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In this article is discussed a new diabatization procedure which is expected to be reliable and, also, relatively
easy to implement. This procedure takes into account the two main ingredients related to diabatization: (1)
The sizeN of the smallest (relevant) group of states that forms a Hilbert subspace (this fact enforces the
dimension of the adiabatic-to-diabatic transformation matrix tblp&2) The total energ¥e which determines

the number of open statgs, within this group ofN states. The main emphasis in this manuscript is on the
case thal is arbitrary bufp is equal to 2. The various derivations as well as the final results are accompanied
by numerical examples extracted from three- to five-state ab initio calculations for theHklsystem.

I. Introduction one way to correct for this mishap is to symmetn@é) this is

. . . not what we have in mind.
It is well accepted that in order to study electronic non-

adiabatic processes the treatment has to be carried out within, This issue is the main subject to be considered in the present
the diabatic framework-152% The main difficulty with the article. Our treatment is limited to the case that 2 butN is

. ) - L arbitrary; in the numerical examples are considered values of 3
diabatic framework is that its siz&, may become too large y P

e ) < N =< 5. In the next section is introduced a novel, two-state
(and eventually even infinitely large) to prevent any sensible

uantum mechanical treatment for the molecular system of ADT angle, which, in principle is valid for anl (thus is
q L . yster N-dependent). This angle is then applied to perform the relevant
interest. In a recent publication, we discussed the possibility to

ficorously reduce the sid by emploving eneray arqument ADT — a treatment accompanied by a numerical study applied
gorously reduce the s y émploying €nergy arguments. to the five lower adiabatic states of thedHH, system, namely,
To be more specific, we suggested to use an energy criterion to

determine the size of the diabatic potential matrix that has to o the FA', 220", FA', A", and SA” electronic states (see
. P . section IIl). The resulting diabatic matrices are analyzed in
be employed for solving the relevant nuclear Sclimger

. D . . section IV and the conclusions are summarized in section V.
equation (SE). The energy criterion is introduced while being
in theadiabaticframework and it recommends limiting the size Il. The Extended Euler Matrix as a Model for the ADT
of the diabatic manifold to be~q whereq is the number of Matrix

adiabatic states which, for a given enerd, are classically I.1. Introductory Comments. In deriving a model for the
reachable. Although, to be more flexible, it was suggested t0 A_matrix, we have to make sure that it is able to form a matrix
carry out the calculations employirg states wherg is an with the following features:

leading dimension ip; however, we expeqgt ~ q. configuration space.

As aresult of arigorous, but not trivial, theoretical treatment,  (2) Its elements are cyclic functions with respect to a single
the following was establisheld. Assuming that theN x N given parametei, so that starting with a diagonal (unit) matrix
adiabatic-to-diabatic transformation (ADT) matwxis given,  the model-matrix has to become diagonal again after one cycle
it is enough to consider only the upper, left-hand side, square (it does not have to be the unit matrix)
sub-matrix, A® (which is of dimensionp x p) so that the (3) While becoming diagonal it has to containeennumber
correspondingliabatic potential matrix, W® becomes (—1)s along the diagonal.

The first condition is due to the fact that is a solution of
w® = A(P)U(P)(A(P))*l (1) the following first order differential equatiot:1?
. . . . . . _ VA(S) + 7(9)A(s) =0 @)
whereu® is the (diagonal) adiabatic potential matrix. Since ) ) ) ) .
W® in eq 1, is in general not symmetric (unlgss= N), this Where'r(s) is the N X N matrix which c.ontalns the electronic
outcome contradicts a basic requirement of quantum mechanicsNonadiabatic coupling terms (NACTS):
namely that the potential matrix has to be Hermitean. Although 1, = Ve ij={1N} (3)
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A(ST) = Pexpl — fs (T ds} (4) rotatipn ma(gr)ices. Fo(g)this purpose(3\)/ve define the foI]owing three
S matrices,Q75(y12), Qx3(y23), andQ33(y13) where for instance,

(3) i A ; .
where it is assumed that its initial matri&(s = ), is the unit Qi3(r19) is given in the form:

matrix and.?is the ordering operator. For a closed contour,

: . cos sin
the relevant ADT matrixA(I'), becomes independent of any 13 0 SIN¥1g

®) -
particular point alond" but depends of itself. This final matrix Qus7(r1d = _ .O 1 0 (10)
along the closed contour is designated adxhmatrix and takes Siny;3 0 COSy;3
the form

(the other two are of a similar structure with the respective
D) = Pexp[— y{rt(g|r) ds} (5) cosine and sine functions at the appropriate positions). One way
of presentingA®is20
It was shown that this matrix is diagonal (like the initial unit

matrix) but is not necessarily a unit matrix. For a real basis set A¥ = Q,,9Q,7Q,% (11a)
the diagonal elements d(I') are +1.1318 In addition it was
shown that the number of(1)’s, to be labeled as Kyas tobe which following the multiplication takes the form:
even (or zero}?

