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Local time control methods are used in the simulation of quantum control phenomena because they conveniently
ensure an increase of a predefined performance index and also avoid singularities associated with tracking
procedures. However, the drawback of the existing implementations is that they only take into account one-

photon, direct transitions and may stop at nonoptimal values of the index. We propose in this paper a

modification of the currently used algorithms that addresses this issue and explain how the convergence is
improved. Furthermore, when iterations are required, we show that this approach can be inserted into a
monotonically convergent algorithm.

1. Introduction exploits direct, one-photon-coupling capabilities of the dipole-
moment operator. When full direct coupling between all
eigenstates of the free Hamiltonian is not available, it will be
y‘trapped” into local minima on its way to convergence.

Using lasers (or other external interactions) to influence the
dynamical properties of quantum systems has been successfull
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d?;:ggzﬁitﬁ%gf\}g th:f(t)éitlcc?xrol of 32%&% Iar?grr\itnagna However, supposing existence of complete first-order transitions
P ' d th fy often, i f d i dp dent tis a restrictive assumption, and some standard benchmark
is expressed as the minimization of a setting-dependent cost., . 2733 45 not fall within this class.

functional that describes the goal to be attained and the eventua To improve this behavior, we document in this paper a new

pfgggifeéoh;\?gﬂgg; u-gz:jei?] gg?i?ero;tugr?esrtlgctrggtlirgIi?:rtlaiir\]/ é)rocedure that exploits transitions at all orders; this approach
2 roaches (e enetic algorithAa) 'terati\./e critical point also successfully treats systems with degenerate transitions, not
PP (e.0. 9 9 ! P always covered by the initial approach. In addition, an enhance-

mg;hootgrs]icth;t gr?t?]rﬁgégﬂg'ggggngft? ra?lzaono??odcgl\éinrtlriﬁ ' ment of this scheme that treats situations with constraints on
9 y 9 the total time or coupling field intensity is proposed. This
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procedures . J_that obtain explicitly th? contr_ol field algorithm is shown to display monotonic convergence behavior.
from the prescribed trajectory that the system is required to take The paper is organized as follows: we introduce in section
(and devise additional techniques to avoid eventual singularities).2 our Lyapunov-based method and.compare its convergence
The advantage of this last class of methods is that it only requires . : ;
one (or few)gpropagations of the time-dependent S{d}%gﬁ? properties with those of _the prewqusly _propo;ed s_chemes. We

: i ._illustrate these results with numerical simulations in section 3.
equation (TDSE); when larger systems are to be treated, thISFurther extensions of the method are given in subsection 4.

E{rﬁﬂfe{%?say prove crucial for the numerical tractability of the Discussions and concluding remarks are presented in section

A recent example of the local control procediireefines a
performance index in terms of the system’s wave function or 5 Lyapunov-Based Designs
density matrix operator and of the target observables. The ] ] ] ]
controlling field is then obtained through the requirement that _ Consider the control via an external interaction (e.g., a laser
this index increases monotonically during the optimization. field) of the expectation value of a physical observable operator
Although successful application of this approach has been Oin @ quantum system. The system’s wave function is governed
demonstrated for the control of the one-dimensional hydrogen Py the Schrdinger equation
fluoride (HF) molecule, no analysis is available to quantify the 3
performance of this procedure in general circumstances. Starting ﬁ‘P =[Hy — ue®)]¥ W, =Y, Q)
from a study of the stopping points of the local control method,
we were able to identify the ingredients that lead to successful whereW, is the initial stateHy is the internal Hamiltoniary
convergence. For instance, it was observed that the scheme onlys the coupling dipole moment, andt) is the external field
intensity. The control objective is to maximize the expectation
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such that the expectation value ©ffollows a desirable track,  system’s space. Numerical simulations justifying this claim are

St): [W(t)|O|W(t)O= t). The approach of ref 6, named as presented in the next section.

tracking, has also been studied in refs 8 and 16. It consists of To cure these drawbacks, we introduce here another version
obtaining the control field from the evolution equationff) of this method that enables the use of multiphotonic transitions.
and the requirement thag(t) follows exactly a specified  We present this approach for the general formulation of the local
trajectory. As a typical problem for such reverse-design coherent control theory and give some numerical simulations
techniques, singularities may arise in the inversion process.for the particular case of the projection operators. Our procedure
These singularities are classified and studied in refs 25 and 26.automatically identifies the multiphoton transition paths needed

A method to treat these singularities is presented in ref 26.

to reach the target. Once the driving field is obtained, an

Another method of the same nature has been introduced ina posteriorianalysis of the system dynamics (obtained during
ref 31, where locally optimized control fields are designed for the resolution of the TDSE) can inform on the control mech-
the control of quantum dynamics. The optimization theory of anisms that were found useful.

