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Using a recently reported double many-body expansion potential energy surface, quasi-classical, statistical
mechanics, and quantum resonance calculations have been performed for the HN2 system by focusing on the
determination of bimolecular (N+ NH and H+ N2) and unimolecular (decomposition of HN2) rate constants
as well as the relevant equilibrium constants.

1. Introduction

It is well established that the hydrodinitrogen radical is an
important intermediary species in combustion processes, par-
ticularly those concerning the reduction of the NO pollutant.1-6

It is also relevant in the understanding of noncatalytic radical
mechanisms leading to the ammonia production.7 Although the
experimental detection of HN2 is still to be accomplished (see
ref 8), a long-standing conclusion from theoretical methods
based on ab initio calculations is that such a species should be
metastable with a very short lifetime.9-11 Despite this, early
work1,2 and even some recent12 chemical kinetics models of the
thermal de-NOx process (selective noncatalytic reduction of NO
by ammonia) assume a large HN2 lifetime, and hence a small
unimolecular decay rate constant, to obtain agreement with
existing macroscopic data. By taking into account the predicted
theoretical short lifetimes, other researchers3,5,13,14have stressed
instead the influence of the fast equilibrium HN2 h H + N2 as
well as the contribution of reactions not included in the kinetics
models. In particular, Dean15 has pointed out that tweaking
critical coefficients to fit macroscopic kinetics data of complex
processes always represents a danger. Thus, the inclusion of
other relevant molecular processes and use of more accurate
data for the involved reactions may help to clarify this issue.

The present work aims to contribute to a better understanding
of the title system by studying the relevant unimolecular and
bimolecular processes using a recently reported11 double many-
body expansion (DMBE) potential energy surface for the
electronic ground state of HN2. At the bimolecular level, the
focus will be on the reaction

and its reverse, which occur adiabatically on such a surface.
Reaction 1 plays a key role in the combustion of nitrogen-
containing species,2,16 such as ammonia17,18and hydrazine.14,19

Despite its importance, it has been the subject of only one direct
experimental measurement, that by Hack et al.,20 who reported
the rate constant at room temperature, obtained by using a quasi-
laser flash photolysis cell. For other temperatures, only crude
estimates obtained by indirect means have been suggested.14,16,19,21

From the perspective of molecular dynamics, the bimolecular
reactions considered here have not attracted much attention,
partly due to the lack of an accurate global potential energy

surface for HN2. In the present work we will use the quasi-
classical trajectory (QCT) method for studying the N+ NH
reaction over a wide range of temperatures. From this and the
equilibrium constant of NH+ N h H + N2, one may then
calculate, assuming micro-reversibility, the rate constant for the
endothermic reaction.

The second part of this work focuses on the unimolecular
decomposition reaction

For this, we report calculations of the pure vibrational resonances
of HN2 and an estimate of the thermal high-pressure direct and
reverse rate constants for reaction 2. Note that an accurate study
of the low-pressure limit is out of the scope of the present
work: this would involve a third body (M) and hence the
corresponding HN2M potential energy surface. Bozzelli and
Dean3 estimated such rate constants as the sum of two terms:
one provided by the unimolecular decay from the ground
vibrational state, and the other, pressure dependent, accounting
for collisional vibrational activation where tunneling can also
occur. Clearly, a lower bound can be obtained as the decay rate
from the lowest vibrational state, which is readily estimated from
the resonance calculations. Also of interest for chemical
modeling is the equilibrium process

which is studied by using statistical thermodynamics and the
calculated resonances.

The paper is organized as follows. In section 2, we review
briefly the DMBE potential energy surface used for the
calculations, while sections 3 and 4 are focused on the
bimolecular reactions N+ NH and H+ N2, respectively. The
resonance and unimolecular calculations are presented in section
5, while section 6 gathers some final remarks.