In this article we intend to present the genédak N ADT Cilis S12Co3 ~ C1oS15%s S1253 T C1oS18Cos
matrix A as a product of single anghé x N rotation matrices. A® = —=81,C15 Ci o3t 81553 Cis53 ~ Si81Cos| (122)
The resulting matrix becomes, in caseNf= 3, similar to the —S;3 —C135;53 C13Cy3

Euler matrix?® and therefore will be termed, fdt > 3, as the . .
extended Euler matri% In what follows this matrix is labeled ~ Here (and elsewhered; = cosfy) and sq = sin(yi). It is

asAM or simply A. important to notice that deriving the matrix® in this way
Before we relate to the general case we discuss two casesguarantees that the matrix is orthogonal (as it is a product of
namely,N = 2 andN = 3. three orthogonal matrixes).
I1.2. The Two-Dimensional System. A2)(y1,) is well-known The relevanD®-matrix is obtained fronA®), as before, by
to be of the form’ replacing they; angles calculated at the end point of the closed

contour (i.e.,ywj(s=solT') by ouqg(I).
A@ ) = cosyy(sll’)  siny (siI) 6 As mentioned earlier thdD®)-matrix is expected to be
(181D = _giny(siT) cosysT)) ©  diagonal, a condition that can be achieved if and onlyiT)
= nyr whereny; are integers (or zero).

whereyo(s|I') ist’ To obtain the threey angles, eq 12a is substituted in eq 2
and it can be shown that the three angles have to satisfy the
y1(ST) = — fs dsz,,(s|T) (7) following three coupled first order differential equatiéhs
So

Next we consider what happens when the confolbecomes V12 = ~T1p ~ 1Ny 151008y 1, T 718N Y1)
a closed contour. For this particular case, we define the angle VY3 = T,58IN Y1, — T,5€0SY 1, (13a)
a12(T), which is given in the form:

V12($IT) = ey () = § - ds73(SIT) ®)
] ) Next we examine, briefly, the possible signs of the diagonal
The angleasA(T') is also known as théopological phase. In elements ofD®. Because of the product in eq 1la, these
case the two states are isolated from the rest of the states thagjjiagonal elements take the foln

form the Hilbert space (this happens if in the given region all
i i 3) _ . .=

the NACTSs that connect tf;ese two states with rest of tEe Hilbert Dij( ) — 0;C0SM,COSa, j=n=m j=123 (14)
space are small enoughf? a1(I") becomes i.e.quI') = nx
wherenis an integer or zero. This situation is termed by uUs as \yhere all the terms that contain sine-functions are, obviously,
quantizationcondition—reminiscent of the BokrSommerfeld zero (sin nx) = 0)
quantization la#? ' but more relevant for spin states. This expression shows that tB$?-matrix, may have either

The above-mentioneB-matrix is obtained by replacing, i three ¢-1)s in the diagonal (it happens when all cosine functions
eq 6, the phase;(S|I), by its value at the end of the closed  4re gither positive or negative) or twe-{)s and one 1)
contour, namelyau(I). For the isolated case just mentioned, (which happens when one or two of the three cosine functions

Vy13= = (COSY19) (1550081, + 715N Y1)

the D-matrix become are negative). For the first case to happen, the contour has to
surround an even number o for each pair odjacentstates
D(T) = (_1 0) (9) (or not to surround angi) whereas the second case applies for
0 -1 all other situations. It is straightforward to see that according
where we assumed that the contdyrin eq 8, surrounds one  to this model K is either 2 or O as, indeed, is required. It is
point of conical intersectionc{). important to mention that eqs 14 were successfully applied for
11.3. The Three-Dimensional SystemIn case ofN = 3 we model systen?8® as well as for ab initio one¥*
encounter the matriA®), with nine elements. HoweveA©) The A-matrix can be written also in a slightly different form
has to be an orthogonal matrix where the ortho-normality
conditions require the fulfillment of six relations. This leaves AR =Q1,9Q,%Q, (11b)

three free unknowns which, according to Euler, are three angles
of rotation, namely,y12, y13 andy.s. Consequently, it was  which due to the lack of commutation relations yields a different
suggested to construct the 3-stAtenatrix as a product of three  presentation for thé\-matrix
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CiCi3 — S181553  S10s  CiSi3 1 S1CisSs
A® == 8,013~ C1 581553 C1oC —S1813F C1CisSs
—C3Si3 Sy C13Co3
(12b)

and a different set of equations for the three angigs v13,
andyzs:

Vy12= =T — taNy4(—T15C0Sy 1, + Tp5SiN )

