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A qualitative molecular-orbital treatment and group-theoretical analysis reveals the nature of the frontier
orbitals of (3,6) and (4,6) polyhedral cages, consisting of a hexagonal network with triangular and square
defects, respectively. Leapfrog (3,6) cages have two nonbonding filled orbitals. Leapfrog (4,6) cages have a
high HOMO-LUMO gap, while nonleapfrog (4,6) cages with octahedral symmetry have a very small HOMO-
LUMO gap. The symmetry of the frontier orbitals is determined.

1. Introduction

The discovery of fullerenes has revived the study of the
mathematics of polyhedral cages. Physicists and chemists show
a special interest in cages that can be folded from a honeycomb
lattice by introducing pentagonal, triangular, or square defects.
Combining Hückel theory with a group-theoretical analysis,
Fowler and Ceulemans1 proved that any fullerene of the leapfrog
class has six low-lying empty molecular orbitals (MOs)s
spanning the translational and rotational symmetriessabove the
highest occupied molecular orbital (HOMO). These MOs can
therefore act as electron acceptor levels. In this paper, we extend
this analysis to leapfrog cages consisting of hexagons and four
triangles ((3,6) cages)2 and leapfrog and nonleapfrog cages
consisting of hexagons and six squares ((4,6) cages).3 Several
studies have been devoted to the boron nitride analogues of (4,6)
cages,4-12 and there is evidence for their experimental synthe-
sis.13,14 All possible symmetries have been found for (3,6)
cages15 and (4,6) cages.16

Leapfrog and nonleapfrog (3,6) cages, with symmetries
ranging fromD2 to Td, were investigated in ref 2. A zone-folding
procedure allowed a complete breakdown of the Hu¨ckel
eigenenergies, MOs, and their symmetries. Leapfrog and non-
leapfrog (4,6) cages with octahedral symmetry were treated in
ref 3. The Hückel energies, MOs, and their symmetries were
obtained by a zone-folding procedure but only for theA1, A2,
andE representations. Numerical calculations on a large set of
cages revealed that the frontier orbitals were always ofT1 and
T2 symmetry and that the leapfrog (4,6) cages have a much
larger gap between the HOMO and the lowest unoccupied
molecular orbital (LUMO) than the nonleapfrog cages. The
group-theoretical study in this paper explains the origin of this
behavior, and is not restricted to cages with octahedral sym-
metry.

2. The Two Bonding Extremes: Fries and Clar

Three different types of polyhedra are studied in this work:
leapfrog (3,6) cages, leapfrog (4,6) cages, and nonleapfrog (4,6)
cages. (A leapfrog polyhedron Cn is constructed in imagination
from a smaller parent polyhedron Cn/3 by first capping all faces
and then taking the dual of the resulting polyhedron.17) For all
three, it is possible to draw two extreme bonding schemes: a
Fries limit and a Clar limit.18 The definition given here is not

restricted to leapfrog structures.17 Consider first the following
selection procedure.

Select one face and color it. Color also all other faces that
are connected to this first face by following the bonds that are
radiating from the first face. Repeat this procedure for all colored
faces until no new faces can be colored anymore. The colored
faces must now obey the following criterion:

Criterion 1 . The colored faces exhaust all theVertexes. None
of the colored faces may share sides, but all are connected by
bonds.

This coloring procedure can also be applied to the honeycomb
lattice. Three independent colorings are possible based on
criterion 1. Figure 1 shows that the faces of the honeycomb
lattice are distributed among three equivalent disjoint sets: gray,
white, and black faces.

The polyhedra can be thought of as being derived from the
honeycomb lattice, by cutting out wedges with starting points
in the middle of a hexagonal face of the honeycomb lattice.
Figure 2a (b) shows how a wedge with an angle ofπ/3 (π) is
cut out from the honeycomb lattice to introduce a pentagonal
(trigonal) defect. Suppose the first wedge has its starting point
in the middle of a gray face. The set of gray faces is still
consistent with criterion 1, but the white and black faces no
longer are. Thus, cutting out one sector already reduces the
number of independent colorings from three to one. Introducing
new defects, their corresponding wedges should also have their
starting point on gray faces; otherwise, also the set of gray faces
is no longer in agreement with criterion 1.

Figure 1. The three independent colorings (gray, white, and black)
on the honeycomb lattice that obey criterion 1.
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However, the case is different when introducing tetragonal
defects in the honeycomb lattice. Cutting out a sector with an
angle of2π/3 never creates an inconsistency with criterion 1 for
gray, white, or black faces (Figure 2c). Thus, introducing
tetragonal defects does not affect the three independent color-
ings.