2. The HN2 DMBE Potential Energy Surface

The HN2 potential energy surface used in the present work
has been reported in ref 11 from DMBE22-24 theory. According
to this method, the total interaction potential is first written as
a many-body expansion,25 with every n-body term being
subsequently split into its (extended) Hartree-Fock (EHF) and
dynamical correlation components:
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NH + N f H + N2 (1)

HN2 f H + N2 (2)

HN2 h H + N2 (3)

V(n) ) VEHF
(n) + Vdc

(n) (4)

2356 J. Phys. Chem. A2005,109,2356-2363

10.1021/jp045102g CCC: $30.25 © 2005 American Chemical Society
Published on Web 02/17/2005



The various n-body dynamical correlation terms are then
represented by damped perturbation-type multipolar expansions
that account for the dispersion energy at long-range distances.
In turn, the EHF terms are written as polynomial× range-
determining forms, with the coefficients in them being calibrated
from least-squares fits to a total of 972 MRCI26 energies (based
on the aug-cc-pVQZ basis set of Dunning27), scaled by the
DMBE-SEC28 method to account for excitations higher than
singles and doubles and the incompleteness of the one-electron
basis set. The overall root-mean-square deviation (rmsd) over
the regions of major chemical interest (up to 40 kcal mol-1) is
e0.3 kcal mol-1, and hence the DMBE form (discarding the
inaccuracies due to not describing seams where electronic states
of the same symmetry cross each other) may be judged to be
of high accuracy: up to 500 kcal mol-1 above the minimum
(the rmsd is smaller than 1 kcal mol-1).

Figure 1 shows the DMBE potential energy surface as a
relaxed triangular plot29 using hyperspherical coordinates. The
notable features are the twoCs HN2 equivalent global minima
at â* ) (0.714, γ* ) -0.318, and the correspondingC2V
transition state for isomerization atâ* ) 0, γ* ) 0.026, which
lies 48.44 kcal mol-1 above the minima. Also visible are the
two saddle points for the HN2 f N2 + H unimolecular
decomposition, which are located atâ* ) (0.593, γ* )
-0.530, with the barrier height being 10 kcal mol-1 relative to
the two equivalent HN2 metastable minima.

In Figure 2 we show the minimum energy path for the
processes studied in the present work. For completeness, the

calculated vibrational states of NH, N2, and N2H are also
indicated to give a general idea of the energetics of the title
reactions. Clearly, reaction 1 is highly exothermic (146 kcal
mol-1) and of barrierless type. Also visible are the saddle point
for the unimolecular dissociation reaction and the metastable
character of HN2.

3. The N + NH Reaction

The use of QCT methods in reaction dynamics has been
extensively described in the literature,30-32 and hence only the
details of relevance for the present study will be given.
Assuming a thermalized rovibrational distribution for the NH
reactant molecule, the rate constant for N2 + H formation can
be determined from the general expression

where ge ) 1/6 is the electronic degeneracy factor,kB the
Boltzmann constant,EVj the rovibrational energy of the (V,j)
level,Qvr the rovibrational partition function,µN+NH the reduced
mass of the reactants, andσ(Etr,V,j) the reactive cross section.
The translational energy has been obtained by sampling a
Maxwell-Boltzmann distribution.32 In turn, the rovibrational
states for each temperature have been sampled using the
corresponding cumulative function.33,34 As in ref 34, we have
calculated accuratelyEVj by solving numerically the Schro¨dinger
equation35 for the EHFACE2U36 potential energy curve of NH.11

Once the (V,j) state is defined for a given trajectory, the
internuclear distance is calculated by using the von Newman
rejection technique, sampled between the appropriate turning
points. Using the Monte Carlo method and the above sampling
procedures, eq 5 resumes to calculate

whereNr is the number of reactive trajectories in a batch ofN
trajectories andbmax the maximum impact parameter, which is
optimized as described in the literature.30-32 The 68% error in
the rate constant is then given by∆k(T) ) k(T)[(N - Nr)/NNr]1/2.

