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The zero-point vibrational corrections (ZPVCs) to the optical rotation of 22 rigid organic molecules have
been calculated using time-dependent density functional theory with the B3LYP hybrid functional. We outline
an implementation for calculating ZPVCs that can be applied with a variety of quantum chemistry programs
and methods. It is shown that the ZPVCs to optical rotation have a wide range of values and can be quite
significant depending on the molecule. On average, it has been determined that vibrational corrections can
account for about 20% of the optical rotation for the equilibrium value. It is also concluded that vibrational
effects alone cannot be the only factor in improving the calculated values of optical rotation with respect to
experimental data measured in solution.

1. Introduction

Vibrational averaging has become an important factor in
improving the accuracy of first-principles molecular property
calculations to predict or confirm experimental data. The goal
here is to augment the accuracy of calculated values by including
the effects due to the motion of the nuclei on a molecular
property. A number of studies have shown that vibrational
effects can be quite significant.1 Calculations of polarizabili-
ties,2,3 hyperpolarizabilities,4,5 magnetizabilities,6,7 hypermag-
netizabilities,8 NMR isotropic shielding constants,9-15 and spin-
spin coupling constants16,17have all benefited from vibrational
corrections to the corresponding calculated values at a fixed
equilibrium geometry. Continuing with the theme of electric
and magnetic perturbations, it is not surprising that optical
activity is also subjected to significant vibrational effects.18,19

Vibrational averaging of properties is not a new subject. It
has been known for a long time that experimental results
represent an averaging of the molecular property over a range
of geometries. Traditionally, such an averaging of calculated
property values has been met with some rather sophisticated
analytical derivations.20-26 These methods, along with a desire
to simplify the calculations by exploiting symmetry, have often
been applied to diatomics, small molecules, or highly symmetric
systems. With massively parallel computers and computing
farms becoming available to most researchers, energy and
property calculations at the number of molecular geometries
necessary for obtaining vibrationally averaged properties of
polyatomic molecules by numerical derivative methods are no
longer the daunting task that they once were. Much of the
current work in this field benefits from applying relatively
straightforward numerical methods to the calculation of deriva-
tives of the energy and/or the property with respect to normal
coordinates.16,27-30

In this work, we investigate the zero-point vibrational
corrections to optical rotations for a test set of optically active
molecules using time-dependent density functional theory

(TDDFT) with a hybrid functional. On the basis of Hartree-
Fock calculations on two chiral molecules, Ruud and co-workers
have shown that zero-point vibrational corrections (ZPVCs) to
optical activity are potentially significant.18 This work has been
cited a number of times to support the argument that the
vibrational correction to optical rotationmightbe an important
factor in obtaining accurate optical rotation calculations.31-36

Recently, the case of methyloxirane was reinvestigated by Ruud
and Zanasi to show that ZPVCs are critical for explaining
experimental trends.19 However, it is not yet quite clear what a
typical magnitude of ZPVCs in rigid organic systems is and
how strongly these corrections vary between different systems.
The demand for vibrational corrections to optical rotation
calculations continues to increase as investigations of other
corrective factors, such as electron correlation, gauge invariance,
basis set dependence, and solvent effects, continue.31,36-38 We
extend previous work in the calculation of ZPVCs of optical
activity to density functional theory and provide a larger set of
optically active rigid organic molecules for investigation. We
will show that vibrational corrections to optical rotation can be
significant and are very much dependent on the molecular
structure.

In section 2, background information on the optical rotation
and vibrational averaging calculations is given. Next, the
computational details of the work are described (section 3),
followed by the presentation of the data (section 4). Finally, in
section 5, conclusions are drawn and an outlook is given for
future work.

