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Two competing theories are used for bridging the gap between the nonadiabatic and the deeply adiabatic
electron transfer between symmetric parabolic wells. For the high friction limit, a simple analytic interpolation
is proposed as a reasonable alternative to them, well-fitted to the results of numerical simulations. It provides
a continuous description of the electron transfer rate in the whole range of variation of the nonadiabatic
coupling between the diabatic states. For lower friction, the original theories are used for the same goal. With
an increase in coupling, the cusped barrier transforms into the parabolic one. Correspondingly, the pre-exponent
of the Arrhenius transfer rate first increases with coupling, then levels off approaching the “dynamic solvent
effect” plateau but finally reduces reaching the limit of the adiabatic Kramers theory for the parabolic barrier.
These changes proceeding with a reduction in the particle separation affect significantly the spatial dependence
of the total transfer rate. When approaching the contact distance, the exact rate becomes smaller than in the
theory of dynamical solvent effects and much smaller than predicted by perturbation theory (golden rule),
conventionally used in photochemistry and electrochemistry.

I. Introduction

The electron transfer rate is a fundamental property used in
the theories of intramolecular and intermolecular reactions in
dense media.1-4 At high temperatures, the system motion is
adiabatic everywhere except at the crossing point of the
intersecting energy levels where the electron tunneling occurs.
For electron exchange reactions, the potential surface consists
of the two symmetric diabatic energy levels, which are com-
monly assumed to be parabolic (Figure 1). The free energy gap
for electron transfer in both directions is zero, and the transfer
rate is given by the conventional Arrhenius equation:

Here,U is the energetic height of the crossing point, 2V is the
nonadiabatic splitting of the energy levels 1 and 2 at this point,
λ is the reorganization energy of transfer, andkB ) 1.

The preexponential factor,k, depends on the nonadiabatic
coupling and the dynamic of motion along the reaction
coordinate. The evaluation of this factor constitutes a complex
problem that cannot be solved universally within a single theory.
A number of theories have to be used to cover the whole domain
of k(V,γ) whereγ is a friction along the reaction coordinate.
This two-dimensional domain was used in a few works5-7 to
indicate the results of different theories and their mutual borders
as shown in Figure 2, taken from ref 7. This figure establishes

all of the results and their regions of applicability but does not
provide bridging between them. Particularly, the variation of
the prefactork with the nonadiabatic couplingV at a fixed
dissipation strengthγ (in the vertical cross-section of the domain
from bottom to top) is due to the monotonic increase of the
coupling,

with reduction of the inter-reactant separation (up to their closest
approach atr ) σ). Passing this way at high friction, one starts
from the nonadiabatic perturbation theory subregion, where
transfer is limited by tunneling, crosses the intermediate
subregion of the dynamical solvent effect (DSE), but finishes
in the adiabatic subregion where the reaction is controlled by

W ) k e-(U-V)/T, U ) λ/4 (1.1)

Figure 1. Energetic scheme of resonant electron transfer.

V(r) ) V0e
-(r-σ)/L (1.2)
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diffusion to the crossing point. In each subregion, there are
expressions fork, which differ from one another. The depen-
dence of the preexponential factork[V(r)] is an essential part
of the spatial dependence ofW(r) given in eq 1.1. As an input
data used in the theories of intermolecular transfer,3,4 it has to
be continuous inr and not composed from a few pieces related
to different theories valid at different distances. The main goal
of the present work is to bridge these two pieces together to
get a single continuous formula for the requiredk(V) andW(r)
dependencies. It should be stressed that the urgent necessity to
match the Fermi Golden Rule and Kramers high friction theory,
including DSE, which separates them, was recognized long ago.
At first, it was realized in the well-known Calef and Wolynes
work8 and then by means of the Pollak “variational transition
state theory” (VTST).9-12 In what follows, we will rely upon
these two alternative approaches to the problem at hand.

Although the transfer is assisted by the system delivery to
the crossing point, at sufficiently smallV, it is limited
everywhere not by this motion but by slow tunneling with the
ratekPT. The latter is given by the Fermi Golden Rule (second-
order perturbation theory developed in ref 13; see also eqs 2.37
in ref 1 and 1.7 in ref 5):

However, at largerV, the tunneling ceases to control the
reaction giving way to either energy activation at low friction
(γ , ω) or free vibrations at moderate friction (with the well
frequencyω/2π). At even larger values of the friction, the
reaction is controlled by diffusion to the crossing point along
the reaction coordinate. The last phenomenon was discovered
independently in two simultaneously published papers, refs 14
and 15. The latter is addressed rather to the inner sphere low
frequency vibrations such as in H-bonded complexes in water,
studied later by pump-probe spectroscopy.16-19 The former
addressed more specifically the outer sphere electron transfer
in Debye polar solvents where