VY23 = — (158N Y15+ 7,5C08Y ) (13b)

Vy13= (COSY,3) (— 115008y, + Tp8iN Y1)

In general, the two sets of equations yield different results
for the three anglesiz, y13, andy,s however, as long as we
are interested only in the elements of thenatrix, eq 13a and
13b are expected to yield identical results. In what follows eqs
13a and 13b are applied to deriapproximatesolutions for
the A-matrix and in this case we may get different results due

Vértesi et al.

v(QWo1) + QW) +
Q1) (VAN (15 AN (5. ) =0 (17)

where we mention thaA™ s itself an orthogonal matrix (it is
a product of orthogonal matrices) so th&MVAMN)T = [N,
Equation 17 can be further simplified by multiplying it from
the left-hand side b@{Y(y12)". Next considering any of the
two equations foy12 (we have only two equations but the values
of y12 are not necessarily the same), we get

Vyh =1, Z'Zj(li()v)/jk; i=12 (18)
]

whereZ{) = Z{)(y13,...yn-1v), namely none of them depend on
y12 and the prime sign (under the summation symbol) implies
that the summation does not contain the tejk) € (12) (in
other wordsz!), = 0).

As mentioned we have two different equations fap. As
an example we consider, explicitly, what happens in the case
of N = 3.

to the two presentations, but as will be seen, each of the solutions (1) For the cas&®(y13, y29) = Q(y19Q)(r29), it can be

applies for a differenphysicalsituation.
In principle we may derive more sets of equations (for other

permutations see ref 20b) but here, and in what follows, we are

interested only in those permutations where the first matrix on
the left-hand side iQ{Y(y1,). This choice guarantees thai,
is privileged by a differential equation where its own NACT,
712 is the isolatedree term. This fact ensures that whenever
the region under consideration contains one or several ¢ls2)
the corresponding2 angle has features which connect it, in a
straightforward way, withr1,. This feature is, of course, expected
when the region, surrounded by is dominated byr;, but, as
will be shown here, even in cases whgpis not the only NACT
in the region, still this particulay1, is dominated byr,.

I1.4. The N-Dimensional SystemLike in the previous three-

shown, employing eq 12a, that

1)
VVlz()__

Ty SiNY13VY o3 (19a)
(2) For the (permuted) cask®(y23,713) = Q9(y29Q(y12),

it can be shown, employing eq 12b, that

Vy1? = —7,+ Siny 3y, (19b)

Although eq 18 is an interesting result (and, following it, the

same applies to eq 19a and eq 19b), it is not in a practical form

for an arbitrary value oN. The main reason being that, fir

> 3 deriving the differential equations for thé(N — 1)/2 angles

is a formidable task. In fact it is much easier to derive the

state case, here too, we are interested in products similar to thosé\-matrix by solving the exponentiated line integral as given in
given in eq 11a or 11b, namely, where the first matrix on right-€d 4. However having the explicit elements of thematrix

hand side iSQ{¥(y12). Therefore, we treat thal-dimensional
case for aA-matrix given in the form

A(N)(Vlzy V13NN = Q(lNz)(Vlz)A(N)(Vlgi---O/Nle) (15)

where we recall that in general we haM@N — 1)/2 angles of
the typeyi; k > j as unknowns and tha(D(lNz)(ylz) is, for
instance forlN = 5, of the form:

Ccosfy;y)  sin(ysy)
—Sin(y;y) cosfy,)

00
-~ 00
QG =| o 0 10 (16)
0 0 01
0 0 00

Our next task is not to present the first order differential
equations for all theN(N — 1)/2 angles but only to derive the
equation fory;,. To achieve that we substitute eq 15 in eq 2,

V(Qg.’\é)(yﬂ)'&(N)(Vl&"'!VN—lN)) +
QR )AN (15 yn-) =0

perform the necessary differentiations, and then multiply the
outcome from the right-hand side b&()T; thus

does not necessarily yield the angle. Still while considering
the algebraic expressions of the elements of the various matrices
for N = 3, we revealed some interesting features which seem
to yield the requiredy;2 angle. In particular we get from eq
12a the following result:
S ) D |

Y12= 712 = —tan (Ay/A;) (20a)
As a result of this finding we may encounter two difficulties.
(1) From eq 12b we find another relation fpr,, namely:

Y12 = V12(2) = tanil(AlzlAzz)

Since there is no reason to believe that the two expressions yield,
in general, identical numerical values, the question to be asked
is which of the two values should be preferred. (2) The second
possible difficulty is related to the extension of these relations
for N > 3, or in other words: do these relations hold for~
3?

These two questions will be treated in the next section. For
this purpose we employ results obtained from a recent five-
state study related to the # H; system.