2. Methodology

2.1. Optical Rotation. The development of the theory of
optical rotation in a framework of molecular quantum mechanics
dates back to Rosenfeld’s paper in 1928.39 The coupling between
the electric field induced polarization and the time-dependent
magnetic field of electromagnetic radiation provides the theo-
retical basis for a change in light polarization that is observed
as optical rotation. From perturbation expansions of the electric
or magnetic dipole moments in the presence of a time-dependent
magnetic or electric field, respectively,40 one obtains the electric* Corresponding author. E-mail: jochena@buffalo.edu.
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dipole-magnetic polarizability tensorG′given by the equation
(in atomic units)41

Here,ω is the frequency of the incident light,ψ0 is the ground-
state wave function,ψn are the excited-state wave functions,
and µ̂R and m̂â are components of the electric and magnetic
dipole operators, respectively.

The optical rotatory parameterâ is related to the rotational
average ofG′ by

The specific rotation at frequencyνj (in cm-1) can be determined
from the optical rotatory parameter using the equation,

where â is in atomic units andM is the molar mass of the
molecule of interest in g/mol. In the present work, we used the
Na D-line frequency (589.3 nm or 16 969 cm-1) in all
calculations.

The sum in eq 1 extends over an infinite number of excited
electronic states. As a result, more practical implementations
of optical rotation calculations are necessary. For instance, in
density functional theory,G′ is calculated using analytical
derivative techniques.37,42-47 For the present work, we have
employed the implementations of the Turbomole48 package. The
relevant information for the optical rotation calculations is given
in the references.47

2.2. Vibrational Averaging. To determine the ZPVC of a
molecular property, it is first necessary to compute the normal
modes of vibration. This procedure is a standard task for most
quantum chemistry codes. Generally, the mass-weighted Hessian
U is constructed and then diagonalized to yield the eigenvector
matrix L and the eigenvaluesΛ such that

The eigenvector matrixL is the representation of the normal
modes in mass-weighted Cartesian displacement coordinates.
Because we are interested in computing molecular properties
at the varying geometries incurred from the vibrational motion
of the molecule, the normal modes can be expressed in terms
of Cartesian displacement coordinates. Removing the mass
weighting from the elements inL transforms the mass-weighted
Cartesian coordinates to nonmass-weighted Cartesian coordi-
nates. Dividing each row by the square root of the mass of the
corresponding atom destroys the normalization of the column
vectors. As a result, the vectors can be renormalized and the
normalization constant for each vector is identified with the
reduced massµj for normal modej.48,49Once the mass weighting
has been removed and the eigenvectors are renormalized, a
matrix,S, of column vectors containing the Cartesian displace-
ments for eachx, y, andz component of each atom is formed.

The derivation for the zero-point vibrational correction for a
molecular property using a perturbation expansion with respect
to normal coordinates has been quoted in a convenient general
form by Sauer and Packer1 and is based on the technique
introduced by Kern et al.22,23,50 We adopt their equation and
modify it slightly by adding factors of reduced mass,µ.

Including these factors in the equation allows one to adapt the
output of a variety of computational chemistry programs to
calculate vibrational corrections readily because most programs
report the Cartesian displacements as normalized vectors for a
given normal mode. Formulas that are based on normal
coordinates are dependent on the way the coordinates are
defined. This is due to the fact that normal modes can be
expressed in different coordinate systems: Cartesian, mass-
weighted Cartesian, with and without normalization factors, etc.
Our formula assumes that we easily have available normalized
(within a given normal mode) Cartesian displacements and
reduced masses, which is related to the normalization factor of
the corresponding vector in theS matrix. With these values at
hand, the zero-point vibrational correction, ZPVC, of a molec-
ular propertyP is readily calculated from the equation

where m represents the number of normal modes,ωi is the
frequency of theith normal mode, andµi is its reduced mass,
all expressed in atomic units. The property derivatives are taken
with respect to the normal coordinatesQi for a given normal
mode i. kijj represents the anharmonic cubic force constant,
which is defined as the mixed third-energy derivative,

at the equilibrium geometry. Finally, ZPVC is the zero-point
vibrational correction to the property evaluated at the equilibrium
geometry.

