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Master Equation Simulations of Bistable and Excitable Dynamics in a Model of a
Thermochemical System

Bogdan Nowakowski and Andrzej L. Kawczyrski*
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
Receied: May 25, 2004; In Final Form: December 20, 2004

The effect of fluctuations on the dynamics of a model of a bistable thermochemical system is studied by
means of the master equation. The system has three stationary states and exhibits two types of bistability:
the coexistence of two stable focuses and the coexistence of a stable focus with a stable limit cycle separated
by a saddle point. Stochastic effects are important when the system is close to the bifurcation, in which the
stable limit cycle disappears through a homoclinic orbit. In this case the distribution of the first passage time
from the stable limit cycle to the stable focus has a multipeak form. The dependence of this distribution on
the number of particles is presented. Near the homoclinic orbit bifurcation, the system also exhibits excitability
due to a particular shape of the basin of attraction of the stable focus.

Introduction some interval of the bifurcation parameter, the system has two
) o ) ] o attractors: the stable limit cycle and the stable fixed point. With
Fluctuations play a negligible role in macroscopic, equilibrium jycrease of the bifurcation parameter, the radius of the stable
systems, provided they are far from critical points. Close to ¢ycle grows and at some critical value a homoclinic trajectory
critical points, fluctuations induce the so-called critical phe- appears. The stable limit cycle disappears, and the other
nomena like opalescence. In far-from-equilibrium, nonlinear stationary state remains the only attractor.
systems, the situation is in some sense similar. Far from  The model and the bifurcation analysis are described in the
bifurcations, at which qualitative changes in the dynamic peyitwo sections. The master equation approach to description
behavior of a system develop, the influence of fluctuations on ¢ the stochastic dynamics is next presented. Since the solution
the dynamics is negligible. However, close to bifurcations 4 the master equation is unknown, we use numerical simulations

fluctuations can qualitatively change the dynamics of nonlinear f the master equation. Results of the simulations are described
systems. The stochastic effects in the dynamics of nonlinear;, he subsequent section. In the last section we discuss the
chemical systems have been for a long time studied theoretically ypizined results.

for some simple modeks.® Recently, the influence of fluctua-
tions has been observed in experiments for chemical systemsModel

close to bifurcationg-** A well-mixed system which exchanges energy with its
Models of chemical systems, especially those consisting only surroundings is considered. The system is composed of the

of elementary reactions (mono- or bimolecular reactions without reactantA, the productB, and the catalys€. The following

autocatalysis), are more complex to analyze than models ofreactions occur in the system:

thermochemical systems. We have elaborated the simple model

of the thermochemical system, which consists of two elementary ky

reactionst?~1* One of them is an exothermic, catalytic bimo- A+C—B+C+Q 1)
lecular reaction, and the other one is a monomolecular reaction. K,

The dynamics of the system can be described by two variables, B—A (2)

namely, the concentration of reactant and the temperature. The

main nonlinearity in our model follows from the exponential The first reaction is exothermic with the reaction h€atwe
dependence of the rate constant on the temperature. In theassume that the second reaction occurs on the walls of the
present paper we study the effect of fluctuations in our model system. This reaction imitates an unspecified mechanism
for parameters at which the system has three stationary statesllowing for the supply of the reactait and the removal of
coexisting with limit cycles. Although stable limit cycles are the producB. Itis easy to see that the composition of the system
attractors of dynamics of nonlinear chemical systems, there isis uniquely determined by the concentrationfofThe balance

