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When classical trajectory calculations are run on the two isomerization reactions NCCNh NCNC and CH3-
CN h CH3NC over a long period of time, up to ca. 0.2µs each, one finds many more recrossings than actual
reactive events. In these calculations a “recrossing” is defined as passage over the potential barrier separating
the two species followed by return to the original side within 0.2 ps. For the C2N2 case there are about twice
as many crossings of the barrier as there are genuine reactive events, and for CH3CN, there are about 10
times as many. Long-term mean residence times,τ∞

CN andτ∞
NC, in reactant and product wells are compared

with the corresponding mean first passage times,τ1
CN andτ1

NC, the latter found by terminating the trajectories
at the first crossing of the barrier. For the NCCNh NCNC reaction, except at the lowest energies, the mean
residence times are exactly twice the mean first passage times, implying that the transition-state theory
transmission coefficient, as traditionally defined, should beκ ) 0.5.

Introduction

With continuing increases in computing power it has become
possible to observe reactive trajectories by “ab initio molecular
dynamics” calculations in which the energy and its gradients at
a particular geometric arrangement are found by using standard
ab initio procedures and the motion followed by classical
trajectory methods. Surprisingly, unexpected numbers of re-
crossings of the potential barrier have been observed within the
picosecond time scale for some simple isomerization reactions
of vinylidene1 and the cyclopropyl radical;2 the former result
was soon corroborated by a full quantum wave packet calcula-
tion.3 Similar recrossings were observed in a calculation on the
reaction Cl- + CH3Cl h ClCH3 + Cl-, but the integration times
were insufficient for an estimate of the reaction rate to be
compared with the transition-state value.4

Such results are mostly limited to the femtosecond time range
or up to a few picoseconds, but many reactions of practical
importance to which transition-state theory is applied take place
on millisecond, second, or even longer time scales; it is therefore
important to considermuchlonger computational time scales.
On the other hand, traditional trajectory methods in which a
potential-energy surface is constructed beforehand are readily
extended to submicrosecond durations, enabling comparison
with the results of conventional transition-state theory to be
made.

In this paper we extend our earlier one-trip trajectory
calculations on two simple isomerization reactions in order to
examine their long-time crossing behavior: first, CH3CN h
CH3NC using an interpolated potential surface constructed from
known experimental and ab initio results5 and NCCNh NCNC
using an analytic four-body function created by least-squares
fit 6 to a set of 597 ab initio MP2/6-31G* energy values.7 Both
methods of construction have their drawbacks: the former was
alleged (on the basis of irreversible behavior restated in Table
1) to provide insufficient coupling between internal degrees of
freedom (IVR) that could lead, indirectly, to a failure in
microscopic reversibility between the forward and reverse CH3-
CN h CH3NC reactions,8 and in the latter it is difficult to know
with certainty whether there exist spurious valleys or basins in

which the trajectory could loiter either in the vicinity of the
saddle point, causing unwanted recrossings, or away from it,
causing retardation the reaction in one or both directions.
Moreover, the fitting of large numbers of energy values to a
complex polynomial is not a trivial exercise.9

Computational Procedure

In previous works8 trajectories starting from either side of
the barrier were terminated as soon as the saddle point was
crossed, and the present work was undertaken to find whether
the mean first passage times so obtained would coincide with
the mean residence times for a single trajectory that was
continued indefinitely. The earlier unidirectional routines8 were
altered appropriately for this purpose.

For each trial value of the energy trajectories were com-
menced from the normal internuclear configuration with random
momenta assigned to each degree of freedom; the study was
restricted to the behavior of rotationless,J ) 0, molecules.
Integrations were performed, as before,10 by using a fourth-
order Runge-Kutta procedure with fifth-order Adams-Mouton
predictor-corrector. Integration steps of 0.1 fs were used
whence energy was conserved to within 1 part in 1012 at 10 ps
for the CH3CN h CH3NC reaction11 and 1 part in 107 for the
NCCN h NCNC reaction; the difference arises from a differ-
ence in complexity of the potential-energy functions, 20 versus
90 terms in the two cases, and the consequent proliferation of
the number of derivatives to be evaluated. At longer times, for
the NCCN h NCNC reaction, energy conservation held to
within 1 part in 106 and 105 at 100 ps and 1 ns, respectively.