The ZPVC (eq 5) can be analyzed as an equation that contains
two terms:

and

The ∆P1 term considers the anharmonicity of the potential
energy surface. The anharmonic cubic force constants contribute
to the degree in which a change in energy occurs with respect
to a change in the geometry from the equilibrium position. The
anharmonicity term∆P1 accounts for the fact that the zero-
point averaged geometry of the molecule, and thereforeP, differ
from the equilibrium value if the potential energy surface is
anharmonic. The∆P2 term is due to curvature of the property
surface, i.e., the change in the slope of the property with respect
to normal coordinates. Both of these terms can contribute to
the ZPVC of a molecular property. Higher-order “cross terms”
between anharmonicity and property curvature are not consid-
ered in this approach. Because this work is focused on zero-
point vibrational corrections, we will neglect the thermal
population of vibrational states. The extension of this work to
the temperature dependence of vibrational corrections is con-
ceptually rather straightforward but will be left for future
investigations.
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Once the normal modes for the molecule are expressed in
Cartesian displacement coordinates, a set of molecular geom-
etries corresponding to the vibrational modes can be constructed.
A numerical parameter,δ, is chosen to represent a reasonable
size of displacement for the atoms. BecauseS is normalized, it
is necessary to take a reasonable and consistent fraction of each
atom’s displacement for the purpose of obtaining a comput-
ationally feasible displaced geometry. The size of these dis-
placements for calculating force constants and other energy
derivatives has been discussed in the literature.51-53 In our
program, we take a fractionδ of S that allows for the average
displacement over the entireS matrix of each atom to be equal
to a value of 0.04a0. Thus, theδ value is calculated directly
from S, the number of nuclein, and normal modesm in the
molecule:

where

It is important to note that this value of average displacement
works well for energy derivatives but may not automatically
yield desirable results for property derivatives. A brief analysis
of theδ dependence of our calculations is given later to address
this issue.

The computations proceed as follows: In the first step, the
equilibrium geometry is determined with high numerical ac-
curacy and the normal modes and frequencies are calculated.
Next, we calculate the propertyP+/0/- as well as the analytic
energy gradients∂E+/0/-/∂Qj at positively (+) and negatively
(-) displaced geometries along the normal coordinates, as
expressed in the form of the matrixS. The equilibrium values
(0) are also needed. The energy gradients expressed in terms
of the normal modes are obtained from the Cartesian energy
gradients as

The xR represents thex, y, or z component of the atomic
positions.

The anharmonic cubic force constant is obtained from a three-
point finite difference numerical derivative,

It would be desirable to work with analytic second derivatives
of energy instead, but these are not available for some quantum
chemistry codes and/or computational methods. By using
analytic first derivatives of energy only, our program has a larger
range of applications.

Because eq 5 requires the calculation of the first and second
derivatives of the property with respect to the normal coordi-
nates, two-point and three-point numerical finite difference
schemes are adopted to calculate the first- and second-property
derivatives in our program.

3. Computational Details

The geometries of 22 rigid organic molecules (Figure 1) were
optimized using Turbomole 5.7.48 The aug-cc-pVDZ basis
set54-56 was used along with the B3LYP hybrid functional.57,58

The choice of this basis set and hybrid functional is common
for many optical rotation calculations. Because Turbomole 5.7
and older versions do not make use of gauge-including atomic
orbitals (GIAOs),59 similar distributed origin techniques, or a
dipole-velocity formalism,60 the values obtained for optical
rotation are origin dependent. The use of the aug-cc-pVDZ basis
set attempts to mitigate this error.43,46,61Geometry optimization
was carried out until the norm of the gradients converged to a
value better than 10-6Eh‚a0

-1. The program must have a highly
optimized starting geometry to obtain accurate vibrational
corrections. It has been suggested that gradient residuals should
be less than 10-7Eh‚a0