In summary, the following cases are possible for (3,6) and
(4,6) cages and fullerenes:

(1) (3,6) cages and fullerenes where no coloring based on
criterion 1 is possible. These cages are nonleapfrogs and will
not be treated in this work.

(2) (3,6) cages and fullerenes where one of the three colorings
still obeys criterion 1 (Figure 3a). These cages are leapfrogs.
The colored faces of the leapfrog structureL are derived from
the faces of the parent structureP (and hence the nonhexagonal
faces will always be among them), and the bonds that connect
them are derived from the bonds of the parent structure. Since
P has the same symmetry asL , the coloring does not reduce
the symmetry ofL .

(3) (4,6) cages, both leapfrog and nonleapfrog, always have
three independent colorings that obey criterion 1. Let us call
the uncolored structureS with point groupG and group order
g and the three colored structuresS1, S2, andS3 with groups

G1, G2, andG3 and group ordersg1, g2, andg3, respectively.
G1, G2, andG3 are always subgroups ofG. Three possibilities
for the point groups of the colored (4,6) cages exist in principle.
(i) None of the symmetry elements ofS interchange any of the
three colored cagesS1, S2, andS3. We then haveG ) G1 ) G2

) G3. (ii) One of the colored cages (sayS1) is unchanged by
any of the symmetry elements ofS, while some symmetry
elements interchangeS2 andS3. We then haveG ) G1, while
G2 ) G3 andg2 ) g3 ) g/2. (iii) S has one or moreC3 axes
that convertS1 to S2, S2 to S3, andS3 to S1. G1, G2, andG3 are
then isomorphic subgroups ofG, andg1 ) g2 ) g3 ) g/3.

For a leapfrog (4,6) cageS ) L , the colored faces of one of
the three colored structures (sayS1) correspond to the faces of
the parent structureP (and hence the squares will always be
among them) and the interconnecting bonds to the bonds ofP
(Figure 3b). The coloring does not reduce the symmetry ofL
in this case.S2 and S3 have no squares among their colored
faces. Only cases i and ii are possible here.

None of the three colored structures of a nonleapfrog (4,6)
cage contain all of the six squares (Figure 3c). Cases i-iii are
possible here.

Suppose a coloring is possible for the structureS, which has
n atoms.S is trivalent, so the number of edges ise ) 3n/2. The
edges that connect the colored faces exhaust all vertexes but
are not connected to each other, so their number isn/2.

We work within the simple Hu¨ckel approximation: the
interaction between all nearest neighbors is described by the
same parameterâ (â < 0), and the energy of all the atoms, by
the same parameterR. The Hückel HamiltonianH(S) is then
equal to

whereA(S) is the connectivity matrix of structureS.
The Fries limit ofS, FS, is obtained by attributing formal

double bonds to then/2 edges that connect the colored faces
and single bonds to all other edges.â is set to zero for all single
bonds. One has nown/2 isolated bonds and hencen/2 bonding
orbitals (labeledπ) at energyE ) R + â andn/2 antibonding
orbitals (labeledπ*) at energyE ) R - â. Since there aren
electrons in the neutral structure, the Fries limit constitutes a
closed shellπ electronic configuration.

The Clar limit of S, CS, is obtained by settingâ to zero for
all bonds that connect the colored faces. One obtains now a
system of isolated polygons, and the orbitals of these polygons
can be labeled asσ, π, δ, .... We will denote the orbitalσ of a
j-gon byσj, and similarly for the other orbitals.

The two limits are each other’s complement, in the sense
that the sum of the connectivity matrix of the Fries structure
FS and that of the Clar structureCS gives the connectivity matrix
of the total structureS:

These two bonding extremes can be connected in a Walsh-like
correlation diagram, which gives information about the frontier
orbitals of these structures. At any point between these two
extremes, the Hamiltonian is given by

The Fries limit is obtained by settingâF ) â andâC ) 0, and
the Clar limit, by settingâF ) 0 andâC ) â. The actual structure
is formally identified to the center of the correlation diagram
whereâF ) âC ) â.

Figure 2. Cutting out wedges from the honeycomb lattice to introduce
nonhexagonal faces, for pentagonal (a), trigonal (b), and tetragonal (c)
defects.

Figure 3. Coloring of some of the faces of polyhedra such that criterion
1 is obeyed. (a) The simplest leapfrog fullerene and leapfrog (3,6) cage.
There is only one possibility: the colored faces correspond to that of
the parent cage. (b) The simplest leapfrog (4,6) cage. Three different
colorings are possible, of which only two are shown (the third one is
equivalent to the second). (c) The simplest nonleapfrog (4,6) cage: the
cube. Three different colorings are possible, of which only one is shown
(the other two are equivalent to this one).