Table 1 summarizes the calculated rate constants for the N
+ NH reaction. The calculations cover the range of temperatures
300 e T/K e 25000, with a total of 3000 trajectories being

Figure 1. Relaxed triangular plot29 for the HN2 DMBE potential energy
surface. Contours start at 0.36Eh and are equally spaced by 6 mEh.

Figure 2. Minimum energy path for the N+ NH f N2 + H reaction.

TABLE 1: Summary of the QCT Results for the N + NH
Reaction

N2 + H N + N + H

T/
K

bmax/
Å Nr

1013 k1/
cm3 mol-1 s-1 Nr

1012 kd/
cm3 mol-1 s-1

300 2.7 2657 1.14( 0.02
500 2.7 2648 1.47( 0.02

1000 2.7 2574 2.02( 0.03
2000 2.7 2663 2.96( 0.04
3000 2.7 2701 3.68( 0.06
4000 2.8 2615 4.42( 0.07 9 0.15( 0.02
5000 2.8 2561 4.84( 0.08 34 0.6( 0.1
6000 2.9 2504 5.56( 0.08 73 1.6( 0.2
7000 2.9 2496 5.99( 0.08 90 2.2( 0.2

10000 2.9 2475 7.1( 0.1 277 7.9( 0.5
12000 3.0 2250 7.6( 0.1 377 12.7( 0.6
25000 2.9 2264 10.3( 0.2 742 33( 1

k(T) ) ge( 8kBT

πµN+NH
)1/2

∑
Vj

(2j + 1) exp(-EVj/kBT)

Qvr(T)
×

∫0

∞ Etr

(kBT)2
exp(-

Etr

kBT)σ(Etr,V,j) dEtr (5)

k(T) ) ge( 8kBT

πµN+NH
)1/2 Nr

N
πbmax

2 (6)
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integrated for each temperature, which reduces the statistical
error to∼1%. Figure 3 shows the calculated rate constant as a
function of temperature, and the three-parameter Arrhenius form,

whereA ) 6.41× 1011 cm3 mol-1 s-1 K-n, n ) 0.51, andB )
9.30 K are the optimum least-squares parameters. As it can be
inferred from Figure 3, the employed equal-weight fit mimics
well the rate constant over the entire range of temperatures
considered in the present work. Perhaps the most salient feature
is the strong variation of the rate constant for low and medium
temperatures, implying a small influence of the exponential term
in eq 7. A similar finding has previously been reported by
Westley,21 who suggested a pureT 0.5 dependence for the rate
constant. Clearly, our result strongly supports his suggestion.
Despite its small contribution (and hence an associated large
error), we have kept such an exponential term as we expect an
anti-threshold behavior for reaction 1 at very high-temperature
regimes. In fact, the lower inset in Figure 3 and Table 1 show
that the fragmentation channel opens at about 3000 K, although
it should be dominant at very high temperatures. It turns out
that even at the maximum temperature considered here, such a
dissociation channel plays only a minor role, with the corre-
sponding rate constant being about 1 order of magnitude smaller
than that yielding N2 + H. For completeness, the rate constant
for collisional induced dissociation has also been fitted to eq 7,
the optimum least-squares parameters beingA ) 7.57× 1014

cm3 mol-1 s-1 K-n, n ) - 0.20, andB ) 27 254 K.
Also shown for comparison in Figure 3 (see also the top inset)

is the experimental result of Hack et al.,20 obtained using a quasi-
laser flash photolysis cell for low-pressure experiments,k(298
K) ) 1.5× 1013 cm3 mol-1 s-1. Such a rate constant has been
determined by modeling NH reactant concentrations profiles
as a function of the reaction time, with and without N atoms.
Our predicted value of 1.1× 1013 cm3 mol-1 s-1 at T ) 298 K
is seen to be lower by only 30%. Unfortunately, the experimental
result has not been reported with the associated error bars,
although it has been remarked20 that the major source of error
comes from the 20% accuracy of the involved NH(X) calibra-
tion. We speculate that a similar error is likely to affect the
reported rate constant value, leading tok(298 K) ) (1.5( 0.3)
× 1013 cm3 mol-1 s-1. Clearly, the lower bound approaches
our calculated value at room temperature. Besides any other

unquoted source of experimental error, the difference between
the calculated and experimental results may then be attributed
to nonadiabatic effects that arise due to the conical intersections
that occur for T-shaped and linear configurations of H‚‚‚N2.11

