transition we applyγ12

(2) as
obtained from the (1,2)(2,3)(1,3) product.

III.3. The γ12-Angle for Four and Five-State Systems.
Whereas all the details regarding the three-stateγ12 angle could
be verified analytically (because the 3× 3 A-matrix is given
explicitlyssee eq 12) this advantage is usually not available
for those cases thatN > 3. For instance to derive the relevant
A-matrix for a four-state system is already a formidable task
because this case is defined in terms ofsixangles, and therefore
it requires solving six first order differential equations (one for
each angle) that have to be derived from a matrix that is formed
by a product of six 4× 4 rotational matrices. In what follows

we somewhat extend the previous three-state case to cases which
contain four and five states. However, this extension is limited
for certain aspects.

In what follows we consider products of the type given in eq
15, namely products that have the rotation matrix forγ12 located
on the left-hand side for any of the possible permutations. As
was shown in section II.3, this arrangement guarantees that the
differential equation for anyγ12 containsτ12 as the leading term
a fact that yields the required information on the wayγ12 is
formed primarily by theτ12 NACT (subject to disturbances
caused by other NACTs).

In contrast to theN ) 3 case here we intend to extract the
two different γ12 angles from eqs 20a and 20b only. Before
doing that we verified two facts: (1) ForN ) 4 we produced
all the 120 permutations ofÃ(N)4)and the correspondingA(N)4)-
matrices to see that indeed some of the permutations yield eq
20a and some others yield eq 20b. For instance we find that
numerous permutations yield, for the two first elements of the
first column, the following terms:

and others yield

but not the ones in eq 22a. It is well noticed that eq 22a yields
eq 20a and eq 22b yields eq 20b.

We also made sure that no other equations of the above type
exist from which one can derive, solely,γ12 angles. The same
procedure was repeated forN ) 5 and we obtained a similar
outcome, namely eqs 20a and 20b are also valid for this case.

It is important to realize that these derivations are valid
because each permutation within the product (12)(13)(14)(23)-
(24)(34) is expected to yield, numerically, the sameA-matrix.

In Figure 2 are presented the anglesγ12 as calculated once
employing eq 20a (Figure 2, parts a, c, e, and g) and once
employing eq 20b (Figure 2, parts b, d, f, and h) for four
differentN values, namely,N ) 2, 3, 4, and 5. The results are
presented in four columnsseach column refers to a different
contour as shown in the schematic drawings at the top of each
column.

Two main features are to be noticed: (1) Theγ12-functions
are seen, approximately, to converge asN increases a feature
to be expected. Fast convergence is achieved in case the contour
surrounds only oneci (see Figure 2, parts a and b). In all other
cases, the convergence is slower: It is noticed that theγ12-
functions forN ) 2 are always inadequate, but then already
for N ) 3, relatively well convergedγ12-functions are obtained.
The only exceptions areγ12

(1)-functions as calculated forq )
0.4, 0.5 Å along the short interval:π - δ e æ e π + δ, mainly
because of the strong interaction between theτ12-NACT and
τ23-NACT along that interval. This interaction affects also the
convergence forγ12

(2) but to a smaller extent.

IV. The Diabatic Potential Energy Surface

In what follows we concentrate on forming the two-
dimensional diabatic PES matrix according to the prescription
given in eq 1 where the required two-dimensionalA-matrix is
obtained fromA(3)-matrices presented in eq 12a or (12b). The
decision which of the two matrices to apply is made as follows.
If the aim is to study the 1f 2 transition (namely the transition

A11) cosγ12cosγ13 cosγ14; A21) sin γ12cosγ13 cosγ14

(22a)

A12) -sin γ12cosγ23 cosγ24;
A22) cosγ12cosγ23 cosγ24 (22b)
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from the ground-state to the (first) excited state) then theA(3)

given in eq 12a and theγ12
(1) angle given in eq 20a should be

employed. If the aim is to study the 2f 1 transition (namely
the transition from the (first) excited state to the ground-state)
then theA(3) in eq 12b and theγ12

(2) angle in eq 20b has to be
employed (see discussion at the last paragraph of section III.2).
We are aware that this procedure does not necessarily fulfill
microscopic reversibility but it is not clear to what extent
microscopic reversibility is really damaged. This has to be tested
in actual applications.

