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We present a numerical method to identify possible candidates for quasi-stationary manifolds in complex
reaction networks governed by systems of ordinary differential equations. Inspired by singular perturbation
theory, we examine the ratios of certain components of the reaction rate vector. Those ratios that rapidly
approach a nearly constant value define a slow manifold for the original flow in terms of quasi-integrals, that
is, functions that are nearly constant along the trajectories. The dimensionality of the original system is thus
effectively reduced without reliance on a priori knowledge of the different time scales in the system. We also
demonstrate the relation of our approach to singular perturbation theory which, in its simplest form, is just
the well-known quasi-steady-state approximation. In two case studies, we apply our method to oscillatory
chemical systems: the 6-dimensional hesrliydrogen peroxidesulfite pH oscillator and a 10-dimensional
mechanistic model for the peroxidasexidase (PO) reaction system. We conjecture that the presented method
is especially suited for a straightforward reduction of higher dimensional dynamical systems where analytical
methods fail to identify the different time scales associated with the slow invariant manifolds present in the
system.

1. Introduction this question is still unknown, there are already promising results
for bistablé and oscillatory systenfsi® The main tools of
Realistic modeling of complex reaction networks, such as investigation in this field are stoichiometric network anal¥/sis
those describing metabolish,atmospheric chemistd#! and and sensitivity analysi€ Both theoretical approaches have been
combustiorf,® usually requires the integration of quite large sets syccessfully combined with principal component analysis to
of equations which are systems of nonlinear ordinary differential jgentify essential reaction steps in diverse systems such as the

equations (ODEs) provided that transport processes such asnetabolism of red blood ceféand the BelousovZhabotinsky
diffusion or convection are not taken into account. reactiont4

We shall consider systems of the following form: Second, chemical reactions naturally evolve on different time

scales. Accordingly, their temporal evolution can be decomposed
x=1(x k) f: R" x RK—R" (x,K) € R" x R¥ into a fast transient relaxation to lower dimensional invariant
(1) manifolds and a subsequent slow evolution on the union of these
manifolds, which often still captures the interesting type of
where x and k denote the chemical species and all the dynamics on experimentally accessible time scales. The math-
parameters, respectively. For realistic reaction networks, the ematical description of such reaction networks leads to singularly
dimensiom of system 1 can easily get in the order of hundreds perturbed systems for which a well developed theory eXists.
(for instance, in the detailed description of combustion reactions As a result, a lower dimensional approximation to the original
or the BelousowZhabotinsky reactiof). Even on fast comput- ~ ODE system is obtained.
ers, the numerical integration of such systems can be very time-  \jeanwhile, several methods exploiting singular perturbation
consuming. Moreover, one is usually interested in investigating techniques have been proposed to simplify complex chemical
the system’s behavior as one or more externally tunable yeaction networks, such as lumping schethesthe approxima-
parameters are continuously varied. This makes a straightfor-ion of the invariant manifold based on a functional equatfon.
ward integration of hundreds of equations inconvenient from a yoever, before these techniques may be successfully applied,
practical point of view. A reduction of complex reaction one needs to identify the different time scales in the system.
networks, on the other hand, may also be desirable for theoretlcal-l—hey usually show up as small dimensionless parameters in front
reasons: _ o _ of time derivatives of some of the phase space variables,
First, one would like to identify those reaction steps and jngicating that these variables vary significantly only on very
chemical species in a given mechanism that are necessary tqnort time scales and henceforth follow instantaneously (alge-
generate a certain type of dynamics. While a general answer tobraically) the dynamics of the slow degrees of freedom. The
. . - conventional strategy for searching for a small parameter is to
m;gggglfrsgpggd'”g author.  E-mail:  marcus.hauser@physik.uni- introduce new dimensionless variables such that some combina-
T Otto-von-Guericke Universita tion of intrinsic system parameters becomes sufficiently small
* Max-Planck-Institut fu Dynamik komplexer technischer Systeme. and subsequently may be used as a singular perturbation
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parameter. Clearly, this procedure becomes a formidable taskoriginal ODE system (1). Since the slow variabjese assumed

in more complex reaction networks and other methods are to vary significantly only on time scalés> t, they are to be
required, for example, the method of computational singular treated as constants and act as parameters in (4). The long-
perturbatior® Furthermore, the rescaling procedure is not free term behavior of the original system on the quasi-stationary
of ambiguity in choosing the “right” scal@sand if the rescaled ~ manifold is described in terms of the slow subsystem which is
phase space variables are not bounded from above and belowpbtained from (2) in the limit — O:

then the rescaled kinetic parameters do not provide any

indication of whether the corresponding reaction step is slow y=nh(y, 2
or fast. Thus, one is often guided by chemical intuition or e 5
experimental expertise in grouping the individual reactions z=1y) )