Occasionally, at low energies the random assignment of
momenta placed insufficient energy in the bending modes and
a single crossing would fail to occur far beyond the mean
expected first passage time for that energy; such trajectories
were rejected in the analysis below. Also, to avoid any hidden
bias from this source, each trajectory was terminated at 1 ns
and a new one was started; this, in an approximate manner,
mimics the randomization that would occur upon each collision
at a pressure of about 100 Torr. It also helps to keep the rounding
errors within reasonable bounds.
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For the CH3CN h CH3NC case, to amass a large number of
crossings, it was necessary to use fairly high energy values11a

at which C-H dissociation could occur. Typically, for the three
energy values used, an average of 100, 80, and 30 crossings
took place before dissociation occurred and the next trajectory
in the ensemble was commenced.

The NCCNh NCNC case presents the additional complica-
tions that NCNC can also isomerize into CNNC and that there
are two ways in which NCCN can change into NCNC; the
former possibility was excluded by keeping the trial values of
the energy below this threshold, and symmetry number
considerations12acan be, in the main, avoided in the comparisons
because they apply equally to the reaction of NCCN in both
the one-trip and the extended calculations.

In addition, the existing potential-energy surface7 was ex-
amined for defects, and it was found that there were two
unwanted depressions, one at fairly large NC-CN separations
and the other near the barrier to CNNC. These were remedied
by the inclusion of about 50 new MP2/6-31G* points covering
these two regions to make (with deletion of a handful of very
high lying values) a set of 640 energies for fitting to a new
analytic function. This produced, somewhat unexpectedly, a
diminution in the unidirectional lifetimes of a factor of up to
about 3 or 4 with respect to those found previously.8 Then, to
try to ensure proper behavior in the transition region, another
230 energy points around the barrier were added, making a total
of 870 points upon which the final potential-energy surface was
based. The difference in lifetimes derived from the two new
potentials was inconsequential, suggesting that there are no
unwanted trapping areas in the barrier region.

One other possible cause of spurious recrossings was
examined and discounted: in these calculations the potential
energies are evaluated using internal coordinates (in the NCCN
case, for example,rij , 1 e i, j e 4, i * j) which could lead to
an uncertainty in orientation as three atoms pass through linearity
or four atoms through planarity. (This could have accounted
for the much greater frequency of recrossings found in the CH3-
CN h CH3NC reaction since there are many more ways in
which such coincidences could occur.) Long stretches of
coordinates and momenta during clusters of recrossings (see
Figure 2) were examined, but no sudden reversal of any
component of momentum was ever detected.

Results

(a) CH3CN h CH3NC Reaction. The occurrence of large
numbers of recrossings on a very short time scale was noticed
during the earlier investigation8 but was deferred for later
examination. Figure 1 depicts a histogram of the residence times
in the CH3NC well at an energy of 25 019 cm-1. The distribution

is clearly bimodal with a large preponderance of crossings
occurring before 1 ps and a smaller number of reactive events
peaking around 100 ps. Figure 2 shows a typical 300 ps segment
of a trajectory in which the central portion indicates upon which
side of the barrier the system resides and the outer portions
represent the potential energies at which the crossings occur; it
is seen that the crossings tend to come in clusters, the feature
near 200 ps lasting about 3.7 ps with a 0.48 ps gap partway
through and containing 49 events in all. An obvious conclusion
from this diagram is that within a cluster the crossings do not
occur at the same potential-energy value, implying that signifi-
cant redistribution of energy occurs on this time scale.

(b) NCCN h NCNC Reaction.The results for this reaction
yield diagrams at all energies very like those shown in Figures
1 and 2, except that crossings come in smaller clusters, no more
than 10-12 at a time. One example of a bimodal distribution
is shown in Figure 3.

In every case the mean residence times in either well of the
recrossing trajectorieswere within a few percent of 0.1 ps for
both reaction systems. Figure 2 and the ones like it for this
reaction suggest that this recrossing phenomenon is not caused
by inefficient IVR, as suggested previously.1 Crossing-point
energies exhibit a sinusoidal distribution about the midpoint
between the barrier and the total energy, as we noted earlier.8

Exact coincidences between successive pairs of energy values
for nonreactiVecrossings, printed out to four significant figures,
were the same for both reactions, at about 0.05%, and recur-
rences to within(0.1% and(1% were, respectively, about
0.5% and 5%; given the sinusoidal distribution, these prob-
abilities are close to being statistical.