-1.53 We adopt a criterion of 10-6Eh‚a0
-1

for the norm of the gradient because of the computational cost
of optimizing all structures in Figure 1 and the complications
introduced by a diffuse basis set. Furthermore, DFT calculations
require numerical integration of exchange-correlation terms
which introduces some numerical noise. The Turbomole Num-
Force script was used to obtain the frequencies and normal
modes for the vibrations. A locally modified copy of this script
was created to remove the basis set restrictions imposed by one
of the Turbomole modules. The required changes were minor
and were only necessary for the molecules in Figure 1 that
contain sulfur or heavier elements. The vibrational averaging
program that we have written uses the normal modes to construct
displaced geometries and to calculate the gradients and optical
rotation of the equilibrium and displaced geometries. The escf
module for the version of Turbomole used in this work printed
the incorrect sign for the trace of theG′ tensor. After verification
of this behavior, we adjusted all results by multiplying by a
factor of -1.

Molecules1 and3 were also optimized with Turbomole 5.7
in a similar manner at the Hartree-Fock level using the aug-
cc-pVDZ basis set. These molecules were chosen so that
comparisons with previously reported literature values could
be made.18 Our vibrational averaging program was applied to
these two molecules to obtain the vibrational corrections to
optical rotation for1 and3.

4. Results and Discussion

Table 1 shows the results for the vibrational corrections to
optical rotation for the 22 organic molecules using the B3LYP
functional. For each molecule, we have computed an optimalδ
value and the equilibrium geometry optical rotation ([R]D

eq) at
the sodium D-line transition frequency of 589.3 nm using an
optimized geometry for B3LYP. The vibrational correction for
each optical rotation (ZPVC) is also given, along with the
percent of correction from the equilibrium value. The breakdown
of the contributions from the anharmonicity of the potential
(∆P1) and the curvature of the property surface (∆P2) is also
presented for each molecule. For reference comparisons,
experimental values for the optical rotations are also given. They
have been taken from the compilations in the literature.42,43All
optical rotations are given in units of deg‚cm3‚dm-1‚g-1.
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Table 2 gives an analysis of the vibrational corrections for
the results that have experimental data available. For each
molecule, we report the difference between the calculated and
experimental values excluding∆eq and including∆ZPA vibra-

tional corrections. The percent difference of the calculated value
from the experimental value with and without vibrational
correction is also shown. The percent of ZPVC is calculated as
the absolute value of the correction divided by the equilibrium
value of the optical rotation, as has typically been done in the
literature for percent of ZPVC.1,3,7,9,12,18The average values are
reported in the last row of Table 2. The average values of the
absolute vibrational corrections are given, along with the average
values of the percentage of absolute vibrational correction.

Our implementation of vibrational averaging differs slightly
from the one developed by Ruud, A° strand, et al.27,28,62because
we use a method based on a perturbation expansion around the
equilibrium geometry, as opposed to an effective geometry. As
a verification on the validity of our method with respect to
calculating vibrational corrections to optical rotations, we made
a comparison with previous work with Hartree-Fock calcula-
tions and the aug-cc-pVDZ basis.18 Table 3 shows that there is
good agreement between previously reported values and the
values that are obtained with the method presented here. Any
differences are most likely due to slightly different equilibrium
geometries and numerical noise.

Recently, Wiberg et al. have provided a series of studies on
the conformational effects on optical rotation by analyzing
substituted 1-butenes.29,30 In these works, the vibrational cor-
rection to optical rotation for the substituted 1-butenes was

Figure 1. Twenty-two molecules of the test set and their stereochemical
configurations for which the computations have been carried out.