HereτL ) τD ε0/ε is the longitudinal relaxation time of dielectric
polarization related to the Debye relaxation timeτD, through
the ratio of the optical (ε0) and static (ε) dielectric constants.
Later on, the phenomenon of diffusional control in the reaction

space, which became known as the dynamical solvent effect,
was reproduced in a number of publications and observed
experimentally.20 However, with an increase inV, DSE gives
way to the well-known Kramers result for the parabolic barrier.
The latter is slightly different from DSE, which is actually its
analogue for the cusped barrier:

In the present work, we focus mainly on the large friction
(strong dissipation) region where the alternating formulaskPT,
kDSE, andkKram follow one another with increasingV. There is
also the more general expression derived by Zusman bridging
between the first two:

This is an exact solution of the sudden modulation equations
used in refs 5, 14, and 15. There, the transfer was considered
as nonadiabatic but weak where the perturbation theory holds
and strong where it gives way to DSE. Later on, the two
expressions (1.5) were also bridged by considering both of them
as adiabatic transfer (along a quasi-ballistic mode) over either
the cusped barrier or the parabolic one. The former transforms
to the latter with an increase of the level splitting 2V. This
matching resulting in the general expression for the diffusion-
assisted reactionkDAR was first made by Calef and Wolynes8

and later by Starobinets, Rips, and Pollak.11 These approxima-
tions will be considered in the next section, and the simple
interpolation formulas will be introduced for the large friction
limit. In section III, these formulas will be bridged with that
for perturbation theory for getting the finalk(V) and corre-
spondingW(r) dependencies. In section IV, we will do the same
but will account for the spatial dependence of the reorganization
energy peculiar for highly polar solvents. In the conclusions,
we will summarize all of the results and outline the remaining
problems.

It should be emphasized that in this paper we focus on high
temperature, high barrier electron exchange reactions in Debye
polar solvents. This implies that the reaction is thermally
activated with electron tunneling proceeding in the vicinity of
the crossing point of the diabatic potential surfaces. The solvent
modes can be treated classically (nuclear tunneling is negligible).
Furthermore, the effect of the high frequency quantum solvent
modes is neglected.

II. Diffusion-Assisted Reaction

The matching alternative adiabatic results (1.5) allows cover-
ing the whole domain of diffusion-assisted transfer. An impor-
tant generalization of this kind made by Calef and Wolynes8

results in the following equation for the pre-exponent:

where

Figure 2. Entire domain of theoretical definitions of electron transfer
pre-exponentk(V,γ) given in ref 7. The vertical dashed line corresponds
to the valueλ ) 40T used further on.

kPT ) V2

p x π
λT

(1.3)

γ ) ω2τL (1.4)

kDSE ) 1/τLx λ
16πT

for the cusped barrier (1.5a)

kKram =
1
τLx λ

8π2V
for the parabolic one (1.5b)

knon )
kPT kDSE

kPT + kDSE
) {kPT weak nonadiabatic

kDSE strong nonadiabatic
(1.6)

kCW ) ω
2π {x1 + J2

2πR
- J

x2πR} (2.1)

J(V,λ) ) eV/T ∫0

λ/2T
dyexp[ y2

λ/T
- xy2 + (V/T)2] (2.2)
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and the dimensionless dissipative parameter

In general, the theory of Calef and Wolynes is valid from the
intermediate (TST) to high friction (DSE) region (see Figure
2), so that

but it is the best for the highest available friction (atRf 0).
This is actually the case in which we are mainly interested.

In this particular case, the motion along the reaction
coordinate to the crossing point is diffusional but it delivers
the system to either a cusped or a quasi-parabolic barrier
depending on whether the level splitting at the point is small or
large, respectively. In the cusped barrier limit (Vf 0), the
expression (2.2) reduces to the following one:

AlthoughJ0 is real and positive, it is not equal to 1 at any finite
barrier heightλ/4, that is in generalk∞ * kDSE even atVf 0.
As seen from Figure 3,J0 approaches unity only asλf∞.
Otherwise

The latter result is the more precise Kramers formula for a
parabolic barrier. It differs slightly from its simplified version
(1.5b) obtained for 2V , λ. If V is not negligible (although
smaller thanλ/2 ) 2U), thenkPAR should be used instead of eq
1.5b. Unlike the latter, it is nonlinear in thexT/V coordinate
of Figure 4.

