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The vibrational relaxation of oxygen molecular ions trapped in an argon cage in the temperature range 10-
85 K has been studied using semiclassical procedures. The collision model is based on the trapped molecule
undergoing the restricted motions (local translation and hindered rotation) in a cage formed by its 12 nearest
argon neighbors in a face-centered cubic arrangement. At 85 K in the liquid argon temperature range, the
relaxation rate constant of O2-(V)1) is 1130 s-1. The rate constant decreases to 270 s-1 at 50 K and to 3.90
s-1 at 10 K in the solid argon temperature range. In the range 10-85 K, the rate constant closely follows the
temperature dependencek ∝ T2.7. Energy transfer pathways for the trapped molecular ion are vibration to
local translation, argon phonon modes, and rotation (both hindered and free).

I. Introduction

Vibrational relaxation of molecular species trapped in a cluster
environment is strongly dependent on the nature of host-guest
interaction and the type of motion that the guest undergoes in
the restricted space. When the interaction system is maintained
at or near the cryogenic environment, the motion of the guest
is severely limited to a narrow space in the cage surrounded by
many solvent layers, providing an opportunity to study the time
scales of energy transfer pathways associated with the restricted
motion of the guest. When the guest is a diatomic molecule
trapped in one full shell of a face-centered cubic (fcc) arrange-
ment or an icosahedral arrangement of argon atoms,1-3 the
molecule finds enough space to translate in the cage, but a strong
repulsive wall builds up when it moves away significantly from
the center of the cage. The interaction of the molecule with
host atoms in the repulsive region is responsible for causing
perturbation of molecular vibration, thus leading to vibrational
relaxation. For example, the spectroscopic data of HCN in the
Ar, Kr, and Xe matrixes indicate that the molecule is trapped
in a substitutional site of the fcc configuration at the cryogenic
environment.4 Such an Ar matrix environment has been used
in theoretical studies of the addition dynamics of F2 to
cis-ethylene-d2 and the subsequent decomposition of the vibra-
tionally excited 1,2-difluoroethane-d2.5 Among other studies
involving the fcc structure6-10 is the calculation of the phonon
thermal conductivity of the Lennard-Jones (LJ) argon crystal
between 20 and 80 K using molecular dynamics simulations.11

For the guest molecule confined to such a closely packed
arrangement, the substitutional site is not large enough for the
molecule to undergo free rotation and translation. Furthermore,
the rotational motion is under the influence of a strong potential
field, which leads the guest to experience a periodic or nearly
periodic field as it rotates. Thus, both translational and rotational
motions of the guest in the cage are hindered.3 Molecular ions
as large as Br2

- and I2- are also known to be caged in an argon
or CO2 environment, the systems that have been considered to
study the microscopic nature of anion solvation and the effects
of solvation on elementary chemical reactions.12-14

When the guest is charged, the induction energy can modify
greatly the host-guest interaction, thus affecting the mechanisms
of vibrational relaxation especially at low temperatures. The

induction energy deepens the attractive potential well over the
neutral-neutral interaction and modifies the slope of the
repulsive part of the interaction energy on which the efficiency
of energy transfer depends sensitively.15 Molecular ions have
vibrational frequencies and bond distances different from their
neutral counterparts. The frequency change leads to a change
in the amount of energy to be transferred from the excited
molecular ion, whereas the bond distance change alters the space
available for the guest in the cage. Thus, these three factors,
namely, the induction energy, vibrational frequency, and bond
distance, are mainly responsible for molecular ions relaxing at
a much different rate from uncharged molecules. Vibrational
relaxation in condensed phases involves a number of energy
transfer pathways and one of the major problems in the
relaxation process is the time scale of energy transfer pathways
to various motions.3,16-19 For ionized guests, such a time scale
can be significantly different from that of neutral molecules.
The guest is in intimate contact with the host atoms, suffering
at least 1012 collisions per second. Despite such a high collision
frequency, vibrational relaxation in condensed phases is known
to be very slow compared to the gas-phase process,16 indicating
that these numerous collisions, each of which acts to perturb
the vibrational motion, are highly ineffective in transferring
energy. Another problem is the role of host in the relaxation,
which is unique to the processes taking place in condensed
media. Even in a one-shell environment, the vibrational motion
of host atoms can contribute significantly to the relaxation
process. In the condensed phase, therefore, there can be several
important energy transfer pathways involving restricted trans-
lational and rotational motions as well as phonon modes, and
the efficiency (or inefficiency) of each energy transfer pathway
depends sensitively on the nature of interactions between the
guest and host atoms, so the determination of time scales for
energy transfer processes warrants detailed interpretation of all
these motions involved.

In the condensed phase, time scales for vibrational relaxation
for simple molecules are known to vary by many orders of
magnitude. For example, the lifetime of vibrationally excited
states N2(A 3Σu

+) in an argon matrix at 1.7-30 K is as long as
3 s,16,20 and the lifetime of O2(X 3Σg

-) in liquid mixtures with
Ar and N2 at 77 K is in the range of milliseconds,17,18whereas
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the lifetime of heteronuclear species NH(A3Π) in Ar or OH/
OD(A 2Σ+) in Ar is only about 10-6 s in the temperature range
4.2-25 K.16,21Even in the latter systems, the time scale is much
longer than the gas-phase values. Studies show that the
relaxation rate constant of vibrationally excited oxygen mol-
ecules in argon is in the range of centi- to milliseconds.3,17-19

Although vibration-to-rotation (VR) energy transfer is the
principal pathway for the relaxation of hydrogenic heteronuclear
diatomic molecules,22,23the pathway of vibration-to-translation
(VT) energy transfer rather than the VR mechanism plays a
leading role in relaxing vibrationally excited homonuclear
diatomic molecules such as O2 and N2 in Ar.3,19When the guest
is an ion, the attractive energy term introduced by the ion-
atom interaction can significantly modify the translational
motion, thus enhancing the perturbation of the vibrational
motion. In a narrow cage space, the modified interaction energy
can affect the influence of the potential field on rotation.
Translation and rotation, both of which are confined to close
proximity of the cage center, can now enhance vibrational
relaxation over the neutral guest. Thus, these modified transla-
tions and rotations as well as the phonon modes of host atoms
should be carefully considered in studying the vibrational
relaxation of molecular ions in condensed media.

