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Frontier Orbitals of Trivalent Cages: (3,6) Cages and (4,6) Cages
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A qualitative molecular-orbital treatment and group-theoretical analysis reveals the nature of the frontier
orbitals of (3,6) and (4,6) polyhedral cages, consisting of a hexagonal network with triangular and square
defects, respectively. Leapfrog (3,6) cages have two nonbonding filled orbitals. Leapfrog (4,6) cages have a
high HOMO-LUMO gap, while nonleapfrog (4,6) cages with octahedral symmetry have a very small HOMO
LUMO gap. The symmetry of the frontier orbitals is determined.

1. Introduction

The discovery of fullerenes has revived the study of the
mathematics of polyhedral cages. Physicists and chemists show
a special interest in cages that can be folded from a honeycomb

lattice by introducing pentagonal, triangular, or square defects.

Combining Hickel theory with a group-theoretical analysis, : . ’
Fowler and Ceulemahgroved that any fullerene of the leapfrog
class has six low-lying empty molecular orbitals (M©s) 4 { \

spanning the translational and rotational symmetrasove the

highest occupied molecular orbital (HOMO). These MOs can

therefore act as electron acceptor levels. In this paper, we extend

this analysis to leapfrog cages consisting of hexagons and fourFigure 1. The three independent colorings (gray, white, and black)
triangles ((3,6) caged)and leapfrog and nonleapfrog cages on the honeycomb lattice that obey criterion 1.

consisting of hexagons and six squares ((4,6) cags)eral ) ) i )
studies have been devoted to the boron nitride analogues of (4,6y€stricted to leapfrog structuréSConsider first the following
cagest—12 and there is evidence for their experimental synthe- Sélection procedure.

sis1314 All possible symmetries have been found for (3,6)  Select one face and color it. Color also all other faces that
cage$® and (4,6) cage¥ are connected to this first face by following the bonds that are

Leapfrog and nonleapfrog (3,6) cages, with symmetries radiating from the first face. Repeat this procedure for all colored
ranging fromD; to Tg, were investigated in ref 2. A zone-folding ~ faces until no new faces can be colored anymore. The colored
procedure allowed a complete breakdown of théckl faces must now obey the following criterion:
eigenenergies, MOs, and their symmetries. Leapfrog and non-  Criterion 1. The colored faces exhaust all thertexes. None
leapfrog (4,6) cages with octahedral symmetry were treated in of the colored faces may share sides, but all are connected by
ref 3. The Hekel energies, MOs, and their symmetries were ponds.

obtained by a zone-folding procedure but only for fhe A, This coloring procedure can also be applied to the honeycomb
andE representations. Numel_rlcal ca_llculatlons on a large set of | jiice  Three independent colorings are possible based on
cages revealed that the frontier orbitals were alway$,@ind criterion 1. Figure 1 shows that the faces of the honeycomb
;r2 symmetr;l/) and thaththeHIée)z,a\l/lp(f)rog 84?]) ciages have a ml_Jth lattice are distributed among three equivalent disjoint sets: gray,
arger gap between the and the lowest unoccupie white, and black faces.

molecular orbital (LUMO) than the nonleapfrog cages. The
( ) pIreg cag The polyhedra can be thought of as being derived from the

group-theoretical study in this paper explains the origin of this ) . ) ; .
behavior, and is not restricted to cages with octahedral sym- "oneycomb lattice, by cutting out wedges with starting points
metry. in the middle of a hexagonal face of the honeycomb lattice.
Figure 2a (b) shows how a wedge with an angle’/ef() is

cut out from the honeycomb lattice to introduce a pentagonal

(trigonal) defect. Suppose the first wedge has its starting point

Three different types of polyhedra are studied in this work: in the middle of a gray face. The set of gray faces is still
leapfrog (3,6) cages, leapfrog (4,6) cages, and nonleapfrog (4,6)consistent with criterion 1, but the white and black faces no
cages. (A leapfrog polyhedron,@ constructed in imagination ~ longer are. Thus, cutting out one sector already reduces the
from a smaller parent polyhedrongby first capping all faces ~ number of independent colorings from three to one. Introducing
and then taking the dual of the resulting polyhedtgrior all new defects, their corresponding wedges should also have their
three, it is possible to draw two extreme bonding schemes: astarting point on gray faces; otherwise, also the set of gray faces
Fries limit and a Clar limit8 The definition given here is not  is no longer in agreement with criterion 1.