It is easy to interpolate between the opposite limits represented
in eq 2.6 to get a simple analytic alternative to the Calef and
Wolynesk∞ from eq 2.4:

This is the pre-exponent of the diffusion-assisted rate of electron

transfer over the barrier of arbitrary shape: from a cusped to a
parabolic one. As can be seen in Figure 4, this interpolation
not only approaches both these limits as expected but between
goes through four points numerically calculated in ref 11.

In the relatively low friction region, the better alternative to
the Calef and Wolynes approximation is provided by VTST,
which represents the pre-exponent in the following form:

and P ≡ P(R, V) has to be determined by solving the
optimization problem as described in ref 11. Making this
numerically, we found that the VTST curvek(V) is very close
to the four green points obtained for lower friction by numerical
simulations made in ref 11. There, the reactive flux method21

was employed for the integration of the Langevin equation of
motion using the velocity Verlet algorithm.22

The black points in Figure 4 were calculated forR ) 0.01,
that is forγ/ω ≈ 45 atλ/T ) 40. This friction is large enough
to be well-approximated by the Calef and Wolynes (CW)
expression fork∞. As for the green points, they were obtained
in the same way and for the sameλ/T but for R ) 1 whenγ/ω
≈ 4.5. Here, we are very close to the boundary of the high
friction region. As seen from Figure 2 in our case (λ/T ) 40),
this border is located atγ/ω ) xλ/4T ) x10, that is far to the
left from the cross-sectionγ/ω ) 45 to which we mainly
address. The green points for the modest friction are somewhat
better approximated by VTST than by the CW theory, while
the black points for the higher friction are equally well-
approximated by the original CW theory and our interpolation
(2.7). However, the latter will be solely used further on just
because of its relative simplicity.

III. General Interpolation

As a matter of fact, the cusp limit of either approximation
(2.6) or interpolation (2.7) is never achieved in reality because
at small V the limited stage of the transfer becomes not a

Figure 3. Correction factor for a cusped barrier rate,J0, as a function
of the reorganization energy.

R ) λ
2T(ωγ)2

(2.3)

kCW ) { ω
2π

) kTST γ/ω , xλ/4T (R . 2)

kDSE

J(V,λ)
) k∞ γ f ∞ (R f 0)

(2.4)

J(0, λ) ) - πi xλ/4T e-λ/4T erf(ixλ/4T) ) J0(λ) (2.5)

k∞ ) {kDSE/J0(λ) ) kCUSP V f 0

1
2πτL x λ

2V
- 1 ) kPAR

V f ∞ (2.6)

kDAR ) 1
τLx λ - 2V

8π(2TJ0
2 + πV)

) {kCUSP atV , T
kPAR atV . T

(2.7)

Figure 4. Pre-exponentk of diffusion-assisted electron transfer between
the limits of cusped (T/V . 1) and parabolic (T/V , 1) barriers. The
Kramers result for the latter is shown by the inclined dotted line while
the horizontal dotted and dashed-dotted lines represent the DSE results
for λ ) ∞ and λ ) 40T, respectively. All other curves are the
following: our interpolation (solid line), Calef and Wolynesk∞ for high
and moderate friction (dashed lines), and VTST theory for the latter
one (dash-dotted). The points represent the exact results obtained in
ref 11 by numerical simulations for large (R ) 0.01) and moderate
friction (R ) 1.0).

kVTST ) P
2πτL

x λ
2RT

(2.8)
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diffusion to the crossing point but an electron tunneling. This
means that the adiabatic theory should give way to the
perturbation one as DSE does in the Zusman formula (1.6).
Hence, to get the interpolation valid at anyV, we just have to
substitutekDSE in this formula forkDAR from eq 2.7:

At small V, this constant is equal tokPT, which is independent
of friction unlike the longitudinal relaxation timeτL, which
increases withγ. At given ω ) 1013, we obtain from the
definition (1.4):

Correspondingly, the height of the DSE plateau is higher the
smaller is the friction (see Figure 5), but this plateau is never
achieved byk(V), which lowers with increasingV approaching
the Kramers limit for the parabolic barrier. As a result,k is
never as high as its DSE value but the very existence of this
plateau as well as Kramers limit greatly reduces the actualk as
compared with PT. However, the real deviation from the letter
is not too large ifV e V0 , T, which is usually the case. For
instance,T/V0 calculated from the contact transfer rate obtained
in ref 23 is equal to 3.13. As seen from Figure 5 at this point
(in contact),k is only half of the perturbation theory value and
this difference reduces quickly with increasing intermolecular
distance. Only recently the system was encountered (perylene
+ TCNE) where the contact coupling is larger thanT, namely,
T/V0 ) 0.43.24 There instead of the perturbation theory rateWPT

the Zusman formula (1.6) was used to account for DSE.
However, at the highestV ) V0, even this correction is not
enough. As seen from Figure 5 at this point, the Kramers high
friction region is actually reached where the truek is twice
smaller than its DSE alternative, not speaking about a much
larger perturbation theory value.