H(S) ) RI + âA(S) (1)

A(FS) + A(CS) ) A(S) (2)

H′ ) RI + âFA(FS) + âCA(CS) (3)
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When three different Fries/Clar structures are possible, the
connectivity matrix is equal to

One has now three independent extremes,FS1, FS2, andFS3. The
three Clar extremes are linearly dependent on these, sinceA(CS1)
) A(FS2) + A(FS3) and similarly for the other Clar extremes.
At any point between these three extremes, the Hamiltonian is
given by

The Walsh diagram is now two-dimensional, as shown in Figure
4.

To simplify further discussion, we setR ) 0. Also, in this
case, the center of the diagram is identified as the reference
structure of the Hu¨ckel treatment.

3. Preliminary Group-Theoretical Lemmas

3.1. Leapfrog Cages.In this section, we recall a general
result1 about orbital symmetry representations in leapfrog cages.

In the Fries limit, the localized bonding orbitals of the leapfrog
cageS ) L with n atoms span the permutation representation
of the n/2 edges of the parentP:

whereΓ denotes a (reducible) symmetry representation andσ
indicates that edge bonds are totally symmetric with respect to
all symmetry elements that go through the edge.

The number of isolated faces of the leapfrog cage is equal to
the number of faces of the parent cage, and following Euler’s
theorem, this is equal ton/6 + 2. Consider theσ, πx, andπy

orbitals of the isolated polygons ofCL, 3(n/6 + 2) ) n/2 + 6
orbitals in total. Their symmetry is obtained by multiplying the
permutation representation of the parent faces by the transla-
tional symmetry, that is, from the productΓσ(f, P) × ΓT:

This product is simply the sum of the permutation representation

of its edges and the translational and rotational symmetries:19

and therefore

These equations will prove essential to get insight into the
arrangement of the frontier orbitals of leapfrog cages.

3.2. (4,6) Cages: Alternants.A (4,6) cage is an alternant:
its vertexes can be divided into two equal sets, black and white,
such that every vertex of one set is surrounded by members of
the other. As a consequence, its spectrum is bipartite: for each
bonding MO at energyE < 0, there exists an antibonding MO
at energy-E > 0 with the same coefficient on white vertexes
but an opposite value on black vertexes;20,21 the spectrum has
mirror symmetry around the nonbonding level. Since the number
of black and white vertexes is equal, eventual nonbonding MOs
also occur in such pairs.

Any symmetry operation willeither map black vertexes on
black vertexes and white vertexes on white vertexesor exchange
black and white vertexes. The proof goes as follows: Suppose
a symmetry operationR would map the black vertexV1

• on the
black vertexV2

• and the white vertexV3
O on the black vertexV4

• .
V1

• andV3
O are connected by a path of edges. WhenV1

• andV3
O are

taken into account, there is an even number of vertexes,
alternating black and white, along this path. Acting withR on
this path, one obtains a path connectingV2

• and V4
• . However,

this path also contains an even number of vertexes; hence, it is
impossible that the first and last vertexes are both black. Thus,
we have proven that any symmetry operator will map vertexes
on vertexes of the same color (R •f•) or will map vertexes on
vertexes of different colors (R •fO). Let us define now the
following one-dimensional representationΓ-1.

Γ-1 is necessarily an irreducible representation, since it is the
representation of the totally antibonding MO.Γ-1 relates the
symmetries of every pair of MOs at opposite energies:

Γ-1 is equal toA2 for cages withO symmetry, toA2g for cages
with Oh symmetry and with neighboring defects in an armchair
relation, and toA2u for cages withOh symmetry and with the
neighboring defects in a zigzag relation (see Figure 5).

(4,6) cages can also be inscribed on hexagonal prisms,5 with
a resulting symmetry ofD6 (Γ-1 ) B2) or D6h (Γ-1 ) B2g). Γ-1

can be derived from these cases when the cage has a lower
symmetry.

4. Leapfrog Fullerenes
The application of the Walsh-type analysis to the case of

leapfrog fullerenes has been presented in ref 1. Here, we briefly
recall the results.

Figure 4. Fries (F) and Clar (C) reference points for the two-
dimensional Walsh diagram of (4,6) cages.

A(S) ) A(FS1
) + A(FS2

) + A(FS3
)

) 1
2
(A(CS1

) + A(CS2
) + A(CS3

)) (4)

H′′ ) RI + âF1
A(FS1

) + âF2
A(FS2

) + âF3
A(FS3

) (5)

Γ(FL, E < 0) ) Γσ(e, P) (6)

Γ(CL, σ + π) ) Γσ(f, P) × ΓT (7)

Figure 5. Two squares in a zigzag relation (top) and an armchair
relation (bottom).