2. The Two Bonding Extremes: Fries and Clar
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(@ ®, © G1, Gy, and Gz and group orders);, go, andgs, respectively.
: \ . G1, Gy, andGs are always subgroups @. Three possibilities
. . I w for the point groups of the colored (4,6) cages exist in principle.
e : . Al (i) None of the symmetry elements 8finterchange any of the
! \ \% . three colored cageS;, Sy, andSz. We then havés = G; = G,

o <
,’b ’ . = Gs. (ii) One of the colored cages (s&y) is unchanged by

4 . any of the symmetry elements & while some symmetry

. 1 4 elements interchang®, and S;. We then haves = G, while

! P G, = Gz andg, = gz = ¢/2. (iii) S has one or mor€; axes
Figure 2. Cutting out wedges from the honeycomb lattice to introduce :Eat C.onvenslht.o Szbsz 10 S, g‘d%dto S; Gl’:GZ’ a:ndGéj are
nonhexagonal faces, for pentagonal (a), trigonal (b), and tetragonal (c) en isomorphic subgroups &, andg; = g2 = gs = /3.
defects. For a leapfrog (4,6) caggé = L, the colored faces of one of
the three colored structures (s&y) correspond to the faces of
the parent structur® (and hence the squares will always be
among them) and the interconnecting bonds to the bonés of
(Figure 3b). The coloring does not reduce the symmetrl, of
in this case.S, and S3 have no squares among their colored
faces. Only cases i and ii are possible here.

None of the three colored structures of a nonleapfrog (4,6)
cage contain all of the six squares (Figure 3c). Casésare
possible here.

Suppose a coloring is possible for the structrevhich has
n atoms.Sis trivalent, so the number of edgeseis- 3n/2. The
edges that connect the colored faces exhaust all vertexes but
are not connected to each other, so their numbers

We work within the simple Hckel approximation: the
interaction between all nearest neighbors is described by the
same parametét (3 < 0), and the energy of all the atoms, by
the same parameter. The Hickel HamiltonianH(S) is then
equal to

H(S) = ol + SA(S) (1)

Figure 3. Coloring of some of the faces of polyhedra such that criterion whereA(S) is the connectivity mairix of structura.

1is obeyed. (a) The simplest leapfrog fullerene and leapfrog (3,6) cage. | € Fries limit of S, Fs, is obtained by attributing formal
There is only one possibility: the colored faces correspond to that of double bonds to the/2 edges that connect the colored faces

the parent cage. (b) The simplest leapfrog (4,6) cage. Three differentand single bonds to all other edggss set to zero for all single

colorings are possible, of which only two are shown (the third one is bonds. One has now?2 isolated bonds and heno& bonding

equivalent to the second). (c) The simplest nonleapfrog (4,6) cage: thegrbitals (labeledr) at energyE = a + 8 andn/2 antibonding

cube. Three different cqlorlngs are pos&ble, of which only one is shown orbitals (labeled7*) at energyE = o. — 8. Since there are

(the other two are equivalent to this one). electrons in the neutral structure, the Fries limit constitutes a
closed shellr electronic configuration.

However, the case is different when introducing tetragonal ~ The Clar limit of S, Cs, is obtained by setting to zero for
defects in the honeycomb lattice. Cutting out a sector with an all bonds that connect the colored faces. One obtains now a
angle of?"/3 never creates an inconsistency with criterion 1 for system of isolated polygons, and the orbitals of these polygons
gray, white, or black faces (Figure 2c). Thus, introducing can be labeled as, =, 9, .... We will denote the orbitay of a
tetragonal defects does not affect the three independent colorj-gon bygj, and similarly for the other orbitals.

ings. The two limits are each other's complement, in the sense
In summary, the following cases are possible for (3,6) and that the sum of the connectivity matrix of the Fries structure
(4,6) cages and fullerenes: Fsand that of the Clar structuf@s gives the connectivity matrix

(1) (3,6) cages and fullerenes where no coloring based on of the total structures:
criterion 1 is possible. These cages are nonleapfrogs and will
not be treated in this work. A(Fg) +A(Cy =A(S 2)

(2) (3,6) cages and fullerenes where one of the three colorings
still obeys criterion 1 (Figure 3a). These cages are leapfrogs. These two bonding extremes can be connected in a Walsh-like
The colored faces of the leapfrog structlrere derived from correlation diagram, which gives information about the frontier
the faces of the parent structiPdand hence the nonhexagonal orbitals of these structures. At any point between these two
faces will always be among them), and the bonds that connectextremes, the Hamiltonian is given by
them are derived from the bonds of the parent structure. Since
P has the same symmetry &s the coloring does not reduce H' = al + BA(Fs + BA(CY (3)
the symmetry oL .