(20b)

[ll. The Derivation of the y1-Angle for an N-State
System

Il1.1. Comments Concerning ab Initio Calculations. The
NACTs and the potential energy surfaces (PES) required for
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Figure 1. ADT angles,y(fz) (see eq 20a and presented in the upper row of parts)/g\}]d;ee eg 20b and presented in the lower row of parts), as
obtained for a three-state Hilbert subspace. The calculations are done for the contours shown in the schematic section of the figure and the results
are presented as a functiongf{the polar coordinate). In each part are presented two curves one as obtained from eq 20 (the dashed line) and one
as solved by eq 13 (the full line). The more interesting results are shown in parts i and j, emphasizing the different characters of the two ADT
angles,y(llz? and y(lzz): the first ends up with @aopologicalphaser and the second with zero. As for the schematic section: we show the contours

along which were performed the calculations, the position of the two fixed hydro@gren¢l the position of the two different types @f: The

single (1,2)ci is presented in terms of a full square, and the two (2i8)are shown in terms of full triangles.

the present studies are calculated at the state-average CASSCF We usually report on results along circular contours and
level using 6-311G** (3df,3pd) basis 3& extended with consequently, in the present article, are discussed results related
additional diffuse functions. In order properly to take into to five circles. Four of them are centered at i point (the
account the Rydberg states we added, to the basis set, one position of the (1,2)i) with radiiq= 0.2, 0.28, 0.4 0.5 A. The
diffuse function and onp diffuse function in an even tempered fifth circle has a radius ¢= 0.3 A and is centered at a point
mannerz3® with the exponents of 0.0121424 and 0.046875, shifted toward the right from the (1,2)-point (designated as
respectively. We used the active space including all three x in Figure 1). The first two (out of the five) circles surround
electrons distributed on 9 orbitals. Usually five different only the (1,2)ci, the third and the fourth circles surround the
electronic states (depending on the case) namély,, P?A’, (1,2) ci and thetwo (2,3) cis and the fifth circle surrounds the
32A', 4A’, and BA' were computed by the state-average (1,2)ci andoneof the (2,3)cis.

CASSCF method with equal weights. Convergence test were The results of the various calculations are presented as a
carried out with respect to the number of states. All ab initio function of the polar coordinate;. We recall that the NACTs
calculations were carried out employing MOLPRO. Previous are vectors but we are interested only in tlagigularcomponent
studies on this system were presented in refs 22, 24, and 25z,(¢|0)/q wherer,j(¢|q) is given in the form:

We report here on results as calculated for the situation where
two Hydrogen atoms are fixed so that their interatomic distance T jk = @
is Ruy = 0.74 A and the third atom is free to move to probe ¢ !
the values of the NACTs at the various points in configuration
space. With this approach we detected the well-kn@gni- It is important to mention that the points ¢g= 0) and (qg
lateral D3, ci that couples the two lower states of this system, = ) are the ‘northern’ and the “southern” poles, respectively,
thetwo G, cis that couple the second and the third states and both located on the symmetry line (which is perpendicular to
a secons, ci that couples the fourth and the fifth state. Itis the HH axis). The various figures and mainly partshcof
important to mention that in the region inspected by us we did Figure 1 indicate that most of the “action” (i.e., strong variations
not find any (3,4)cis. The positions of the variouss are, in the NACTSs) takes place arourd = st the point closest to
schematically, shown in Figure 1. the HH axis.

%@kﬂj,w {LN} (21)
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IIl.2. The yir-Angle for a Three-State System.The nu- we somewhat extend the previous three-state case to cases which
merical study in this section is related #§) as calculated for ~ contain four and five states. However, this extension is limited
the product in eq 11a (presented in the upper row of sub figures) for certain aspects.
andy? as calculated for the product in eq 11b (presented in _In what follows we consider products of the type given in eq
the lower row of parts). In parts a, c, e, g, and i of Figure 1 are 15, namely products that have the rotation matrixfpriocated
compared results as derived by solving eq-384l line—with on the left-hand side for any of the possible permutations. As
those obtained by applying eq 28dashed line. In parts b, d, ~Was shown in section 11.3, this arrangement guarantees that the
f, h, and j of Figure 1 are compared results as derived by solving differential equation for any:, containsr; as the leading term
eq 13b with those obtained by applying eq 20b. The two main @ fact that yields the required information on the way is
features to be noticed are as follows: (a) The two curves in formed primarily by ther;, NACT (subject to disturbances
each part overlapompletelyindicating that the simple solutions ~ caused by other NACTS). _
in eqs 20a and 20b are relevant for deriving in each of the In contrast to theN = 3 case here we intend to extract the
situations. In other words, once tAematrix is given (namely, ~ two differenty;, angles from egs 20a and 20b only. Before
calculated employing eq 4) there is no need to solve eq 13 to doing that we verified two facts: (1) Féd = 4 we produced
derive they, angles. (b) The curves in the upper parts of Figure @l the 120 permutations ¢t™=%and the corresponding=*-