Γσ(f, P) × ΓT ) Γσ(e, P) + ΓT + ΓR (8)

Γ(CL, σ + π) ) Γ(FL, E < 0) + ΓT + ΓR (9)

øΓ-1(R •f•) ) 1

øΓ-1(R •fO) ) -1 (10)

Γ-1 × Γ(E) ) Γ(-E) (11)
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In the Clar limit, theσ andπ orbitals of the isolated hexagons
and pentagons are all bonding, while the other orbitals are
antibonding

Taking the difference of the symmetries of the orbitals bonding
in the Clar limit with those bonding in the Fries limit, one
obtains from eq 9

Figure 6 shows the general Walsh diagram. Because of the
noncrossing rule,22 all bonding orbitals in the Fries limit are
matched by bonding orbitals in the Clar limit. Six orbitals,
spanning the symmetryΓT + ΓR, are bonding in the Clar limit
and antibonding in the Fries limit, and hence, they will be close
to nonbonding in the neutral fullerene, lying above then/2
occupied bonding orbitals. They thus constitute the six lowest
unoccupied MOs of the cage, and this explains the electron-
accepting behavior of the leapfrog fullerenes. However, the six
orbitals will still be slightly antibonding; a theorem proven by
Manolopoulos et al.23 states that any leapfrog polyhedron with
at least one face not divisible by 3 will have a closed shell with
a strictly bonding HOMO and a strictly antibonding LUMO.

5. Leapfrog (3,6) Cages

Consider theσ andπ orbitals of the isolated hexagons and
triangles of the Clar limit. The eightπ3 orbitals are antibonding,
while the other orbitals are bonding. The symmetry of these
antibonding orbitals is given by

with Γ(CL, π3) spanning the symmetries of theπ orbitals on
the triangles andΓσ(f3, P) ) Γ(CL, σ3) spanning those of theσ
orbitals. Suppose the structureL has the highest possible
symmetry,Td. The symmetry of the eight trigonalπ orbitals is
then

so the translational and rotational symmetries (ΓT ) T2 andΓR

) T1) are contained inΓ(CL, π3), and this stays true for lower
symmetries. For arbitrary symmetry, one can say

where Γ2 is a two-dimensional term. The symmetry of the
bonding orbitals in the Clar limit is spanned by

with Γσ(f6, P) ) Γ(CL, σ6) spanning the symmetries of the
hexagonal faces of the parent structure. Combining this with
eqs 7 and 14, one finds for the bonding orbitals in the Clar
limit

The bonding orbitals in the Fries limit are obtained by combining
eqs 6 and 8 as

so the difference between the two is

Figure 7 shows the general Walsh diagram. Two orbitals are
bonding in the Fries limit, and hence occupied in the neutral
cage, and antibonding in the Clar limit. This means that the
two highest occupied orbitals of the (3,6) cage are close to
nonbonding. In fact, they will beexactlynonbonding. A theorem
proven by Fowler and Rogers24 states that the two highest
occupied MOs of any trivalent leapfrog polyhedron with all face
sizes divisible by 3 and at least one face size not divisible by
6 will be exactly nonbonding. An illustrative example is given
in Figure 8, showing the Walsh diagram for the simplest leapfrog
(3,6) cage, C12, with symmetryTd. Two orbitals, spanning the
symmetryΓ2 ) E, are indeed bonding in the Fries limit and
antibonding in the Clar limit. AtâC ) âF ) â, these doubly
occupied orbitals are exactly nonbonding, and hence, they will
act as electron-donating levels.

Figure 6. Walsh diagram for leapfrog fullerenes with correlation
between two bonding extremes: the Fries limit (left) and the Clar limit
(right). The hatched region denotes occupied orbitals in the neutral cage.

Γ(CL, σ + π) ) Γ(CL, E < 0) (12)

Γ(CL, E < 0) - Γ(FL, E < 0) ) ΓT + ΓR (13)

Γ(CL, π3) ) Γσ(f3, P) × ΓT - Γσ(f3, P) (14)

Γ(CL, π3) ) T1 + T2 + E (15)

Figure 7. Walsh diagram for leapfrog (3,6) cages with correlation
between two bonding extremes: the Fries limit (left) and the Clar limit
(right).