(3) (4,6) cages, both leapfrog and nonleapfrog, always have The Fries limit is obtained by setting- = 5 andSc = 0, and
three independent colorings that obey criterion 1. Let us call the Clar limit, by settingdr = 0 andfc = . The actual structure
the uncolored structur8 with point groupG and group order is formally identified to the center of the correlation diagram
g and the three colored structur8g S,, and S; with groups wherefr = fic = 5.
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C Figure 5. Two squares in a zigzag relation (top) and an armchair
S3 Csz relation (bottom).

of its edges and the translational and rotational symmelfies:
If,P)xI't=T,(eP)+TI;+TIy (8)
and therefore
I'C,o+n)=T(F,E<0)+TI;+TIg 9)

F . These equations will prove essential to get insight into the
$2 F . .
CS1 S3 arrangement of the frontier orbitals of leapfrog cages.
Figure 4. Fries §) and Clar C) reference points for the two- . 3.2. (4,6) Cages: _/-\_Iternz_intSA (4.6) cage is an alternant:_
dimensional Walsh diagram of (4,6) cages. its vertexes can be divided into two equal sets, black and white,
such that every vertex of one set is surrounded by members of
When three different Fries/Clar structures are possible, the the other. As a consequence, its spectrum is bipartite: for each

connectivity matrix is equal to bonding MO at energf < 0, there exists an antibonding MO
at energy—E > 0 with the same coefficient on white vertexes
A(S) =A(Fs) + A(Fs) + A(Fg) but an opposite value on black vertex@at the spectrum has

mirror symmetry around the nonbonding level. Since the number
= E(A(Csl) + A(Cs.) + A(C%)) (4) of black and white vertexes is equal, eventual nonbonding MOs
2 also occur in such pairs.
Any symmetry operation wilkither map black vertexes on
black vertexes and white vertexes on white vertexesxchange

= A(Fs) + A(Fs) and similarly for the other Clar extremes. black and white vertexes. The proof goes as follows: Suppose

At any point between these three extremes, the Hamiltonian is & Symmetry ciperatlon% WO_U|d map ‘fe black vertex; on tr.'e
given by black vertexv; and the white vertex; on the black vertex;.

v; ande3 are connected by a path of edges. Whgandu; are
H" = ol + e A(Fs) + Be AFs) + Be A(Fs)  (5) taken into account, there is an even number of vertexes,
! 2 ¢ alternating black and white, along this path. Acting withon

The Walsh diagram is now two-dimensional, as shown in Figure this path, one obtains a path connectirigand ;. However,

One has now three independent extrerfigs,Fs,, andFs,. The
three Clar extremes are linearly dependent on these, Aifte€)

4. this path also contains an even number of vertexes; hence, it is
To simplify further discussion, we set = 0. Also, in this impossible that the first and last vertexes are both black. Thus,
case, the center of the diagram is identified as the referencewe have proven that any symmetry operator will map vertexes
structure of the Hokel treatment. on vertexes of the same colar?(.) or will map vertexes on
vertexes of different colors{.—.). Let us define now the
3. Preliminary Group-Theoretical Lemmas following one-dimensional representation;.
3.1. Leapfrog Cages.n this section, we recall a general erl(%‘?,ﬁ) =1
result about orbital symmetry representations in leapfrog cages.
In the Fries limit, the localized bonding orbitals of the leapfrog A ) =—1 (20)
cageS = L with n atoms span the permutation representation ) ) ) ) ) . o
of the /2 edges of the pareit: T_qis nece_ssarlly an |rredu0|ble_ repre_sentanon, since it is the
representation of the totally antibonding MOD.; relates the
I'(F,E<0)=T,(eP) (6) symmetries of every pair of MOs at opposite energies:
I'_, xI'(E)=T(—E) (12)

whereI" denotes a (reducible) symmetry representation@and

indicates that edge bonds are totally symmetric with respect toI'_; is equal toA; for cages withO symmetry, toAy, for cages

all symmetry elements that go through the edge. with O, symmetry and with neighboring defects in an armchair
The number of isolated faces of the leapfrog cage is equal to relation, and toAy, for cages withOn symmetry and with the

the number of faces of the parent cage, and following Euler's neighboring defects in a zigzag relation (see Figure 5).