according to slow and fast steps. Once the different time scalestpe conditions under which these approximations are valid have
of a system are known, it is more or less straightforward t0 peen elaborated by Fenicheand will be presented in the next
apply singular perturbation techniques to obtain a lower gection when we discuss how quasi-integrals and singular
dimensional approximation of the original dynamics on a slow perturbation theory are related.
manifold of the system. Finally, we study by numerical investigations whether
In the present article, we propose a method based on theygjeciories of the original system (2) (corresponding te 1)
successful identification of a certain class of quasi-integrals gmqothly deform into trajectories of the reduced slow subsystem
which arise as ratios of those components of the reaction rate(5) (corresponding te = 0). (This procedure corresponds to
vector which are nearly constant along the trajectories of ODE ;¢ homotopy argument used by Stiefenh@®tn such a case
system 1. As a result, possible slow manifolds for a given e fast reactions indeed define a quasi-stationary manifold and
reaction network are obtained without the aforementioned e reduction process is a posteriori justified. In this sense, the
prerequisites, that is, necessity of rescaling and chemical netho of quasi-integrals may serve as a supplement to existing
intuition. Thereafter, we use the method of parameter embeddingyathods which rely on prior knowledge of time scales.
as described by S_t|efenho¥éto test whethe_r the qua5|-|nteg_rals In the following section, we introduce the method of quasi-
that we found with our method truly define a slow manifold  jtegrals in detail and elucidate its connection to singular
for the original system. We shall now briefly outline this method. eryrhation theory. After a brief description of the numerical
The embedding method relies on some a priori knowledge methods, we present two case studies in which we apply our

of the order of magnitude of individual reaction steps. Having method to oscillatory chemical systems. First, we demonstrate
identified the fast reaction steps, one may embed ODE system;, qetail how a 6-dimensional enzyme model system can be

1 in ane-dependent family of ODE systems of the following  eqyced to a 3-dimensional system while maintaining its local

form (the parameterk are omitted for convenience): bifurcation structure. The second case study focuses on the
o nem peroxidase-oxidase (PO) reaction. This 10-dimensional reaction

y="h(y. 2 yeR system can be reduced to 6 dimensions, while most of the
ualitative features of the original model are retained. Finally,
ez=r(y, 2) + €g(y, 2) zeR" ) d g y

we discuss the scope and limitations of the introduced method.

Here, we have collected the fast reaction steps into the
components of the vector-valued functiofy, 2). Fore = 1,
ODE system 2 coincides with (1), provided the identifications
Xx=(y,2 € R™M x RM"andf = (h, r+g) € R"™™ x R™ are In the following, we assume that the reaction network under
made and the equations in (1) are ordered such that thenlast consideration is of mass-action type, since most chemical
of them contain the fast reaction steps. One can now study thenetworks belong to this class. Moreover, there is a “natural”
behavior of ODE system 2 for parameter valaetfferent from choice for the class of quasi-integral manifolds in such systems
1. Of particular interest is the case wher< 1, because then  to be looked for. Consequently, we may represent the vector
(2) becomes a singularly perturbed system for which a slow field in system 1 as

manifold of the formz = y(y, €) = Z(y) + (¢) may exist. In

the limit e — 0, the slow manifold can be approximated by the f(x, k) = C-R(x, K) (6)
quasi-stationary manifold = Z(y), which is the solution of the
algebraic equation(y, z) = 0. This can be seen by introducing

2. The Connection between Quasi-Integrals and
Singularly Perturbed Systems

where the components of the reaction rate ve&0¢, k) are

a fast time scale according ta = er. Hereafter, ODE system given by
2 reads R(x k) =k[]; %" i=1,..,randj=1,..,n
— n—m
y =ehly.2) yer C and « denote the matrix of stoichiometric coefficients and
7 =r(y, 2+ 7 ZeR™ 3 the kinetic matrix, respectively. V\_/h||9 the_forr_ne_r encodgs the
.2+ €y, 2 ) network topology, the latter contains the kinetic information of
where the prime sign denotes derivatives with respect tbe each individual reaction step. Both matrices have as many rows

= 0, the two systems (2 and 3) are completely equivalent. In as there are chemical specie$nd as many columns as there
the limit e — 0, however, this equivalence is lost. From (3), are individual reaction step;;)(m the network. Due to (6), the
one obtains an approximate equation for the dynamical behaviorcomponents of the vector fieldthat appear on the right-hand

of the original system on the time scale side of ODE system 1 are linear combinations of components
of the reaction rate vectd®, that is,
zZ=r(y,2 4) r
This equation is called the fast subsystem, and its stationary X =1 K=" CGR(X K I=1,..,n (7)

states define the quasi-stationary manifold for the flow of the =
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Now, we claim that whenever a ratio the eigenvalues of
_ GiR(X(®), K

" GR(X(®). K _ _
are negative and bounded away from 0 jobelonging to a
approaches approximately the constant vait® along the  compact region irR"™™ D.r(y, Z(y)) denotes the Jacobian of
trajectories x(t) for a certain combination of indices the fast subsystem (in the limit— 0)

. @) D (y, 2Y) (15)

I e {1, ..,n},i,je {1, ..,r}, we have found a possible
can_didate,l:j, of a quasi-integral which defines a quasi- d_yzo, d_zzr(y, 2, t=er (16)
stationary manifold for ODE system 7. Equation 8 may also be dr dr

looked at in the following way: )
g way where the slow variablgsare to be treated as parameters. Under

Ri(x(t), K) C; these conditions, the asymptotic dynamics ofrtkimensional
m ~Te 9) system (13) can be approximated for sufficiently smatb
R, l lowest order by

which shows that for quasi-integrals the kinetics of the reaction . .

network represented by the left-hand side approximately equals y = h(y, Zy). 0) (17)

thg topologicall constraint.s given by .the stoichiometric cpef- which is now an ODE system of dimension— m. Equation
ficients on the right-hand side. Alternatively, eq 8 may be written 17 is the zeroth order approximation with respect to the singular
in the form perturbation parameterand is well-known as the quasi-steady-
state approximation (QSSA).