Γ(CL, π3) ) ΓT + ΓR + Γ2 (16)

Γ(CL, E < 0) ) Γ(CL, σ6 + π6 + σ3)

) Γσ(f6, P) × ΓT + Γσ(f3, P) (17)

Γ(CL, E < 0) ) Γσ(f, P) × ΓT - Γ(CL, π3) (18)

Γ(FL, E < 0) ) Γσ(e, P) ) Γσ(f, P) × ΓT - ΓT - ΓR (19)

Γ(FL, E < 0) - Γ(CL, E < 0) ) Γ(CL, π3) - ΓT - ΓR ) Γ2

(20)
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The conclusions are in agreement with the zone-folding
treatment in ref 2: leapfrog (3,6) cages, with a symmetry ranging
from D2 to Td, always have a closed shell with two filled exactly
nonbonding orbitals. Hence, leapfrog (3,6) cages will act as
electron donors, as opposed to leapfrog fullerenes.

6. Leapfrog (4,6) Cages

As mentioned before, it is possible to write three different
Fries and Clar structures for (4,6) cages. In the case of leapfrog
cages, one Fries/Clar couple is derived from the parent structure
P and has the same symmetry asL andP. Let us call themFL

and CL. The point group of the other two Fries/Clar couples
can be equal to that ofL or can be a subgroup with a group
order one-half of that ofL . Let us consider a few examples of
high symmetry. The symmetry of the three Fries/Clar couples
is equal toO, T, andT for cages withO symmetry, toO, Th,
andTh for cages withOh symmetry and with neighboring defects
in a zigzag relation (Figure 5, top), and toO, Td, andTd for
cages withOh symmetry and with the neighboring defects in
an armchair relation (Figure 5, bottom).

The leapfrog (4,6) cages have a clear bond alternation.
Calculating theπ bond order for the leapfrog (4,6) cage C24,
one finds a value of 0.687 for the bonds between two squares
and a value of only 0.404 for the bonds that are part of the
squares. Thus,FL is the more dominant pattern compared to
the other two Fries structures, as already noted for the BN
analogue B12N12.10 Therefore, it seems reasonable to consider
only the extremesFL andCL (i.e., only one line going through
S in Figure 4), reducing effectively the problem to a one-
dimensional correlation diagram.

Consider theσ andπ orbitals of the isolated hexagons and
squares ofCL. The 12π4 orbitals are nonbonding, while the
other orbitals are bonding. Applying eq 9, the symmetries of
the bonding and nonbonding orbitals in the Clar limit are given
by

Using eq 11, one finds that

The symmetry spanned by the total set of MOs of the system
is of course given by

From eqs 21 and 22, it follows that

Hence, the symmetry of the nonbonding orbitals in the Clar
limit is spanned by

Suppose the structureL has the highest possible symmetry,Oh.
The symmetry of the 12π4 orbitals is then equal to

which is indeed in agreement with eq 25, both for zigzaglike
and armchairlike arranged defects. Combining eqs 21, 22, and
25, one finds that

All bonding orbitals in the Clar limit are matched by bonding
orbitals in the Fries limit. This leaves six bonding orbitals in
the Fries limit with the symmetryΓ-1 × (ΓT + ΓR), which are
matched by one-half of the 12 nonbondingπ4 orbitals in the
Clar limit. The other six nonbonding orbitals, spanning the
symmetryΓT + ΓR, are matched by antibonding orbitals in the
Fries limit. The general Walsh diagram is shown in Figure 9a.
Hence, the symmetry of the highest six occupied orbitals is given
by Γ-1 × (ΓT + ΓR) and that of the lowest six unoccupied
orbitals byΓT + ΓR. No crossing from bonding to antibonding
or vice versa occurs when moving from the Fries limit to the
Clar limit, so the HOMO-LUMO gap is expected to be rather
large. An example is given for the simplest leapfrog (4,6) cage,
C24, which hasOh symmetry, in Figure 10. The symmetry of
the HOMO and HOMO-1 is indeed spanned byΓ-1 × (ΓT +
ΓR) ) T2u + T2g, and these orbitals are nonbonding inCL and
bonding inFL. The symmetry of the LUMO and LUMO+1 is
spanned byΓT + ΓR ) T1u + T1g, and these orbitals are
nonbonding inCL and antibonding inFL.

Numerical calculations were performed on a large set of
octahedral (4,6) cages.3 It was found that, for leapfrog cages
with O (Oh) symmetry, the symmetry of the first six unoccupied
MOs is spanned by 2T1 (T1u + T1g), while the symmetry of the
highest six occupied MOs is spanned by 2T2 (T2u + T2g), in
full agreement with our symmetry analysis.

