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Two competing theories are used for bridging the gap between the nonadiabatic and the deeply adiabatic
electron transfer between symmetric parabolic wells. For the high friction limit, a simple analytic interpolation

is proposed as a reasonable alternative to them, well-fitted to the results of numerical simulations. It provides
a continuous description of the electron transfer rate in the whole range of variation of the nonadiabatic
coupling between the diabatic states. For lower friction, the original theories are used for the same goal. With
an increase in coupling, the cusped barrier transforms into the parabolic one. Correspondingly, the pre-exponent
of the Arrhenius transfer rate first increases with coupling, then levels off approaching the “dynamic solvent
effect” plateau but finally reduces reaching the limit of the adiabatic Kramers theory for the parabolic barrier.
These changes proceeding with a reduction in the particle separation affect significantly the spatial dependence
of the total transfer rate. When approaching the contact distance, the exact rate becomes smaller than in the
theory of dynamical solvent effects and much smaller than predicted by perturbation theory (golden rule),
conventionally used in photochemistry and electrochemistry.

The electron transfer rate is a fundamental property used in
the theories of intramolecular and intermolecular reactions in

E1 E,
dense medi&* At high temperatures, the system motion is |
adiabatic everywhere except at the crossing point of the 2v
intersecting energy levels where the electron tunneling occurs. !
For electron exchange reactions, the potential surface consists U

of the two symmetric diabatic energy levels, which are com-

monly assumed to be parabolic (Figure 1). The free energy gap ' ' 2'1 éz_ E,

for electron transfer in both directions is zero, and the transfer
rate is given by the conventional Arrhenius equation:

Figure 1. Energetic scheme of resonant electron transfer.

all of the results and their regions of applicability but does not
W=ke UV y=1/4 (1.1 provide bridging between them. Particularly, the variation of
the prefactork with the nonadiabatic coupliny at a fixed

Here,U is the energetic height of the crossing poiny, i2 the dissipation strength (in the vertical cross-section of the domain
nonadiabatic splitting of the energy levels 1 and 2 at this point, from bottom to top) is due to the monotonic increase of the
A is the reorganization energy of transfer, dad= 1. coupling,

The preexponential factok, depends on the nonadiabatic
coupling and the dynamic of motion along the reaction V(r) = Ve M (1.2)
coordinate. The evaluation of this factor constitutes a complex

problem that cannot be solved universally within a single theory. with reduction of the inter-reactant separation (up to their closest
A number of theories have to be used to cover the whole domainapproach at = o). Passing this way at high friction, one starts

of k(V,y) wherey is a friction along the reaction coordinate. from the nonadiabatic perturbation theory subregion, where
This two-dimensional domain was used in a few wérkso transfer is limited by tunneling, crosses the intermediate
indicate the results of different theories and their mutual borders subregion of the dynamical solvent effect (DSE), but finishes
as shown in Figure 2, taken from ref 7. This figure establishes in the adiabatic subregion where the reaction is controlled by
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\Y space, which became known as the dynamical solvent effect,
; = , was reproduced in a number of publications and observed
T KRAMERS é%y%’ experimentally?® However, with an increase i, DSE gives
yYvy B way to the well-known Kramers result for the parabolic barrier.
L A T v y The latter is slightly different from DSE, which is actually its
@ analogue for the cusped barrier:
ENERGY HIGH FRICTION i
ACTIVATION kose = 1/t A/ 60T for the cusped barrier  (1.5a)

1 /2 .
Kram = A a2y for the parabolicone  (1.5b)

T @
2T . -
In the present work, we focus mainly on the large friction
PERTURBATION THEORY g (strong dissipation) region where the alternating formitas

kose, andk.am follow one another with increasing. There is

Figure 2. Entire domain of theoretical definitions of electron transfer 2SO the more general expression derived by Zusman bridging
pre-exponenk(V,y) given in ref 7. The vertical dashed line corresponds  between the first two:

to the valuel = 40T used further on. ) ]
_ kerkose  [kpr  weak nonadiabatic
diffusion to the crossing point. In each subregion, there are Knon = Koy + kose_