Data Analysis

Table 1 shows the corrected data for the mean first passage
times of the forward and reverse processes in both reactions.
Despite the procedural changes noted above, the conclusions

TABLE 1: Comparison of Mean First Passage Times for Isomerization of X-NC and of X-CN (where X ) CH3 or NC)

energya/cm-1 F(E)NC (per cm-1) F(E)CN (per cm-1) F(E)CN /F(E)NC τ1
NC /ps τ1

CN /ps τ1
CN/τ1

NC

CH3NC h CH3CN (100 trajectories)
25 019 9.6× 104 7.0× 105 7.3 203 107 0.53
33 085 9.8× 105 4.7× 106 4.8 55 30 0.55
41 150 6.7× 106 2.4× 107 3.6 16 7 0.44

NCNC h NCCN (1000 trajectories)
13 814 7.4× 102 1.2× 104 16.2 7.6 105.6 13.9
15 528 1.3× 103 1.7× 104 13.1 3.7 43.0 11.6
18 361 3.1× 103 3.0× 104 9.7 1.8 15.3 8.5
20 809 5.9× 103 4.6× 104 7.8 1.1 8.2 7.5
26 055 1.9× 104 1.1× 105 5.5 0.6 2.7 4.5

a For consistency with earlier papers,7,8 energies listed in column 1 are for the isocyanide molecule, relative to theV ) 0 level; those for the
cyanide isomer are greater by 8256 and 11 084 cm-1 for CH3CN and NCCN, respectively.

Figure 1. Distribution of residence times for transitions from CH3NC
to CH3CN at an energy of 25 019 cm-1. (Note the change in vertical
scale att ) 1 ps).
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are as before:8 that there is a gross failure to observe microscopic
reversibility, i.e.

in the CH3CN h CH3NC reaction where the interpolated
analytic potential surface was used, whereas for the NCCNh
NCNC reaction, where an (improved) empirical potential surface
was used, microscopic reversibility is fairly well obeyed,
remembering that the densities of states are only simple
harmonic oscillator approximations.

Table 2 gives the statistics from trajectories that were allowed
to run beyond the first passage time for which the cumulative
reaction time over all trajectories is a little over 1µs. For the
CH3CN h CH3NC reaction the total numbers of crossings
exceed the numbers of truly reactive crossings by an order of
magnitude, whereas in the NCCNh NCNC reaction the
discrepancy is only about a factor of 2; in both cases, however,
this recrossing ratio,RR, increases with increasing energy and
therefore densities of states, as shown in Figure 4. This is not
an unexpected result; see, for example, refs 13 and 14.

Again, the pairs of residence times for the CH3CN h CH3-
NC reaction do not obey microscopic reversibility, although here
the mean lifetimes for isocyanide are shorter than for cyanide,
as they should be, and not longer as they were in Table 1. The
reason for these discrepancies, in both Tables 1 and 2, is not
clear but may arise from some unsuspected discontinuities,
perhaps in the handling of the switching functions used in the
potential-energy formulation.5 If so, this is a problem that may
compromise other trajectory simulations that use similar kinds
of potential functions, perhaps in protein folding, for example.

On the other hand, the situation is very satisfactory for the
NCCN h NCNC case as far as microscopic reversibility is
concerned. However, the mean residence times in the two
penultimate columns of the lower half of Table 2 are ap-
proximately a factor of 2 greater than the corresponding mean
first passage times throughout Table 1; these differences are
explained in more detail below. It should also be noted that the

Figure 2. Distribution of crossing times and crossing energies for CH3CN h CH3NC processes at a total energy of 41 150 cm-1. The horizontal
dashed lines represent either the barrier height or the maximum energy, measured from the minimum of the CH3CN well. In the central portion of
the diagram a horizontal segment above the zero line depicts residence in the CH3CN well, likewise for CH3NC when below.

Figure 3. Distribution of residence times for transitions from NCCN
to NCNC at an energy of 15 528 cm-1. (Note the change in vertical
scale att ) 1 ps).