Of course, the use of classical mechanics may itself be a source
of error, although the studied temperature range and barrierless
character of reaction 1 may suggest that the tunneling effect
should not play a significant role in the present work.

Besides the experimental result of Hack et al.,20 there have
been indirect estimates of the rate constant for N2 + H
formation. Westley21 proposed that such a rate constant should
be given by (6.3× 1011)T 0.5 cm3 mol-1 s-1, while Miller et
al.16 suggested a temperature-independent rate constant of 3×
1013 cm3 mol-1 s-1 over the interval 1100-1400 K. The most
recent analysis comes from the work of Konnov and De Ruyck14

for the kinetic modeling of the decomposition and flames of
hydrazine. Assuming theT 0.5 dependence proposed by West-
ley21 and the value reported by Hack et al.,20 they suggested
the expressionk(T) ) (9 × 1011)T 0.5 cm3 mol-1 s-1. At low
temperatures, the Westley21 values are clearly in good agreement
with those reported in the present work. The differences become
more relevant when comparing with the values recommended
by Miller16 and Konnov and De Ruyck,14 which are seen to be
larger than ours. Interestingly, if one adds the dissociation rate
constant (relevant for temperatures higher that 10 000 K) to that
of reaction 1, our results become nearly coincident with those
of Konnov and De Ruyck14 at 25 000 K.

We have also analyzed the energy distribution in the products,
which shows that the major contribution to be associated with
the vibrational degree of freedom (∼42-50% of the total
energy) of the N2 molecule. This can be best seen from Figure
4, which shows the fraction of energy release in the products
for five selected temperatures. Despite small variations, we may
consider the fractions of energy release (translational, rotational,
and vibrational) to be nearly constant for low and medium
temperatures. For high temperatures (5000 and 25 000 K), the
major difference is due to the increase of the fraction of energy
released into vibration of N2 at the expense of a decrease in the
rotational part. Another interesting feature is the nearly constant
value (25%) of the translational fraction over the entire range
of temperatures studied here.

Figure 5 shows the vibrational and rotational distributions
of the newly formed N2 molecules forT ) 300 K that were
obtained from a batch of 50 000 trajectories. The vibrational
quantum number has been obtained using the traditional
semiclassical method37 and the N2 EHFACE2U36 potential

Figure 3. Rate coefficient for the N+ NH f N2 + H reaction as a
function of temperature. The open symbols refer to the QCT calcula-
tions, while the solid line indicates the Arrhenius fit. Also shown are
estimates from various sources,14,16,21 and the experimental value
reported by Hack et al.20

Figure 4. Energy distribution of the product N2 molecule for five
selected temperatures.

k1 ) AT n exp(-B/T) (7)
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energy curve,11 while the rotational quantum number was
calculated from the classical angular momentum, with the
assumption of the classical-quantum correspondence. It is seen
from panel a that the reaction populates vibrational levels up
to V′ ) 38, which is partly due to the high exothermicity of the
reaction. Moreover, the maximum population is seen to occur
for V′ ) 6. Another significant feature is the broad nature of
the distribution up toV′ ≈ 26, which corresponds approximately
to the exothermicity of reaction 1. In panel b, we present the
rotational distribution corresponding to the vibrational quantum
number with maximum populationV′ ) 6. Despite the large
number of reactive trajectories (Nr ) 26 425, corresponding to
a probability of 52%), the rotational distribution shows sharp
transitions. To smooth them out, we have applied a moving-
window averaging technique,38 which consists of replacing each
value by a seven-point average (six to the right and six to the
left). As Figure 5b shows, this procedure eliminates such a rough
behavior while mimicking the general trends of the rotational
distribution. Also visible from the rotational distribution is the
fact that the N2 molecule is formed in highly excited rotational
states, following a non-Boltzmann distribution. Recall that for
this temperature the fraction of rotational energy release is nearly
35% (Figure 4) of the total energy of the products. A better
perspective of the rovibrational distribution is perhaps given
by the 3D plot shown in Figure 6 after smoothing the distribution
of the rotational degree of freedom. It is seen that the distribution
of vibrational and rotational quantum numbers is rather broad,
with small populations at lowj′ states, in a clear manifestation
of nonequilibrium.