theorem, this is equal to/6 + 2. Consider thes, my, and sy (4,6) cages can also be inscribed on hexagonal prismits

orbitals of the isolated polygons @, 3(/6 + 2) =n/2 + 6 a resulting symmetry dDg (I'-1 = By) or Dgn (I'-1 = Byg). I'-1

orbitals in total. Their symmetry is obtained by multiplying the can be derived from these cases when the cage has a lower

permutation representation of the parent faces by the transla-symmetry.

ti | try, that is, f th duEt(f, P) x I't:
ional symmetry, that is, from the produEg(f, P) x I't 4. Leapfrog Fullerenes

I'C,o+n)=T,f P) xI't ) The application of the Walsh-type analysis to the case of
leapfrog fullerenes has been presented in ref 1. Here, we briefly
This product is simply the sum of the permutation representation recall the results.
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Figure 6. Walsh diagram for leapfrog fullerenes with correlation
between two bonding extremes: the Fries limit (left) and the Clar limit
(right). The hatched region denotes occupied orbitals in the neutral cage

In the Clar limit, theo andr orbitals of the isolated hexagons
and pentagons are all bonding, while the other orbitals are
antibonding

I'C,o+n)=TI(C_,E<0) (12)
Taking the difference of the symmetries of the orbitals bonding
in the Clar limit with those bonding in the Fries limit, one
obtains from eq 9

IC,E<O0)-T(F,E<0)=T;+Ty (13)

Compernolle and Ceulemans

FRIES CLAR
x| w2 n/2+2 9
73,06
T,
T n/2 n/2-2 T
03,04

Figure 7. Walsh diagram for leapfrog (3,6) cages with correlation
between two bonding extremes: the Fries limit (left) and the Clar limit

(right).

= T,) are contained if'(C_, 7r3), and this stays true for lower
symmetries. For arbitrary symmetry, one can say
I'C,n))=I7+Ig+T, (16)

whereI’; is a two-dimensional term. The symmetry of the
bonding orbitals in the Clar limit is spanned by

I'C,E<0)=T(C,, 05+ 5+ 03)

=T(f, P) x [y +T,(f, P)  (17)

Figure 6 shows the general Walsh diagram. Because of theWith T's(fs, P) = T'(CL, 0e) spanning the symmetries of the

noncrossing rulé? all bonding orbitals in the Fries limit are
matched by bonding orbitals in the Clar limit. Six orbitals,
spanning the symmetryr + I'r, are bonding in the Clar limit
and antibonding in the Fries limit, and hence, they will be close
to nonbonding in the neutral fullerene, lying above @
occupied bonding orbitals. They thus constitute the six lowest
unoccupied MOs of the cage, and this explains the electron-
accepting behavior of the leapfrog fullerenes. However, the six
orbitals will still be slightly antibonding; a theorem proven by
Manolopoulos et a2 states that any leapfrog polyhedron with
at least one face not divisible by 3 will have a closed shell with
a strictly bonding HOMO and a strictly antibonding LUMO.

5. Leapfrog (3,6) Cages

Consider thes and s orbitals of the isolated hexagons and
triangles of the Clar limit. The eight; orbitals are antibonding,
while the other orbitals are bonding. The symmetry of these
antibonding orbitals is given by

[(Cy, g) = T(f3, P) x I'r — I'(f3, P) (14)
with T'(C, sr3) spanning the symmetries of theorbitals on
the triangles and',(f3, P) = I'(C_, o3) spanning those of the
orbitals. Suppose the structute has the highest possible
symmetry,Tq. The symmetry of the eight trigonal orbitals is
then

INc,,m)=T,+T,+E (15)

so the translational and rotational symmetriEs £ T, andI'r

hexagonal faces of the parent structure. Combining this with
egs 7 and 14, one finds for the bonding orbitals in the Clar
limit

I'C,E<0)=T,f,P) x I't —T'(C_, my) (18)
The bonding orbitals in the Fries limit are obtained by combining
egs 6 and 8 as