When comparing (7) and (10) with (14), the motivation for
our choice of the nonlinear functionéj in (8) becomes
apparent, since if we truly wish eq 10 to define a quasi-stationary
manifold in the sense of the second equation of (14), we have
to make the following identification for the components of the
vector fieldr:

Ti = CiR(X(®), k) + C;R(X(t), k) ~ 0 (10)

showing that we are actually searching for reaction steps that
balance each other along the trajectories. Consequently, one ha
to consider only such combinatiofi®, R for which signC;)
= —sign(Cy) is fulfilled. This also explains the choice of-1"
on the right-hand side of eq 8.

Of course, one can easily extend this definition and try to -
balance more than two reagtion steps, for instance, g r:j = l!j =GiR(x, k) + CuF%(X' K) (18)

i =CR R ~ In this case, (8) is a necessary condition for the existence of
i =GR+ GROO. W+ GRXO. 9 ~0 ) quasi-stationa(lr))/ manifold defined by (10), which seems to be
In this case, we would consider quasi-integrals of the following a natural class of slow manifolds that one can expect in chemical
form: reaction networks of mass-action type. Alternativelgnay also
be identified withT:jk depending on how many reaction steps
| _ GiRK(M, k) + GRXO, K balance each other. The condition (8) would also be sufficient
a CR((t), K

if the two reaction rates}, andR;, appearing in (10) dominated

in magnitude over the others (which were absorbed into the
provided that, for example, sig@{) = signCi) = —sign(C;) definition of g1). However, this requirement is automatically
holds. Indeed, for the peroxidasexidase system, we find two  ensured by our method, since we examine the ratios of the form
quasi-integrals of this form (see the Case Studies section). Theof (8) and (12) along the numerical integration curves. Ratios
motivation for the particular choice of the functiots(eq 8) deviating notably from the value 1 are composed of reaction
and their alternative representaticfrhs(eq 10) becomes clear ~ St€ps that do not t_)alance each other along_ the mteg_ral curves
when we draw the connection to singular perturbation theory. ©F that do not dominate over the cher reaction steps in a given
Therefore, we now review some aspects of this theory that areat€ equation. Thus, the difficulty in identifying a quasi-integral

-1 (12)

important for our argumentation. is shifted to the task of deciding whether a given ratio of the
Singularly perturbed systems admit the following canonical form of (8) or (12) is “nearly” equal to-1. As will be shown
representation: in the two case studies later on, we have no difficulty finding
the quasi-integrals there. Nevertheless, it would be of great
y=nh(y, z ¢€) yeR™™ benefit to have a more rigorous measure of the loose statement
“nearly constant”, especially for identifying quasi-integrals in
ez=g(y, z €) ze R" (13) higher dimensional reaction networks. We will come back to

this point in the Discussion, where we also give a more formal
wheree is a sufficiently small dimensionless parameter. Now, working definition of a quasi-integral which may serve as a
we assume that the functigncan be decomposed g§/, z, ¢) starting point for their automatic detection.

= 1(y, 2 + €y, z €). Then, the “slow” subsystem (in the Thus, we arrive at a finite algorithm to probe a given reaction
limit e — 0) is described by the differentiablgebraic system  mechanism for the existence of equilibrating reaction steps
o —h 0 which can be summarized in the following three steps: First,

y (v.2.0) integrate ODE system 1 over a sufficiently long time interval

0=r(y, 2) (14) to obta_in the trajeqtori_es for parameter values where the

interesting asymptotic kind of dynamics is observed. Second,

whenever the second equation in (14) defines a smooth manifoldcheck whether quasi-integrals of the form of (8) or (12) exist.
of the formz = Z(y). Furthermore, this manifold is required to  Third, apply available singular perturbation techniques to reduce
be normally attracting in the following sense: the real parts of the number of dynamical degrees of freedom. In the present
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TABLE 1: Rate Constants and Inflow Stream Concentrations for the Hemin System (eq 20)

ki=02MLs?t kr=15M st ks=8.5x 10°P M 25 ks = 1000 s
ks=10M 151 ks=0.011 s? ky=2.5x 10° M L-s? ke=19x 10%s?
X} =0.025 M X5 = 0.045 M X3 =22x104M X=3x104M

article, we shall only make use of the QSSA to demonstrate an example of an oscillatory system where the pH value of the

the general applicability of our method. reaction medium shows periodical changes. In this reaction
system, hemin acts as a mimic for heme-containing enzymes
3. Methods and provides for a feedback mechanism tHagether with

autocatalysis-allows for oscillatory dynamics. Experimental
results are reported in refs 25 and 26. The proposed reaction
mechanisr® accounts for most of the experimentally observed
dynamics. It reads