no relaxation mechanism for a phase of oscillations. Fluctuations of energy is positive, but because the system is open this does
in such oscillating systems cause the specific effect of un- not violate the law of energy conservation. We assume that the
bounded phase diffusidf:}®In our model the unstable or stable system exchanges energy with the surroundings by the New-
limit cycles surround the steady states; two of them may be tonian heat flow through the boundaries, which are kept at
stable or unstable nodes or focuses, and the third one is a saddleonstant temperatui®,. For simplicity we consider the diluted
point. Variation of a bifurcation parameter causes the following gas system, for which the dependence of the internal eriérgy
sequence of bifurcations. At small values of the bifurcation on the temperatur& is given by the simple relatiod = (3/
parameter, two stable focuses are separated by the saddle poin2)NksT, where N is the number of particles anks is the
When this parameter is increased, one of the stable focusesBoltzmann constant. The state of the system is completely
becomes unstable and a stable limit cycle with “radius” growing characterized by the number densityfo&nd the temperature
from zero appears due to the supercritical Hopf bifurcation. In The rate equations for these variables are given by
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whereV is the volume of the systen8 is the surface of the
system;n is the total number densityia, g, and nc are the
number densities oA, B, and C, respectively; ande is the
coefficient of heat exchange. Taking into account tihat (na
+ ng + nc¢), the density oB can be eliminated from eq 3.

The rate constants and the coefficient of heat exchange for

diluted gases can be presented in the following form:

172 E
k= kg’(le) exp(— k?’fr) )
ky = kPg (6)
- KO(le)l/z @)

where pg is the coefficient determining the probability of
reaction 2 on the walls.

It will be useful to introduce the following dimensionless
variables: the molar fractions = na/n andn = nc/n of reagents
A andC, respectively, the dimensionless temperature T/Ty,
and dimensionless timé= nkt. Equations 3 and 4 have then
the form

% = VO[—on exp(€lf) + c(1—a—n)]  (8)
= 2Vodiou exp-clt) — e, (0= 1] (9)

wheree = EnkgTo, = Q/kgTh, c1 = «°FgKN, and c;
pec®SKIN are dimensionless parameters.

g does not change the position of the nullclimgfor o and
oy for 6 on the phase plan@ ). Therefore,q is convenient

as the bifurcation parameter. The nullclines are given by

c(1—1)
U=~ (10)
ne " +c,
Cj_ €l6
o = p 0-1) (11)

It is easy to check thata is the monotonic function ob
and that the necessary and sufficient condition for the existence
of two extremes (the N-shape) o is € > 4. Moreover, the
intersection points of the nuliclines can be determined by the
intersections obur with straight lineaas+t given by

“ip
.

Relation 12 follows from the linear combination of the right-
hand sides of egs 8 and 9.

G
Apr =1 —1n)+ e (12)
2
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oa+T(0) intersect themselves at two given values of the
temperature equal 8, and6@s, one can determine values of
andc;, from the following relations:

1 —
c, = 4 o (13)
1 e 2
=0, — 1)+
n
6,— 6
c,= (04 2N (14)

e€/02(02 _ 1) _ 5/93(03 _ 1)

In the sequel we identif@, with the saddle point and assume
that it is placed at the inflection point ofr. It is easy to check
that0, = Oy = €l(e — 2). If O3 = €el(e — 2) + A, whereA is
sufficiently small, then all three stationary states are located on
the repelling branch oftr.

Bifurcation Analysis

We assume that= 8,7 = 0.1, andA = 0.3; then from eqs
13 and 14 it follows that; = 4.747166x 104 andc, =
6.048452x 1074 For these values of the parameters, the two
stationary states with coordinat&S (0, = 1.19273,01 =
0.748734) andS (03 = 1.63333,03 = 0.402924) are nodes
or focuses. These states are separated by the saddleSpvint
(6ip = 1.33333,0p = 0.638381).

From the linear stability theory, it follows that foy= g; =
4.75 the stat&SS becomes unstable focus and the stable limit
cycle SLO with radius equal to zero appears due to the
supercritical Hopf bifurcation. In this range gf the stateSS
is the stable focus. With increasiaghe radius oSLCincreases,
and atg = gy = 5.0 the stable limit cycle touches the separatrix
S of SP. In consequence the homoclinic orbit coming out and
into the saddle point appears and the stable limit cycle
disappear$’~1° Forq; < q < g, the system is bistable and two
attractors are the stable foc8§ and the stable limit cycl&LC
Figure 1 shows the attractors, the nullclines, and the separatrices
of the saddle point aj = 4.76 that is close to the disappearance
of SLCthrough the homoclinic orbit bifurcation. The separatrices