expressions fok, which differ from one another. The depen-

dence of the preexponential factiiv(r)] is an essential part  This is an exact solution of the sudden modulation equations
of the spatial dependence \{(r) given in eq 1.1. As an input  ysed in refs 5, 14, and 15. There, the transfer was considered
data used in the theories of intermolecular tran3fét,has to as nonadiabatic but weak where the perturbation theory holds
be continuous im and not composed from a few pieces related and strong where it gives way to DSE. Later on, the two
to different theories valid at different distances. The main goal expressions (15) were also br|dged by Considering both of them
of the present work is to bridge these two pieces together to a5 adiabatic transfer (along a quasi-ballistic mode) over either
get a single continuous formula for the requitglt) andW(r) the cusped barrier or the parabolic one. The former transforms
dependencies. It should be stressed that the urgent necessity tg) the latter with an increase of the level splittiny. 2This
match the Fermi Golden Rule and Kramers high friction theory, matching resulting in the general expression for the diffusion-
including DSE, which separates them, was recognized long ago.assisted reactiokpar Was first made by Calef and Wolyrfes

At first, it was realized in the well-known Calef and Wolynes  and later by Starobinets, Rips, and PoltaRhese approxima-
work® and then by means of the Pollak “variational transition tions will be considered in the next section, and the Simp|e

(1.6)

kpse strong nonadiabatic

state theory” (VTSTJ 2 In what follows, we will rely upon  interpolation formulas will be introduced for the large friction

these two alternative approaches to the problem at hand.  |imit. In section Ill, these formulas will be bridged with that
Although the transfer is assisted by the system delivery to for perturbation theory for getting the fin&VV) and corre-

the crossing point, at sufficiently smaW, it is limited spondingM(r) dependencies. In section IV, we will do the same

everywhere not by this motion but by slow tunneling with the - byt will account for the spatial dependence of the reorganization
rateker. The latter is given by the Fermi Golden Rule (second- energy peculiar for highly polar solvents. In the conclusions,
order perturbation theory developed in ref 13; see also eqgs 2.37ye will summarize all of the results and outline the remaining

in ref 1 and 1.7 in ref 5): problems.
) It should be emphasized that in this paper we focus on high
Koy = Vo (1.3) temperature, high barrier electron exchange reactions in Debye
T AVAT ' polar solvents. This implies that the reaction is thermally

) activated with electron tunneling proceeding in the vicinity of
However, at largelV, the tunneling ceases to control the  the crossing point of the diabatic potential surfaces. The solvent
reaction giving way to either energy activation at low friction  mades can be treated classically (nuclear tunneling is negligible).

(v < w) or free vibrations at moderate friction (with the well  gyrthermore, the effect of the high frequency quantum solvent
frequencyw/27). At even larger values of the friction, the  podes is neglected.

reaction is controlled by diffusion to the crossing point along

_the reaction co_ordinate_z. The last phenomenon was discovered|. Diffusion-Assisted Reaction

independently in two simultaneously published papers, refs 14 . . . .

and 15. The latter is addressed rather to the inner sphere low, 1 N€ maiching alternative adiabatic results (1.5) allows cover-
frequency vibrations such as in H-bonded complexes in water, "9 the whole domain of diffusion-assisted transfer. An impor-
studied later by pumpprobe spectroscop-1® The former tant generalization of this kind made by Calef and Wol§nes

addressed more specifically the outer sphere electron transfer€Sults in the following equation for the pre-exponent:

in Debye polar solvents where >
W J J
== 1+ ——— 2.1
y =’ (1.4) kew =2, [ N7 270 /_anJ (1)

Heret,_ = 1p ed/e is the longitudinal relaxation time of dielectric ~ where
polarization related to the Debye relaxation tine through

the ratio of the opticaldy) and static €) dielectric constants. _ VT 2T i _ 2
Later on, the phenomenon of diffusional control in the reaction AvA)=e 0 dyex AT Y+ (M| 22
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Figure 3. Correction factor for a cusped barrier ralg,as a function
of the reorganization energy.

and the dimensionless dissipative parameter

2T\y
In general, the theory of Calef and Wolynes is valid from the

intermediate (TST) to high friction (DSE) region (see Figure
2), so that

(2.3)

)]

or = Kast vl < VAIAT (a>2)
Kew = oo - 3 o (2.4)
7 B =0

but it is the best for the highest available friction (et 0).