1 differ—in most casessignificantly from their counterparts ~ Matrices to see that indeed some of the permutations yield eq
given in the lower parts indicating that the twe, angles, as ~ 20a and some others yield eq 20b. For instance we find that
obtained for the two permutated products in eq 11, relate to NUMerous permutations yield, for the two first elements of the

different physical situations. first column, the following terms:

To understand the source for these differences it is best to
compare the results presented in Figure 1, parts i and j. It is
noticed that the curves in sub-Figure 1i behave similar to those (22a)
in the other eight parts presented in Figure 1, namely, their .
topological phases (their values at the end of the closed contour)2nd others yield
becomeaus(q) ~ 7 whereas the curves in Figure 1j end up
with aa2(g) ~ 0. The explanation is as follows: The variation
of each of the angles along a contour, known asfyen phase Az, = COSY1,C0SY,3COSY,, (22b)
is associated with a given eigenfunction and the value of such
a phase, at the end of a closed contour, is the correspondingout not the ones in eq 22a. It is well noticed that eq 22a yields
topological phasé®?’ (also called the Berry phase). With this eq 20a and eq 22b yields eq 20b.
interpretation in mind the1-curves presented in the upper parts ~ We also made sure that no other equations of the above type
of Figure 1 are the open phases related to the ground-stateexist from which one can derive, solely:, angles. The same
eigenfunction and the curves presented in the lower parts of procedure was repeated fbir= 5 and we obtained a similar
Figure 1 are the open phases related to the upper, first excited outcome, namely eqs 20a and 20b are also valid for this case.
eigenfunction. Next, in the first four cases presented in parts a, It is important to realize that these derivations are valid
c, e, and g (see also parts b, d, f, and h) the contours surrounddecause each permutation within the product (12)(13)(14)(23)-
the single (1,2ki and thetwo (2,3) cis. In these situations the  (24)(34) is expected to yield, numerically, the safenatrix.
topological phases of both, the lower and the upper eigenfunc- In Figure 2 are presented the angjas as calculated once
tions become~ 7, as indeed is the case (this particular aspect employing eq 20a (Figure 2, parts a, c, e, and g) and once
of the line integral is best explained in ref 20c; see Figure 5 in employing eq 20b (Figure 2, parts b, d, f, and h) for four
that reference and the relevant discussion). However, a differentdifferentN values, namelyN = 2, 3, 4, and 5. The results are
situation is encountered for parts i and j. Here the contour presented in four columnseach column refers to a different
surrounds, like before, the (1,2)but onlyone(2,3)ci. On the contour as shown in the schematic drawings at the top of each
basis of previous studié$*1%he topological phase for the lower ~ column.
state, like in the previous casesqisz but it becomes zero for Two main features are to be noticed: (1) Tixe-functions
the second, upper, state, as is expected in this situation (in thisare seen, approximately, to convergeNagcreases a feature
case, due to the (1,2) and the (2¢33, the sign of the second  to be expected. Fast convergence is achieved in case the contour
topological phase is flipped twice). surrounds only onei (see Figure 2, parts a and b). In all other

The fact that our procedure can distinguish between the two c@ses, the convergence is slower: It is noticed thatythe
kinds of they1, angle is encouraging because it enables to apply functions forN = 2 are always inadequate, but then already
the correct ADT angle for each process. To study the+(2) for N = 3, relatively well convergeg -functions are obtained.
transition we employd, as obtained from the product (1,2)- The only exceptions are{;-functions as calculated fay =

(1,3)(2,3) and to study the (2 1) transition we app'W(lzz) as 0.4, 0.5 A along the sho_rt interv_ah —0 <@ =x+ 9, manly
obtained from the (1,2)(2,3)(1,3) product. because of the strong interaction betweenthe NACT and

723~ NACT along that interval. This interaction affects also the
convergence fopd) but to a smaller extent.