The numerical integration of the ODE systems for our case
studies in the next section (the hemin and the PO system) were
done using the software package XPPA¥Bince the reaction
rates in the considered chemical networks vary over several
orders of magnitude, we chose the “STIFF” integration algo-
rithm with a tolerance of 10 to guarantee numerical stability. sQ* +H* S HSQ,”
In addition, the equations were rescaled such that the maximal
amplitude of the rescaled variables was of order unity. Never-

k
- 1 2—
theless, the ODE system describing the PO reaction remained H,0, + S0 SO THO

numerically very sensitive to slight changes in the concentrations Kk o N

of four of its species. In particular, we were not able to reach H,0, + HSO; — SO, +H™ + H,0

a stationary state. Even after very long integration times, the ks

concentrations of these four species kept fluctuating from the H,O, + HSO;” + HT — 5042‘ +2H" + H,O

fifth decimal digit on, which indicates strong correlations

between them. This is probably due to the fact that, unlike the AH* &A +Ht

hemin system, the reaction mechanism of the PO system is

entirely composed of irreversible reaction steps. The aforemen- A * products (19)

tioned problem not only occurs in the original 10-dimensional
ODE system but persists in all of its reduced versions, too.
The method of numerical continuation (e.g., ref 24) was used
for the hemin system to compare the original as well as the
reduced ODE systems according to their local bifurcations.
Continuation calculations were always started from a stable fixed
point in the low pH region at pH- 5.5, which we obtained by
numerical integration of the corresponding ODE system from
zero initial conditions. The parameter region, where the stable
fixed point is reached, had to be tested in several runs. We found
ko =1 107 s™ to be a suitable starting value. namic equilibrium. By changing the flow rakg (between 1x
Bifurcation diagrams for the peroxidasexidase system were 104 and 4x 104 s1), one can observe different dynamical

obtalneo! by computing the asymptotic dynamics of individual behavior such as stationary (nonequilibrium) states, periodic
trajectories over the whole parameter range £ 1.00x 1077 oscillations. and burst osciliatiod%

S b 134 J‘.(ﬂ Sfl)' For ef_mh parameter value, weh Assuming mass-action kinetics, the following system of
dlscardgd a trangent of 35000 t'.me steps and recorded t eordinary differential equations is derived from (19):
successive maxima of the peroxidase compound Il (colll)

concentration over the next 15 000 time steps. The run for the o

first parameter value of each simulation was always started from X1 = ~KXXo 1 KeXg — keXyX + Ko(Xg = Xy)

fixed initial conditions. For subsequent runs of the same 0
simulation, but for other parameter values, we used the final Ko = —KpXyXo — KXoXg — KaXoXaXy + Ko(Xg — %)
concentrations of the preceding run as new initial conditions. ¢ — _ _ _ _

It is thus possible to monitor the evolution of attractors as a % 2% ~ ke — kg + keraks — kg

parameter is almost continuously varied, provided the parameterx, = KXoX; + KgXoXgX, + KyXg — KeX;X, 1 KeXg — KX X5 +
step size is suitably adapted. We chose a step size éf Mhen ko(xo — %)
interpreting these bifurcation diagrams, one has to take into 4
account that they are topologically equivalent to a Poinozap o — _ _ 0_

where the cutting section in the extended “phase space” (WhiChX5 KeXe — kXl — ke¥s + kolxs — X9

is the usual phase space of concentrations augmented by ;= —KgXg + kX5 — KoXg (20)
dimension for the time direction) corresponds to the time points

at which the trajectory of one of the concentration phase spaceThe parameters for the numerical integration are tabulated in

variables (in our case, colll) exhibits a maximum. Thus, limit Tapje 1. The correspondence between chemical species and
cycles manifest themselves as fixed points, period-2 cycles asphase space variablas ... , %s is as follows: x; <> SO, X,

period-2 points, tori as closed invariant loops, and so forth. < H,0,, x3 <> HSO;, x4 <> H*, x5 <> A, andxs < AH*. The
concentrations of the substances in the inflow streams are
denoted byx’.

Example 1: The Hemin—Hydrogen Peroxide—Sulfite ODE system 20 can be rewritten in the compact vector
Oscillator. The hemin-hydrogen peroxidesulfite oscillator is notation

where AH" and A correspond to the hemin molecule carrying
two aquo ligands or one aquo and one hydroxy group in its
axial positions, respectively. The reaction mechanism (eq 19)
consists of six chemical species and eight reaction steps. Four
of the species (S§-, H,O,, HT, and A) are supplied to a
continuous-flow stirred tank reactor at a variable flow rkge
while all six chemical species are removed from the reactor at
the same rate. Thus, there is a constant matter flow through the
reactor which keeps the reaction system away from thermody-

4. Case Studies
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x = C-R(x, k) + k(x* = x) (21)
where we introduce the matrix of stoichiometric coefficie@ts
(without the in- and outflow terms) and the vector of reaction
ratesR as

KX %,

-10 0 1 -10 0 O KoXoXq

-1-1-10 0 0 0 O KaXoXaXy
c—|0 -1-1-11 0 0 0 R_k4><3
1o 1 01 1 -11 —-10 [ |kxx
0 000 0 1 —-1-1 KXo

0 0000 —-11 O KX, Xs
KgXs

(ZL)