IV.1. The Two-State Diabatic PES Matrix To Study the
1 f 2 Transition. To study this case we employA(3) given in
eq 12a from whichA(2) is formed by extracting the 2× 2 sub-
matrix in the upper left corner ofA(3). Thus

Next is formed the corresponding inverse matrix, (A(2)) -1:

According to eq 1 the relevant 2× 2 diabatic potential matrix
results from the expression

In what followsW̃(2) is presented as a sum of two matrices:

Here

and

It is well noticed that as long asγ23 is not too close toπ/2
(so thatc23 does not become too small) the elements of∆W(2)

are expected to be small (becauseγ13 ∼ 0), and consequently
W(2) becomes theordinary diabatic potential matrix defined in
terms of a (single) ADTγ12

(1) angle:

It is because of this interesting outcome that we decided to
define γ12

(1) (and accordingly, later, alsoγ12
(2)) the N-state ADT

angle (see title of the article).
IV.2. The Two-State Diabatic PES Matrix To Study the

2f1 Transition. To study this case we employA(3) given in

Figure 2. ADT anglesγ12
(1) (upper row of parts) andγ12

(2) (lower row of parts) as a function ofæ calculated along the contours. The different curves
in each part were calculated for differentN values whereN is the dimension of the Hilbert subspace. Results are shown forN ) 2, 3, 4, and 5. The
more important issue here is the large difference between the curves as calculated forN ) 2 and those forN > 2. Compare with Figure 1.

A(2) ) ( c12c13 s12c23 - c12s13s23

- s12c13 c12c23 + s12s13s23
) (23a)

(A(2))-1 ) 1
c13c23

(c12c23 + s12s13s23 -s12c23 + c12s13s23

s12c13 c12c13
)

(24a)

W̃(2) ) A(2)(u1 0
0 u2

)(A(2))-1 (25)

W̃(2) ) W(2) + ∆W(2) (26)

W(2) ) (c12
2u1 + s12

2u2 c12s12(u2 - u1)

c12s12(u2 - u1) c12
2u2 + s12

2u1
) (27)

∆W(2) )
s13s23

c23
(-c12s12 -c12

2

s12
2 c12s12

)(u2 - u1) (28a)

W(2) ) (c12
2u1 + s12

2u2 c12s12(u2 - u1)

c12s12(u2 - u1) c12
2u2 + s12

2u1
) (29)
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eq 12b from whichA(2) is formed, as in the previous case, by
extracting the 2× 2 submatrix in the upper left corner ofA(3).
Thus

and the corresponding inverse matrix(A(2))-1, is

Continuing in the same manner as in the previous section we
get for W(2)a similar expression (except that the angleγ12

(1) is
replaced byγ12

(2)) but a somewhat different expression for
∆W(2)

It is well noticed that as long asγ13 is not too close toπ/2
(so thatc13 is not too small) the elements of∆W(2) are expected
to be small (becauseγ23 ∼ 0) and consequentlyW(2) becomes,
as in the previous section (see eq 29), theordinary diabatic
potential matrix defined in terms of a (single) ADTγ12

(2) angle:
It is important to realize that in eq 28b it is not only thatγ12

(2)

differs fromγ12
(1) but also the the two other angles, namely,γ13

and γ23 differ from the respective ones mentioned in section
IV.1.

IV.3. Analysis. Usually the numerical part is devoted to
comparisons betweenaccurateandapproximateresults. In our
study this implies comparing the approximate and the correct
diabatic potential matrix elements. However from the presenta-
tion of the approximate diabatic potential matrix (see eq 1) it is
obvious that the elements of this matrix and the corresponding
elements of the so-calledaccurate N× N matrix are not
necessarily similar. Moreover going over the derivation, the
relevant elements of the two matricescannotbe similar because
we ignored all thoseadiabatic potentials which, for a given
energyE, are unreachable (or classically “closed” ) arguing that
doing that does not affect thesolutionof the diabatic (nuclear)
SE. No claims were made regarding the resultingdiabatic
potential matrix elements. Therefore, comparing the two kinds
of diabatic matrix elements is meaningless.

As is noticed the procedure developed here for the case ofN
) 3 yields two 2× 2 diabatic potential matrices: (a) the one
given in eqs 26-28a with the main disadvantage of being
nonsymmetrical; (b) the one given in eq 29 which is symmetrical
but with the main disadvantage of being only approximate.
Similar situations are expected forN > 3.