0.9

20

Figure 1. Nuliclines for a (the dashed black line) andl (the solid

black line) for the following values of the parametees= 8,7 = 0.1,
¢ = 4.747166x 1074, andc, = 6.048452x 107“. The plot shows the

In the present paper we consider the case when the nullclinesstationary stateSS (stable focus, green pointiP (saddle point, red
have three intersection points, all of them positioned on the POINY. andSS (unstable focus, red point), the stable limit cy&8eC

: . : (green closed curve), and four separatrices of the saddle point for the
repelling branch of the nullclinerr. This corresponds to three bifurcation parameteq = 4.76. Two separatrices outgoing froBP

stationary states. The middle one of them is a saddle point, andang approachings andSLCare marked in green, whereas separatrices

the extreme ones are nodes or focuses (stable or unstable)s ands,, which separate the basins of attractiorS& and SLG are
Assuming that values of ande are known and thatr(6) and marked in red.
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S and S, determine the partition of the phase plane into the 2.0
basins of attraction 3 (BASS) andSLC(BASLQ. As shown

in Figure 1, the separatri®, begins at the upper boundary of

the phase plane determined &ay= 0.9 atf = 1.2, next winds i
roundSLC and ends a8P. The separatri§, starts at the upper 0
boundary at a little smaller value @& and next approaches

monotonicallySP. These separatrices determine the shapes of 15
BASLCandBASS. The basinBASLCis confined betweels;

and S; and is surrounded bBASS$ on all sides excluding a

small interval at the upper boundary of the phase plane. In

consequencBASLChas the shape of a feather. Fpr o, the -IW W

system has only one attract8& and is excitable.

Master Equation 1.0 . I T
In the stochastic description, the state of the system is given 0 2000000
by the distribution functiorP(6,Na,t') of the temperaturé and t

the populationNa of speciesA. It is more convenient to use
population Na instead ofa, becauseNa is changed in the
reactions byANa = 4+ 1. The dynamics oP is determined by
the following master equatioH:

Figure 2. Changes ob in time for the same values of the parameters
as in Figure 1.

particle-surface collisions oB particles can lead to reaction 2
for which the particle population incrementAdNa, = 1. The

0
—P(6,N, ') = d(AQ)P(H — AON, — transition function is then given by
at' ( A ) r:Z’LZL/"A0<6 ( ) ( A
ANgt) x W (0 — AN, — AN, — O.N,) — Wy(O.N,— 0+ AON, + 1) = %Noz(l - 77)‘/5(1)
r:; ZP(Q’NA’t')fAe»e d(A8) x (6,A6) (19)

W (0.Ny— 0 + AON, + AN (15) The analytical treatment of the master equation is really

limited,** even if it has a discrete form. It is certainly much
more difficult if this equation has the integro-differential form
of eq 15. For this reason, we apply the Monte Carlo simulations
of the dynamics described by this equation to study stochastic
effects in our system. The Monte Carlo approach to the master
equation for discrete variables is well-kno##?3 and its
appropriate modification for the continuous form of eq 15 has
been presented in a recent pager.

Functionsw; describe the probability of transitions of the system
from a state§,N,) to (6 + AG,Na + ANa,) due to three different
processesr(= 0,1,2) in the systemTermwy is related to pure
energy exchange without reaction in nonelastic collisions of
particles with the boundaries of the system. For this process
ANpo = 0, and the following form ofwg has been derivéd
under the assumption of Maxwellian distribution of molecules:

Wo(6,Ny— 0 + AON,) = Results
1
oNaG[1 — pg(l — o — )]V 0w(6,A6) (16) The two-variable thermochemical system considered here can
have various types of coexisting attractors. We study in detail
wherd4 the case of the coexistence of the stable focus and the stable
limit cycle separated by the separatrices of the saddle point (see

{ 0+ 1)(gN)|A0| Figure 1). Figure 2 shows the time dependence of the temper-

) 3 ature on time forg = 4.76. In this case the stable foc8§
w(6,A0) = 3 x 5N coexists with the stable limit cyctBLCsurrounding the unstable
0+1) 0 2
A focus SS. The stochastic trajectory goes away fr@8 and
eXF(— §M) forAGO <0 makes a few circulations alor)-Cbut next comes back close
20 17) to SS. These escapes and returns repeat, but the number of
eXF(— §NA6’) for AG@ > 0 loops around the stable limit cycle and around the stable focus
2 changes randomly. At the chosen valuejdfie system is close