4. The H + N2 Reaction

The H+ N2 reaction is highly endothermic, with a very small
thermal rate coefficient. Thus, despite the simplicity of the HN2

DMBE potential energy surface,11 a study using the QCT
method would be extremely time-consuming due to the very
small reaction probability at low temperatures. As a result, we
have chosen instead to calculate the equilibrium constant for
the process N(4S) + NH(X 3Σ-) h N2(X 1 Σg

+) + H(2S) and, by
assuming microreversibility, estimate the rate constant for the
title reaction by using the rate constant for the reverse reaction
calculated in the previous section.

The equilibrium constant for the reaction N(4S) + NH(X 3Σ-)
h N2(X 1 Σg

+) + H(2S) assumes the general form

whereQele
H(2S) ) 2, Qele

N2(1Σg
+) ) 1, Qele

N(4S) ) 4, andQele
NH(3Σ-) ) 3

are the electronic partition functions, andEVj denotes in an
obvious correspondence the quantum rovibrational energies of
N2 and NH. Note that N2 has ortho-para nuclear symmetry,
which has been accounted by using the factornj ) 2/3 for even
j and nj ) 1/3 for odd j. Figure 7 shows the calculated
equilibrium constant, which has been suitably fitted to eq 7;
the optimum least-squares parameters are nowA ) 3.48× 10-2

K-n, n ) 0.0062, andB ) -74 450 K. Also shown is the data
reported in GRI-Mech 3.039 (starting atT ) 2000 K), which is
based on thermodynamical data. Clearly, although covering
nearly 8 orders of magnitude, the values obtained from our
statistical thermodynamics calculations mimic well the GRI-
Mech39 results. Such a result gives us confidence to extrapolate
the parametrized equilibrium constant for medium- and high-
temperature regimes, which are more relevant for the H+ N2

process.
From the equilibrium constant, the rate constant for the

reverse of reaction 1 may be estimated ask-1 ) k1(T)/K(T).
ReplacingK(T) andk1(T) by the appropriate expressions yields
A ) 1.84× 1013 cm3 mol-1 s-1 K-n, n ) 0.50, andB ) 74 459
K. Figure 8 compares the fitted results with those used in GRI-
Mech,39 which are based on their own equilibrium constant and
the rate constant reported by Hacket al.20 for the direct process.

Figure 5. Internal energy distributions of N2 at T ) 300 K: (a)
vibrational energy; (b) rotational energy forV′ ) 6 (the thick line
indicates the smoothed distribution).

Figure 6. Product rovibrational distribution for N+ NH reactive
collisions at a temperature ofT ) 300 K.

K(T) )
Qele

H(2S) Qele
N2(1Σg

+)

Qele
N(4S) Qele

NH(3Σ-)(mHmN2

mNmNH
)3/2

×

∑
V,j

N2

nj(2j + 1) exp(-EVj/kBT)

∑
V,j

NH

(2j + 1) exp(-EVj/kBT)

exp(-
∆E

kBT) (8)
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The comparison is fairly good, with a tendency for GRI-Mech39

to underestimate our results. This trend results from the
assumption of an invariance with temperature of the direct
reaction between 300 and 3000 K, which is in disagreement
with our results and those reported in the literature.14,16,21