LTI (linear time-invariant) systems has been used in small

2.1. Control Design. Even if the operatord; are not

intervals of time to design the control field in a quite direct constants of time, they are invariants of the free system without

manner.

any control ternmi* The idea consists in defining reference

Finally, in refs 12 and 30, a first approach based on Lyapunov operators whose time dependence with respect to the free system
techniques has been introduced. The method consists of usings not stationary and which becomes equal to desDieafter a

a performance indey(t) that formulate the desired physical
properties to be satisfied by the system, defined as
YO = Y(O,(L 0,00 ..., OB 2

Here, [@;(t)for j € {1, 2, ..,N} denotes the expectation value

of the physical observables given by the Hermitian operators

Oi(t) that evolve with the equation of motion

2o =il0, Hy 3)

large timeT. The formal analysis of the next subsection shows
how using such nonstationary reference operators allows to use
higher order transitions.

Take observable operatof§;(t) whose dependence with
respect to time is given by the following equation of motion:

0o,
< =10y, Ho — (0]

Ot=T=0 (5)

wheref(t) is a reference field not identically zero and such that

The controlling field is then chosen so that it ensures the f(t) = 0 for allt = T. Deriving formally eq 2, we obtain

increase of the performance indgft). A simple computation
shows that

dy(t) Nooy(t) ,
— = —e() Y —— 0O,(t), i

Thus, any feedback of the form

=3 2 16,0,
t) = K|t, — (t),
R yyrd COND

J

whereK(t,s) = R x R — R is a smooth function such that

sK(t,s)=00seR  K(t,g)=0<s=0

ensures Wt)/dt = 0. In the particular case whey(t) is an
expectation value of the projection operat@ilp| to an
eigenstatep of the internal Hamiltonian, this is equivalent to
choose a feedback design of the form

€(t) = K(tIm(laW|4p| WD) 4)

dy() N ay(t) did,(H)0

dt  &oOnD dt
N ~
= —(e(t) — (1)) ) ——— [IO(1), w/i]O
£190,(H0
Thus, any feedback of the form
f(t) + K Al O /i
t) = 1(t t, — (),
e(t) =f(t) .Za[cbj(t)mm (8),ufi]

whereK(t,s) verifies the same conditions as before, will increase
the value of the performance indg).

Now let us consider the case where the performance index is
the expectation value of a physical observable operator. We take

y(t) = Ot

whereQ(t) verifies eq 5 with a final conditio®(t = T) = Ox.
One important question to ask is when does the system stop

As we will see in the formal analysis of this section and in the before reaching the maximum value of the performance index.
numerical simulations of the next section, this Lyapunov-based The reference operat@(t) reaches the desired observable
control only takes in account the first-order transitions. In the operatorO; at time T (supposed to be large enough), and thus,
case where all of the eigenstatedgfare coupled via the dipole  the control of[@{Jterminates successfully unle8B(t)Ostops
momentu, this control field appears to be efficient. However, increasing toward its maximal value. For a rigorous proof of a
in the case where some states of the system are not directlyconvergence result for the case of a projection operator, under
coupled but transitions of higher orders exist, the design will some technical but not restrictive assumptionsf(n see ref

fail to lead the system toward the target state. It is shown in ref 19. However, to illustrate the arguments of the proof, let us
18 that the trajectories of the system will converge toward a explore formally the simple case where the reference trajectory
subspace, with a dimension strictly more than one, of the corresponds to the driving fieltft) = 0, which is the method
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proposed in ref 30. We will make clear when using this Using eq 7, eq 6 becomes equivalent to
particular field f(t) = 0] can the expectation value of the
physical observabl® reach its maximal value and when this Z(}”‘ — Aj)kﬂij(qjiq)j + @jq)i — (i)jlpi - (i)ilpj) =0

field fails to give a convenient reference observable operator. Ok e {0, 2, 4, }
Then, we will explain how using a nonstationary well-chosen T
reference field one can overcome this lack of convergence (the _ —

analysis for the case of a general index depending on the meanz(/l /1) Hi (qj @ - lp @it q) P ® )=

value of many physical observables could be treated along the Dke {1,3,5, .} (9)
same lines).