A1 = C0SY1,C0SY13C0SY 14 Ay = SiNY;,COSY;53C0SY 1y,

A1,= —SiNy;,C0SY,3COSY

III.3. The yi1-Angle for Four and Five-State Systems.
Whereas all the details regarding the three-stagt@ngle could
be verified analytically (because thex33 A-matrix is given
explicitty—see eq 12) this advantage is usually not available
for those cases th&t > 3. For instance to derive the relevant In what follows we concentrate on forming the two-
A-matrix for a four-state system is already a formidable task dimensional diabatic PES matrix according to the prescription
because this case is defined in termsigfangles, and therefore  given in eq 1 where the required two-dimensioAamatrix is
it requires solving six first order differential equations (one for obtained fromA®)-matrices presented in eq 12a or (12b). The
each angle) that have to be derived from a matrix that is formed decision which of the two matrices to apply is made as follows.
by a product of six 4x 4 rotational matrices. In what follows  If the aim is to study the 1> 2 transition (namely the transition

IV. The Diabatic Potential Energy Surface
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Figure 2. ADT angles;/(llz) (upper row of parts) ang;l(fz) (lower row of parts) as a function @f calculated along the contours. The different curves
in each part were calculated for differdtvalues whereN is the dimension of the Hilbert subspace. Results are showN fer2, 3, 4, and 5. The
more important issue here is the large difference between the curves as calculdtes iand those foN > 2. Compare with Figure 1.

from the ground-state to the (first) excited state) thenAk
given in eq 12a and thg(llz) angle given in eq 20a should be
employed. If the aim is to study the-2 1 transition (namely
the transition from the (first) excited state to the ground-state)
then theA® in eq 12b and the'd angle in eq 20b has to be

employed (see discussion at the last paragraph of section 111.2).

We are aware that this procedure does not necessarily fulfill
microscopic reversibility but it is not clear to what extent

microscopic reversibility is really damaged. This has to be tested

in actual applications.

IV.1. The Two-State Diabatic PES Matrix To Study the
1 — 2 Transition. To study this case we emplay® given in
eq 12a from whiclA®@ is formed by extracting the 2 2 sub-
matrix in the upper left corner oA®. Thus

@ _ [ Cabrz Sz — C12513523)
A (_ S1C13 C1Co3 T $1581553 (232)

Next is formed the corresponding inverse matri(@) —%

A@y 1 L (012023+512813823 —312023+612813823)

C14Co3 $12C13 C1C13
(24a)

According to eq 1 the relevant 2 2 diabatic potential matrix
results from the expression

~ u
W = A(Z)(Ol 82)(A(2))‘1 (25)

In what followsW® is presented as a sum of two matrices:

W@ =w®@ 4+ Aw®@ (26)
Here
W@ = Ci'Up + 535Uy CrgSiollp = Uy) 27)
ClZSlZ(UZ - ul) C]_zzuz + 3122U1
and
—c 2
AW® = S1353 12512 2 |0, —u)  (28a)
Ca\ Sz G2

It is well noticed that as long ags is not too close tor/2
(so thatcyz does not become too small) the elementAg¥ @
are expected to be small (becayse ~ 0), and consequently
W® becomes therdinary diabatic potential matrix defined in
terms of a (single) ADTy{) angle:

W@ = Ci'Up + S3,°Uy CrgSiolty — Uy) (29)
C15S1(Uy — Uy) C122U2 + 5122u1
It is because of this interesting outcome that we decided to
define yY) (and accordingly, later, alsp'?) the N-state ADT
angle (see title of the article).
IV.2. The Two-State Diabatic PES Matrix To Study the
2—1 Transition. To study this case we empldy® given in
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eq 12b from whichA®@ is formed, as in the previous case, by To study this issue we consider eq 28a (and/or eq 28b) and
extracting the 2« 2 submatrix in the upper left corner 83, concentrate mainly oi,3 = €0S y23 (becausec,s appears in
Thus the denominatorof eq 28a). Since (co¥23)~! is the only
function which may attain large values (eventually even infinite
values, in case,s; = 71/2) we follow y,3 along various contours
in configuration space. From the second equation in eq 13a it
is obvious that ifro3 is zero or small enough along such a
and the corresponding inverse mat(ix?)-1, is contour,y»s is expected to be small and most likely stays (far)
away from /2. (we remind the reader that, based on our
o1 1 C1:Cos —5,,Cos experiencer;3<r,328 so that,r;3 can be ignored). In other
AY) " =— S,CiatC _ (24Db) words we expects to approachr/2 only along those contours
L1377 C1581553 C1C13 — $1551553 > ; .
wherer,3—NACT is large enough and this can happen only in
the vicinity of a (2,3)ci. Therefore, as long as the contour of
interest does not get too close to a (XB)y.3 is expected not

AQ — ( C12C13 ~ S1251353 S12023) (23b)

—S15C13 7 C1551553 C150o3

C13C23

Continuing in the same manner as in the previous section we

get for W®a s(gnilar expression (except that the ang@ is to change significantly and remaing). From eq 28a it follows
replaced byy;;) but a somewhat different expression for that not only the denominator is finite in such a case but the
AW® numerator— 0. Similar arguments apply foris.