This is actually the case in which we are mainly interested.
In this particular case, the motion along the reaction

coordinate to the crossing point is diffusional but it delivers

the system to either a cusped or a quasi-parabolic barrier

depending on whether the level splitting at the point is small or
large, respectively. In the cusped barrier limit— 0), the
expression (2.2) reduces to the following one:

J(0,2) = — 7i VAIAT e "*Terf(ivVAIAT) = J(1)  (2.5)
AlthoughJp is real and positive, it is not equal to 1 at any finite
barrier height/4, that is in generak. = kpse even atv— 0.
As seen from Figure 3Jo approaches unity only a&—co.
Otherwise

kpseJo(4) = Keusp V—0

1 [ (2.6)
5V —l=kppg V@

2ntl
The latter result is the more precise Kramers formula for a
parabolic barrier. It differs slightly from its simplified version
(1.5b) obtained for ¥ < 4. If V is not negligible (although
smaller thart/2 = 2U), thenkpar should be used instead of eq
1.5b. Unlike the latter, it is nonlinear in théT/V coordinate
of Figure 4.

km:
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Figure 4. Pre-exponerk of diffusion-assisted electron transfer between
the limits of cuspedT/V > 1) and parabolicT/V < 1) barriers. The
Kramers result for the latter is shown by the inclined dotted line while
the horizontal dotted and dashedbotted lines represent the DSE results
for A = o and A = 40T, respectively. All other curves are the
following: our interpolation (solid line), Calef and Wolynksfor high

and moderate friction (dashed lines), and VTST theory for the latter
one (dash-dotted). The points represent the exact results obtained in
ref 11 by numerical simulations for large. (= 0.01) and moderate
friction (oo = 1.0).

transfer over the barrier of arbitrary shape: from a cusped to a
parabolic one. As can be seen in Figure 4, this interpolation
not only approaches both these limits as expected but between
goes through four points numerically calculated in ref 11.

In the relatively low friction region, the better alternative to
the Calef and Wolynes approximation is provided by VTST,
which represents the pre-exponent in the following form:

P

 _P [T
VIST 277, 'V 2aT

and P = P(a, V) has to be determined by solving the
optimization problem as described in ref 11. Making this
numerically, we found that the VTST cunkéV) is very close

to the four green points obtained for lower friction by numerical
simulations made in ref 11. There, the reactive flux method
was employed for the integration of the Langevin equation of
motion using the velocity Verlet algorithf3.

The black points in Figure 4 were calculated o= 0.01,
that is fory/w ~ 45 atA/T = 40. This friction is large enough
to be well-approximated by the Calef and Wolynes (CW)
expression fok.. As for the green points, they were obtained
in the same way and for the said but for a. = 1 wheny/w
~ 4.5. Here, we are very close to the boundary of the high
friction region. As seen from Figure 2 in our cadéT(= 40),
this border is located at/w = VA/AT = V10, that is far to the
left from the cross-sectiony/w = 45 to which we mainly
address. The green points for the modest friction are somewhat
better approximated by VTST than by the CW theory, while
the black points for the higher friction are equally well-
approximated by the original CW theory and our interpolation

(2.8)

Itis easy to interpolate between the opposite limits represented(2.7). However, the latter will be solely used further on just

in eq 2.6 to get a simple analytic alternative to the Calef and
Wolynesk, from eq 2.4:

1 A—2V z{kcusp atv<T
A 87(2Td2 + 7V)

Kpar = Koar atVssT 2.7)

because of its relative simplicity.

[ll. General Interpolation

As a matter of fact, the cusp limit of either approximation
(2.6) or interpolation (2.7) is never achieved in reality because

This is the pre-exponent of the diffusion-assisted rate of electronat small V the limited stage of the transfer becomes not a
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Figure 5. Solid curves are our interpolation (3.1) between the weak rA

tunneling and the diffusion-assisted transfer. The former is given by Figure 6. Pre-exponenk in different theories as a function of the
the perturbation theory (PT, dashed line) while the latter is given by interparticle distance at large frictiog/p = 45) andV, = 0.138 eV,
the Kramers and DSE approximation (dotted lines). The lowest solid L = 1.24 A.

line is our interpolation at high frictiono( = 0.01, y/w = 45) while

the upper dotted horizontal line over it represents the DSE approxima-
tion. Above them there are the similar lines for the lower frictians

1.0, ylo = 4, 5). The bottom vertical lines indicate the lower limits
for the argument (3.13 and 0.43) accessible in two systems studied in
refs 23 and 24, respectively.