In the present paper, we study the relaxation of O2
-(V)1)

using an interaction model for the molecule that is trapped in a
cage environment formed by 12 nearest argon neighbors, hence,
a face-centered cubic arrangement. Our approach includes all
atom-atom interactions for the guest and host atoms and uses
the semiclassical perturbation theory, which relates the energy
transfer probability to the Fourier integral of the time-dependent
force.24 The time dependence of the interaction energy is
determined from the solution of the equation of motion for
translation, which is localized in the neighborhood of the cage
center. In addition to local translation, the motions responsible
for sharing the energy released by the O2

-(V)1) vibration are
the rotation of the guest and the vibration of host atoms. Low-
lying rotational states are considered to be hindered, whereas
high-lying ones are free. We treat the vibrational and (hindered
and free) rotational motions of O2- and the phonon modes of
host atoms quantum mechanically in formulating energy transfer
probabilities.

II. Model

The interaction model for O2-Ar has been reported in ref 3.
We briefly recapitulate the essential aspects of the model and
the effects resulting from inclusion of the induction energy. The
positions of 12 Ar atoms in a fcc arrangement are shown in
Figure 1a. The configuration corresponds to the atoms occupying
the midpoints of the 12 edges of a cube. Each atom of the guest
molecular ion (OA or OB) encounters the repulsive field created
by the host atoms when O2- moves around in the cage. The
two atoms undergo a series of collisions with the host atoms as
the vibrationally excited guest translates and rotates. Each atom
of O2

- interacts with the 12 Ar atoms. These OA(B)-Ar
interactions are represented by the LJ (12-6) potential. The
Ar-Ar interaction energies are also represented by the LJ
potential. The overall interaction potential energy is then the
sum of these atom-atom interactions and the induction energy.
In the region of strong repulsive interaction, the vibrational
motion couples with local translation and rotation as well as
the motion of host atoms; thus all these motions participate in
the vibrational relaxation of O2- as energy accepting modes.
The vibrational relaxation process is viewed as energy flow from
the high-frequency mode to local translation, rotation (both

hindered and free) by multirotational quantum processes, and
the phonon modes of host atoms.

We choose Ar atom 1 to be in theZ-axis so thatθ measures
the rotation of the molecular axis from this axis andφ is the
azimuth on theXYplane. The coordinates needed to derive the
interaction energy are shown in Figure 1b. The displacementδ
can be expressed in terms ofL1, l1, andF1. The instantaneous
bond distance of O2- is d + x, wherex is the displacement of
the bond distance from its equilibrium valued. Thus, we
introduce the spherical coordinate system (x, θ, φ) into 24 O-Ar
distances to set up the overall interaction energy. In determining
the size of the cage space available for the motion of O2

-, we
note the crystal radius of 1.92 Å for Ar,25 so the Ar-Ar distance
or the distance between Ar and the center of cage isl ) 3.84
Å. Because the bond distance of O2

- and orbital radius of O
are 1.35 Å26 and 0.45 Å,25 respectively, the argon and oxygen
orbitals are separated by at least 0.80 Å when the center of mass
(c.m.) of O2

- is at the cage center. When O2
- translates close

to argon atoms, it encounters a sharply rising repulsive wall,
where the perturbation of the vibrational motion occurs.

III. Interaction Energies

The interaction model for O2 + Ar has been reported in ref
3 and the same procedure will be adopted here whenever
applicable. Both atoms of the guest molecular ion interact with
all host atoms. Including all these 24 O-Ar interactions, the
induction energy and the argon-argon interaction terms, we
can express the overall interaction energy in the form

whereLn is the distance between thenth Ar and the c.m. of
O2

-, which will determine the value ofδ for local translation
(L1 is shown in Figure 1b), andzkl is the distance between argon
k andl. The second sum is for the interaction between the charge
of O2

- and the dipole moment induced in Ar. For thenth argon
atom, when two Ar-O distances are distinguished by the indices
n1 and n2 (i.e., i ) 1 and 2) in the first term, the distances
between the O atoms and 12 Ar atoms are

Figure 1. (a) Face-centered cubic structure, where 12 nearest neighbors
occupy the midpoints of the 12 edges of a cube. Argon atoms 1, 2, ...,
6 are in one plane; 7, 8, and 9 are above that plane; 10, 11, and 12 are
below. (b) Displacement of the c.m. of O2

- from the cage center isδ
and that of argon atom 1 from its equilibrium position isq1. The
displaced atom is expressed by a filled circle. The argon 1 to c.m. of
O2

- distance is L1 and that to cage center distance isl1. Also shown
are the Ar-O distancesz11 andz12.

U(Ln,x,θ,φ) ) ∑
n)1

12

∑
i)1

2

Vni[zni(Ln,x,θ,φ)] + ∑
n)1

12

Vind(Ln) +

∑
k*l

VAr(zkl) (1)
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where the angle factors determining the orientation of the
molecular axis with respect to the host atoms are

To describe the many-body dynamics in the present model, we
first note that the c.m. of O2- moves around the center of the
cage byδ, as shown in Figure 1b. When the c.m. is positioned
at the cage center, the values of allLn are equal to each other
and coincide withl. In terms of the coordinates defined in Figure
1b, we can express the distance between thenth Ar atom and
the c.m. of O2 asLn ) [ln2 + δ2 - 2 lnδ cosFn]1/2, whereln )
[l2 + qn

2 - 2lqn cosøn]1/2 andF1 is shown in Figure 1b. The
angleøn measures the direction of the displacementqn from
the axis of the cage center tonth argon. Thus, we have two
other sets of angles (Fn andøn and their azimuths) in addition
to the molecular rotation angles (θ, φ), but these sets describing
the position of the c.m. of O2- and the displacement of Ar from
its equilibrium position have no effect on the molecular rotation,
so they do not contribute to the relaxation process. Therefore,
the effects of these two sets can be replaced by their orientation-
averaged values.