It is not difficult to perform the analysis for the full two-
dimensional correlation diagram. Figure 11 shows the evolution
of the energy levels along the circumference of the master
triangle in Figure 4.

Figure 8. Correlation diagram for the orbital energies of the (3,6) cage
C12. From the left to the middle,âC is increased from zero toâ, while
âF is kept constant atâ. From the middle to the right,âF is diminished
from â to zero, whileâC is kept constant atâ. Degeneracies are not
shown explicitly but can be deduced from the tetrahedral symmetry
labels. The HOMO occurs at the top of theπ band on the left and on
the bottom of theπ band on the right.

Γ(CL, σ + π) ) Γ(CL, E e 0)

) Γ(FL, E < 0) + ΓT + ΓR (21)

Γ(CL, E g 0) ) Γ-1 × Γ(FL, E < 0) + Γ-1 × (ΓT + ΓR)

) Γ(FL, E > 0) + Γ-1 × (ΓT + ΓR) (22)

Γtot ) Γ(CL, E < 0) + Γ(CL, E ) 0) + Γ(CL, E > 0)

) Γ(FL, E < 0) + Γ(FL, E > 0) (23)

Γtot ) Γ(CL, E e 0) + Γ(CL, E g 0) - Γ(CL, E ) 0)

) Γ(FL, E < 0) + ΓT + ΓR + Γ(FL, E > 0) + Γ-1 ×
(ΓT + ΓR) - Γ(CL, E ) 0)

) Γtot + ΓT + ΓR + Γ-1 × (ΓT + ΓR) - Γ(CL, E ) 0)
(24)

Γ(CL, π4) ) Γ(CL, E ) 0) ) ΓT + ΓR + Γ-1 × (ΓT + ΓR)
(25)

Γ(CL, π4) ) T1u + T1g + T2u + T2g

) T1u + T1g + A2g × (T1u + T1g)

) T1u + T1g + A2u × (T1u + T1g) (26)

Γ(FL, E < 0) - Γ(CL, E < 0) ) Γ-1 × (ΓT + ΓR)

Γ(FL, E > 0) - Γ(CL, E > 0) ) ΓT + ΓR (27)
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This diagram is actually nothing more than a superposition
of correlations between different Ke´kulé structures of isolated
hexagons and squares. When going around the circumference

of the master triangle once, each energy level must of course
end up at its starting point. This implies that it must cross the
nonbonding energy an even number of times. However, Figure
11 makes it clear that there is only one point where energy levels
become nonbonding, namely, atCL. Thus, all energy levels are
either bonding on the border of the master triangle or antibond-
ing, and at only one point, 12 levels will become nonbonding.
This only strengthens the argument given above that leapfrog
(4,6) cages will have a rather large HOMO-LUMO gap.

7. Nonleapfrog Octahedral (4,6) Cages

Also, nonleapfrog (4,6) cages have three different Fries
structures and Clar counterparts. Only cages withO symmetry
are considered in this section. For these cages, the number of
atoms,n, is always a multiple of 8. The three Fries structures
are then equivalent and similarly for the three Clar structures.
The Clar limit has only orbitals on two of the six squares. The
symmetry of anO (Oh) symmetrical cageS is reduced toD4

(D4h) when going to the Fries or the Clar extreme. At any other
point in the triangle in Figure 4, the symmetry will beD2 (D2h).
We choose now one Fries/Clar couple (which one is irrelevant)
and consider the correlation between them (i.e., only one line
in Figure 4 going through the center of the triangle).

Let us neglect mirror symmetry for simplicity. The fourC2

axes perpendicular to the principalC4 axis go through hexagons
whenn/8 ) 2q (whereq is an integer) and through edges when
n/8 ) 2q + 1. For symmetry reasons, these hexagons on the
four C2 axes must be part of the Clar pattern and the edges of
the Fries pattern. Hence, the representations for the bonding
orbitals in the Fries limit are given by

The representations of theσ orbitals in the Clar limit are given
by

The π orbitals on the Clar faces are now easily obtained.

Figure 9. Walsh diagram for leapfrog (a) and octahedral nonleapfrog
(b) (4,6) cages with correlation between two bonding extremes: the
Fries limit (left) and the Clar limit (right).

Figure 10. Correlation diagram for octahedral C24. The conventions
are similar to those of Figure 8. HOMO and HOMO-1 are bonding,
and LUMO and LUMO+1 are antibonding in the Fries limit. All these
orbitals are nonbonding in the Clar limit.

Figure 11. Correlation diagram for the MOs of a leapfrog (4,6) cage,
following the circumference of the master triangle in Figure 4.