To get an impression of what happens for lower friction, we
used the same approach substitutipg: in the Zusman formula
(1.6) by eitherkcw from eq 2.4 orkyrst from eq 2.8:

_ terkew o Kerkurst
ket + Kew Ker + Kyrst

Both of these results are also shown in Figure 5. The discrepancy
between them is within the limits of accuracy of both ap-
proximations. The electron transfer rate increases with decreas-
ing friction due to acceleration of the motion along the reaction
coordinate. At a further decrease of friction, this motion becomes
ballistic, and the transfer rate reaches its upper limit established
by a platealk = krst = w/27. This plateau is not shown in
Figure 5 because it is too high. Furthermore, we are interested
in quite the opposite limit of the large friction available, where
our interpolation (2.7) is the best.

In general, the importance of the diffusion control of the
transfer increases with the increasing nonadiabatic coupling at
contact. This effect is very impressive, especially if considered
in real space. Using expression 1.2, we transformed into this
space (Figure 6) the result obtained for the large frictidm
= 45, It should be noted that in the vast majority of papers on
intermolecular electron transfer, only the perturbation theory
was so far used? This is reasonable if either the electron
coupling is much weaker than in the present example or the
closest approach distance is much larger( 10 A). In ref 24,
for the first time, these conditions were shown to be broken in
the system studied experimentally. There, only the use of the
Zusman eq 1.6 instead of the perturbation theory allowed us to
obtain a reasonable fit to the experimental data. However, Figure
is not too large iV < Vo < T, which is usually the case. For 6 show_s that bein_g better th_an perturbation theory, the Zusman
instanceT/V; calculated from the contact transfer rate obtained 2PProximation still overestimates the transfer rate at short
in ref 23 is equal to 3.13. As seen from Figure 5 at this point dlstancgs where t.he.t.)arrler becpmes parabolic. For attainment
(in contact)k is only half of the perturbation theory value and ©f the highest reliability of the fitting, the use of the present
this difference reduces quickly with increasing intermolecular th€OrY is essential. In the following section, we will see how it
distance. Only recently the system was encountered (peryleneChanges the real rate of transié(r) given by eq 1.1.

+ TCNE) where the contact coupling is larger thBmamely,

diffusion to the crossing point but an electron tunneling. This
means that the adiabatic theory should give way to the
perturbation one as DSE does in the Zusman formula (1.6).
Hence, to get the interpolation valid at adywe just have to
substitutekpse in this formula forkpar from eq 2.7:

— I(PT I(DAR
kPT + kDAR

At small V, this constant is equal tibr, which is independent
of friction unlike the longitudinal relaxation time;, which
increases withy. At given o = 10', we obtain from the
definition (1.4):

k k (3.3)

k (3.1)

1

w

Y
0.0220 = 2.2 x 10" st aty/w =45 (0. = 0.01)
0220 =2.2x 10%s ' atylo =45 @=1)

40

|

Correspondingly, the height of the DSE plateau is higher the
smaller is the friction (see Figure 5), but this plateau is never
achieved byk(V), which lowers with increasiny approaching
the Kramers limit for the parabolic barrier. As a resitis
never as high as its DSE value but the very existence of this
plateau as well as Kramers limit greatly reduces the aétaal
compared with PT. However, the real deviation from the letter

(3.2)

T/Vo = 0.432* There instead of the perturbation theory néter
the Zusman formula (1.6) was used to account for DSE.
However, at the highest = Vy, even this correction is not

IV. Transfer Rate in Polar Solvents

The reorganization energy employed in the foregoing analysis

was considered as a distance-independent parameter. This is

enough. As seen from Figure 5 at this point, the Kramers high true only for in nonpolar solvents where the inner sphere

friction region is actually reached where the trkigs twice

contribution to the reorganization energy is the dominant one:

smaller than its DSE alternative, not speaking about a much A = 1j; = const. In highly polar solvents, the situation is the

larger perturbation theory value.