To get an impression of what happens for lower friction, we
used the same approach substitutingkDSE in the Zusman formula
(1.6) by eitherkCW from eq 2.4 orkVTST from eq 2.8:

Both of these results are also shown in Figure 5. The discrepancy
between them is within the limits of accuracy of both ap-
proximations. The electron transfer rate increases with decreas-
ing friction due to acceleration of the motion along the reaction
coordinate. At a further decrease of friction, this motion becomes
ballistic, and the transfer rate reaches its upper limit established
by a plateauk ) kTST ) ω/2π. This plateau is not shown in
Figure 5 because it is too high. Furthermore, we are interested
in quite the opposite limit of the large friction available, where
our interpolation (2.7) is the best.

In general, the importance of the diffusion control of the
transfer increases with the increasing nonadiabatic coupling at
contact. This effect is very impressive, especially if considered
in real space. Using expression 1.2, we transformed into this
space (Figure 6) the result obtained for the large frictionγ/ω
) 45. It should be noted that in the vast majority of papers on
intermolecular electron transfer, only the perturbation theory
was so far used.3,4 This is reasonable if either the electron
coupling is much weaker than in the present example or the
closest approach distance is much larger (ω > 10 Å). In ref 24,
for the first time, these conditions were shown to be broken in
the system studied experimentally. There, only the use of the
Zusman eq 1.6 instead of the perturbation theory allowed us to
obtain a reasonable fit to the experimental data. However, Figure
6 shows that being better than perturbation theory, the Zusman
approximation still overestimates the transfer rate at short
distances where the barrier becomes parabolic. For attainment
of the highest reliability of the fitting, the use of the present
theory is essential. In the following section, we will see how it
changes the real rate of transferW(r) given by eq 1.1.

IV. Transfer Rate in Polar Solvents

The reorganization energy employed in the foregoing analysis
was considered as a distance-independent parameter. This is
true only for in nonpolar solvents where the inner sphere
contribution to the reorganization energy is the dominant one:
λ ≡ λin ) const. In highly polar solvents, the situation is the
opposite: the inner sphere contribution can be neglected as

Figure 5. Solid curves are our interpolation (3.1) between the weak
tunneling and the diffusion-assisted transfer. The former is given by
the perturbation theory (PT, dashed line) while the latter is given by
the Kramers and DSE approximation (dotted lines). The lowest solid
line is our interpolation at high friction (R ) 0.01,γ/ω ) 45) while
the upper dotted horizontal line over it represents the DSE approxima-
tion. Above them there are the similar lines for the lower friction (R )
1.0, γ/ω ) 4, 5). The bottom vertical lines indicate the lower limits
for the argument (3.13 and 0.43) accessible in two systems studied in
refs 23 and 24, respectively.

k )
kPT kDAR

kPT + kDAR
(3.1)

1
τL

) ωω
γ

)

{0.022ω ) 2.2× 1011 s-1 at γ/ω ) 45 (R ) 0.01)

0.22ω ) 2.2× 1012 s-1 at γ/ω ) 4.5 (R ) 1)
(3.2)

Figure 6. Pre-exponentk in different theories as a function of the
interparticle distance at large friction (γ/ω ) 45) andV0 ) 0.138 eV,
L ) 1.24 Å.

k )
kPT kCW

kPT + kCW
or k )

kPT kVTST

kPT + kVTST
(3.3)
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compared with the outer sphere reorganization energy, which
changes with distance between reactants according to the well-
known law:3,4

In acetonitrile, the contact reorganization energyλ0 ) 1.15 eV
and the average distance between contacting reactants isσ ) 5
Å, if these are perylene and tetracyanoethylene (TCNE) as in
ref 24.

Take into account that theλ(r) dependence makes the pre-
exponentk slightly larger in the adiabatic near contact region
but smaller at larger separations, where the transfer is nona-
diabatic (Figure 7). In parallel,λ(r) dependence is responsible
for the increase ofU(r) ) λ(r)/4 whose contact value isU(σ)
) λ0/4, while at infinite separation it is twice as large:U(∞) )
λ0/2. As a result, the transfer rate

decreases with distance not only due to the pre-exponent but to
increasing the activation energy as well.