In the first step of the reduction process, we test for chemical

constraints among the reactants, which are expressed by
nonmaximal rank of the stoichiometric matr& For system
20, we find that rankg) = 4. We note that the two row vectors
v, =(1,-1,1,0,0,0)
v,, =(0,0,1,1,0,1)
satisfy
v,"C=0v,"
V,-C =0,
that is,v," andv,T are left eigenvectors of the stoichiometric
matrix C for the eigenvalue zero. Therefore, we chose the
following linear coordinate transformation (eq 23) where the

last two rows of the transformation matrix are just these left
eigenvectors:

il [01 000 Q[
2| loo o000 1%
ys[_lo 0o 0010
va[ |10 000 0 (23)
vs| |1 -1 10 0 0f|x
vs| 00 110 1|x

Thus, in they-coordinate system, we achieve a splitting of the

transformed ODE system into a 4-dimensional subsystem for

the variablesy, ... ,ys) and a completely decoupled 2-dimen-
sional subsystem for the variablgsandys:

Y= —T1(Y) = 1) = 1ay) + k08 — vy)
Yo = —1e(y) T 1Y) — ko¥»

Y= —KgYs + re(y) = (y) + ko0& — y5)
Ya=—T1(0) + ry) = rs(y) + k08 — v)
Vs = Ko =5 — ¥)

Yo = Ko(Xa — Yo)

whereri(y) = Ri(x(y)) and the functionx(y) are given by the
inverse of (23). Due to the choice of the linear transformation

(24)
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(eq 23), the last two equations in (24) only depend on the in-
and outflow terms proportional té&,. They can easily be
integrated and yield the following solution for zero initial
condition:

Ys() = (%) — x)(1 — exp(—kqt)

Yo(t) = 091 — exp(kyt)) (25)

with

00

limys(®) = X1 = =: Vs

limye(®) = x4 =: ¥5

Thus, after a transient time of orderkd/the trajectories of
system 24 relax to a 4-dimensional attracting manifold given

Ys=Ys5: Y6 =Ys (26)
where the essential asymptotic dynamics takes place.

Indeed, numerical simulations of thg (Y2, Y3, Y4)-subsystem
of (24) with ys and ys being replaced by their constant
asymptotic values (eq 26) show that the resulting time series
are virtually identical to those obtained for the full 6-dimensional
system (eq 24) after an initial transient phase. By assigning
constant values tgs andys, we place the system from the very
beginning on a 4-dimensional manifold and neglect the (tran-
sient) approach of the trajectories toward that manifold.

We note that by rewriting the equations of (26) using
x-coordinates and the correspondence between chemical species
and phase space variables, one may provide a physical
interpretation of these equations in terms of conservation laws.
In particular, (27) and (28)

[SO,*] — [H,0,] + [HSO, 1 =[S0, 1° - [H,0,]° (27)

[HSO, 1+ [H ]+ [AHT] =[H"]° (28)
express the mass conservation of S atoms arid idts,
respectively. Here, one can recognize the left-hand sides of the
equations aw;™-x (eq 27) andv,™x (eq 28), while the right-
hand sides denote the concentrations of the corresponding
chemicals in the inflow streams.

So far, we have used the constraints (eq 26) given by the
stoichiometric matrixC to identify redundant dynamical degrees
of freedom, which led us to a 4-dimensional system. In the next
step, we look for quasi-integrals as described in the second
section of this article. As an example, consider the rate equation
for xy:

%1 =~k + KX — kXX + kg4 — %o)

There are two potential quasi-integrdjsof the form of (8),
namely,

kX (1)%(1)
KyXs(t)

kyXs(t)

l14X(1)) = KsX, (1)X4(1)

~ 1 1gX(0) = ~1 (29)

Since the reaction rates ipalways appear with opposite signs,
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Figure 1. Ratios of reaction rates during the search for quasi-integrals in the kdmiltogen peroxidesulfite oscillator. (a)lss = R/Rs ~ 1
approaches a constant value in the long-term limit and therefore defines a quasi-stationary manifold. (b) In lgertrBstR, remains a heavily
oscillating function bounded away from 1 and therefore does not fulfill the condition for a quasi-integral. Note the scale difference of the axes for
|45 and |14.

we multiplied both sides of eq 8 by1 to achieve the form of  of the quasi-stationary manifold (eq 33) for nonnegayive he
(29). By numerical simulations, we find thiag(x(t)) ~ 1, while solution of this quadratic equation is

I14(x(t)) remains a heavily oscillating function in the long time

limit, as shown in Figure 1. This procedure is repeated for the =~ _ 1f o o FIRVENTRVRN.) I

other five rate equations (results not shown). However, ad- Ya=o¥s T Ye THT Y, ks

ditional quasi-integrals cannot be found. Note that it is not 1 K\ K
necessary to check the rate equation¥pfor quasi-integrals, = © P v v+ —| 4 4 — 34
since all reaction rates appear with the same (negative) sign. 2 Yo TY¥e THT Y ks ks(yB ¥2) (34)