When we use the LJ (12-6) potential, the overall interaction
energy becomes

where the interaction and spectroscopic constants areωe ) ω/2π
) 1090 cm-1, ωexe ) 8.1 cm-1, bond distanced ) 1.35 Å,26

andε/k ) 118.6 K.27 In the induction energy,εo is the vacuum
permittivity, R is the polarizability of Ar, which is 1.64 Å3,28

ande is the electronic charge. Because the induction energy is
independent of the molecular bond displacement and orientation,
it does not contribute to the perturbation energy, which is
responsible for vibrational and rotational transitions. However,
the induction energy introduces a significant attractive energy
in the overall interaction energy, thus creating a deeper attractive
well for the molecule to “speed up” toward the host atoms; i.e.,
it modifies the collision trajectory to increase the efficiency of

energy transfer. The equilibrium distance between O2 and the
host atom is 21/6σ ) 3.92 Å, whereσ ) 3.49 Å.27 The values
of σ andε for O2 + Ar needed in determining the first term of
eq 3, are obtained fromεAr/k )119.8 K,εO2/k ) 117.5 K,σAr

) 3.405 Å, andσO2 ) 3.58 Å using the usual combination rules
for mixtures.27 Note that the equilibrium distance between O2

-

and Ar is significantly shortened from the O2 + Ar value given
above because of the contribution of the induction energy.

The functionU(Ln,x,θ,φ) depends on the pertinent coordinates
in a complicated manner, but we can recast it in a form that
shows the coupling of the molecular vibration with the rest of
the coordinate system in an explicit form for the present study,
which employs semiclassical perturbation procedures. The Ar-
Ar interaction energy in eq 3 is not directly coupled to the
internal motions of the molecule, but its atom-atom distance
depends on the displacementqn, determining the frequency and
in turn the amount of energy transfer from O2

- to the phonon
modes. Equation 3 can now be written in the Taylor expansion
for a function of three variables as

where {q} is a collective notation forq1, q2, ..., q12, the
derivatives are evaluated atx ) 0, δ ) 0, and{q} ) 0, andLn

is dependent onδ and qn. The operation produces the terms
containing cos2 Fn, which is 1/3 when averaged over the solid
angles. In averaging cosøn, we note that each Ar atom on the
cage directs its interaction to O2

-, so its inward motion ranges
from 0 toπ and its azimuthal from 0 to 2π. The average of cos
øn in this inward angle range is1/2. Though the one-quantum
transition of O2

- requires the presence of the coordinatex for
1 f 0 and the phonon modeqn for phonon transitionsk f k +
1, the displacement of local translation is quadratic inδ, so
after straightforward differential operations, we arrive at the
perturbation energy term

whereGni ) [1 - (d/l)fn(θ,φ) + (d/2l)2] with i ) 1 for the
upper sign andi ) 2 for the lower andfn ) fn(θ,φ) for brevity.

zn1
,zn2

) [Ln
2 + 1/4(d + x)2 - Ln(d + x)fn(θ,φ)]1/2 (2)

fn(θ,φ) ) cos[(n - 1)π/3]cosθ +
sin[(n - 1)π/3]sin θ cosφ for n ) 1-6

f7(θ,φ) ) -3-1/2[21/2 sinφ - cos(π/6) cosθ -
cos(π/6) sinθ cosφ]

f8(θ,φ) ) -3-1/2[21/2 sinφ - cos(5π/6) cosθ -
cos(5π/6) sinθ cosφ]

f9(θ,φ) ) -3-1/2[21/2 sinφ - cos(9π/6) cosθ -
cos(9π/6) sinθ cosφ]

f10(θ,φ) ) -3-1/2[21/2 sinφ + cos(3π/6) cosθ +
cos(3π/6) sinθ cosφ]

f11(θ,φ) ) -3-1/2[21/2 sinφ + cos(7π/6) cosθ +
cos(7π/6) sinθ cosφ]

f12(θ,φ) ) -3-1/2[21/2 sinφ + cos(11π/6) cosθ +
cos(11π/6) sinθ cosφ]

U(Ln,x,θ,φ) ) 2ε∑
n)1

12

∑
i)1

2 [( σ

zni
)12

- ( σ

zni
)6] + ∑

n)1

12 1

4πε0

e2R

2Ln
4

+

4εAr∑
k* l

[(σAr

zkl
)12

- (σAr

zkl
)6] (3)

U ) U(Ln,x,θ,φ)|x)0,{q})0,δ)0 +

∑
s)1

∞

(1/s!)(x ∂

∂x
+ δ

∂

∂δ
+ qn

∂

∂qn
)s

U(Ln,x,θ,φ)|x)0,{q})0,δ)0 (4)

15

4!

∂

∂x

∂

∂qn

∂
2

∂δ2
U(Ln,x,θ,φ)|x)0,δ)0,{q})0δ

2qnx )

2ε∑
n)1

12

∑
i)1

2 {[252(σ

l )
12

Gni
-10 - 30(σ

l )
6

Gni
-7](d

2l
- fn) ×

(-2 -
d

l
fn)3

+ [84(σ

l )
12

Gni
-9 - 30(σ

l )
6

Gni
-6](2 -

d

l
fn) ×

[(dl fn2 - 2fn) + (10

3
-

4d

3l
fn)( d

2l
- fn)] + [21

2 (σ

l )
12

Gni
-8 -

3(σ

l )
6

Gni
-5][(

2

3(10 -
d2

l2
)fn -

4d

l
fn

2] ( [32(σ

l )
12

Gni
-7 -

3

4(σ

l )
6

Gni
-4]43fn}(δ

l )2(qn

l )(xl ) ≡

2ε∑
n)1

12

∑
i)1

2

U′(θ,φ)(δ

l )2(qn

l )(xl ) (5)
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IV. Transition Probabilities

The probability of energy transfer from O2
-(V)1) to local

translation, rotation, and phonon modes can be determined from
the solution of the time-dependent Schro¨dinger equation23,24.29

where H0 ) H0
vib + H0

rot + H0
Ar, the Hamiltonian of the

unperturbed system. The time evolution of the interaction system
is described by the trajectory of local translationδ(t), which is
the solution of the equation of motion for the guest molecule
in the cage written ast ) (µ/2)1/2∫δ0