opposite: the inner sphere contribution can be neglected as
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0.000 Figure 8. Space dependence of the transfer rates calculated with
5. perturbation and Zusman theories and present interpolation.
0.16 - significantly distorted, if the barrier reduction B(r) or A(r)
012 dependence is ignored. In such a case, the kinetic rate constant
"» 0081 ko= fW(r)dr
4
0.04+ can be also overestimated as wel\gobtained by fitting the
0.00 theory to the experimental data. Fortunately, the dispersion of
5.0 reorganization energy is usually taken into accétisind the
lowering of the activation barrier was also accounted for when
_ ) ) necessary?
Figure 7. Pre-exponent, exponent, and their proditas functions The diffusional control of the tunneling so far was considered

of interparticle distance with (solid lines) and without (dashed lines)

) U only with the Zusman theor3#2>Now, we can estimate what
accounting for the space dependence of the reorganization energy.

is the difference between this and the present theory. In Figure
8, the presenW(r) is exhibited in the larger spatial interval
compared with the outer sphere reorganization energy, whichthan in Figure 7 and compared with the Zusman rate and that
changes with distance between reactants according to the well-obtained using the Golden Rule (perturbation theory). Both our
known law?34 and the Zusman theories, which account for the diffusional
control of the tunneling, and the rates of transfer at 10 A
Ar) = Ao(2 — alr) (4.1) are systematically lower than predicted by the perturbation
. L theory. This difference ranges up to 3 orders of magnitude at
In acetonitrile, the contact reorganization enetgy= 1.15eV. 1o closest approach distance. The difference between the

a“‘?' the average distance between contacting reactants & . Zusman and our results is less pronounced but still runs as high
A, if these are perylene and tetracyanoethylene (TCNE) as in as 3— 4 times atr < 6 A.

ref 24. Special attention should be paid to the deviation of the true

Take into account that th&(r) dependence makes the pre- \y) dependence from its popular exponential approximation:
exponentk slightly larger in the adiabatic near contact region

but smaller at larger separations, where the transfer is nona- W(r) =W, g (o) (4.3)
diabatic (Figure 7). In parallek(r) dependence is responsible 0
for the increase ob)(r) = 4(r)/4 whose contact value 1§(0) In the limited range of distances, this simplification leads to a
= Lo/4, while at infinite separation itis twice as largei(~) = different and sometimes nonphysical value % and|. In
Ao/2. As aresult, the transfer rate particular, near the contadtcould be smaller thah, but in
Ar) the medium larger than it and only ase, the identityl = L
W(r) = k(r) ex;{ - [T - V(r)] /T} (4.2) is reached. Too large values bometimes reportéé2° are

usually identified withL but associated with electron super-
decreases with distance not only due to the pre-exponent but to€Xchange, which dominates the direct exchange of an ele€tron.
increasing the activation energy as well. However, it also may be an indication of too strong coupling,
Another important factor that affects the activation energy is resulting in diffusional control of the transfer at short distances,
making the dependence of the rat4r) on the distance less

the nonadiabatic coupling(r), which increases when approach- .
ing contact. As a result, the contact Arrhenius factor is Pronounced and leading to a natural excess over L. For

significantly enhanced %y > T, although it reduces sharply instance, the *locall = — 2 (d InW/dr)~* reaches In our case
with increasing the inter-reactant distance. This effect is 1-67 A (atr = 8.4 A) as compared to the true tunneling distance
dominant at short distances wheve > T, while at larger L = 1.24 A (atr—co).
separation, the increase &) contributes mainly to reduction
of the Arrhenius factor.

The same tendency manifests itself in the reductiow(, On a particular example of the resonant electron transfer, we
which is the product ok(r) and ther-dependent Arrhenius factor  have demonstrated that the Zusman account for the dynamical
(Figure 7). The spatial dependence of the transfer rate is solvent effect is insufficient for determination of the transfer

V. Conclusions
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rate if electron coupling at contact is too strong. Zusman'’s (2) May, V.; Kihn, O.Charge and Energy Transfer Dynamics in

expression was generalized using the original interpolation Molecular Systemsiley-VCH: Berlin, 2000.
1e5a M nierpore (3) Burshtein, A. I Ady. Chem. Phys200Q 114, 419.
between DSE and the adiabatic Kramers limit for high friction. (4) Burshtein, A. I.Ady. Chem. Phys2004 129, 105.