The next question is related to the case that, indeed, the
S5 C1S12  —Sy, contour gets close to the (2,8) Can we justify ignoringAW®
T L o2 —cus (U —u)  (28D) iy such a situation? Including the close vicinity of the (28)
12 12°12 . . . . . . .

implies including the region wheng, is large. We remind the
reader that at the vicinity of (2,3) pointsthe surfacel,, most
likely, reaches its highest values. Consequently, for the case
under consideration, these (highest) values pfare assumed
to be classically closed (if this assumption is not valid then the
approximate diabatization has to be carried out for a three-state
system) and therefore adding the large valueA\f@ to the

AW® =
Ci3

It is well noticed that as long ag3 is not too close tor/2
(so thatcysis not too small) the elements W@ are expected
to be small (becausg; ~ 0) and consequentiy @ becomes,
as in the previous section (see eq 29), tndinary diabatic
potential matrix defined in terms of a (single) AD/'ffz) angle:

It is important to realize that in eq 28b it is not only t 25) large values ofV/@ (see eq 26) is not expected to affect the
differs fromy{Y but also the the two other angles, namely results.
and y23 differ from the respective ones mentioned in section  The conclusion of this analysis is that in general the elements
V.1 of AW® are small enough as long as the contours do not get

IV.3. Analysis. Usually the numerical part is devoted to too close to a (2,3Fi. It is true that being in a region that
comparisons betweeatcurateandapproximateresults. Inour  contains such ai, causesAW® to attain large values but this
study this implies comparing the approximate and the correct kind of a region is most likely classically closed so that the
diabatic potential matrix elements. However from the presenta- exact values of the potentials are not expected to affect results,
tion of the approximate diabatic potential matrix (see eq 1) itis such as scattering cross sections or spectroscopic cross sections.
obvious that the elements of this matrix and the corresponding |n other words since such a region (near the (2iBjs already
elements of the so-calledccurate Nx N matrix are not  excluded by the originaidiabaticpotentialu, adding the values

necessarily similar. Moreover going over the derivation, the of AW@ is not expected to significantly affect the calculations.
relevant elements of the two matricesnnotbe similar because In the next section the above ana|ysis is carried out for the

we ignored all thoseadiabatic potentials which, for a given  {H H,} system.

energyE, are unreachable (or classically “closed” ) arguing that ~ |v/.4. A Numerical Study of the New Way of Diabatization.
doing that does not affect ttemlutionof the diabatic (nuclear)  To perform the numerical study, we use the two (1,2) ADT
SE. No claims were made regarding the resultdigbatic ~  angles given in eqs 20a and 20b, fér= 3, and calculate the
potential matrix elements. Therefore, comparing the two kinds elements ofAW® at several regions of interest (see eq 28a

of diabatic .ma:;[riﬁ elemenés is (rinea?inglgsr,]s. or th . and eq 28b). To calculataW® we need all three angles?,
As is noticed the procedure developed here for the cade of - "oo . - or @ ) “andy.s for the second case). Having,

= 3 yields two 2x 2 diabatic potential matrices: (a) the one ; . .
y g b (@) for mstancey(llz) we employ the second and the third equations

given in eqs 26-28a with the main disadvantage of being . 13a t lculat d hich th loved
nonsymmetrical; (b) the one given in eq 29 which is symmetrical " €9 9@, 10 caiculalgzs andy1s which are then employed,

but with the main disadvantage of being only approximate. t0gether withy (3, to calculateAW® (see eq 28a). _
Similar situations are expected for > 3. The res_ults, to be discussed next, are presented in a series of
No doubt, that for practical purposes, one would prefer the Parts of Figure 3. In the parts along the upper row of Figure 3
symmetrical diabatic potential matrix given in eq 29. The are given the two loweadiabaticPESs of the Ht- H, system
question is if we can establish simple means to determine to &S calculated along fIVE_' different circular contours (see Flgur_e
what extent this matrix is relevant. For instance one way to 1). In the second and third rows are presented the corresponding
achieve that is to calculate the elementa\W¥@ and compare four elements of_tthW(z) matrix as calculated along the same
them with u, and u, in the regions of interest. However the contours. In the intermediate row of parts are shown the matrix
matrix elements ofAW® are, in general, not available (in elements as calculated employing} (and the corresponding
particular wherN > 3), and therefore, this approach cannot be Y2sandyizangles) and in the lower (third) row those calculated
considered as practical. Nevertheless we suggest to carry ouemployingy(fz) (and the corresponding; andy13 angles).
this study in case foN = 3 (the case for which we have these The following is to be noticed:
elements available), mainly in order to reveal where and to what (1) The two firstcolumnsare related to situations where the
extent the elements ?W® are large and in this way eventually ~ circular contour (which is centered at the (1) does not
to be able to estimate the relevance of the proposed diabatizationsurround any of the (2,3)is. As a result the elements AfV®?
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Figure 3. Adiabaticpotentialsu; andu, and the elements of the diabatic correction matti¥y® as calculated along the contours presented in
Figure 1. The first (upper) row contains in each part, two curves relateg(¢dq) andux(g|q); in the next two rows are presented, in each part,
four curves describingWi1(¢|q), AWi@|q), AW21(¢|q) andAWaA(@|q), respectively. The curves in the intermediate row were calculated, employing
eq 28a, fory(llz) and the correspondingi; andy,; angles (obtained from eq 13a) and the curves in the last row were calculated, employing eq 28b,
for y(fz) and the respectivgiz andys angles (obtained from eq 13b). The calculations are done for contours given in Figure 1.