5. Resonance Energies

A key element for the study of the unimolecular decomposi-
tion of HN2 is the calculation of the resonances energies. In
this work, we have calculated them using the stabilization40-43

and complex44,45 methods. Such calculations have been per-
formed with the DVR3D suite of programs46 using Jacobi
coordinates (r, R, andθ); r is the N2 internuclear distance,R
the atom center of mass of the diatomic separation, andθ the
angle betweenR andr . With this definition, one may simplify
the computational effort if no energy splitting of the vibrational
levels is observed due to isomerization tunneling between the
two equivalent minima of HN2. To check this point, we have
performed test calculations in the absence of symmetry and
concluded that the energy splitting is negligible. Such a result
may be explained on the basis of the high isomerization barrier
and shape of the potential energy surface. The primitive DVR
basis consisted ofnr ) 40, nR ) 65, nθ ) 80 functions, where
the indexes refer to the corresponding coordinates. As param-
eters for the Morse-like functions,46 we have chosenre ) 2.3a0,
De,r ) 0.8Eh, andωe,r ) 0.02Eh for the r coordinate, andRe )
4.3a0, De,R ) 0.8a0, andωe,R ) 0.01Eh for R. The eigenvalues

were obtained via a sequential truncation/diagonalization pro-
cedure,46 with the secular problem being of dimension 3000.

5.1. Stabilization Calculations.According to the stabilization
method,40-43 the resonance states are obtained from the analysis
of the eigenvalues of the Hamiltonian when the accessible
configurational space is gradually increased. For a natural
dissociation coordinate, this can be achieved by varying the size
L of the unidimensional box in which the Hamiltonian is
diagonalized. Such box sizes have been set equal to the DVR
nodes of theR coordinate, varying fromLmin ) 3.61a0 to Lmax

) 4.56a0 and leading to a total ofN ) 16 Hamiltonian
diagonalizations. The variation of the density of states is then
given by42

where Ej(L) is the energy of thejth level, transformed to a
continuous function by interpolation with cubic splines, such
that (dEj(L)/dL)-1|Ej(L))E ) (dLj(E)/dE) can easily be calcu-
lated.47 Having determined∆F(E), the spectra of the resonance
states can be approximated by Lorentzian functions plus a
smooth background, the method being rather sensitive to
numerical issues. To circumvent this problem, Madelshtam et
al.42 have shown that the integral of∆F(E) is an effective phase
shift,

that can then be fitted to a Breit-Wigner function, plus a
nonresonant contribution,Φb, taken as a smooth low-order
polynomial function. One gets

whereEn are the resonance energies andΓn their widths. The
major disadvantage of this method is the large number of box
sizes that are required to generate accurate results.47-49 Since
the number of DVR nodes in the present study could not be
arbitrarily increased, only the lower resonance states have been
estimated (see Table 2).

5.2. Complex Method Calculations.Starting with a square
integrable (L 2) basis, the resonant wave functions can be
transformed into localized ones by the addition of an asymptotic
complex absorbing potentialiλU(R). This includes variational
parameters for minimizing the reflection and maximizing the
absorption of the outgoing wave function.44,45Following Skokov
et al.50 and Mussa and Tennyson,51 we have obtained the
resonance parameters from the states of the real Hamiltonian,
Ĥ, plus the asymptotic negative imaginary potential (NIP),Ĥ′
) Ĥ - iλU(R), viz.

To represent the NIP (see also refs 52 and 53), we have adopted
the form50,51

Figure 7. Equilibrium constant for N(4S) + NH(X 3Σ-) h N2(X 1 Σg
+)

+ H(2S) as a function of temperature.

Figure 8. Rate constant as a function of temperature for the H+ N2

reaction.