No doubt, that for practical purposes, one would prefer the
symmetrical diabatic potential matrix given in eq 29. The
question is if we can establish simple means to determine to
what extent this matrix is relevant. For instance one way to
achieve that is to calculate the elements of∆W(2) and compare
them with u1 and u2 in the regions of interest. However the
matrix elements of∆W(2) are, in general, not available (in
particular whenN > 3), and therefore, this approach cannot be
considered as practical. Nevertheless we suggest to carry out
this study in case forN ) 3 (the case for which we have these
elements available), mainly in order to reveal where and to what
extent the elements of∆W(2) are large and in this way eventually
to be able to estimate the relevance of the proposed diabatization.

To study this issue we consider eq 28a (and/or eq 28b) and
concentrate mainly onc23 ≡ cos γ23 (becausec23 appears in
the denominatorof eq 28a). Since (cosγ23)-1 is the only
function which may attain large values (eventually even infinite
values, in caseγ23 ) π/2) we followγ23 along various contours
in configuration space. From the second equation in eq 13a it
is obvious that ifτ23 is zero or small enough along such a
contour,γ23 is expected to be small and most likely stays (far)
away from π/2. (we remind the reader that, based on our
experience,τ13,τ23,28 so that,τ13 can be ignored). In other
words we expectγ23 to approachπ/2 only along those contours
whereτ23-NACT is large enough and this can happen only in
the vicinity of a (2,3)ci. Therefore, as long as the contour of
interest does not get too close to a (2,3)ci, γ23 is expected not
to change significantly and remains∼0. From eq 28a it follows
that not only the denominator is finite in such a case but the
numeratorf 0. Similar arguments apply forγ13.

The next question is related to the case that, indeed, the
contour gets close to the (2,3)ci. Can we justify ignoring∆W(2)

in such a situation? Including the close vicinity of the (2,3)ci
implies including the region whereu2 is large. We remind the
reader that at the vicinity of (2,3)ci pointsthe surfaceu2, most
likely, reaches its highest values. Consequently, for the case
under consideration, these (highest) values ofu2, are assumed
to be classically closed (if this assumption is not valid then the
approximate diabatization has to be carried out for a three-state
system) and therefore adding the large values of∆W(2) to the
large values ofW(2) (see eq 26) is not expected to affect the
results.

The conclusion of this analysis is that in general the elements
of ∆W(2) are small enough as long as the contours do not get
too close to a (2,3)ci. It is true that being in a region that
contains such aci, causes∆W(2) to attain large values but this
kind of a region is most likely classically closed so that the
exact values of the potentials are not expected to affect results,
such as scattering cross sections or spectroscopic cross sections.
In other words since such a region (near the (2,3)ci) is already
excluded by the originaladiabaticpotentialu2 adding the values
of ∆W(2) is not expected to significantly affect the calculations.

In the next section the above analysis is carried out for the
{H,H2} system.

IV.4. A Numerical Study of the New Way of Diabatization.
To perform the numerical study, we use the two (1,2) ADT
angles given in eqs 20a and 20b, forN ) 3, and calculate the
elements of∆W(2) at several regions of interest (see eq 28a
and eq 28b). To calculate∆W(2) we need all three anglesγ12

(1),
γ23, andγ13 (or γ12

(2), γ23, andγ13 for the second case). Having,
for instance,γ12

(1) we employ the second and the third equations
in eq 13a, to calculateγ23 and γ13 which are then employed,
together withγ12

(1), to calculate∆W(2) (see eq 28a).
The results, to be discussed next, are presented in a series of

parts of Figure 3. In the parts along the upper row of Figure 3
are given the two loweradiabaticPESs of the H+ H2 system
as calculated along five different circular contours (see Figure
1). In the second and third rows are presented the corresponding
four elements of the∆W(2) matrix as calculated along the same
contours. In the intermediate row of parts are shown the matrix
elements as calculated employingγ12

(1) (and the corresponding
γ23 andγ13 angles) and in the lower (third) row those calculated
employingγ12

(2) (and the correspondingγ23 andγ13 angles).
The following is to be noticed:
(1) The two firstcolumnsare related to situations where the

circular contour (which is centered at the (1,2)ci) does not
surround any of the (2,3)cis. As a result the elements of∆W(2)