I'FLLE<0)=T (e P =T (f,P) xI1—I7+—-Tg (19)
so the difference between the two is

1—‘(FLI E< 0) - I_‘(C:L! E< 0) = I_‘(C:L! ‘713) - 1—‘T - FR = I_‘2
(20)

Figure 7 shows the general Walsh diagram. Two orbitals are
bonding in the Fries limit, and hence occupied in the neutral
cage, and antibonding in the Clar limit. This means that the
two highest occupied orbitals of the (3,6) cage are close to
nonbonding. In fact, they will bexactlynonbonding. A theorem
proven by Fowler and Rogéfsstates that the two highest
occupied MOs of any trivalent leapfrog polyhedron with all face
sizes divisible by 3 and at least one face size not divisible by
6 will be exactly nonbonding. An illustrative example is given
in Figure 8, showing the Walsh diagram for the simplest leapfrog
(3,6) cage, &, with symmetryTq. Two orbitals, spanning the
symmetryI’, = E, are indeed bonding in the Fries limit and
antibonding in the Clar limit. Afic = 5 = 3, these doubly
occupied orbitals are exactly nonbonding, and hence, they will
act as electron-donating levels.
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=3B F, L Co w3 I,=I(C,,E<0)+I(C,E=0)+TI(C,E>D0)
E —j Tt E =I'(F,E<0)+I(F,E>D0) (23)
OT*—— <2300 . . iieeeseer —h— -...........:::;Q;n- —8m,
e et From eqgs 21 and 22, it follows that
6 — "EEEE::"' .
ey eweseeseseseiie —4g, Iy=I(C_,E=<0)+I(C,E=0)—TI(C_,E=0)
o+3B e g — e 3
. 1 : y o3P =T(F,E<0)+T;+Tx+T(F,E>0)+T_, x
Bo/B B/p Iy +Ig) —I(C,E=0)
Figure 8. Correlation diagram for the orbital energies of the (3,6) cage
C1.. From the left to the middlgic is increased from zero 16, while =l + T+ Ig+T_ x ([ +Tg) —I(C,E= 02
Peis kept constant g8. From the middle to the righfi is diminished (24)

from 8 to zero, whilefic is kept constant g8. Degeneracies are not

shown explicitly but can be deduced from the tetrahedral symmetry Hence, the symmetry of the nonbonding orbitals in the Clar
labels. The HOMO occurs at the top of theband on the left and on limit is spanned by

the bottom of ther band on the right.

I(C,,7)=T(C,E=0)=T; + T +T_, x (I; +T})

The conclusions are in agreement with the zone-folding (25)

treatment in ref 2: leapfrog (3,6) cages, with a symmetry ranging
from Dz to Ty, always have a closed shell with two filled exactly
nonbonding orbitals. Hence, leapfrog (3,6) cages will act as
electron donors, as opposed to leapfrog fullerenes.

Suppose the structutehas the highest possible symmei@y,
The symmetry of the 12, orbitals is then equal to

6. Leapfrog (4,6) Cages PCLimy) =Ty + Tog+ Tou T Ty

As mentioned before, it is possible to write three different =Tyt Tog+ Ay X (Ty, + Tyy)
Fries and Clar structures for (4,6) cages. In the case of leapfro
cages, one Fries/Clar couple(is dZerivgd from the parent stru?:tur?a =T+ Tyg T Agy X (To + Tlg) (26)

P and has the same symmetrylagandP. Let us call thenf o ) ) ) )
and C.. The point group of the other two Fries/Clar couples Which is indeed in agreement with eq 25, both for zigzaglike
can be equal to that df or can be a subgroup with a group and armqhalrl|ke arranged defects. Combining egs 21, 22, and
order one-half of that of . Let us consider a few examples of 25, one finds that

high symmetry. The symmetry of the three Fries/Clar couples

is equal toO, T, andT for cages withO symmetry, toO, T, [(F,E<0)—T(C,E<0)=T_ x ([t +TIg)

andT} for cages withO, symmetry and with neighboring defects _ —

in a zigzag relation (Figure 5, top), and @ Tgy, and Ty for I(FLE>0)~T(C,E>0)=I1+Tq (27)
cages withO, symmetry and with the neighboring defects in
an armchair relation (Figure 5, bottom).