δ [E - U(δ)]-1/2 dδ, where
µ is the reduced mass of the O2

--Ar system andE is the
translational energy in the cage. To determine the trajectoryδ-
(t), we need theδ-dependent energyU(δ), which includes the
contribution of the induction energy. When eq 2 is substituted
in eq 3, the leading term of each interaction isLn

-12 andLn
-6,

which can be expanded in a power series of (δ/l), which
converges rapidly becausel ) 3.84 Å and (δ/l) , 1. The
resulting expression is a function ofδ and Fn. When theFn

dependence is averaged over the solid angles as mentioned
above following eq 4, the result appears in the quadratic form
U(δ) ) V0(δ/l)2, whereV0 is an energy constant containing the
inverse-power terms inl, V0 ) 12[22(σ/l)12 - 5(σ/l)6 - (1/
4πεo)(e2R/2l4)]. The lower integration limit is thenδ0 ) l(E/
V0)1/2, so the integration of the equation of motion yields the
oscillatory function

The local translational motion in a free volume of the cage is
then a periodic function of time with the periodτ ) πl(2µ/
V0)1/2.

The general solution of eq 6 appears in the standard form

whereψV(x) is the vibrational wave function andYjm(θ,φ) is
the spherical harmonics, the energies satisfying the eigenvalue
equationsH0

vibψV(x) ) EV
vibψV(x), H0

rotYjm(θ,φ) ) Ej
rotYjm(θ,φ)

andH0
Arêk(qn) ) Ek

Arêk(qn). The expansion coefficientsCVjmk-
(t) provide a complete description of the dynamics throughout
the interaction, and they can be explicitly determined by
substituting eq 8 in eq 6:

where∆Ej′j,k′k is the amount of energy transfer from vibration
to local translation (see below). The vibrational matrix element
for 1 f 0 is 〈0|x|1〉 ) (p/2Mω)1/2, whereM is the reduced mass
of O2

-. Assuming the harmonic oscillation, we obtain〈k′|qn|k〉
) (k + 1)1/2(p/2MArωAr)1/2 for k′ ) k + 1, whereMAr is the
mass of Ar andωAr is the frequency of the phonon mode. The
relaxation leads to O2-(V)1) releasing energyE1 - E0 ) pω,
whereas rotation shares (Ej′ - Ej) and argon’s phonon modes
take (Ek′ - Ek), so the amount of energy transferred to local
translation is∆Ej′j,k′k ) pω - (Ej′ - Ej) - (Ek′ - Ek). To

evaluate the Fourier integral in eq 9, we note that the c.m. of
O2

- undergoes a one-half period oscillation out of the cage
center during which the two oxygen atoms interact with the
host atoms: i.e., the oxygen atoms sample the entire interaction
field produced by the host atoms. This period corresponds to
the interval from the lower limit-1/4τ to the upper limit+1/4τ,
for which the integral can be readily evaluated.

In treating the role of rotational motion in the relaxation
process, we note an important situation: motion is hindered,
especially in low-lying energy levels. When there is a barrier
to rotation, motions corresponding to low-lying energy levels
may become hindered and transform into libration. The height
of such a barrier is dependent on the strength of interaction
between the guest molecule and host atoms. At low temperatures
considered in the present study, only such low-lying levels are
significantly populated, so the initial state of rotational motion
can be dominated by libration; i.e., rotational transitions
transform into hinderedf hindered and hinderedf free, as
well as freef free for sufficiently high-lying levels. In Figure
2, we plot the first part of eq 4 as a function ofθ for φ ) 0.
The plot shows the barrier height of∆Erot ) 101 cm-1, which
changes negligibly whenφ is varied. For example, forφ ) 0°,
45°, and 90°, ∆Erot ) 100.80, 100.80, and 100.77 cm-1,
respectively, where we show five significant figures for
comparison. That is, hindered rotation is essentially independent
of φ. Thus we refer the part to asUo(θ). If the barrier to rotation
is higher than the rotational energy, then the rotation is hindered
and the guest molecule librates about the minima ofUo(θ),
which occur atπ/6, 3π/6, ..., 11π/6, satisfying the 6-fold
symmetry. Also shown in Figure 2 for comparison is the curve
for the O2 + Ar case, where the barrier height is only 39.8
cm-1.3 The difference in these two systems is not from the
induction energy, which is independent ofθ, rather from 24
atom-atom interaction energy terms that are dependent on the
bond distance as shown in eq 2. It is important to note that the
curve fits perfectly to the potential functionU(θ) ) 1/2∆Erot[1
+ cos(6θ)]. The first eight rotational levels are hindered, i.e.,
Ej

rot < ∆Erot, and the emerging motion is libration in theVh )
0 and 1 states. To the harmonic oscillator approximation we
then find the frequency of the hindered motion to beωlib )
6(∆Erot/2I)1/2,30 giving 64.8 cm-1 or the lowest level of the
hindered motion (Vh ) 0) being 32.4 cm-1. HereI is the moment
of inertia of O2

-. On the other hand, if∆Erot < Ej
rot, then the

rotation is free and the transition from the librational levelVh

) 0 or 1 to such a high-lying free rotational level is a hindered-
to-free process. Thus, the rotational motion of O2

- in the cage
at and near cryogenic environments now leads to hindered-to-
hindered, hindered-to-free, and free-to-free transitions. These

ip
∂Ψ
∂t

) [H0 + U′(δ,{q},x,θ,φ)]Ψ (6)

δ(t) ) l(E/V0)
1/2 cos[(2V0/µ)1/2(t/l)] (7)

Ψ(x,θ,φ) ) ∑
Vjmk

CVjmk(t) ψV(x) Yjm(θ,φ) êk(qn)

exp[-(i/p)(EV
vib + Ej

rot + Ek
Ar)t] (8)

CV′j′m′k′’,Vjmjk
(t) ) -(i/p)(5ε

8l2
)( E

V0
)〈V′|x|V〉〈k′|qn|k〉 ×

〈j′m′|∑
n)1

12

∑
i)1

2

U′(θ,φ)∫-t

t
cos2[(2V0/µ)1/2t′

l ]ei∆Ej′j,k′kt′/pdt′|jm〉 (9)

Figure 2. Dependence of the interaction energy onθ for eq 3 with
φ ) 0 andLn ) l. TheVh ) 0 and 1 levels of the libration motion are
indicated. The dotted curve for O2 + Ar is shown for comparison.
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transitions will accompany vibration-to-local translation and
vibration-to-argon’s phonon mode energy transfer processes.