A(2) ) ( c12c13 - s12s13s23 s12c23

-s12c13 - c12s13s23 c12c23
) (23b)

(A(2))-1 ) 1
c13c23

( c12c23 -s12c23

s12c13+ c12s13s23 c12c13 - s12s13s23
) (24b)

∆W(2) )
s13s23

c13
(c12s12 -s12

2

c12
2 - c12s12

)(u2 - u1) (28b)
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are relatively smallsa few millielectronvolts for the inner circle
and, at most, a few hundreds of millielectronvolts for the second
circle. These values have to be compared with values ofu1 and
u2, calculated along the same contours. It is well noticed that
in general the largest values of∆W(2), are located along the
same angular intervalπ - δe æ eπ + δ where the largest
values ofu1 andu2 are to be found. It is important to mention
that the values ofu1 andu2 are between one and 2 orders of
magnitude larger than those of∆W(2).

(2) The next three columns are related to situations where
the circular contours surround the two (2,3)cis. We encounter,
here, the same situations as in the previous case except that the
values of both, those ofu1 andu2 and those of∆W(2) are much
larger. Again, the values of∆W(2) become large only along the
above-mentioned angular interval but are, always at least, 1 order
of magnitude smaller that those ofu1 and u2. The only
exceptions are the rare cases whereγ23 or γ13 become (exactly)
π/2 which happens only along circles that approach very closely
any of the (2,3)cis as for instance whenq ) 0.3,0.4 Å. (see
Figure 1) but not anymore along the circle for whichq ) 0.5
Å (in this case the contour is located further away from the
(2,3) cis so thatγ23 (γ13) cannot becomeπ/2 anymore.

V. Conclusions

In this article we discussed a new diabatization procedure
which is expected to be reliable and, also, relatively easy to

implement. This procedure takes into account the two main
ingredients related to diabatization: (1) The sizeN of the
smallest (relevant) group of states that forms a Hilbert subspace
(this fact enforces the dimension of the ADT matrix to be N16,22).
(2) The total energyE which determines the number of open
states,p, within this group ofN states. The main emphasis in
this manuscript is on the case thatN is arbitrary butp is equal
to 2. The various derivations as well as the final results are
accompanied by numerical examples extracted from ab initio
calculations carried out for three- to five-states of the H+ H2

system.
In many situations where the energy is not too high it is

enough to solve only two coupled SEs and for this purpose it
is required one ADT angle. However the ADT angle and in
particularly the topological (Berry) phase depend on other states
within the Hilbert subspace. Our procedure is unique in the sense
that it is capable to incorporate correctly, within the two-state
diabatization, the effect of all the states that form the Hilbert
subspace.

It is important to mention that other two-state diabatization
procedures are available for systems whereN > 2.25 However,
in contrast to our procedure, they do not include in the
calculations the effect, of upper states. In other words, they
solely depend on the two states under consideration. This fact
may lead to inadequate results due the application of the
inappropriate ADT angle. Consider, for instance, a three-state

Figure 3. Adiabaticpotentialsu1 andu2 and the elements of the diabatic correction matrix,∆W(2) as calculated along the contours presented in
Figure 1. The first (upper) row contains in each part, two curves related tou1(æ|q) andu2(æ|q); in the next two rows are presented, in each part,
four curves describing∆W11(æ|q), ∆W12(æ|q), ∆W21(æ|q) and∆W22(æ|q), respectively. The curves in the intermediate row were calculated, employing
eq 28a, forγ12

(1) and the correspondingγ13 andγ23 angles (obtained from eq 13a) and the curves in the last row were calculated, employing eq 28b,
for γ12

(2) and the respectiveγ13 andγ23 angles (obtained from eq 13b). The calculations are done for contours given in Figure 1.
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system governed by one (1,2)ci and one (2,3)ci. If we treat
only the two lower states (and ignore the third state) then the
topological (Berry) phase related to the second state is identical
to the topological phase related to the first state namely, it is
equal toπ (for contours that surround the (1,2)ci). However if
we consider all the three states then, for those contours that
surround both, the (1,2)ci and the (2,3)ci, the topological phase,
related to the (same) second state, is either zero or a multiple
of 2π but notπ (or an odd multiple ofπ).19 This fact does not
affect the 1f 2 transition probabilities but, is expected to affect
the calculated 2f 1 transition probabilities.
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