2.2. Convergence Analysis.Suppose that the reference
driving field is zerof = 0. Formally the mean valu@®stops
increasing when the control fiekqt) becomes uniformly equal
to the reference driving fielf{t), which happens if and only if
“e(t) = e(t) — f(t) and all of its derivatives are zero. This may

be written as
. H N H i
mo, ad— aojj,l.—O] ‘WD= 0 So if o
i I A2: foranyi=je{l,2, ..,
0k=0,1,2,.. (6)

vanish fi; = 0).
Here,ad}(Y) is a notation for iterative commutators

where® = OW. Then, under the assumptfdn
Al: Ho does not have degenerate transitions, iLe= 4; =
— Ay, for (i, j) = (a, b).
equation 9 becomes equivalent to
/’tij(q’jq)i - lpici)j) =0

Oi=je{l,2, ..,n} (10)

n}, the coefficieni; does not

then,® must be proportional t&, which means thaf’ must
be an eigenstate of the physical observable operéior
Therefore, under the assumptioA& and A2, the algorithm
ad\ W=z ad()=[Y,ady (V)] form=>1 ) f

value of O only on eigenstates of the operator However,

In fact¢ = 0 impliesO, u/ij0= 0. In general, we can prove because only the eigenstate@fwith a maximum eigenvalue

stops converging toward the maximal value of the expectation

that

d._ . Gl 4 Ho .
d_tje = (—1)Jmo, adﬂ,iT]D forj=0,1,2,..

Indeed, suppose that eq 7 holds fat k, then

dk+l

k1€
dt

ool

_ (_1)k+l

= (-1 mo, a%/i#]ﬂ

0,ad 2, | -0yl act, |
PEE I TR
gl "k ][0

0

ad;,ii’, ? , O] D

= (—1)““[ﬂa i ]D

where we have used the Jacobi identity for the Lie brackets. tjons of the next section illustrate this fact for some usual and
We write the system in the eigenbasis corresponding to the representative examples of finite dimension.

hermitian matrix Hp. Thus, Ho is diagonal, Hy = diag-
(A1, .-, An). Then, the commutatoH), B] for any n x n matrix

B = (Bij) is [Ho, B] = [(/L - ﬂ.j)Bij]iJ, and thus, for an}( >1

ad(/i# = (i‘l)kﬂ[(ii

2

()

- lj)k/’tij] (8)

is stable, the system stops only on this eigenstate. For the case
of the density matrix description, the same analysis leads us to
conclude that stopping points necessarily commute with the
observableD.

Let us now consider the case where the assumpidris
not fulfilled. It means that some states of the free Hamiltonian
Ho are not coupled by one-photon transitions, i.e., sqme
values are zero. This situation may arise for many controllable
molecules. We will see that in such cases the algorithm with a
reference field = 0 will not lead the system to the maximum
value of O]

To clarify the situation, let us restrict ourselves to the
representative case where the operaiiis the projection
operator on eigenstageof the internal Hamiltonian with energy

= |plg|.

A stable equilibrium manifold for the system is given by the
vector space

E = spaf¢;; [@lul¢=0 Hyp; = Lip}

Indeed, the feedback design for this observable is given by eq
4. Clearly,E represents an equilibrium manifold for this field
design; when we start from any stateBnthe feedback design
vanishes and the system’s dynamic will be stationary. The
mathematical analysis elaborated in ref 18 based on LaSalle’s
invariance principle shows that any trajectory of the closed-
loop system will converge toward an equilibrium point in this
vector space and not necessarily towardNumerical simula-

On the contrary, adding a nonzero reference driving fig)d
will perturb the free Hamiltonian of the system and will lead
the system to verify the assumptiodd and A2. To have
effective perturbations on the free Hamiltonian if we are in the
weak fields regime, one should use resonant driving fi&lls
In the case of strong fields this is not necessary.
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Figure 1. (a) Square of the norm of the projection of the system’s trajectéfty with a feedback of the form in eq 4 on different eigenstates of
the system, i.e |[W(t)|¢i0P. (b) Control field found by eq 4 wher(t,s) = o(t)s with o(t) = Y/, exp(~0.1e — 3(t — T/2)?) (5-level system}3

For example, wher® is a projection operato® = |¢p[lp|

using a reference trajectory

and the Lyapunov-based method to obtain an increasing
function |W(t)|W,(t)0F, the following simple design for the
control field can be proposed:

e(t) = f(t) + K(tIm(Gz W W, 1w, WD)

iﬁqu = (HO - f(t):u)lyr

vMm=a¢

11)