∆F(E) = -
1

∆L
∑

j
(dEj(L)

dL )-1|Ej(L))E - ∆F0 (9)

Φ(E) - Φ0(E) ) πN(E) +
π

∆L
∑
j)1

N(E)

[L0 + ∆L - Lj(E)] (10)

Φ(E) - Φ0(E) ) atan[2(E - En)

Γn
] + Φb (11)

Ĥ′ψn ) (En - i
Γn

2 )ψn (12)

U(R) ) ( R - Rmin

Rmax - Rmin
)3

R > Rmin (13)

U(R) ) 0 R e Rmin
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As stated in the literature,44,45,51the complex method is highly
sensitive to the variational parameters in the NIP. We have
chosen as optimum valuesRmax ) 6.7a0 (taken as the largestR
node) and 5.2e Rmin/a0 e 5.8. The energies and widths of the
resonances have been obtained as usual from the analysis of
λ-trajectories of the complex eigenvalues (En - iΓn/2) of Ĥ′.
We have considered 0.01e λ/Eh e 0.20 and between 500 and
1000 states for the complex NIP calculations. The resulting
resonance parameters for the DMBE and Koizumi et al.10

(KSW) HN2 potential energy surfaces based on the larger secular
matrices are given in Table 2.

5.3. Resonances, Lifetimes, and Unimolecular Decays.
Table 2 compares the calculated resonances and widths obtained
by the above two methods with those of Li and Guo54 based on
the KSW10 potential energy surface using doubled Chebyshev
autocorrelation functions. Also shown are the results obtained
by applying the complex method to the KSW potential energy
surface. Comparing the NIP results with those reported by Li
and Guo54 for the KSW,10 the differences in energy are seen to
be smaller than 2 cm-1, except for the (003) level, where it
reaches 4 cm-1. Except for the lowest level, which has a large
uncertainty (0.008( 0.07), the agreement with the results of
Li and Guo54 on the KSW potential energy surface is good. In
comparison with the DMBE potential energy surface,11 the
results show that the energies and widths are generally larger
for the latter, which may be attributed to small topographical
differences at the regions of the metastable minimum.

For isolated resonances, their lifetimes can be obtained from
the associated widths:τn ) p/Γn. In turn, the detailed unimo-
lecular decay rate constants can be calculated askn ) Γn/p. Both
quantities are shown in Table 3 using the data obtained from
the complex method on the DMBE potential energy surface.
As expected from energetic and structural considerations, the
lifetimes of the quasibound states of the DMBE potential11 are
smaller than those obtained for the KSW10 potential.

The high-pressure limit for the unimolecular rate constant
can be estimated from the collision frequency limit.55,56 One
has

whereQ is the reactants partition function. Figure 9 shows the
rate constant calculated from eq 14 using our own unimolecular
decay rates as well as those of Li et al.54 Also shown in this
figure is the canonical transition-state theory rate constant and
the unimolecular decay of the ground-state vibrational resonance
of each potential. The temperature dependence of the rate
constant based on the DMBE resonances and widths was fitted
to eq 7 in the range 500-3000 K, leading toA ) 1.3 × 1015

s-1 K-n, n ) - 0.53, andB ) 3404 K.
Using the equilibrium constant for HN2(X̃ 2A′) h

N2(X 1 Σg
+) + H(2S), one may obtain the rate constant for the

reverse reaction:

TABLE 2: Resonance Parameters for the HN2 Radical

DMBEa KSWb

NIPc stabilizationc NIPc Li and Guo54

state E/cm-1 Γ/cm-1 E/cm-1 Γ/cm-1 E/cm-1 Γ/cm-1 E/cm-1 Γ/cm-1

(000) 4416.3 0.013 4416.3 0.02 4045.4 0.008 4045.17 0.0019
(010) 5500.6 0.16 5500.7 0.19 5115.9 0.04 5115.80 0.034
(001) 6187.5 10.6 6189.3 10 5767.2 2.1 5766.90 2.09
(020) 6573.0 9.6 6573 8 6220.5 1.4 6220.55 1.50
(100) 6713 136 6387.3 56 6386.4 55.8
(011) 7242 34 7238 30 6790.2 8 6789.4 8.18
(030) 7626 44 7289 13 7289.4 13.5
(002) 7962 40 7484 57 7483.0 56.7
(021) 8292 91 7880 33 7879.6 34.6
(040) 8666 99 8309 41 8312.9 42.3
(012) 9011 67 8460 78 8459.2 79.6
(003) 9713 71 9178 93 9174.4 94.6

a Potential energy surface from ref 11.b Potential energy surface from ref 10.c This work.