TABLE 2: Recrossing Statistics for Extended Trajectories and Mean Residence Times Following Reactive Events

energy/cm-1 cumulative time/ns total crossings reactive crossings ratioRR τ∞
NC/ps τ∞

CN/ps τ∞
CN/τ∞

NC

CH3NC h CH3CN
25 019 243 19 425 2217 8.8 191.4 206.6 1.1
33 085 281 80 455 7918 10.2 56.4 76.0 1.3
41 150 248 168 961 15 142 11.2 18.8 31.6 1.7

NCNC h NCCN
13 814 100 4605 2717 1.69 14.0 179.0 12.8
15 528 200 23 574 12 949 1.82 7.2 79.4 11.1
18 361 40 13 109 6499 2.02 3.6 31.0 8.8
20 809 20 12 172 5477 2.22 2.4 16.8 7.2
26 055 20 29 508 12 109 2.45 1.4 5.4 3.9

Figure 4. Recrossing ratiosRR versus densities of states (F(E)CN +
F(E)NC) for the NCCNh NCNC and CH3CN h CH3NC reactions.

F(E)NC/τ1
NC ) F(E)CN/τ1

CN
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division between recrossing and reaction, placed at 0.2 ps, is
rather subjective, and a different choice would alter some of
the shorter mean residence times by as much as 20-30%,
whereas those longer than about 15 ps are negligibly affected.

Discussion

Due to the imperfections in the CH3CN h CH3NC calcula-
tions already exposed, the remainder of this summary will
concentrate mainly on the NCCNh NCNC results. The former
are only of qualitative significance and included as evidence
that the bimodal distributions found in Figures 1 and 3 probably
represent a more general pattern and to call attention to some
unresolved problems.

As mentioned, the mean residence times for NCNC are too
short to be considered accurate, but we see that at the three
highest energies the mean residence times for NCCN are
virtually exactly twice those of the corresponding first passage
times. It is clear that here we have a situation somewhat like
that envisaged by Polanyi15 and expanded upon later by many
others16,17awherein the potential-energy surface representing the
reaction

has a basin at the top of the barrier in which the trajectory may
be trapped temporarily and from which it stands an equal chance
of emerging in either the forward or the reverse direction. Thus,
the transmission coefficientκ will then be one-half rather than
unity, which it would be if there were no basin.17b

This is quite unlike the alternative models of Hirschfelder
and Wigner17c,18,19 and of Miller20 in which the recrossings
exhibit random gap behavior and the transmission coefficient
can takeany valueκ e 1 depending upon the magnitudes of
the reflection coefficients.

In the present case there is no depression at the barrier along
the minimum energy path and no obvious signs of one in the
vicinity. Animation of the trajectories within these clusters of
recrossings reveals a complicated set of twisting and breathing
motions in which the ends of the two CN groups continually
exchange allegiance with either C atom having an equal chance
of being terminal. There is no propensity for a return from the
transition region to the original region of phase space, as found
in some other trajectory calculations.21

At the two lowest energies Table 2 shows recrossing ratios
RR < 2, and therefore, the transmission coefficientκ must be
greater than one-half: simply multiplying the mean first passage
timesτ1

CN by {min2|RR} yields numbers virtually identical with
the corresponding mean residence timesτ∞

CN, as in Table 3.
Perhaps we could associate these values of the recrossing ratio
RR < 2 with the onset of small-molecule unimolecular reaction
behavior11b for which the transmission coefficient would then
be RR

-1.
The bimodal distribution of residence lifetimes exhibited in

Figures 1 and 3 was unexpected: for the one-trip trajectories
the distribution of lifetimes conforms to the usual unimolecular
exponential decay pattern,7,11bbut for the nonrecrossing trajec-

tories it does not. The latter gives the appearance that escape
from the NCCN well is a two-step process

The standard expression for the concentration [B] as a function
of time is12b

The function that approximates the right-hand hump in Figure
3 has the same form, viz

with k1 ) 1/τ∞
CN andN0, which depends on the total number

of crossings, adjusted to fit. This is similar for the other NCCN
lifetimes in Table 2 but somewhat more ambiguous for those
of NCNC because the tail of the short-time recrossing peak
merges significantly into the reaction peak.

It should be noted that the simple Ah B isomerization
reaction was extensively treated as a three-state process ca. 20
years ago,22,23 but the distribution of lifetimes between the
various domains was not discussed. Further reexamination in
light of these new results is clearly warranted.

In an earlier numerical experiment on NCNC7 we found mean
first passage time distributions conforming to eq 1 when
trajectories were started from a nonrandom distribution (zero
kinetic energy) withk2 being identical with 1/τ1

NC and k1

interpreted as the rate constant for approach to the randomized
state from which isomerization took place. In this light the
equality ofk1 andk2 that is implied in eq 3 becomes plausible:
if each trajectory were to be run backward from its 1 ns end
point (at infinite precision so that it did not diverge), then the
same distribution of residence times would be found but with
labels 1 and 2 interchanged. Moreover, the observation in Table
3 that τ∞

CN ) 2τ1
CN is consistent with the fact that for the

distribution functionP(t) ) k1t exp(-k1t) the mean lifetime
t ) 2/k1.