The leapfrog (4,6) cages have a clear bond alternation.
Calculating ther bond order for the leapfrog (4,6) cagesC
one finds a value of 0.687 for the bonds between two squares
and a value of only 0.404 for the bonds that are part of the
squares. Thudy, is the more dominant pattern compared to
the other two Fries structures, as already noted for the BN
analogue BN1,.1° Therefore, it seems reasonable to consider
only the extreme&_ andC_ (i.e., only one line going through
S in Figure 4), reducing effectively the problem to a one-
dimensional correlation diagram.

Consider ther and s orbitals of the isolated hexagons and
squares ofC_. The 12w, orbitals are nonbonding, while the
other orbitals are bonding. Applying eq 9, the symmetries of
the bonding and nonbonding orbitals in the Clar limit are given

All bonding orbitals in the Clar limit are matched by bonding
orbitals in the Fries limit. This leaves six bonding orbitals in
the Fries limit with the symmetry—; x (I't + I'r), which are
matched by one-half of the 12 nonbonding orbitals in the
Clar limit. The other six nonbonding orbitals, spanning the
symmetryl't + g, are matched by antibonding orbitals in the
Fries limit. The general Walsh diagram is shown in Figure 9a.
Hence, the symmetry of the highest six occupied orbitals is given
by 'y x (I't + I'r) and that of the lowest six unoccupied
orbitals byI't + I'r. No crossing from bonding to antibonding
or vice versa occurs when moving from the Fries limit to the
Clar limit, so the HOMO-LUMO gap is expected to be rather
large. An example is given for the simplest leapfrog (4,6) cage,
Co4, Which hasOy, symmetry, in Figure 10. The symmetry of
the HOMO and HOMG-1 is indeed spanned dy-; x (I't +

I'r) = Tay + Tog, and these orbitals are nonbondingdn and

by bonding inF_. The symmetry of the LUMO and LUM®1 is
_ spanned byl't + I'r = Ty + Tig, and these orbitals are
[(C,o+m)=T(C,E=0) nonbonding inC_ and antibondinggirFL.
=I(F,E<0)+TI;+Tx (21) Numerical calculations were performed on a large set of
octahedral (4,6) cagésit was found that, for leapfrog cages
Using eq 11, one finds that with O (Op) symmetry, the symmetry of the first six unoccupied
MOs is spanned by T (T, + Tig), while the symmetry of the
I(CL,E=0)=T_; xT'(F,LE<0)+T_; x ([ +Tg) highest six occupied MOs is spanned b, ZTo, + Tag), in
full agreement with our symmetry analysis.
=I'(FLE>0)+T_; x([7+TIg (22) It is not difficult to perform the analysis for the full two-

dimensional correlation diagram. Figure 11 shows the evolution
The symmetry spanned by the total set of MOs of the system of the energy levels along the circumference of the master
is of course given by triangle in Figure 4.
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Figure 9. Walsh diagram for leapfrog (a) and octahedral nonleapfrog

(b) (4,6) cages with correlation between two bonding extremes: the

Fries limit (left) and the Clar limit (right).

a-3p a-3B
E E
a+3B a+3B

0 1 1 [
B/B B./B
Figure 10. Correlation diagram for octahedrab{CThe conventions
are similar to those of Figure 8. HOMO and HOMQ are bonding,
and LUMO and LUMGHF1 are antibonding in the Fries limit. All these
orbitals are nonbonding in the Clar limit.

(E-a)/|B|

-2

Figure 11. Correlation diagram for the MOs of a leapfrog (4,6) cage,
following the circumference of the master triangle in Figure 4.

This diagram is actually nothing more than a superposition
of correlations between different’Kelé structures of isolated

hexagons and squares. When going around the circumference 3

Compernolle and Ceulemans

of the master triangle once, each energy level must of course
end up at its starting point. This implies that it must cross the
nonbonding energy an even number of times. However, Figure
11 makes it clear that there is only one point where energy levels
become nonbonding, namely,@t. Thus, all energy levels are
either bonding on the border of the master triangle or antibond-
ing, and at only one point, 12 levels will become nonbonding.
This only strengthens the argument given above that leapfrog
(4,6) cages will have a rather large HOMQUMO gap.