TABLE 3: Lifetimes and Unimolecular Decay Rates of NH2

DMBEa KSWb

state τn/s kn/s-1 τn/s kn/s-1

(000) 4.1(-10)c 2.4(9) 2.8(-9) 3.6(8)
(010) 3.3(-11) 3.0(10) 1.6(-10 6.4(9)
(001) 5.0(-13) 2.0(12) 2.5(-12) 3.9(11)
(020) 5.5(-13) 1.8(12) 3.5(-12) 2.8(11)
(100) 3.9(-14) 2.6(13) 9.5(-14) 1.0(13)
(011) 1.6(-13) 6.4(12) 6.5(-13) 1.5(12)

a Potential energy surface from ref 11.b Potential energy surface from
ref 10. c The numbers in brackets indicate the power of 10.

Figure 9. Rate constant as a function of temperature for the HN2 f
H + N2 reaction.
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1

Q
∑
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kn exp(-
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kBT) (14)
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+)
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h2 )3/2
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exp(-
∆E
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whereQvib-rot
HN2 is the rotational-vibrational partition function

of HN2 andV a reference volume (in cm3); all other quantities
have been defined in eq 8. For the calculation of the partition
function, we have used two approaches. The first uses the
harmonic-oscillator rigid-rotor (ho-rr) model, where

with Ae ) 22.353 cm-1, Be ) 1.544 cm-1, and Ce ) 1.444
cm-1 being the HN2 rotational constants, andω1 ) 1862 cm-1,
ω2 ) 1086 cm-1, andω3 ) 2887 cm-1 the harmonic frequen-
cies. The second model uses the partition function

obtained as a sum over the energy statesEV,J,K calculated by
using theJ-shifting technique,57 and assuming HN2 to be a
symmetric top with rotational constantBhe ) (Be + Ce)/2:

The temperature dependence of the equilibrium constant cal-
culated from the above two models can be expressed using eq
7, leading toA ) 0.24 K-n, n ) 0.07, andB ) -4411 K for
the ho-rr model, andA ) 0.17 K-n, n ) 0.11, andB ) -4312
K for the sum-over-states one. Such temperature dependences
are illustrated in Figure 10, together with the estimate of ref
39. For completeness, we give the parameters in the analytical
expression (7) for the reverse of reaction 3:A ) 5.4 × 1015

cm3 mol-1 s-1 K-n, n ) -0.60, andB ) 7815 K for the ho-rr
model, andA ) 7.6 × 1015 cm3 mol-1 s-1 K-n, n ) -0.64,
and B ) 7716 K for the sum-over-states one. Note that the
resonances with very large lifetimes are not expected to be in
equilibrium, since they do not form or decay quickly enough
to maintain a steady-state requirement.58 This may not be the
case for the decay rates of the HN2 resonances, which are very
short-lived. On the other hand, resonances with very short
lifetimes are difficult to distinguish from the so-called nonreso-
nant contributions.58,59Thus, our estimated equilibrium constant
is likely to underestimates the true one. Using the sum-over-
states model with the assumption57 that the resonances are
J-independent leads to the same rate constants within the

indicated significant figures. Of course, they are expected to
vary with J 60, a point that will not be addressed further in the
present work.

6. Final Remarks

We have reported detailed full-dimensional classical and
quantum calculations of various rate constants and equilibrium
constants pertaining to the title system. Since the potential
energy surface used for the calculations has been modeled from
accurate MRCI calculations, we believe that such data can be
of help in modeling nitrogen chemistry in combustion processes
and ammonia production.
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