Γ(FS, E < 0) ) n
16

× (A1 + A2 + B1 + B2 + 2E),

for
n
8

) 2q

Γ(FS, E < 0) ) 1
2(n8 - 1) × (A1 + A2 + B1 + B2 + 2E) +

A1 + B2 + E, for
n
8

) 2q + 1 (28)

Γ(CS, σ4) ) A1 + A2

Γ(CS,σ6) ) 1
6(n8 - 4) × (A1 + A2 + B1 + B2 + 2E) + A1 +

B2 + E, for
n
8

) 2q

Γ(CS, σ6) ) 1
6(n8 - 1) × (A1 + A2 + B1 + B2 + 2E),

for
n
8

) 2q + 1 (29)

Γ(CS, π4) ) Γ(CS, σ4) × ΓT - Γ(CS, σ4)

) Γ(CS, σ4) × (A2 + E) - Γ(CS, σ4)

) 2E ) Γ(CS, E ) 0)

Γ(CS, π6) ) Γ(CS, σ6) × (A2 + E) - Γ(CS, σ6)

) 1
3(n8 - 1) × (A1 + A2 + B1 + B2 + 2E) (30)
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The last equation holds both forn/8 even and odd. Combining
eqs 28, 29, 30, and 11, one finds that

Thus, one MO withB2 symmetry is bonding in Fries and
antibonding in Clar, and vice versa for a MO withA2 symmetry.
From the two MOs withE symmetry that are nonbonding in
Clar, one will be bonding in Fries and the other antibonding in
Fries. What does this mean for the structureSwith O symmetry?
Upon lowering the symmetry fromO to D4, the only way to
obtainA2, B2, or E representations is

This already indicates that the symmetry of the three highest
occupied orbitals and the three lowest unoccupied orbitals of
S, taken together, spansT1 + T2 and that these levels will be
close to nonbonding. It is therefore plausible that they are
partially matched by the two nonbondingE levels in the Clar
limit.

The order ofT1 andT2 can be reasoned in the following way.
Let us first assume that, from the Fries limit to the Clar limit,
the energy levels are only rising or lowering. One bondingB2

level and one bondingE level will rise in energy when going
from the Fries limit to the Clar limit, since they are unmatched
by bonding Clar orbitals (Figure 9b). TheB2 level will rise more
quickly than theE level, since theB2 level is matched by an
antibonding Clar orbital and theE level by a nonbonding Clar
orbital. Both levels will not meet. At the same time, one other
E level will slowly lower in energy, from antibonding in Fries
to nonbonding in Clar. ThisE level will necessarily meet the
quickly rising B2 level, and this will happen atE > 0. This
indicates that the LUMO will haveT2 symmetry and, by
applying eq 11, that the HOMO will haveT1 symmetry.

It is also possible to treat the nonleapfrog cages withOh

symmetry. The neighboring squares are always in a zigzag
relation (if in the armchair relation the cage is always a leapfrog).
Defineu as the number of hexagons between two neighboring
squares plus one. Then,u ) 3q (where q is an integer)
corresponds to leapfrog cages and so is already treated in the
previous section. For the other cases, one has

The assumption that theB2 level, bonding inFS and antibonding
in CS, will meet with the E level, antibonding inFS and
nonbonding inCS, to form aT2 level is fully confirmed here,
since the otherE level (bonding inFS and nonbonding inCS)
has the wrong parity. Thus, one can conclude that, foru ) 3q
- 1 (3q + 1), the HOMO will haveT1g (T1u) symmetry and the
LUMO T2u (T2g) symmetry.

Figure 12a shows the correlation diagram for C8 (Oh, u )
1). A B2g level rises from bonding inFS to antibonding inCS.
At the same time, anEg level lowers from antibondingFS to

nonbonding inCS. When âF ) âC ) â, both levels meet to
form an antibondingT2g level. In a similar way, a bondingT1u

level is formed. Figure 12b shows the correlation diagram for
C32 (Oh, u ) 2). C32 is a bit exceptional: six orbitals are both
exactly nonbonding atâF ) âC ) â, resulting in an open shell.
However, they span the predicted symmetryT1g + T2u. Apart
from this accidental degeneracy in C32, all nonleapfrog (4,6)
cages studied in ref 3 fulfill the prediction of aT1 HOMO and
a T2 LUMO. The size of the HOMO-LUMO gap of the
nonleapfrog and leapfrog octahedral (4,6) cages was also
compared previously,3,5 and it was found that the gap of
nonleapfrogs was considerably smaller than that of leapfrogs
of similar size, in agreement with the results here.