Following the argumentation of Stiefenhoférwe assume ) - )
an embedding of the 4-dimensional ODE system into an where we must conS|de_r only the positive square root, sipce
e-dependent family of systems such thag = ra(y) — rs(y) represents acpncentratlon and thereﬁgre 0 must hoId..That
becomes the dominant reaction step: (33) really defines an attracting quasi-stationary manifold can
be checked by direct computation of the Jacobian along this

manifold:
Vi = —15(y) = 1o00) — r5(y) + k08 — y)
Yo = —Te(y) + 17(Y) — KoYa 3_y4(r4 - r5)|y4=y4(y1,y2) =K k(Yo —¥s ~ V1= Yot
Y= —ka¥s + 1ey) = 1+(y) + kolXs = ¥3) Aa)lyy)
€5 = 1,(Y) = 15(¥) — €(ra(y) + k() — ) (30) — AT
=k YS_y6+Y1+yz+k_5 +4k_5(y6_Y2)
wheree is a small dimensionless quantity. After rescaling of
time according to On the other hand, it is knowhthat if the fast subsystem is
entirely composed of reversible reactions, as it is in our case
= t (31) (r4 andrs correspond to the first reversible reaction step in (19)),
€ then its stationary points automatically define an attracting
manifold for the original flow.
and taking the limitt — 0, we obtain the following ODE for As a result of the QSSA using (33), we obtain the following
the fast subsystem: 3-dimensional ODE system:

(32) Vo= =11V Ya) = 1Y, Ya) = 13y, Ya) T ko(x(z) -y

Vo= 1Y) F 1Y Vo) + ko0 — Vo)
[ ints, gi - =0, define th i-
Isttsafi?::;rr;azap:i:‘gﬁz; given i) =) eline the quas V3= —Ty") + rey) = 1Y, V) + ko068 — ¥) (35)

%n=mw—qw

where we have explicitly indicated the dependence of the

ky (v — ks gy (U — g —y1 — ; .
4(%—@ L W — v~y — vt u) (33) reaction rates; on the collection of slowy( = {y1, y», ya}) and
3 T T4

fast {4) variables. Together with the algebraic relations (26)
and (34), this 3-dimensional ODE system quantitatively repro-
The occurrence of the small parameten front of the time duces the dynamical features of the original 6-dimensional one
derivative ofy, in (30) indicates that this quantity varies (eq 20), the details of which have been reported edtligve
significantly only on short time scales and thereafter instanta- ascertained the validity of our approximation by comparing time
neously follows the dynamics of the slow variables according series for the entire range of relevant values of the bifurcation
to (33). Consequently, we have to solve the defining equation parametetk,. As a result, there are essentially no differences
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TABLE 2: Detailed (BFSO) Model of the and 1.34x 1077 M s7%. The correspondence between phase
Peroxidase-Oxidase Reactio?? space variablesy, ... , x;o and chemical species is as follows:
rate constant X1 <> PeP™ (or col),x; <> Pef* (or coll), x3 < Pef™ (or colll),

reaction R ki X4 <> H20o, X5 <> NAD*, Xg <> NADH, X7 <> Op, xg <> O27, X9

(1) NADH + Oz + Ht — NAD* + H,0; k[NADH][O2 3.0° < Pelt, andxyo < Pef'. Pef" denotes the different oxidation

(2) H20, + Pef* — col + Hz0 ke[H2Oz[Per*] 1.8 x 18:° states of the enzyme peroxidase.

(3) col+ NADH — coll + NAD* ke[col][NADH] 4.0 x 10¢¢ ; ; -

(4) coll + NADH — Pe?* + NAD* KICOI][NADH] 2.6 x 10°¢ Bgfore applylng t.he'algonthm for flnd!ng quasi-integrals, we

(5) NAD* + O, — NAD* + O~ K{NAD[0;]  2.0x 107¢ can immediately eliminate one dynamical degree of freedom,

(6) O~ + Pe’* — colll kO ][Per**] 1.7 x 107¢ since the rank of the stoichiometric matrix of ODE system 36

(1) 20 + 2H" = H02 + Oz . k7[O0271? 5.0 x 106(; is 9. The consequential linear relationship between some of the

(8) colll + NAD* — col + NAD ke[colll][NAD 9]  1.35x 108¢ i i

(9) 2NAD —- NAD; K[NAD? o 107 chemical species can be taken as

(10) PeP* + NAD* — PeP™ + NAD*  kio[Per*][NAD] 1.8 x 10°¢ 0

(11) Pe?* + O, — colll kuPePJ[0;] ~ 1.0 x 10b¢ X=Xy~ X0~ Xg T Xg — X, (37)

(12)— NADH Ki2 variable

(13) Ox(gas)— Ox(liquid) kidOzleq 6.0x 10 ze'f which simply means that the total amount of enzyme peroxidase

(=13) Oyliquid) — O(gas) k-140] 6.0x 1073¢ is conserved in time. Note that the reduction from 10 to 9

aThe rate constants are taken from ref B¥he concentrations of ~ dimensions does not lead to any information loss due to (37)
H* are taken to be constant and absorbed into the rate congtants being an exact conservation relation. Therefore, we shall treat

Sifllcg the reaction system runs ina bufser Sfj'luﬂon a_tlpr GBM the 9- and 10-dimensional systems on equal footing below. As
s . “Between1.0< 10 'and 1.345< 10 "M s ©In 5% TThe value in (29), we obtained three candidates for quasi-integrals in the
of [Ogleqis 1.2 x 107> M. PO system:
between the dynamics produced by the 6- and the 3-dimensional
s prod y : R+ R, kXeXs + ko

models. This conclusion is further supported by virtually |y = ~ 4~
identical bifurcation diagrams for both systems (not shown). R, kX0