By use of the linear variational method, we obtain the wave
functions for the lowest and first excited states of the hindered
motion as

where ¥0i(θ) ) (R/π)1/4 exp[-1/2R(θ - iπ/6)2], ¥1i(θ) )
(R/π)1/4(2R)1/2(θ - iπ/6) exp[-1/2R(θ - iπ/6)2], R )
[I|U′′(θ)|θ)0]1/2/p, and the normalization constantsNVh )
{∫-∞

+∞¥Vhi(θ)]2 dθ}-1/2 are 0.4081 and 0.4105 forVh ) 0 and 1,
respectively.

From eq 9, the probability of transition from|Vjmk〉 to
|V′j′m′k′〉 with ∆Ej′j,k′k transferred to local translation in the limit
t f ∞ is then

where we setV ) 1 andV′ ) 0 for the relaxation process. To
derive the energy transfer probability and in turn the relaxation
rate constant, we have to average eq 11 over the thermal
distribution of E and sum the resulting expression over the
rotational states of O2- and the phonon states of host atoms.
From eq 9, we note that the probabilityP0j′m′,1jm(E) is propor-
tional toE2. Because the molecule confined in the cage travels
at low velocities, we carry out theE-integration from zero to
the average translation energyE* ) 3/2kT for the molecule
translating in the three-dimensional cage. In treating free-to-
free or free-to-hindered transitions, we note that the role of initial
relative angular momentum can be replaced by its classical
analogue, the impact parameterb. A reasonable approach to
introduce the impact parameter in such transitions is to replace
E by E(1 - b2/l2), the modification which is known as the
method of modified wavenumber, first introduced by Takay-
anagi31 in the calculation of rotational transition probabilities.32

This approach leads toP0j′m′k′,1jmk(E,b), which then has to be
averaged overb as 2π∫0

b*P0j′m′k′,1jmk(E,b)b db/(πl2) along with
the thermal average. The upper limit of the integration range
represents the maximum distance the c.m. of O2

- can travel in
the cage, which isδmax ) l(E/V0)1/2 from eq 7. With these
averaging and summing procedures, we now obtain the tem-
perature-dependent deexcitation probability in the lengthy, but
straightforward, expression3

whereQrot(T) is the rotational partition function. For the argon
state sum, we have the thermal averageQAr

-1Σk,k′e-Ek/kT, where
the k,k′-sum operates on|〈k′|qn|k〉|2 as well as∆Ej′j,k′k in
P0j′m′k′,1jm,k(E,b) in addition to e-Ek/kT, thus leading toQAr

-1Σk,k′(k
+ 1)e-(k+1/2)pωAr/kT for k f k′, whereQAr is the partition function
for Ar oscillating with ωAr about its equilibrium position. We
obtain ωAr ) 2.16 × 1012 s-1 or 11.5 cm-1 from the force
constant, i.e., the second derivative of eq 3 with respect to the
displacementqn, and the matrix element for single-phonon
processes〈k + 1|qn|k〉 ) 1.92× 10-9(k + 1)1/2 cm. TheE,b-
integrated quantity in eq 12 can then be expressed asP0j′m′k′,1jm,k-

(T), the sum of which overjj ′mm′kk′ is the overall energy
transfer probabilityP01(T).

V. Results and Discussion

A. Energy Transfer Probabilities. Several energy transfer
pathways operate in the relaxation of O2

-. They are energy
transfer from the excited molecular ion to local translation,
phonon modes, and rotation. As noted above, low-lying
rotational states are hindered, thus transforming rotational
transitions to hindered-to-hindered and hindered-to-free, as well
as free-to-free transitions. The energy transfer probabilityP01-
(T) given by eq 12 is expressed for the rotation undergoing free-
to-free transitions, which are associated with the matrix element

In this pathway, the amount of energy transfer to rotation is
(Ej′ - Ei), to phonon modes is (Es′ - Es), and the rest of the
vibrational energy,∆Ej′j,k′k, deposits in local translation.

For j ) 0-8, Ej
rot < ∆Erot and the rotational states have

transformed into the vibrational stateVh ) 0 and 1, so the energy
transfer pathway hindered-to-hindered transitions (namely, 0f
0, 0 f 1, 1 f 1) with the inelasticity∆EVh′Vh,k′k ) pω - (EVh′
- EVh) - (Ek′ - Ek), whereVh andVh′ now replace the rotational
quantum numbersj, j′. In this case, the energy released by
relaxing O2

-(V )1) is transferred to local translation, phonon
modes, and libration, so the rotational matrix element given
above should be replaced by

Because the value of the integrand withΦVh(θ) given by eq 10
decreases rapidly asθ moves away from the minima (π/6, 3π/
6, ...) shown in Figure 2, we set the integration range of eq 14
from +∞ to -∞. Furthermore, for this pathway we have to
modify eq 12 to account for the participation of hindered motion.
The sums overjj ′mm′ as well asQrot(T) in eq 12 have to be
replaced by the corresponding sum over the librational motion,
which is Qlib

-1ΣVh,Vh′e-(Vh+1/2)pωlib/kT for Vh f Vh′ and the two-
state partition functionQlib ) (1 + e-pωlib/kT)e-1/2pωlib/kT. At 85
K, the contribution of the 0f 0 (hindered-to-hindered) transition
to the overall deexcitation probability given by eq 12 is 3.13×
10-10. The contribution is 9.25× 10-11 at 50 K and decreases
to a value as low as 1.57× 10-12 at 10 K. For 0f 1, the
corresponding three values are 7.71× 10-12, 2.28× 10-12, and
3.88× 10-14, respectively. Note that for 0f 0, as well as 1f
1, (EVh′ - EVh) ) 0, so the entire vibrational energy is transferred
to local translation and phonon modes,∆Ek′k ) pω - (Ek′ -
Ek).