7. Nonleapfrog Octahedral (4,6) Cages

Also, nonleapfrog (4,6) cages have three different Fries
structures and Clar counterparts. Only cages Wittymmetry
are considered in this section. For these cages, the number of
atoms,n, is always a multiple of 8. The three Fries structures
are then equivalent and similarly for the three Clar structures.
The Clar limit has only orbitals on two of the six squares. The
symmetry of anO (Oy) symmetrical cages is reduced tdD4
(Dan) when going to the Fries or the Clar extreme. At any other
point in the triangle in Figure 4, the symmetry will Bg (Dzn).
We choose now one Fries/Clar couple (which one is irrelevant)
and consider the correlation between them (i.e., only one line
in Figure 4 going through the center of the triangle).

Let us neglect mirror symmetry for simplicity. The foGp
axes perpendicular to the princigay axis go through hexagons
whenn/8 = 2q (whereq is an integer) and through edges when
n/8 = 2q + 1. For symmetry reasons, these hexagons on the
four C, axes must be part of the Clar pattern and the edges of
the Fries pattern. Hence, the representations for the bonding
orbitals in the Fries limit are given by

F(FS,E<0)=1£6>< (A, + A, + B, + B, + 2E),

n_
f0r8—2q
I‘(FS,E<0)=%(E—1)X (A, + A, + B, + B, + 2E) +

A, + B, +E, forg= 2q+1 (28)
The representations of tleeorbitals in the Clar limit are given
by
[(Cq o) =A+A
T(Cq0p) = %(g - 4) x (A + A, + B, + B, + 2E) + A, +

B, + E, forg=2q

I'(Cq 09 =%(g = 1) x (A, + A, + B, + B, + 2E),
forg= 2q+1 (29)
The 7 orbitals on the Clar faces are now easily obtained.
I'(Cg 7)) =T(Cg, 04) x I'1 = I'(Cg, 0y
=I(Cg 04 x (Ay+ E) = T(Cg 0,
=2E=TI(C5, E=0)
I'(Cg, 76) = I'(Cg, 0¢) x (A, + E) — I'(Cg, 0¢)

:1(3_1) x (A, +A,+B,+B,+2E) (30)
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The last equation holds both faf8 even and odd. Combining
egs 28, 29, 30, and 11, one finds that

I(FoE<0)-T(CoE<0)=B,—A,+E

I'(F, E>0)—I'(Cq, E>0)=A,—B,+E (32)
Thus, one MO withB, symmetry is bonding in Fries and
antibonding in Clar, and vice versa for a MO with symmetry.
From the two MOs withE symmetry that are nonbonding in
Clar, one will be bonding in Fries and the other antibonding in
Fries. What does this mean for the structBrgith O symmetry?
Upon lowering the symmetry from® to D4, the only way to
obtain Ay, By, or E representations is

0—D,
T,—A+E

T,—B,+E (32)
This already indicates that the symmetry of the three highest
occupied orbitals and the three lowest unoccupied orbitals of
S, taken together, spaig + T, and that these levels will be
close to nonbonding. It is therefore plausible that they are
partially matched by the two nonbondiglevels in the Clar
limit.

The order ofT; andT, can be reasoned in the following way.
Let us first assume that, from the Fries limit to the Clar limit,
the energy levels are only rising or lowering. One bondsag
level and one bonding level will rise in energy when going
from the Fries limit to the Clar limit, since they are unmatched
by bonding Clar orbitals (Figure 9b). T2 level will rise more
quickly than theE level, since theB, level is matched by an
antibonding Clar orbital and the level by a nonbonding Clar
orbital. Both levels will not meet. At the same time, one other
E level will slowly lower in energy, from antibonding in Fries
to nonbonding in Clar. Thi& level will necessarily meet the
quickly rising B, level, and this will happen & > 0. This
indicates that the LUMO will havel, symmetry and, by
applying eq 11, that the HOMO will havg symmetry.