Example 2: The Peroxidase-Oxidase Reaction. The R, K,

peroxidase-oxidase reaction is the prototypical example of an

1
=—— ~ ]l X~ —=—Xn T+
oscillatory enzyme system (for a review, see ref 29). Consider- ' Rs+ 2R; ® 10

4k,

able experimental effort has been devoted to identifying the 1fks 2 1k
individual reaction steps that occur in this reaction system \/_(_Xlo) + = XXy
(reviewed in ref 30). At the same time, a series of theoretical 16\k; 2kg
investigations has been conducted to reproduce the observed R K

type of dynamics in numerical simulations (reviewed inref31). | ,= >~ 1< x,~ —x (38)
The starting point of our analysis is a reaction mechanism R, Ky

proposed by Bronnikova, Fed’kina, Schaffer, and Gi&€Fable o o
2) that shows periodic mixed-mode oscillations as well as '"€Yy aré shown in Figure 2e (cf. Table 2 for the definition

(homoclinic) chaog33It comprises 14 individual reaction steps  ©f tN€R). In l127andlss7, we needed to balance three terms for

and 10 species, yielding a 10-dimensional ODE system basedebPtaining appro>_<in_1ately constant functions. In particqlar, Figure
on mass-action kinetics: 2d shows that it is not enough to balance oRlywith Ry,

because there are time intervals whiggeshows large deviations
from the constant value 1. The attractivity of the manifolds (eq

X; = KoXyX1p — KoXoXg + KgX
1= kXX — aXoXs T KeXaXs 38) is evident from direct calculation of the corresponding

Xy = KgXqXg — KgXoXg Jacobian, and the application of the QSSA farxe, andx;
o yields successively an 8-, 7-, and finally the following 6-di-
X3 = —KgXaXs 1 Ky1X7Xg 1 KeXgXqg mensional ODE system in the originelariables:

%= koot + ko X Xy = kyXeXy + koXg — kaXoXe + KeXeXs

X5 = kaXpXe T KpxXs — KeXeXy — KgXaXs — 2K6 — KioXeXyo X3 = KeXgoXs — KeXeXg 1 Ky 1XoXg
X = ~hoXeXy — kodas — Kok o, Xs = 2kaX;Xs — keXeXy — KgXaXs — 2KpG — KioeXy
X7 = —koXeky — kexky + kg — Ky pxoXo — Ky + Xs = —kyXgX; — 2KgX X + Ky
302le X = —KXeXy — KeXeXy K — Ky XoXg — Koy % +
Xg = KeXeX, — 2KXg — KeXeXyg ki Osleq
% = kaokeXao — urXeXg X10= KX, — kG + koXoXe — KeXooXg — KygeXyg
X10= —KXuXqo 1 KXoXe — KeXgXog — KioXeXao (36) (39)

wherexg in (39) still has to be replaced by its expression in the
The parameter values for our simulations as well as the oxygensecond equation of (38). To compare the dynamics of the
concentration [Gleqat equilibrium between the gas/liquid phase reduced systems with the original one, we calculated Paincare
are taken from ref 33 and are compiled in Table 2. We used maps of successive maxima of the colll concentration as the
zero initial values for all species except ﬁdfrb, which was set NADH inflow rate k2 is continuously varied. This procedure
to the total enzyme concentration of 1:510°6 M. ki, was yields local bifurcation diagrams which resemble those from
taken as the bifurcation parameter ranging between.00~7 ref 34 due to a similar choice of parameter sets.
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Figure 2. Quasi-integrals in the peroxidasexidase system. There are three possible candidates for quasi-stationary manifolds dise(aby
Iss7 (D), andls4 (C). |12 (d) shows that sometimes it is not sufficient to balance only two reaction steps to find a quasi-integral: compérg with
(a), where three reaction steps have been used for the balance.
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Figure 3. Bifurcation diagrams showing the maxima of peroxidase compound IlI (colll) concentration as the NADH infldwa,iiatearied: the

original 10-/9-dimensional system (a); the 8-dimensional system (lising 1) (b); the 7-dimensional system (usihg; ~ 1) (c); the 6-dimensional

system (usindss ~ 1) (d). The mixed-mode states as well as the alternating periodic and chaotic windows appear in all of the reduced systems
(b—d) but at slightly different parameter values (d). The chaotic windows are less pronounced in the 6-dimensional reduced system (d).