TABLE 1: Results of the Optical Rotations and the
Zero-Point Vibrational Corrections (ZPVCs) Calculated at
the Equilibrium Geometry for the 22 Molecules in Figure 1a

molecule δ [R]D
eq ∆P1 ∆P2 ZPVC %|ZPVC| [R]D

exptl b

1 0.10 18.16 0.25 -7.01 -6.76 37.2 18.7
2 0.11 -78.06 -2.28 4.12 1.84 2.3 -58.8
3 0.11 174.27 5.31 25.15 30.46 17.5 129.0
4 0.12 54.82 1.55 5.35 6.90 12.6 42.0
5 0.13 11.69 -4.92 23.14 18.21 155.8 57.6
6 0.12 111.61 3.69 4.32 8.01 7.2 103.8
7 0.12 -32.92 -1.92 -4.66 -6.58 20.0 -16.8
8 0.11 76.99 1.13 0.74 1.88 2.4 78.2
9 0.11 124.02 2.97 10.54 13.51 10.9 103.4

10 0.10 -131.35 -4.59 -0.63 -5.22 4.0 N/Ac

11 0.11 198.31 2.97 5.40 8.37 4.2 N/Ac

12 0.12 -9.08 -1.39 5.75 4.36 48.0 -34.5
13 0.13 -86.28 -1.54 -0.07 -1.61 1.9 -37.1
14 0.12 -76.49 -0.08 -8.10 -8.18 10.7 -34.0
15 0.12 -166.15 -0.34 -4.22 -4.57 2.8 -176.0
16 0.11 -93.13 0.52 3.33 3.85 4.1 -81.0
17 0.14 -322.65 -13.33 -37.81 -51.14 15.8 -430.0
18 0.14 12.00 -0.10 1.98 1.89 15.8 29.0
19 0.17 -57.13 0.35 0.52 0.87 1.5 -50.5
20 0.13 -1216.07 -0.32 -52.83 -53.16 4.4 -1146.0
21 0.18 41.15 0.11 5.02 5.13 12.5 51.6
22 0.07 1.60 0.17 -0.23 -0.06 3.8 1.8

a Calculations were done with the B3LYP hybrid functional and the
aug-cc-pVDZ basis set.δ has been determined with eq 9.∆P1 and
∆P2 are defined by eqs 7 and 8, respectively. The ZPVC is a sum of
these two terms. All optical rotations and ZPVCs are given in units of
deg‚cm3‚dm-1‚g-1. b Experimental values have been taken from the
compilations in the literature.42,43In some cases, the experimental value
has been measured for the optical antipode and is consequently
multiplied by -1. c Data are not available in the compilations cited
above.

TABLE 2: A Statistical Analysis of the Zero-Point
Vibrational Corrections from Table 1 a

molecule [R]D
eq [R]D

ZPA b [R]D
exptl |∆eq|c %|∆eq|d |∆ZPA|e %|∆ZPA|f

1 18.16 11.40 18.7 0.5 2.9 7.3 39.0
2 -78.06 -76.22 -58.8 19.3 32.8 17.4 29.6
3 174.27 204.73 129.0 45.3 35.1 75.7 58.7
4 54.82 61.72 42.0 12.8 30.5 19.7 47.0
5 11.69 29.90 57.6 45.9 79.7 27.7 48.1
6 111.61 119.62 103.8 7.8 7.5 15.8 15.2
7 -32.92 -39.50 -16.8 16.1 96.0 22.7 135.1
8 76.99 78.87 78.2 1.2 1.5 0.7 0.9
9 124.02 137.53 103.4 20.6 19.9 34.1 33.0

12 -9.08 -4.72 -34.5 25.4 73.7 29.8 86.3
13 -86.28 -87.89 -37.1 49.2 132.6 50.8 136.9
14 -76.49 -84.67 -34.0 42.5 125.0 50.7 149.0
15 -166.15 -170.72 -176.0 9.9 5.6 5.3 3.0
16 -93.13 -89.28 -81.0 12.1 15.0 8.3 10.2
17 -322.65 -373.79 -430.0 107.4 25.0 56.2 13.1
18 12.00 13.89 29.0 17.0 58.6 15.1 52.1
19 -57.13 -56.26 -50.5 6.6 13.1 5.8 11.4
20 -1216.07-1269.23-1146.0 70.1 6.1 123.2 10.8
21 41.15 46.28 51.6 10.5 20.3 5.3 10.3
22 1.60 1.54 1.8 0.2 10 0.3 10

avg 26.0 40.0 28.6 45.0

a Only results that have experimental data available have been
included here. All optical rotations and ZPVCs are given in units of
deg‚cm3‚dm-1‚g-1. b [R]D