Next, we now consider transitions among high-lying free
rotational states (j > 8) with jm ) j′m′, where the amount of
energy transferred to local translation is∆Ek′k and to the host
phonon modes is (Ek′ - Ek) as inVh f Vh′ transitions discussed
above. In determiningP01(T), we sumP0j′m′k′,1jm,k(T) over m′
(e.g, for j′ ) 6, m′ ) 0, (1, ...,(6), and average over 2j + 1
m values. At 50 K, for example, the contribution ofj ) j′ ) 9,
the lowest free rotational state, toP01(T) is 9.62 × 10-13,
whereas the contribution fromj ) j′ )11 is only 2.81× 10-13.

ΦVh
(θ) ) NVh∑

i)1

6

¥Vhi
(θ) (10)

P0j′m′k′,1jmk(E) ) |C0j′m′k′,1jmk(∞)|2 (11)

P01(T) )

2π

π(lkT)2QAr(T) Qrot(T)
∑
k,k′

e-Ek/kT∑
j,j′

e-Ej
rot/kT ∑

m′)-j′

+j′

∑
m)-j

+j

×

∫0

b* ∫0

E*
P0j′m′k′,1jm,k(E,b)e-E/kTE dE bdb (12)

〈j′m′|∑
n)1

12

∑
i)1

2

U′(θ,φ)|jm〉 )

∫0

2π∫0

π
Yj′m′(θ,φ)∑

n)1

12

∑
i)1

2

U′(θ,φ) Yjm(θ,φ) sin θ dθ dφ (13)

〈Vh′|∑
n)1

12

∑
i)1

2

U′(θ,φ)|Vh〉 ) ∫-∞

+∞
ΦVh′(θ)∑

n)1

12

∑
i)1

2

U′(θ,φ) ΦVh
(θ) dθ

(14)
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Whenj′ > j, the rotational motion takes part of the vibrational
energy intramolecularly, thus causing a smaller amount of
energy transfer to local translation and phonon modes than the
jm ) j′m′ case. The first of such free-to-free rotational transitions
is jm ) 90 f j′m′ ) 100, but its probability is negligible. At
85 K, the contribution from this∆j ) 1, ∆m ) 0 case is only
1.63× 10-18. However, for 90f 110, the probability is 6.26
× 10-12, which is about one-seventh of the leading contribution
coming from 90f 90, a∆j ) 0, ∆m) 0 case. A similar picture
emerges for the cases withj ) j′, but m * m′. These results
indicate that the differences in probabilities are consistent with
the predictions of the selection rules of∆j ) 0, (2 and∆m )
0, (2.

It is important to note that the selection rules hold for the
ideal interaction system with simple angle dependence. In the
present model, the angle between the molecular axis and the
center of cage-to-argon 1 axis isθ, but the corresponding angles
for all other Ar atoms are different fromθ. If the latter
interactions were absent (i.e., a simple atom-diatom collision)
and if the perturbation energy was obtained by expanding the
atom-atom distances between argon 1 and O2

- for small values
of x/l, we would find the angle dependence of the leading term
to be cos2 θ, for which the selections rules of free-to-free
rotational transitions are precisely∆j ) 0, (2 and∆m ) 0,
(2. In the present interaction system consisting of 12 host
atoms, we can view many-body interactions in the cage as a
sequential event. Consider that one of the oxygen atoms, e.g.,
OA, is the closest to argon 1 at one instant, and it then moves
to close proximity of another atom, e.g., argon 7, at the next
instant as O2- rotates. At the first instance, the OA-argon 1
interaction is the main event, but as O2

- rotates, the OA-argon
7 interaction becomes the main event, and so on. A similar
sequence occurs at the other side for OB. The θ dependence
seen in Figure 2 is the manifestation of such periodic behavior.
Even though theθ, φ dependence ofU(Ln,x,θ,φ) given by eq 3
appears complicated, this behavior is embedded in the potential
function, eventually leading to the selection rules that ap-
proximately follow the ideal relations mentioned above. The
transition probabilities ofjm f j′m′, including jm ) j′m′,
displayed above support this statement; for example, 4.21×
10-11, 1.63× 10-18, and 6.26× 10-12 for 90 f 90, 90f 100,
and 90f 110, respectively. The probabilities of intermultiplet
transitions are significantly smaller than those of∆m ) 0.
Furthermore, for a given set ofjj ′, all contributions have to be
summed overm and then averaged overm′, so the combined
contribution of thejm set is much smaller than the leading term
j0 f j0.

Still another energy transfer pathway is the hindered-to-free
type for which the initial state in eq 13 is|0〉. In this case, the
jm-sum andQrot(T) have to replaced byQlib

-1Σke-(Vh+1/2)pωlib/kT

andQlib ) (1 + e-pωlib/kT)e-1/2pωlib/kT in eq 12 as in the hindered-
to-hindered case, but retaining thej′m′-sum for the final state
of the free rotation case. The most important transition among
this type isVh ) 0 f j′m′ ) 90, for which the probability is
1.04 × 10-12 at 85 K. At 50 K, the probability decreases to
3.08× 10-13 and is as small as 5.25× 10-15 at 10 K. For 0f
91, the probability is only 2.52× 10-15 at 85 K but increases
to 4.17 × 10-13 for 0 f 92. Although no specific selection
rules apply to these transitions, we note that the probability for
even m′ is much larger than that for oddm′.