] N to the bifurcation through homoclinic orbit. The limit cycle is
The componentv; describes transitions of the system after a ¢jose to the separatri, entering SP, and therefore, it is

collision connected with reaction 1. In this proced¥x = —1 relatively weak. In consequence the residence times ar8Gnd
and@ increases by the fixed valuef; = ¢/(3/2N due to release  zre much longer than 08LC

of the reaction heaj. The transition probabilityv; follows from

. . s Near the homoclinic bifurcation, the distance betw&gand
the frequency of collision.For reaction 1w, is given by Be

S in the neighborhood 083 is small (see Figure 1). During
the evolution aroun&§ fluctuations can push the system close
Wy(0,Ny— 6 + AOLN, — 1) = Nayv/6 exp(—el6)0(A0 — to the separatrixs,. Then the trajectory moves close to this

A6,) (18) curve, which winds aroun8LC Even if the trajectory during

its evolution alongS; visits BASLG there is a high probability

In contrast tow;, the transition functions related to reaction 2 that it escapes frorBASLCand returns to the vicinity 0§83
and the Newtonian heat exchange involve the continuous after making only a single round. Thus, the large single impulses
spectrum ofA6f, because the amount of energy transferred at seen in Figure 2 strongly resemble excitability of the stable focus
collision with the wall of the thermostat is not fixed. Inelastic SS. Examples of trajectories which exhibit this property are
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periodically, and the probability distribution of first passage time
7 should exhibit several peaks separated by intervals of time
approximately equal to the period &L.C Such form of the
distribution function reflects the circulations of the system along
SLC To confirm these predictions, we have performed numer-
ical simulations of stochastic trajectories initialized at the point
(0 = 1.49,0. = 0.51) positioned orSLC

From the ensemble of the stochastic trajectories (several
thousands runs), we obtain the probability distribution function
P(7) of the first passage timesfrom BASLCto BASS. Figure
4 showsP(7) for the systems with different number of molecules
N: 20 000, 50 000, 100 000, and 200 000 épr= 4.76. Each
of these distributions has four or five peaks. The width of the
peaks follows from dephasing of the stochastic trajectory on
1.2 1.6 2.0 the limit cycle. The peaks are broader for small systems, because

0 then fluctuations more easily wipe out the phase of the

Figure 3. Two trajectories (blue and brown) on the phase plahe)( C|rculat|_on. For larger systems the highest peal_< appears for
illustrating excitability in the bistable regime of the system for the same onger timez, because fluctuations become relatively weaker
values of the parameters as in Figure 1. Note that the brown trajectorywhen N increases. The trajectory needs more time to escape
does not enteBASLC The stationary states and the separatrices are from BASLCand evolve close t&S.

marked in the same colors as in Figure 1.

Discussion

Fluctuations in a bistable system can induce jumps of the
system between two basins of attraction. In one-variable
4E-5 — systems, attractors are stable stationary states and their basins
of attraction are separated by a saddle point. Escapes of a
4 stochastic trajectory can be described as transitions through a
P one-dimensional barrier located at the saddle point. The mean
passage times between the attractors can be approximately
calculated from the FokkeiPlanck equatioRl2* which is
derived from the expansion of the master equation for large
i systems. No such theoretical treatment is known in the case of

) bistable multivariable systems.

0 T T r In our two-variable system in whicBLC coexists withSS,

0 50000 100000 one can fry to describe escapes fchAS_LCto BASS as
transitions through a two-dimensional barrier. The problem can

) o ] T ) ) ) be simplified by the assumption that a phase variable describing

E}lgsuli%‘tlb EETE‘;?&SCicr’]‘;t‘zlrztisegcf":‘)?%}%”;fgg{%rﬂntqhbee?:ipn?gf‘etgﬁggon circulations along the limit cycle is fast as compared to a radial

N = 20 000, black: 50 000, blue; 100 000, red: 200 000, green. The varlqblg describing the distance of a stochgstlc trajectory from

values of the parameters are the same as in Figure 1. the limit cycle. In this case one can consider the escapes as
transitions through a one-dimensional barrier which periodically

shown in Figure 3. Such specific excitability appears here even changes in time with a period approximately equal to the period

though the system is bistable. of the limit cycle oscillations. A similar approach has been used

The shapes of the basins of the attractions shown in Figurefor the transition through an unstable limit cyéfe.