It is also possible to treat the nonleapfrog cages v@th
symmetry. The neighboring squares are always in a zigzag
relation (if in the armchair relation the cage is always a leapfrog).
Defineu as the number of hexagons between two neighboring
squares plus one. Them, = 3g (where q is an integer)
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Figure 12. Correlation diagram for octahedra 1) and G (b). The
conventions are similar to those of Figure 8. The symmetry is reduced
from On to Dan When fc or e is taken different froms. The Day
symmetry labels are presented for part a, but for part b, only the
symmetry labels of the frontier orbitals are shown for clarity reasons.
In both cases, 8; level is bonding in the Fries limit and antibonding

in the Clar limit and vice versa for af, level. At 5 = fic = 3, they
each combine with ak level, that is nonbonding in the Clar limit, to
form T, andT; levels.

nonbonding inCs. When e = c = f3, both levels meet to
form an antibonding,g level. In a similar way, a bondingyy
level is formed. Figure 12b shows the correlation diagram for
Cs2 (On, U= 2). Gszis a bit exceptional: six orbitals are both
exactly nonbonding &8¢ = fc = §3, resulting in an open shell.
However, they span the predicted symmeliy + T, Apart
from this accidental degeneracy ins£all nonleapfrog (4,6)
cages studied in ref 3 fulfill the prediction ofla HOMO and
a T, LUMO. The size of the HOMGLUMO gap of the
nonleapfrog and leapfrog octahedral (4,6) cages was also
compared previousl$® and it was found that the gap of
nonleapfrogs was considerably smaller than that of leapfrogs
of similar size, in agreement with the results here.

The discussion above only considered the correlation between

corresponds to leapfrog cages and so is already treated in theyne Fries/Clar couple. However, there is no single dominant

previous section. For the other cases, one has

I'(Fs E < 0) — I(Cg E < 0) =By, — Ay + E,

foru=3qg—1,

['(Fs, E<0)—T(Cg E<0)=By — Ay +E,
foru=3q+1,
[(Cs, E=0)=E,+E, (33)

The assumption that tH# level, bonding inFs and antibonding
in Cs, will meet with the E level, antibonding inFs and
nonbonding inCsg, to form aT, level is fully confirmed here,
since the otheE level (bonding inFs and nonbonding irCs)
has the wrong parity. Thus, one can conclude thatufer 3q
— 1 (3q+ 1), the HOMO will haveTyq (T1) symmetry and the
LUMO Tz, (T2g) Symmetry.

Figure 12a shows the correlation diagram fay (On, U =
1). A By level rises from bonding iffs to antibonding inCs.
At the same time, aiy level lowers from antibonding s to

Fries structure, as was the case for leapfrog (4,6) cages. The
full two-dimensional correlation diagram can be discussed using
the results obtained above. Let us label the three Fries/Clar
couplesF,/C,, F,/Cy, andF,/C,. The two Clar squares i€,

are placed along theaxis (Cx andCy are similarly defined).

At any point in the triangle in Figure 4, the symmetry is at
leastD,, with symmetry label#\, B;, B,, andBs. Since in the
following discussion symmetry labels of different point groups
are used, we also note between square brackets the point group
and as a superscript the orientation of the eventual principal
axis. Figure 13a shows the correlation diagram along the
circumference of the master triangle for tBgD5] representa-
tions. This diagram is again nothing more than a superposition
of correlations between different’Kelé structures of isolated
hexagons and squares. From the discussion based on one Fries/
Clar couple, we know that the sandg[D7] level is antibond-

ing in F; and bonding inC,. From Figure 13a, it is clear that

the only way in which this level can end up in the bonding part
of C; is by following the straight lowering line frorf; to Fy.
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(a) (E—o)/|P| 8. Conclusions and Discussion

Using a group-theoretical analysis, we have predicted the
symmetry and number of low-lying orbitals for three different
polyhedral cages. The leapfrog (3,6) cages have two nonbonding
occupied orbitals with the symmetiy, below the first empty
orbital, and hence, they can act as electron donors. The leapfrog
(4,6) cages have a rather large HOMOUMO gap, and the
symmetry of the highest six occupied orbitals is spanned by
'y x (I't + T'r), while the symmetry of the lowest six
unoccupied orbitals is spanned By + I'r. The octahedral
nonleapfrog (4,6) cages have a small HOMQJMO gap, and
the symmetry of the HOMO (LUMO) is given by (Ty).

We have not applied the analysis for nonleapfrog (4,6) cages
with a symmetry lower thaf. It is however obvious that, when
the symmetry is too low, the crossing of energy levels from
bonding to antibonding and vice versa between the Fries and
Clar limits cannot occur.

Alternating boron nitride (4,6) cages are more chemically
plausible and probably already synthesiZz&#'as opposed to
their carbon counterparts. A simple relationship exists between
the Hickel MOs of the carbon cage and its boron nitride version
and their symmetrie&? so the results given here are also relevant
for this type of cages.
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