Our results reported above indicate the most important energy
transfer pathway is the 0f 0 and 1f 1 hindered-to-hindered
transition, in which the vibrational energy of O2

-(V)1) transfers
to the local translational and phonon modes. The contribution

of 0 f 1, in which part of the vibrational energy deposits in
the hindered motion, is far less important compared to those of
the 0 f 0 and 1f 1 transitions. These two transitions are
followed by free-to-free transitions, in particular the transitions
of the typejm ) j′m′, in which the energy is also transferred to
local translation and phonon modes. The relaxation process also
involves jm * j′m′ rotational transitions, but the contribution
of such free-to-free transitions to the overall relaxation process
is not important. The least efficient pathway is hindered-to-
free transitions, in which the vibrational energy is transferred
to rotation intramolecularly via multiquantum transitions, in
addition to energy transfer to local translation and argon modes.
The sum of all these contributions is the overall energy transfer
probability P01(T) defined by eq 12. The energy transfer
probability is 4.70× 10-10 at 85 K and decreases to 1.12×
10-10, when the temperature is lowered to 50 K. At 10 K, it is
as small as 1.62× 10-12. These results indicate that the energy
transfer probability varies 2 orders of magnitude over the
condensed-phase temperature range considered in the study. As
shown in Figure 3, the temperature dependence can best fit to
the linear relation in a log-log plot. This temperature depen-
dence is radically different from the well-known linear relation
log P01(T) ∝ T-1/3, originally formulated by Landau and Teller
for vibrational relaxation in the gas phase.33

B. Relaxation Rate Constants.An important quantity needed
in studying energy transfer processes is the vibrational relaxation
rate constantk, which can be calculated by combiningP01(T)
with a collision frequency. Unlike in gas-phase collisions,
collision frequencies in the condensed phase are difficult to
estimate because the concept of a collision in the phase is less
well-known, especially for the guest trapped in a solid matrix.
In the condensed phase, it is unclear what constitutes an
individual collision as it is difficult to determine when the first
collision ends and the second begins in the environment of many
host atoms. Even if the occurrence of individual collisions is
established, it is not trivial to establish how such collisions affect
the outcome of the overall energy relaxation process. It is simple
to visualize in Figure 1a the situation that when the guest collides
with, e.g., argon 1, its interaction with nearby host atoms, i.e.,
atoms 2, 6, 7, and 10, is also important. The interaction of a
guest molecule with its host atoms is continuous, because each
guest-host collision is part of the overall encounter, leading to
vibrational relaxation in the condensed phase. In the cage
environment, what is important in determining the relaxation
process is not a well-defined single collision event but the
encounter that encompasses a series of collisions. As noted in
section IV, the c.m. of O2- undergoes a one-half period
oscillation around the cage center, and one of the two oxygen
atoms interacts with the host atoms in one hemisphere, whereas

Figure 3. Temperature dependence of the energy transfer probability
P01(T) on a log-log scale.
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the other interacts with those in the other hemisphere. Thus,
the integration range of-1/4τ to 1/4τ for the Fourier integral of
local translation is the time scale representing the frequency of
occurrence of such encounters in the rigid environment. The
excited guest transfers its vibrational energy to other modes
during this time interval, which is1/2τ ) (πl)(µ/2V0)1/2, so the
relaxation rate constant can be expressed as

The numerical value of the frequency of collisions is (1/2τ)-1

) 2.40× 1012 s-1; i.e., in the cage environment the guest is in
contact with the host atoms suffering perturbation at a rate of
1012 times per second. The latter value is comparable to the
collision frequencies determined in other models. For example,
using the Slater equation for an assembly of quantized, energy-
weighted normal modes, Wiesenfeld has calculated the collision
frequency of 3.1× 1012 s-1 for HCl + Ar at temperatures 9-20
K.34

When we use (1/2τ)-1 for the collision frequency, the
contribution of the 0f 0 hindered-to-hindered transition to the
rate constant at 50 K is as large as 222 s-1; i.e., the energy
transfer occurs on a millisecond time scale. The next most
efficient pathway is theVh ) 1 f Vh ) 1 hindered-to-hindered
transition, which is 37.5 s-1, followed by 5.46 s-1 for 0 f 1
and 2.31 s-1 for the j ) j′ ) 9 free-to-free transition. Note that
for the last case, alljm states are properly summed and averaged
overmandm′ as stated above. Forj ) j′ ) 10, the rate constant
is 1.29 s-1. It is only 0.740 s-1 for theVh ) 0 f j′ ) 9 transition.
At higher temperatures, the contribution of free-to-free rotational
transitions tends to become larger than that of the 0f 1
hindered-to-hindered transition. The values of the overall rate
constantk, which include all these contributions, are presented
by a log-log plot in Figure 4 over the temperature range of
10-85 K. At 70 and 85 K, the values ofk are 665 and 1130
s-1, respectively. The rate constant is 270 s-1 at 50 K and
decreases to a much smaller value of 3.88 s-1 at 10 K. The
plot shown in Figure 4 closely follows the linear relationk ∝
Tc, i.e., logk ∝ log T, wherec ) 2.7 is an exponent characteristic
of the present condensed-phase relaxation process taking place
at and near cryogenic temperatures.

The collision frequency in liquids can be determined in a
cell model asz ) (8kT/πµ)1/2/(21/2F-1/3 - σc), 35-37 whereF is
the number density andσc is the collision diameter. Extrapolat-
ing linearly the experimental densities 22.15 and 22.64 nm-3

at the mole fractionsXO2 ) 0.3 and 1.0 for O2 + Ar to XO2 )

0, we find 21.95 nm-3.19,38,39Note that these density data are
obtained at 77 K, but the extrapolated values change only
slightly in the temperature range considered in the present study.
At 85 K, z is found to be 3.29× 1012 s-1, which is about 40%
larger than the value of (1/2τ)-1 given above. At the solid argon
temperature of 50 K, it is 3.52× 1012 s-1, which are comparable
to the value of (1/2τ)-1. In Figure 4, we have extended the solid
curve obtained for the rigid environment to this narrow liquid
temperature range, e.g., (1/2τ)-1P01(T) ) 1130 s-1 versuszP01-
(T) ) 1540 s-1 at 85 K. The dotted curve at the upper end of
the temperature range is obtained by using the cell model
expression, but its difference from the result of eq 15 is not
large. Note that if we apply the cell model expression near the
low end temperature end considered in Figure 4, the resulting
rate constant is significantly smaller than that obtained from eq
15. For example, at 10 K, we obtain 1.83 s-1, which is smaller
than the result of eq 15 by a factor of 2.