The same was done for moderate values of the friction using  (5) Burshtein, A. I.; Yakobson, B. IHigh Energy Chem1981, 14,
two theories of diffusion-controlled electron trans¥ét. The 211 (Khim. Vysok. Energl98Q 14, 291).

e . . (6) Burshtein, A. I.; Zharikov, A. AChem. Phys199], 152 23.
present theory allows specifying the continuous distance (7) Burshtein, A. 1.; Georgievskii, Yul. Chem. Phys1994 100, 7319.

dependence of the transfer rate from the infinite reactant  (8) calef, D. F.; Wolynes, P. Gl. Phys. Chem1983 87, 3387.
separation and up to their closest approach where the maximal ( fé% Epllaki EI'DJ'IICIr(]eEmj Pgrx]lsl99gh9z,1 ééé(sioa 010
electron coupling is reached. Ips, 1, Pollak, EJ. Chem. Phy -
o . (11) Starobinets, A.; Rips, |.; Pollak, B. Chem. Physl996 104, 6547.
A|th0U9h our analysis is quam't.aﬂve On!y fpr the r?SQnant (12) Pollak, E. InTheoretical Methods in Condensed Phase Chemistry
transfer (with energy gapG = 0), it is qualitatively valid in Schwartz, S. D., Ed.; Kluwer Academic Publishers: Dordrecht, 2000; pp
i < ; i 1-46.
the normal region{AG < 1) provided the transfer barrier (13) Levich, V. G.Ady. Electrochem. Engl965 4, 249,
(14) Zusman, L. DChem. Phys198Q 49, 295.

(AG + 1)2 (15) Yakobson, B. |.; Burshtein, A. Chem. Phys198Q 49, 385.
Uus——— (5.1) (16) Burshtein, A. I.; Chernobrod, B. M.; Sivachenko, A. YJuChem.
a4 Phys.1998 108 9796.
(17) Burshtein, A. I.; Chernobrod, B. M.; Sivachenko, A. YuChem.
does_, not differ significa_ntly fromi/4. The sitl_Jation changes Ph{féiggarslﬁt%iﬁ?%'ll; Sivachenko, A. Yul. Chem. Phys200Q 112,
qualitatively only in the inverted Marcus regior-AG > 1). 4699.

There, the dynamica| solvent effect gives way to the Sharp (19) Burshtein, A. I.; Sivachenko, A. Yul. Phys.: Condens. Matter

adiabatic cutoff of the transfer rate when electron coupling 20(()20)12,Zas7rién L. DZeits. Phys. Chenl.994 186, 1

becomes too large. This situation was quantitatively described (21) Haggi, P.; Talkner, P.; Borkovec, MRev. Mod. Phys199Q 62,
in ref 31 by eqs 53 and 28, which constitute an analogue of our 251.

egs 3.1 or 3.3. A more complex situation arises at the boundary 0x(f§53 Sgﬁ/”e'rs'\i/'w 'F:’,'r;egis',de,\?'e‘;}l’vYDo'rkJ‘igg’”ter Simulation of Liquids

between the normal and the inverted region {atG = 1), (23) Gladkikh, V. S.; Tavernier, H. L.; Fayer, M. D. Phys. Chem. A
where the electron transfer is activationles$ & 0) and 2002, 106, 6982.

nonexponential2 The latter case deserves special consideration Vaﬁztﬁéyeﬁ‘gki}‘;% \S/ g-ri]eBr:]”SA';é%iz’ 1Ada|';6A62£7JUIO’ G.; Pages.; Lang, B;
as well as the phonon-assisted electron transfer in the inverted (25) Gladkikh, V. S.: Burshtein, A. I.; Feskov, S. V.. lvanov, A. I.:

region, which lowers the barriers, making one of the channels vauthey, E. In press.
activationless:# (26) Killesreiter, H.; Baessler, HChem. Phys. Lettl971, 11, 411.

: : (27) Kuhn, H.J. Photochem1979 10, 111.
As already mentioned, our treatment of the nuclear motion (28) Bazhin, N. M.; Gritsan, N. P.. Korolev, V. V.; Kamyshan, S.V.

of the solvent is classical, which is appropriate at high |ymin.1987 37, 87.
temperatures. At lower temperatures, nuclear tunneling has (29) Paddon-Row, M. NAcc. Chem. Res.994 27, 18.

; i (30) Newton, M.Chem. Re. 1991, 91, 767.
important physical effects on the electron transfer rate and (31) Georgievskii, Yu.; Burshtein, A. |.; Chernobrod, B.Chem. Phys.

should be taken into accouf#3* 1996 105 3108.
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