ZPA is the zero-point averaged quantity and is
equal to [R]D

eq + ZPVC. c |[R - [R]D
exptl|. d 100|([R]D

eq - [R]D
exptl)/

[R]D
exptl|. e |[R]D

ZPA - [R]D
exptl|. f 100|([R]D

ZPA - [R]D
exptl)/[R]D

exptl|.
TABLE 3: A Comparison Between Literature Values18 (lit.)
and This Work for the Zero-Point Vibrational Corrections
for Molecules 1 and 3a

molecule δ [R]D
eq [R]D

lit. ZPVC ZPVClit. %|ZPVC| %|ZPVC|lit.
1 0.10 11.37 9.98-4.14 -3.62 36.4 36.3
3 0.11 165.37 154.48 27.33 32.97 16.5 21.3

a All optical rotations and ZPVCs are given in units of
deg‚cm3‚dm-1‚g-1. δ has been determined by eq 9. All calculations
presented here were done at the Hartree-Fock level with the aug-cc-
pVDZ basis set. Note that the optical rotation and its corresponding
zero-point vibrational correction reported in the literature have been
multiplied by a factor of-1 to correspond with the optical antipode
that was used in this work.
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calculated using a perturbation expansion around the equilibrium
geometry, similar to the method used here. However, Wiberg
et al. did not consider anharmonic effects and limited their
treatment of vibrational effects to the contributions of the
curvature of the property surface. In addition, temperature-
dependence effects on vibrational corrections were built into
the definition of displacement amplitudes that is used in their
work. As a result, effects from higher vibrational modes are
included in their study. Because the focus of this work is zero-
point vibrational effects, we exclude temperature-dependence
effects and contributions from higher vibrational states. The
anharmonic term in eq 5 makes a noteworthy contribution to
the overall vibrational correction, and the exclusion of this term
by Wiberg et al. is justified in light of the much larger effects
due to conformation in the specific case of the substituted
1-butene molecules. However, optical rotations of molecules
that are not subjected to conformational effects may have
significant vibrational corrections that are dependent on both
the anharmonicity of the potential energy and the curvature of
the property surface.

To see how the choice of value for theδ parameter affects
the zero-point vibrational correction (ZPVC) of optical rotation
in our program, we have analyzed the numerical stability of
these corrections with respect to the size of the displacement
of the atoms from the equilibrium geometry. A plot of the ZPVC
vs δ for molecule1 is given in Figure 2.

Molecule1 was chosen for our numerical stability analysis
because of its large relative correction that detracts the calculated
value from the experimental value. It is important to realize
that calculations of ZPVC to optical activity as conducted in
this study require a highly optimized geometry and an accurate
frequency and normal mode calculation at the beginning. The
normal modes are used to construct 2(3n - 6) geometries (for
nonlinear molecules), which are used to produce a total of
2(3n - 6) energy gradient calculations and 2(3n - 6) optical
rotation calculations, wheren is the number of atoms in the
molecule. Although the number of coarse grained parallel
calculations scales only asO(n), the computation of each one
of the energy gradients and optical rotations at a given displaced
geometry scales, formally, approximately asO(n3) for pure DFT
and asO(n4) for hybrid DFT. Better scaling might be obtained
by the use of “linear scaling” techniques and efficient integral
prescreening. As a result, the numerical stability analysis in this
work has been restricted to a small molecule, whose ZPVC has
been calculated in previous work.18