One can also match the CH3CN and CH3NC peaks to similar
functions but only with k1 * k2, possibly related to the
shortcomings of those trajectory results already mentioned.

In addition to a fundamental understanding of the reasons
for the occurrence of the distribution function eq 3, with the
possible implication that return from the transition region
resembles emergence from an ordered state, some other ques-
tions remain to be answered. It is not clear what determines the
recrossing ratio,RR, other than that, as shown in Figure 4, it
increases with density of states, i.e., either with increasing energy
or with increasing molecular complexity, nor whether the large
step inRR arises from these effects or from an insufficiency of
coupling between the vibrational modes which we have alleged
on previous occasions7,8 to impede proper randomization in the
CH3CN h CH3NC case. These are important questions since,
in the absence of tunneling, the transmission coefficient is given
by

Recently, Truhlar and co-workers24 redefined the transmission
coefficient to include the augmentation of the rate by tunneling
as well as retardation from causes noted above. This is perhaps
unfortunate at the present juncture as the former is a quantum

TABLE 3: Mean NCCN Lifetimes Adjusted for Recrossing
Ratios

energy/cm-1 RR τ1
CN/ps {min2|RR}τ1

CN/ps τ∞
CN/ps

13 814 1.69 105.6 178.5 179.0
15 528 1.82 43.0 78.3 79.4
18 361 2.02 15.3 30.6 31.0
20 809 2.22 8.2 16.4 16.8
26 055 2.45 2.7 5.4 5.4

H + H2 f H2 + H

A 98
k1

B 98
k2

C

[B] ) [A]0k1(e
-k1t - e-k2t)/(k2 - k1) (1)

98
k2 f k1

[A]0k1te
-k1t (2)

N(τ) ) N0k1τe-k1τ or N(τ) ) N0τ/τ∞
CN e-τ/τ∞

CN (3)

κ ) {min2|RR}-1 (4)
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process that can occur at any energy (but has its greatest import
below the classical barrier) and the latter are classical manifesta-
tions which occur solely at or above the classical barrier.
However, in a fully quantum (wave packet)3 calculation such a
distinction would disappear. Nevertheless, there is an interesting
confluence in behavior on both sides of the barrier, with the
possibility that a unifying concept can be achieved through an
appeal to Ehrenfest’s theorem. The approximate convergence
of classical and quantal descriptions with increasing energy or
density of states is well known.25,26 It is most simply shown
for a single harmonic oscillator as the approach of the quantal
solution toward the classical one25b,26 or for a single Morse
oscillator27 and is equally applicable to any collection of
anharmonic oscillators. The present results show, conversely,
an approach of the classical result toward the quantum picture:
when the molecule finds itself in the immediate vicinity of the
transition region, it stands an equal chance of going either to
product or back to reactant. The corresponding behavior is very
familiar in the tunneling region, where the transmission coef-
ficient approaches one-half as the width of the (symmetric)
barrier approaches zero28,29only here we have an infinitesimally
thin multidimensional sheet dividing the reactants from the
products. A possible framework for examining this cor-
respondence could involve further development of the Feynman
path integral formulation.30

Conclusions

Given a properly constructed potential-energy surface for a
unimolecular isomerization reaction (and at high energies for
small molecules or at all energies for larger molecules), the
principal conclusions from this experiment are that (1) the mean
residence times in the reactant and product wells should be
exactly twice the corresponding mean first passage times for
the forward and reverse reactions and (2) pairs of lifetimes obey
the required condition of microscopic reversibility.

Conclusion 1 arises from the fact that in such reaction systems
there are many more crossings and recrossings of the transition
barrier than there are truly reactive events: when crossings
occur, they tend to come in tight clusters, giving the coarse-
grained appearance of either a successful or a failed reactive
event, with approximately equal probability. Also, Figure 2 (and
others like it for both reaction systems) shows these recrossings
are not the result of ineffective randomization of internal energy.

Assuming that the NCCNh NCNC reaction lies ap-
proximately on the border between small- and large-molecule
behavior, we can expect that in most unimolecular reactions
there will always be at least twice as many crossings and
recrossings as there are reactive events, and such recrossings
can come in clusters of as many as 10 or 20 at a time.