Let us now address the most prominent dynamical changeswe mainly focus on the demonstration of the method of quasi-
that are observed during the successive reduction from a 10-integrals. Figure 3a shows the bifurcation scenario in the 10/
variable to a 6-variable ODE system. Our analysis is based on9-dimensional system, as it has already been investigated in ref
a qualitative agreement of the bifurcation scenarios in the 33. Of particular interest are the mixed-mode stdtes(The
different versions of the reaction model; a detailed quantitative notationLSdenotes a periodic oscillatory state where one period
investigation is beyond the scope of the present article, in which consists ofL large andS small amplitude oscillations.) The
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mixed-mode states as well as the alternating periodic and chaoticindicating how many modes to retain. On the other hand, for
windows are clearly preserved throughout the reduction pro- singular perturbation theory to be valid, the singular perturbation
cedure. The bifurcation scenarios for the reduced 8- and parametere is required to be sufficiently small. In practical
7-dimensional systems are in very good quantitative agreementapplications, thougl; may even become of order unity for some
with the original 10/9-dimensional one (Figure 3b,c). This systems without leaving the range where singular perturbation
finding is also supported by nearly coinciding time series with theory provides a satisfactory approximation. Thus, for a
respect to amplitude and frequency of the oscillations and by particular system, one usually relies on numerical simulations
nearly identical 3-dimensional projections of the phase portrait. in order to test the validity of the approximation. Indeed, this
It is only for the 6-dimensional system that we find some is exactly what we do, having identified a possible candidate
quantitative deviations from the original dynamical behavior, for a quasi-stationary manifold by visual inspection of the time
as the amplitude and frequencies of the oscillations are slightly seriesl(x(t)) of a quasi-integral(x) (Figures 1 and 2).
altered. There, we also observe a shift in parameter space where \We have demonstrated our method using the 6-dimensional
the first chaotic and subsequent mixed-mode states emergehemin and 10-dimensional PO systems. The reaction mechanism
(Figure 3d). Moreover, the domains of chaotic dynamics are (eq 19) of the hemin system comprises two equilibria, and it is
less pronounced, but it seems that the resolution of the periodicnot too surprising that one of them corresponds to the quasi-
windows between two chaotic ones is increased. integral we found. The QSSA seems to be appropriate and yields
The chemical interpretation of the quasi-integrals (eq 38) leads a 3-dimensional ODE system (eq 35), which quantitatively
to surprising insights on the role of the two oxygen specigs O agrees with the dynamical properties of the original 6-dimen-
(x¢) and HO; (xs) in the PO mechanisf(Table 2). Fromls,; sional mechanism (eq 20). In contrast, the PO reaction system
andlse7 it becomes evident that the ratios of production and is almost exclusively composed of irreversible reaction steps.
consumption of @ and HO,, respectively, are nearly con- Nevertheless, three possible candidates for quasi-stationary
stant throughout the reaction. Consequently, these two speciegnanifolds (eq 38) could be identified by the method of quasi-
can be considered as quasi-stationary, so that molecular oxygerntegrals, thus demonstrating that the method works not only
02 (x7) remains the only dynamical oxygen-containing species. for reaction mechanisms containing equilibria. Furthermore, two
A similar but less surprising argument applies to the quasi- of the quasi-integrals yielded very good quantitative 8- and
integral 134 which shows that P&t (x;) does not accumulate  7-dimensional approximations to the original dynamics, whereas

during the reduction there are slight changes in the parameter values where the
bifurcations in the reduced 6-dimensional system occur. The
col (xl)icoll (xz)iPeF* (X10) (40) reason for this behavior may be seen in the much larger

deviations of the quasi-integrkl, from the constant value 1 as
compared td1,7 andlsg7 (Figure 2), indicating that the manifold
defined bylss ~ 1 is not as “quasi-stationary” as both of the
other ones.

5. Discussion In summary, the method of quasi-integrals has been_ success-
fully applied to both a system containing fast equilibrium
reactions and a reaction mechanism with rapidly equilibrating
. . ) - irreversible reaction steps. To fully appreciate its scope, the
chemical reaction networks. It is shown that quasi-integrals of |\ «thod should be tested for other reaction networks. In
the form of (8) and (12) may arise from certain ratios of anicylar, our method is not restricted to mass-action kinetics:
components of _the reaction rate vector. Thus, the class_ of quasist can be easily applied to other types of kinetics, too. The only
stationary manifolds that may be detected not only includes yoq irement is that the right-hand side of eq 1 is of the form of
Ilnear. relationships among the phase space vanables bUt(e), that is, a sum of terms with different signs, so that there is
generically also contains those which are defined by nonlinear ¢g o chance that some reaction steps balance each other.
equations. The crucial step in identifying a quasi-integral is t0 rharefore, it is not relevant whether the components of the
define under which conditions the graph of a quasi-integral is gaction rate vectdr are simple monomials such as in the mass-
to be regarded as nearly constant. Especially for higher ocyion case or more complicated functions. Hence, the method
dimensional ODE systems, it would be of great value to have ¢ g, agj-integrals should be applicable to a broad spectrum of
a numerical measure which allows for a more systematic o5ction mechanisms.

|dent|f|9at|on of quast-integrals. Qn the b.as's Of. s.o.me. common -, conclusion, we conjecture that quasi-integrals are a valuable
properties, we suggest the following working definition: a quasi- supplement to existing methods for the reduction of chemical

T et ircton, e PR SPoCe reacion mechanims, such o e compatona snour
9 J y perturbation method, since it generically also detects nonlinear

where to a stripe around the value 1 (ed) of adjustable : : . A X
thicknessu Thispmeans that outliers are(onl)y aIIowJed in time quas-stationary manifolds which, in general, are hard to find
. analytically.

intervals of adjustable lengthwhich should be small compared
to typical time scales in the system such as the period of the

oscillations. Andrea Halmschlager (Budapest University of Technology and

After we have decided whether a certain rafjois to be Economics, Department of Mathematical Analysis) for stimulat-
regarded as nearly constant, our method is quite similar to other. » D€P Y

semiobjective methods such as principal component analysisIng dlscus§|ons. ';'Tlanc'il su;l)port by the BMBF program
or even singular perturbation theory. For the former method, CELLECT is gratefully acknowledged.
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