Numerical stability of the ZPVCs as a function of the
parameterδ is dependent on the molecule. A relatively large
range of numerical stability is demonstrated by molecule1 and

may be indicative of a large range in overlap in the energy and
property derivative stabilities. It can be seen that the numerical
accuracy deteriorates for the parameter valuesδ < 0.1. We have
confirmed this for a few other molecules. Because of inaccura-
cies of the cubic force constants and property derivatives when
δ is large, it is desirable to work with aδ as small as possible.
We have confirmed that in all our calculations the actual nuclear
displacement was significant enough to yield numerically
significant differences in the gradients and properties. As an
improvement over the current implementation of our program,
a situation can be imagined where the program selects an ideal
value for δ for property derivatives that may or may not be
equal to an ideal value ofδ for the energy derivatives. This
method would require four displacements for each normal mode.
In addition, a prescribedδ for each normal mode may also help
reduce numerical instability. The number of geometry displace-
ments along the normal modes could perhaps be reduced by
making use of the symmetry of the molecule. However, the
molecules in our test set have low or no symmetry and we are
more interested to see first whether the magnitudes of the
ZPVCs to the optical rotations would be significant, rather than
implementing the most efficient approach.

From Table 1, it is quite evident that there is a large range in
percentage of vibrational corrections. Molecule19 has the
smallest percent ZPVC, whereas molecule5 affords a ZPVC
to the optical rotation as large as 156%.

In general, it appears that∆P2 contributes more significantly
to the ZPVC of a molecule than∆P1. As a result, the curvature
of the property surface generally has a greater affect on the
ZPVC to optical rotation than does the anharmonicity of the
potential energy surface. This generalization may be true for
many of the molecules presented in Figure 1, but there are
notable exceptions. For example, molecule10 has a∆P1 equal
to -4.59 and a∆P2 equal to-0.63. For molecule13, it is -1.54
for the anharmonic contribution and-0.07 for the property
curvature contribution. It does seem that molecules with large
vibrational corrections tend to get a majority of their corrections
from ∆P2, but the first term∆P1 can indeed be significant.
Calculating the gradients at each one of the displaced geometries
is usually not as computationally demanding as calculating the
properties at each one of the displaced geometries. So, the
additional computational cost of calculating the gradients at the
displaced geometries is affordable and leads to a greater
legitimacy of the ZPVCs.

Because the ZPVC equation (eq 5) consists of factors of
reciprocal frequencies, it is easy to imagine that low-level
frequencies of vibration would have the greatest effect on the
ZPVCs to the optical rotation of the molecules presented in
Figure 1.63 Although this statement may be true for some
molecules, an analysis of the contributions to the ZPVC for
each normal mode indicates that this is not always the case.
For example, normal mode 32 (3139 cm-1) of molecule 3
contributes the most, with 11.24 to the ZPVC value of 30.46.
There are also cases where the largest correction (-2.78) such
as normal mode 36 (3125 cm-1) of molecule4 is overwhelmed
by the sum of the positive contributions from many of the other
normal modes. For corrections involving only the zero-point,
low-level frequencies do not seem to present as much of a
problem as they do when higher states are considered or
temperature effects are included. Identifying each vibration that
makes the greatest contribution to the ZPVC to optical rotation
is beyond the scope of this work as it is presented. This article
is primarily concerned with demonstrating the size and range
of ZPVCs to optical rotation for a general set of molecules.

Figure 2. Numerical stability of the zero-point vibrational correction
for molecule1 as a function of the parameterδ.
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It appears that vibrational correction to optical rotation is on
average about 20% of the calculated equilibrium value. This is
consistent with the 20-30% value reported by Ruud and co-
workers18 from their studies at the Hartree-Fock level with two
of the molecules given in Figure 1 (viz.1 and 3). Our much
larger data set and our correlation-including calculations at the
DFT level with a commonly used basis set (aug-cc-pVDZ)
reaffirm their conclusion. There is a wide range of values for
the absolute value of the correction. We have observed ZPVCs
between 1.5 and 156% for the molecules given in Figure 1.