Our results presented in Figure 4 indicate that vibrational
relaxation time scales for O2-(V)1) in an argon cage range from
millisecond to second in the temperature range. These values
are 2 orders of magnitude larger than the experimental and
calculated values of O2(V)1) + Ar, but they still represent a
very slow relaxation process for the molecular ion in an argon
cage. For O2 + Ar, the rate constant is known to be 23 s-1 at
85 K and 5.1 s-1 at 50 K; it is as low as 0.015 s-1 at 10 K.3

Extrapolating their observed data for neat liquid O2 and high
mole fraction mixtures (O2 + Ar), Faltermeier, Protz, Maier,
and Werner estimated the optimum value ofk in the limit XO2

f 0 as 12 s-1 at 77 K.17 The rate constant estimated by Everitt
and Skinner at 85.5 K is 25 s-1.19 For the near-homonuclear
molecule CO in Ar at 8-24 K, the rate constant is known to
be less than 10 s-1.40 For C2

-(X 2Σg
+) in Ar at the cryogenic

temperature range of 14-30 K, the measuredk is known to be
∼6.8 s-1.41 The rate constant of the present calculation varies
from 3.90 s-1 at 10 K to 65.1 s-1 at 30 K. The fundamental
frequency of C2- is 1781 cm-1,26 which is significantly larger
than that of the present system (1090 cm-1), so a larger amount
of vibrational energy has to be removed from the excited
molecular ion; i.e., the relaxation is slower in C2

- compared
O2

-. However, the decrease is modest in the present model,
where the trajectory of local translation is a sinusoidal function,
giving the Fourier integral less strongly dependent on the
frequency compared to other models, such as the hyperbolic
trajectory of gas-phase collisions.42 In addition to the frequency
difference, we note that the bond distance of C2

- is 1.268 Å,
which is somewhat shorter than that of the present system (1.35
Å). A smaller molecular ion can undergo less hindered motion
in the cage, in which case free-to-free rotational energy transfer
becomes a significant energy transfer step but the step is less
efficient in removing the vibrational energy than the transitions
involving hindered motions. Therefore, the differences in
vibrational frequencies and bond distances that lead to the
relaxation rate of the C2- + Ar system in a cryogenic
environment are much smaller than those for O2

- + Ar, even
though both systems have the important contribution of the
induction energy.

To emphasize the importance of the induction energy in the
vibrational relaxation of molecular ions, we note that the depth
of the attractive potential of the LJ interaction of Ar to O2 is
0.0102 eV occurring at the equilibrium separation of 3.92 Å.
On the other hand, when the induction energy is included for
O2

- + Ar, the well depth becomes as deep as 0.0801 eV
occurring at 3.40 Å. Thus, for O2- interacting with 12 Ar atoms,
the contribution of the induction energy to the overall interaction

Figure 4. Temperature dependence of the relaxation rate constantk
on a log-log scale. The dotted curve is fork calculated with the cell-
model collision frequency in the liquid argon temperature range.

k ) (1/2τ)-1P01(T) (15)
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potential can be particularly important. The induction energy
has two important effects on the vibrational relaxation: (a) it
“speeds” up the translational motion of O2

- toward Ar so that
the kinetic energy of the relative motion is increased, and (b) it
increases the slope of the repulsive wall of the interaction
potential on which the probability of energy transfer depends
sensitively. These effects lead to the molecular ion reaching a
deeper repulsive region, where the slope of the potential wall
rises sharply, for a greater perturbation of the interaction modes,
which participate in the vibrational relaxation of O2

-, thus
enhancing the relaxation process in the cage over that of the
unchanged guest molecule.

Finally, we note that in the above calculation, we have only
considered one-phonon processes for the participation of host
atoms in the relaxation process. The effects of multiphonon
phonon processes can be considered similarly. For two-phonon
processes, for example, the major difference from the above
treatment is that eq 5 will then contain the second derivative of
U(Ln,x,θ,φ) with respect toqn and the coordinatesδ2qn

2x with
s) 5. Thus, the perturbation energy is different from the single-
phonon case, but the main difference appears in the matrix
element of qn

2 and the Fourier integral that contains the
inelasticity term∆Ej′j,k′k, which now represents a larger amount
of energy transferring to the host atoms withk′ ) k + 2. The
ratio of the matrix element of two-phonon transitions to that of
single-phonon transitions is

which takes the values of 0.0281, 0.0178, and 0.00619 at 85,
50, and 10 K. The square of the Fourier integral in eq 9 for the
two-phonon process is smaller than that for the one-phonon case
by a factor of 3.12. Thus the combination of these two factors
leads to the two-phonon process smaller than the one-phonon
case by 9.00× 10-3, 5.70× 10-3, and 1.98× 10-3 at 85, 50,
and 10 K, respectively. Other factors in the perturbation energy
also affect the comparison, but the main difference is determined
by these two factors, attesting that contribution from two-phonon
process is much smaller than the one-phonon process considered
above.

VI. Concluding Comments

The vibrational relaxation of O2-(V)1) in a cage of one full
argon shell is studied in the temperature range 10-85 K using
semiclassical procedures. The interaction model is based on the
trapped molecular ion undergoing local translation and hindered
and free rotation in the cage composed of 12 host atoms. Local
translation undergoes a sinusoidal motion around the cage center.
Low-lying rotational energy levels are hindered, and high-lying
levels are free, thus leading to the participation of hindered-to-
hindered, hindered-to-free, and free-to-free rotational transitions
in the relaxation process.

The primary energy transfer pathway for the relaxation of
O2

- is from vibration to local translation accompanied by energy
transfer to argon’s phonon modes, whereas hindered rotation
remains in a librational state. This pathway is followed by energy
transfer to free-to-free rotational transitions and hindered-to-

free rotational transitions. The overall de-excitation probability
is on the order of 10-12, representing extreme difficulty of the
excited molecule relaxing in the cage environment. The rate
constantk of the relaxation process varies from 1130 s-1 at 85
K to 3.88 s-1 at 10 K, a decrease by 3 orders of magnitude.
Despite the high collision frequency of the order of 1012 s-1,
vibrational energy relaxation time scales for the molecular ion
in an argon cage range from milliseconds to seconds. The
temperature dependence closely follows the linear relation of
log k ∝ log T.
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k
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(k + 1)(k + 2) ×

exp(-kpω/kT)/∑
k

∞

(k + 1) exp(-kpω/kT)
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