Another important factor that affects the activation energy is
the nonadiabatic couplingV(r), which increases when approach-
ing contact. As a result, the contact Arrhenius factor is
significantly enhanced ifV0 > T, although it reduces sharply
with increasing the inter-reactant distance. This effect is
dominant at short distances whereV > T, while at larger
separation, the increase ofλ(r) contributes mainly to reduction
of the Arrhenius factor.

The same tendency manifests itself in the reduction ofW(r),
which is the product ofk(r) and ther-dependent Arrhenius factor
(Figure 7). The spatial dependence of the transfer rate is

significantly distorted, if the barrier reduction byV(r) or λ(r)
dependence is ignored. In such a case, the kinetic rate constant

can be also overestimated as well asV0 obtained by fitting the
theory to the experimental data. Fortunately, the dispersion of
reorganization energy is usually taken into account3,4 and the
lowering of the activation barrier was also accounted for when
necessary.25

The diffusional control of the tunneling so far was considered
only with the Zusman theory.24,25 Now, we can estimate what
is the difference between this and the present theory. In Figure
8, the presentW(r) is exhibited in the larger spatial interval
than in Figure 7 and compared with the Zusman rate and that
obtained using the Golden Rule (perturbation theory). Both our
and the Zusman theories, which account for the diffusional
control of the tunneling, and the rates of transfer atr < 10 Å
are systematically lower than predicted by the perturbation
theory. This difference ranges up to 3 orders of magnitude at
the closest approach distance. The difference between the
Zusman and our results is less pronounced but still runs as high
as 3÷ 4 times atr < 6 Å.

Special attention should be paid to the deviation of the true
W(r) dependence from its popular exponential approximation:

In the limited range of distances, this simplification leads to a
different and sometimes nonphysical value forW0 and l. In
particular, near the contact,l could be smaller thanL, but in
the medium larger than it and only asrf∞, the identityl ) L
is reached. Too large values ofl sometimes reported26-29 are
usually identified withL but associated with electron super-
exchange, which dominates the direct exchange of an electron.30

However, it also may be an indication of too strong coupling,
resulting in diffusional control of the transfer at short distances,
making the dependence of the rateW(r) on the distance less
pronounced and leading to a natural excess ofl over L. For
instance, the “local”l ) - 2 (d lnW/dr)-1 reaches in our case
1.67 Å (atr ) 8.4 Å) as compared to the true tunneling distance
L ) 1.24 Å (atrf∞).

V. Conclusions

On a particular example of the resonant electron transfer, we
have demonstrated that the Zusman account for the dynamical
solvent effect is insufficient for determination of the transfer

Figure 7. Pre-exponent, exponent, and their productW as functions
of interparticle distance with (solid lines) and without (dashed lines)
accounting for the space dependence of the reorganization energy.

λ(r) ) λ0(2 - σ/r) (4.1)

W(r) ) k(r) exp{- [λ(r)
4

- V(r)]/T} (4.2)

Figure 8. Space dependence of the transfer rates calculated with
perturbation and Zusman theories and present interpolation.

k0 ) ∫W(r)d3r

W(r) ) W0e
-(r-σ)/l (4.3)
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rate if electron coupling at contact is too strong. Zusman’s
expression was generalized using the original interpolation
between DSE and the adiabatic Kramers limit for high friction.
The same was done for moderate values of the friction using
two theories of diffusion-controlled electron transfer.8,11 The
present theory allows specifying the continuous distance
dependence of the transfer rate from the infinite reactant
separation and up to their closest approach where the maximal
electron coupling is reached.

Although our analysis is quantitative only for the resonant
transfer (with energy gap∆G ) 0), it is qualitatively valid in
the normal region (-∆G < λ) provided the transfer barrier

does not differ significantly fromλ/4. The situation changes
qualitatively only in the inverted Marcus region (-∆G > λ).
There, the dynamical solvent effect gives way to the sharp
adiabatic cutoff of the transfer rate when electron coupling
becomes too large. This situation was quantitatively described
in ref 31 by eqs 53 and 28, which constitute an analogue of our
eqs 3.1 or 3.3. A more complex situation arises at the boundary
between the normal and the inverted region (at-∆G ) λ),
where the electron transfer is activationless (U ≈ 0) and
nonexponential.32 The latter case deserves special consideration
as well as the phonon-assisted electron transfer in the inverted
region, which lowers the barriers, making one of the channels
activationless.3,4

As already mentioned, our treatment of the nuclear motion
of the solvent is classical, which is appropriate at high
temperatures. At lower temperatures, nuclear tunneling has
important physical effects on the electron transfer rate and
should be taken into account.33,34
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