It is likely that inclusion of vibrational effects alone in optical
rotation calculations is not sufficient for reproducing experi-
mental data that has been measured in solution. As evidenced
from Table 2, including vibrational corrections in the calculated
values results in an average percentage difference between the
calculated values with the vibrational effects and the experi-
mental numbers that is slightly worse than the average percent-
age difference between the calculated values without the
vibrational effects and the experimental values (45 vs 40%,
respectively). This is not too alarming because it has been
discussed previously that solvent effects are influential, just as
vibrational effects are.31,32,36,64,65Ruud et al.18 noticed that the
vibrational corrections for dimethyloxirane (1) and dimethyl-
thiirane (3) shift the calculated values of the optical rotation
away from the experimental number. They attribute this
phenomenon to a missing treatment of solvent effects. Of course,
the approximate treatment of electron correlation by the B3LYP
functional is another source of error.66

There has been recent interest in examining the difficult case
of obtaining accurate optical rotations for methyloxirane in the
literature. Recently, Ruud and Zanasi have shown that the
observed change in sign in the optical rotation of (S)-methyl-
oxirane as the wavelength is varied from 589.3 to 355 nm is
due to vibrational corrections.19 Gas-phase measurements of
optical rotation by cavity ring-down polarimetry64 have shown
that the optical rotation of (S)-methyloxirane differs in sign from
what is experimentally observed in solution. These measure-
ments were taken at 355 nm, and unfortunately, no gas-phase
experimental data for the optical rotation of (S)-methyloxirane
at 589.3 nm are available. However, it should be noted that the
experimental values for the optical rotation of (S)-methyloxirane
at 589.3 nm vary from-30.6 to+4.3 in a series of solvents
from C6H12 to H2O.65 It is interesting to note that the vibrational
correction in Table 1 to the calculated gas-phase (R)-methyl-
oxirane optical rotation favors the direction of the opposite
configuration. Clearly, more research that includes vibrational
corrections and solvent effects simultaneously at a high level
of theory is necessary to resolve this issue. For instance, as
concluded in ref 19, current approaches to the calculation of
ZPVCs to optical rotation is limited due to low excitation
energies and the difficulty of a local-mode approximation. Thus,
more research in the improvement of calculating vibrational
corrections is certainly desirable.

5. Conclusions

It is quite evident that vibrational effects to optical rotation
are sizable and need to be included in any attempt to accurately
reproduce experimental data. However, including vibrational
effects alone is likely not sufficient enough in obtaining
experimental values. Solvent effects appear to be substantial
when comparing gas-phase calculations with optical rotations
measured experimentally in solution, as vibrational corrections
alone cannot yield calculated values that correlate better with a
variety of experimental data. It is hoped that a follow-up study

invoking both vibrational and solvent effects into calculated
values for optical rotation will result in better agreement between
theory and experiment.

On a side note, it has been pointed out recently that optical
rotation calculations at one frequency might not be reliable
enough for assigning absolute configurations to chiral mol-
ecules.67 Apparently, one may not be able to obtain accurate
values for optical rotations at a given frequency unless all of
the known influences (correlation, gauge origin, solvent,
vibrational, etc.) are considered. It has been suggested that one
should refer to the optical rotatory dispersion curves for
assignment of absolute configurations.33 This may be true at
the current understanding of theory and the current limitations
of implemented methods and available computational resources.

In addition to providing evidence of the significance of zero-
point vibrational corrections (ZPVCs) to optical activity calcula-
tions at the equilibrium geometry, we have outlined the details
of a simple program that can calculate the ZPVC to optical
rotation. Our program is easily adapted to a variety of quantum
chemistry packages and is available from the authors free of
charge. BecauseP can be any property of interest that is
geometry dependent, our program is not limited to calculating
ZPVCs of optical rotations.
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