(12)

obtain the following design for the control field:

€(t) = K(tIm([aW|¢Mp| WD) =
K(tIm(W,(W5(0) + W5(1)

Suppose that the initial state is a linear combination of the
first three eigenstates corresponding to the energies 1, 1.2, and
1.3. Evidently, for such initial state, the control field found
by the Lyapunov design vanishes for al= 0, and there-
fore, the system state will not converge toward the desired
target state. Even if the population of the eigenstateand

¢s (which have direct transitions witt;) in the initial state

are not zero, the system’s trajectory might converge to a state
of the system in the eigenspace generatedhyp,, and ¢s,
which turns out to be the stable equilibrium manifold of
the system. The simulation in Figure 1 shows this fact, when

. Ngmeriqal simulations of the next segtion, which are done o initial state isi/y5(1, 0, 1, 1, 0) and the functiok(t,s) is
in this particular case, make clear how using a nonzero referenceyqfined as
field causes the assumptioAd and A2 to hold true.

3. Numerical Simulations

K(t,s) = o(t)s

with o(t) being a Gaussian envelope centered/2t = 250.

Consider the 5-level system (already used in the litera- Here and throughout the paper, we express the system’s state

turef”-3334 where the internal HamiltoniarH, and the
dipole momenju are

This system is controllable: the Lie algebra spannedby

10 0
0 1
Ho=[0 0
0 0
0 0

ocor oo

oNooOo

Noooo
=
[l
m—,oOOoOo

PR, OOO
R RP,OOO
OO RRER

[N =

(13)

in the eigenbasis of the internal Hamiltoniklg. To solve the
TDSE between two consecutive timeandt + dt, we compute

the propagator expgHo — €(t)u)dt). We refer to end of section

3 for a discussion on the numerical schemes to be used when
infinite dimensional settings are treated.

As one can see the system’s wave functidnstops its
progression to the target stape when attaining only 60% of
the population. Note that the algorithm with zero reference field
f(t) = 0 forces the control field(t) to vanish after the time
t = 300 because of the feedback terdm([4zW|¢p| WD)
that tends to zero [irrespective of the choice Kft,s) =
a(t)s; in fact, att = 300, o(t) takes values near its maximum

andul/i is u(5).?” Let us suppose that the goal is to steer the reached at= T/2]. Simulations with any other choice Kft,s)

system’s wave function to the first eigenstgte= (1, 0, 0, O,
0) of Ho with energy4 = 1. Using the stationary projection
operator corresponding to the first eigensta(® = ||, we

lead to the same behavior. Moreover, if we increase the total
simulation timeT, the molecule will be “trapped” in the same
state.



Locally Designed Coherent Quantum Controls J. Phys. Chem. A, Vol. 109, No. 11, 2002635

1 T T T T T T I T T
population of the 1st eigenstate
08l — 2nd eigenstate ||
. 3rd eigenstate
2 —— 4th eigenstate L
-% 06 — — 5th eigenstate H
=]
o
3 o4f .
© | .
0.2 f
0 1 1 | 1 | 1 | 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time
0.01 T T T T
o 0.005- f
g
IS
£ 0 7
8
)
-0.005 - f
-0.01 L L | |
0 500 1000 1500 2000 2500
time

Figure 2. (a) Square of the norm of the projection of the system’s trajeciéfty using the performance index in eq 14, on different eigenstates
of the system. (b) Control field (5-level systefd).
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Figure 3. (a) Square of the norm of the projection of the reference trajedtoft) solution of 11. (b) Square of the norm of the projection of the
system’s trajectory¥(t) using the feedback design of eq 12, on different eigenstates of the system. (c) Control field found by eq 12 where
f(t) = o(t)sint) andK(t,s) = a(t)s with o(t) = 0.01 exp{-0.1e — 4(t — T/2)?) (5-level system}?