1 have an important effect on the stochastic trajectories which  The coexistence of a stable limit cycle and a stable stationary
circulate inBASLC If a stochastic trajectory goes along the state has been observed experimentally in many chemical
upper right-hand part o&, below SP, then fluctuations do not  systemg5-3% Models of these systems are quite complex and
influence qualitatively its further evolution along this part of contain many variables. The model presented in this paper
S. The situation changes qualitatively, if the trajectory attains contains two variables only, and it describes a very simple
the left part ofS;. When the trajectory approaches the vicinity chemical system. Its dynamics may be rich due to the nonlinear
of SP, fluctuations may force it either to make a next round dependence of the rate constant on the temperature. In particular,
alongSLCor evolve towardSS. This possibility repeats at each  in a previous papét we studied the subcritical Hopf bifurcation
round of the trajectory alon§LC The system has a chance to in this model, while in the present paper we investigate the
leave BASLCand evolve towardS or to remain inBASLC coexistence of the stable limit cycle and the stable focus
To exclude the stochastic trajectories, which escape BASLC separated by separatrices of the saddle pdddspite its

and immediately return back to it, we apply the condition that simplicity, the model shows many phenomena which are
the trajectory will stay a longer period of time BASS, if it characteristic for multivariable chemical systems as well as for
crosses the lin® = 1.3. We have verified in thousands of simple systems with strong exothermic reactions. Therefore, the
simulations that after crossing this line all trajectories evolve results presented in this paper give indications to look for similar
toward SS and stay close to it for some period of time. effects in real chemical systems which have the same types of
However, if during a circulation a stochastic trajectory remains attractors.

in BASLCwhen passing ne&P, then it turns round and has to Close to the homoclinic orbit bifurcation, the stochastic
make the next circulation before it can reach the vicinity of trajectory jumps between the regions closes® andSLCas

SS. Therefore, the maximum probability of escape time returns shown in Figure 2. The system spends a much longer time

2E-5
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aroundSS than during oscillations 08LC because the steady becomes prohibitively long, because the mean first passage time

state is a relatively stronger attractor th@hC The long time increases exponentially with the numbérof particles in the
intervals in which the trajectory remains close && are systen?-24 Moreover, the fluctuation-induced dispersion of
occasionally interrupted by a few rounds al@®igC Every time oscillation phase expands with time, so the level of noise

the number of the oscillations is random, and therefore, the time contained in the distributioR(z) always increases for longer
series off resemble the intermittency observed in deterministic escape times. Therefore, for any system the peaks in the
chaotic systems. We previously obtained a similar type of structure ofP become for some sufficiently large strongly
oscillations in the same model close to the subcritical Hopf perturbed and practically blurred by the noise.
bifurcationl* where the two attractors are the stationary state  Although the system is in the bistable regime, it also exhibits
and the limit cycle. It has also been found in a model with the excitability. Small perturbations arous& decay in time.
period-2 oscillations that fluctuations can induce transition to Sufficiently large perturbations aroun8§ may switch the
quasi chaotic dynamics due to merging of bands of two cycles system toBASLCor to BASS. Due to the particular shape of
broadened in stochastic systeffg® BASLGC appropriate perturbations are necessary to switch the
Escapes fronBASLCto the close vicinity ofS§ may be system fronSS§ to SLC Slightly larger perturbations can switch
characterized by the mean first escape time, but such characthe system outsidBASLCand they induce the large impulses
teristic is only a rough one. More detailed information is of a and®, which are characteristic for excitability.
contained in the distribution of the first passage time. The results
presented in Figure 4 show that this distribution has a few peaks.
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