Because these recrossings occur in short clusters with
relatively long time intervals between them, the maximum
possible value of the transmission coefficient for the uni-
molecular transformation of a large molecule, in the absence
of tunneling, will beκ ) 1/2. Consequently, strict adherence to
transition-state theory, in the sense thatκ ) 1,13,14 can only
occur in the small-molecule limit and possibly likewise for
bimolecular atom transfer reactions.

At this time these conclusions are claimed only for the two
isomerization reactions described in this paper and maybe for
the isomerization1-3 and exchange4 reactions mentioned earlier,
all of them for isolated systems in vacuo; further work, both
experimental and computational, will be needed to demarcate
their generality.

Acknowledgment. I thank Dr. Raj Vatsya for discussions
about Ehrenfest’s theorem.

References and Notes

(1) Hayes, R. L.; Fattal, E.; Govind, N.; Carter, E. A.J. Am. Chem.
Soc.2001, 123, 641-657.

(2) Mann, D. J.; Hase, W. L.J. Am. Chem. Soc.2002, 124, 3208-
3209.

(3) Schork, R.; Ko¨ppel, H.J. Chem. Phys.2001, 115, 7907-7923.
(4) Sun, L.; Hase, W. L.; Song, K.J. Am. Chem. Soc.2001, 123, 5753-

5756.
(5) Sumpter, B. G.; Thompson, D. L.J. Chem. Phys.1987, 87, 5809-

5819.
(6) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.

Numerical Recipes: The Art of Scientific Computing; Cambridge University
Press: Cambridge, 1985.

(7) Shen, D.; Pritchard, H. O.J. Chem. Soc., Faraday Trans.1996,
92, 4357-4360.

(8) Pritchard, H. O.; Vatsya, S. R.; Shen, D.J. Chem. Phys.1999,
110, 9384-9389.

(9) Miller, W. H. Faraday Discuss.1998, 110, 1-21.
(10) Shen, D.; Pritchard, H. O.J. Chem. Soc., Faraday Trans.1991,

87, 3595-3600.
(11) (a) Shen, D.; Pritchard, H. O.J. Phys. Chem.1994, 98, 1743-

1745. (b) Shen, D.; Pritchard, H. O.Int. J. Chem. Kinet.1994, 26, 729-
736.

(12) (a) Laidler, K. J.Chemical Kinetics, 3rd ed.; Harper & Row: New
York, 1987; pp 98-106. (b) Laidler, K. J.Chemical Kinetics, 3rd ed.; Harper
& Row: New York, 1987; p 280.

(13) Pechukas, P.; McLafferty, F. J.J. Chem. Phys.1973, 58, 1622-
1625.

(14) Miller, W. H. J. Phys. Chem. A1998, 102, 793-806.
(15) Polanyi, M.Atomic Reactions; Williams and Norgate: London,

1932; pp 14-26.
(16) Hirschfelder, J. O.; Eyring, H.; Topley, B.J. Chem. Phys.1936, 4,

170-177.
(17) (a) Glasstone, S.; Laidler, K. J.; Eyring, H.The Theory of Rate

Processes; McGraw-Hill: New York, 1941; pp 107-112. (b) Glasstone,
S.; Laidler, K. J.; Eyring, H.The Theory of Rate Processes; McGraw-Hill:
New York, 1941; pp 207-208. (c) Glasstone, S.; Laidler, K. J.; Eyring, H.
The Theory of Rate Processes; McGraw-Hill: New York, 1941; pp 146-
148.

(18) Hirschfelder, J. O.; Wigner, E.J. Chem. Phys.1939, 7, 616-628.
(19) Eyring, H.; Walter, J.; Kimball, G. E.Quantum Chemistry; Wiley:

New York, 1944; pp 299-326.
(20) Miller, W. H. J. Chem. Phys.1976, 65, 2216-2223.
(21) Miller, J. A.; Garrett, B. C.Int. J. Chem. Kinet.1997, 29, 275-

287.
(22) DeLeon, N.; Berne, B. J.J. Chem. Phys.1981, 75, 3495-3510.
(23) Gray, S. K.; Rice, S. A.J. Chem. Phys.1987, 86, 2020-2035.
(24) Truhlar, D. G.; Gao, J.; Alhambra, C.; Garcia-Viloca, M.; Corchado,
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