The discussion above only considered the correlation between
one Fries/Clar couple. However, there is no single dominant
Fries structure, as was the case for leapfrog (4,6) cages. The
full two-dimensional correlation diagram can be discussed using
the results obtained above. Let us label the three Fries/Clar
couplesFz/Cz, Fy/Cy, andFx/Cx. The two Clar squares inCz

are placed along thez axis (Cx andCy are similarly defined).
At any point in the triangle in Figure 4, the symmetry is at
leastD2, with symmetry labelsA, B1, B2, andB3. Since in the
following discussion symmetry labels of different point groups
are used, we also note between square brackets the point group
and as a superscript the orientation of the eventual principal
axis. Figure 13a shows the correlation diagram along the
circumference of the master triangle for theB1[D2] representa-
tions. This diagram is again nothing more than a superposition
of correlations between different Ke´kulé structures of isolated
hexagons and squares. From the discussion based on one Fries/
Clar couple, we know that the sameA2[D4

z] level is antibond-
ing in Fz and bonding inCz. From Figure 13a, it is clear that
the only way in which this level can end up in the bonding part
of Cz is by following the straight lowering line fromFz to Fy.

Γ(FS, E < 0) - Γ(CS, E < 0) ) B2 - A2 + E

Γ(FS, E > 0) - Γ(CS, E > 0) ) A2 - B2 + E (31)

O f D4

T1 f A2 + E

T2 f B2 + E (32)

Γ(FS, E < 0) - Γ(CS, E < 0) ) B2u - A2g + Eg,
for u ) 3q - 1,

Γ(FS, E < 0) - Γ(CS, E < 0) ) B2g - A2u + Eu,
for u ) 3q + 1,

Γ(CS, E ) 0) ) Eg + Eu (33)

Figure 12. Correlation diagram for octahedral C8 (a) and C32 (b). The
conventions are similar to those of Figure 8. The symmetry is reduced
from Oh to D4h when âC or âF is taken different fromâ. The D4h

symmetry labels are presented for part a, but for part b, only the
symmetry labels of the frontier orbitals are shown for clarity reasons.
In both cases, aB2 level is bonding in the Fries limit and antibonding
in the Clar limit and vice versa for anA2 level. At âF ) âC ) â, they
each combine with anE level, that is nonbonding in the Clar limit, to
form T2 andT1 levels.
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In the middle betweenFz andFy, Cx, the level converts from
antibonding to bonding and is part of aE[D4

x] representation.
FromFy to Cz, the level stays bonding. Exactly the same picture
is obtained when following the path [Fz, Cy, Fx, Cz]. For the
B2[D4

z] level, bonding inFz and antibonding inCz, similar
arguments apply. For the cube, only the straight lines in Figure
13a are present, but the general conclusions remain the same.

It is now clear that the sameB1[D2] level will be bonding in
the lower part of the master triangle and antibonding in the upper
part (Figure 13b). The shape of the nonbonding frontier line is
not known, but it will be close to the line [Cx, Cy]. At the center
of the triangle, the level becomes part of aT1[O] representation.
Since this center lies a bit below the line [Cx, Cy], the level is
probably slightly bonding. Equation 11 then dictates a slightly
antibonding T2[O] level. Hence, the use of the full two-
dimensional correlation diagram only confirms the conclusions
from the previous discussion, where only the line [Fz, Cz] was
followed.

8. Conclusions and Discussion

Using a group-theoretical analysis, we have predicted the
symmetry and number of low-lying orbitals for three different
polyhedral cages. The leapfrog (3,6) cages have two nonbonding
occupied orbitals with the symmetryΓ2 below the first empty
orbital, and hence, they can act as electron donors. The leapfrog
(4,6) cages have a rather large HOMO-LUMO gap, and the
symmetry of the highest six occupied orbitals is spanned by
Γ-1 × (ΓT + ΓR), while the symmetry of the lowest six
unoccupied orbitals is spanned byΓT + ΓR. The octahedral
nonleapfrog (4,6) cages have a small HOMO-LUMO gap, and
the symmetry of the HOMO (LUMO) is given byT1 (T2).

We have not applied the analysis for nonleapfrog (4,6) cages
with a symmetry lower thanO. It is however obvious that, when
the symmetry is too low, the crossing of energy levels from
bonding to antibonding and vice versa between the Fries and
Clar limits cannot occur.

Alternating boron nitride (4,6) cages are more chemically
plausible and probably already synthesized,13,14 as opposed to
their carbon counterparts. A simple relationship exists between
the Hückel MOs of the carbon cage and its boron nitride version
and their symmetries,4,3 so the results given here are also relevant
for this type of cages.
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