In ref 30, a method has been introduced to accelerate theoy, as) = (10, 1, 1, 1, 7), one obtains the result in Figure 2,
convergence to the target state when this convergence is slowwhich turns out to be quite similar to the last simulation. The
It consists of using a performance index feedback desigK(t,s) is chosen as before. Now let us consider
a nonzero reference perturbing fieftt). The simulation in
Figure 3 corresponds f¢t) = a(t)sin(t), whereo(t) is a Gaussian

y(®) = ZailPiD (14) envelope centered at= T/2 = 1000. The initial state is still

= Y,(1, 0, 1, 1, 0), and the feedback desigrkig,s) = o(t)s.

whereP, = | is the projection operator on théh eigenstate Once again, the control field vams_hes after the tine 900,
of the free Hamiltonian and; is chosen to be bigger than other @nd this is not because of the special fornK@s) but because
coefficients. This cure appears to be successful when thethe feedback design converges to zero at the state where the
interactions between states are weak. However, in general, itmolecule is “trapped”.
has the same drawback as the last method. Let us see this fact As another situation where problems appear for a stationary
in another simulation. We take the same initial condition reference field, one may consider a free Hamiltonids
Yo =151, 0, 1, 1, 0), and using the proportions oz, oz, with a degenerate spectrum. We will consider here a 4-level

5
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Figure 4. (a) Square of the norm of the projection of the reference trajedtot) solution of 11. (b) Square of the norm of the projection of the
system’s trajectory¥/(t) using the feedback design of eq 12, on different eigenstates of the system. (c) Control field found by eq 12 where
f(t) = o(t)(sin(wit) + sin(wzt) andK(t,s) = 100(t)s with w1 = 0.095 863w, = 0.095 683— 0.004 556, and(t) = 0.1e — 3 exp(0.3e — 9(t —
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systen 21.22.34(also see ref 28-page 152)
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technique, and unfortunately no control on the convergence time
is generally available. However, in the cases considered here
and in many other additional situations, we have observed that
the time needed for the convergence of the algorithm is of the
same order as other methods, e.g., conventional tracking or
optimal control. If however, for a given setting, the method has
not finished converging at tim&, two approaches can be
proposed. If there are no restrictions on the total timsetting

it to a larger value ensures that smaller neighborhoods of the
target state will be reached because we know that the procedure
only stops when hitting the target. Otherwise, if we deal with
a control problem with a fixed tim&, we can use this algorithm

The target state is (0, 0, 0, 1) in the eigenspace correspondingtératively to get a better result at each step. Using a general
to the multiple eigenvalue 0.095 683. Figure 4 illustrates a formulation of the coherent control theory with a performance

simulation of this system when the open-loop part is given by index y(t) defined in eq 2, we obtain the following algorithm

a functionf = o(t)(sin(w1t) + sin(wat), whereo is a Gaussian
envelope centered aroudd2 = 1.5%¢ + 5 andw; and w, are

transition frequencies. The initial state is set to®¥g= Y,(1,
1, 1, 1), and the feedback designkié,s) = 100(t)s.

(a similar algorithm can be written in the density matrix
formulation):

1. Use an arbitrary driving field©)Xt) for the reference
trajectory of different observablé3(© and the Lyapunov-based

As noticed previously, both systems considered here are Method, to obtainla first candidate for the control fief8(t)
typical cases of finite dimensional systems already presented@d a trajectory?’®) of the system fot €[0, T]
in the literature. The time and field intensity parameters found d =

by the Lyapunov-based approach are coherent with values found dt Oj(O) = |[Oj(0)v Ho — 6(O)(t)/l]
by other algorithms. ~

Note that the exactly same design can be used for situations Oj(o)|t=T =0 forje{l,2,.,N} (16)
where the spectrum is continuous, and therefore, the system is 9

infinitely dimensionakl” In this case, the numerical simulations
are to be performed using, e.g., a third-order potential-centered at

split-operator metho@f

4. Further Extensions

i 1p(1) — Hoqj(l) _ 6(1)(t)lu1p(1)
W)=, 17)

Bty = Oty +

The procedure presented in section 2 extends the work of ref N

30 that considers the cafe= 0. Indeed, we show above that a
formula for e(t) can be obtained for aflt) provided that eq 5
is used instead of the free evolution fOr

In comparison with the classical tracking, this algorithm is a

oy(t
K ’_ZL@I’(”G)I[@;(O)G),u/i]I‘P(l)(t) (18)
SEoR(]

2. At thei’s step ( = 1), usee()(t) as the reference driving

singularity-free noniterative method. In fact, it is a stabilization field and find new reference observablég) reachingQ; at
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t =T. Then, update the control field using the Lyapunov-based can be suggested: either to simply increase the simulation time

method and find the new control fieldi*)(t) and the (it can only stop at the target!) or, if the time is to be kept fixed,

corresponding trajectoryP(+1) to use iterative procedures. One such procedure that displays
d convenient monotonic convergence is presented in section 4.

20 —ira® — M
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