are relatively smatta few millielectronvolts for the inner circle  implement. This procedure takes into account the two main

and, at most, a few hundreds of millielectronvolts for the second ingredients related to diabatization: (1) The sideof the

circle. These values have to be compared with values ehd smallest (relevant) group of states that forms a Hilbert subspace

Uy, calculated along the same contours. It is well noticed that (this fact enforces the dimension of the ADT matrix to bE).

in general the largest values &iW®, are located along the  (2) The total energjE which determines the number of open

same angular intervat — 0< ¢ =<z + 0 where the largest  states), within this group ofN states. The main emphasis in

values ofu; andu; are to be found. It is important to mention  this manuscript is on the case thsis arbitrary butp is equal

that the values ofi; andu, are between one and 2 orders of to 2. The various derivations as well as the final results are

magnitude larger than those afw®. accompanied by numerical examples extracted from ab initio
(2) The next three columns are related to situations where calculations carried out for three- to five-states of the-HH,

the circular contours surround the two (2¢33. We encounter,  system.

here, the same situations as in the previous case except that the |5 many situations where the energy is not too high it is

values of both, those af, andus and those oAW® are much enough to solve only two coupled SEs and for this purpose it

larger. Again, the values afW® become large only along the  is required one ADT angle. However the ADT angle and in

above-mentioned angular interval but are, always at least, 1 ordenarticularly the topological (Berry) phase depend on other states

of magnitude smaller that those afy and u,. The only — yithin the Hilbert subspace. Our procedure is unigue in the sense

exceptions are the rare cases whegor yi3become (exactly)  that it is capable to incorporate correctly, within the two-state

i/2 which happens only along circles that approach very closely gigpatization, the effect of all the states that form the Hilbert
any of the (2,3)is as for instance wheq = 0.3,0.4 A. (see subspace.

Figure 1) but not anymore along the circle for whighk= 0.5
A (in this case the contour is located further away from the
(2,3) cis so thatyzs (y13) cannot becomer/2 anymore.

It is important to mention that other two-state diabatization
procedures are available for systems where 2.25 However,
in contrast to our procedure, they do not include in the
calculations the effect, of upper states. In other words, they
solely depend on the two states under consideration. This fact
In this article we discussed a new diabatization procedure may lead to inadequate results due the application of the
which is expected to be reliable and, also, relatively easy to inappropriate ADT angle. Consider, for instance, a three-state

V. Conclusions
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system governed by one (1,2) and one (2,3xi. If we treat Romero, T.; Aguilar, A.; Gadea, F. X. Chem. Phys1999 110, 6219.
only the two lower states (and ignore the third state) then the  (10) Child, M. S.Adv. Chem. Phys2002 124, 1.
i iqi i (11) Adhikari, S.; Billing, G. D.Adv. Chem. Phys2002 124, 143.
topological (Bgrry) phase related to the sgcond state is |den.t|anW0rth’ G. A Robb. M. AAds, Chem. Phys2002 124 355,
to the topological phase related to the first state namely, it is L . .
. . (12) Billing, G. D.; Baer, M.; Mebel, A. MChem. Phys. Let2003
equal torr (for contours that surround the (1,&). However if 372 1.
we consider all the three states then, for those contours that (13) Baer, M; Lin, S. H.; Alijah, A.; Adhikari, S.; Billing, G. DPhys.
surround both, the (1,2) and the (2,3, the topological phase, = Ren. A200Q 62, 032506-1.
related to the (same) second state, is either zero or a multiple f(ér‘]l) @ ‘?asr’ MtAdU-ghem-_ngﬁool\ﬁ 12E‘1" §9C(FE’2:!338€V’ M'FlanTtheO?:/L
of 27 but notzr (or an odd multiple ofr).1° This fact does not  {ggz. vol i Ceha;plt%r: o ramiesaen A, B6, LRL: Boca Raton,
affect the 1— 2 transition probabilities but, is expected to affect (15) Engiman, R.; Yahalom, YAdy. Chem. Phys2002 124, 197.
the calculated 2~ 1 transition probabilities. (16) Baer, M.; Vertesi, T.; Halasz, G. J.; Vibok, &.Phys. Chen2004
108 9134.
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