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We describe the development and application of a computational method for the prediction and rationalization
of pKa values of ionizable residues in proteins, based on ab initio quantum mechanics (QM) and the effective
fragment potential (EFPs) method (a hybrid QM/MM method). The theoretical developments include (1) a
covalent boundary method based on frozen localized orbitals, (2) divide-and-conquer methods for the ab
initio computation of protein EFPs consisting of multipoles up to octupoles and dipole polarizability tensors,
(3) a method for computing vibrational free energies for a localized molecular region, and (4) solutions of
the polarized continuum model of bulk solvation equations for protein-sized systems. The QM-based pKa

prediction method is one of the most accurate methods currently available and can be used in cases where
other pKa prediction methods fail. Preliminary analysis of the computed results indicate that many pKa values
(1) are primarily determined by hydrogen bonds rather than long-range charge-charge interactions and (2)
are relatively insensitive to large-scale dynamical fluctuations of the protein structure.

Introduction

From a molecular point of view the uptake or release of a
proton from the solvent is one of the simplest chemical reactions
in aqueous solution. However, it is also one of the most
important reactions because it determines the pH dependence
of the molecular charge, a key determinant of the chemical and
physical properties of the molecule. It is therefore crucial to
know the pKa values of ionizable functional groups (i.e., groups
with pKa values in the pH range of interest) in molecules.

Proteins, for example, almost always contain amino acids with
ionizable groups, which are important for intraprotein, protein-
solvent, and protein-ligand interactions,1 and play key roles
in protein solubility, folding, stability, binding ability, and
catalytic activity. The pKa values of the ionizable residues are
thus the basis for understanding the pH-dependent characteristics
of proteins and catalytic mechanisms of many enzymes.2

Although there are only a few different kinds of ionizable
functional groups (-COOH, -SH, phenol,-NH3

+, imidazo-
lium, and guanidinium) in proteins, their pKa values can be
significantly affected by their location in the protein structure.
For example, two different-COOH groups in the same protein
can have respective pKa values of 2 and 9 pH units, implying
significantly different chemical environments.3

pKa values must therefore be obtained for each individual
ionizable residue, typically by measuring some spectroscopic

property of the residue as a function of pH. With the exception
of cysteine and tyrosine residues (-SH and phenolic-OH, which
are UV/vis active), the only practical method is NMR. However,
the assignment of NMR chemical shifts is nontrivial for small
proteins (<∼200 residues) and extremely difficult for proteins
of average size (∼300-500 residues). Despite their importance,
pKa values are thus not known for most proteins of interest.

The theoretical prediction of protein pKa values based on
protein structures has therefore been a central challenge to
biomolecular modeling for many years. Virtually all pKa

prediction methods for proteins4-9 are based on

[1.36 ) RT ln(10) at 298 K in kcal/mol] whereby the protein
pKa value is related to the experimentally determined pKa value
of a model compound (pKmodel), shifted by the change in the
“environment energy” (∆∆Genv). ∆Genv contains contributions
from desolvation and interactions of the ionizable group with
the rest of the protein. The methods differ mainly in how∆Genv

is calculated and whether the protein geometry remains fixed
during the calculation.

Tanford and Kirkwood10 developed one of the earliest
methods, in which only interactions between charged groups
(represented as point charges embedded in spherical continuum
medium with a low dielectric) are considered. The spherical
shape allows for an analytic solution to the electrostatic
(Poisson-Boltzmann) equation.

One problem with the Tanford-Kirkwood approach is that
other interactions, such as hydrogen bonding, are known to affect
protein pKa values. Thus, in general, a fully atomistic description
of the protein is needed and for most methods the interaction
energy is calculated as the interaction of the atomic charges
(from a MM force field) in the model system with the
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electrostatic potential of the protein. The most popular prediction
methods obtain the electrostatic potential of the protein and
solvent by numerically solving the linearized Poisson-Boltz-
mann equation (LPBE).4-6,8,11-15 Approaches based on protein
dipole-Langevin dipole,16 linear response approximation,16,17

free energy perturbation methods,18,19 and screened Coulomb
potentials9,20,21have also been used. In the MM/LPBE approach
the dielectric constant of the bulk solvent region is 80, and a
lower (typically 4 or 20) dielectric constant is used for the
protein interior.12,22,23

We recently compared published results for five state-of-the-
art pKa prediction methods applied to the prediction of 83 pKa

values in five different proteins.24 The root-mean-square-
deviation (RMSD) from experiment ranged from 0.6 to 1.1 pH
units, and the largest absolute error for each method ranged
from 1.7 to 4.3 pH units. As noted before,23 the methods tend
to perform best for residues on the protein surface, which tend
to have pKa values close to pKmodel. Because most ionizable
residues are on the protein surface, this results in relatively low
RMSDs from experiment. However, functionally important
residues tend to reside in the protein interior and exhibit more
extreme pKa values that are harder to predict accurately.23

One possible limitation of current methods is the accuracy
of the treatment of short-range interactions such as hydrogen
bonds by the molecular mechanics force fields. There is
mounting evidence that an atom-centered charge (ACC) model
is not always an adequate representation of the molecular
electrostatic potential.25-37 For example, the ACC model tends
to underestimate the directionality of hydrogen bonds,34 whereas
models that include additional charges34 or higher-order mul-
tipoles25,26 reproduce ab initio results significantly better.

Several “multipole libraries” have been or are being devel-
oped for amino acids,30,38-41 and at least two force fields33,42

employ a multipole-based electrostatic model. However, the
transferability of the multipole parameters can be complicated
by the conformational dependence of the higher moments and,
more generally, because a higher degree of accuracy (compared
to charge-based models) is typically sought.30,37,41,43,44These
next-generation force fields have not yet been applied to the
prediction of protein pKa values.

Alternatively, better pKa predictions may be obtained by
treating the short-range interactions involving ionizable residues
with ab initio quantum mechanics (QM) and the long-range
interactions with classical (molecular mechanics, MM) electro-
static techniques using a hybrid QM/MM approach. Here we
describe our work on this approach during the last seven years.

The organization of the paper largely reflects the order in
which we approached the problem: We first established a QM-
based pKa prediction method that gave good results for small
molecules. Then we developed several algorithms that allowed
us to calculate the corresponding energy components (depro-
tonation and solvation energies) at roughly the same level of
theory for protein-sized systems using QM/MM. With these
algorithms in hand we demonstrated, for the first time, that a
protein pKa value could be accurately predicted by a QM/MM
method. Following this proof-of-concept study, we improved
the efficiency of some of the algorithms, most notably the
calculation of solvation energies, and tested the sensitivity of
the pKa values to various aspects of our model. This work led
us to develop a significantly simpler and more efficient pKa

prediction method. The simplicity of the method greatly
facilitated the determination of the key pKa determinants, which
subsequently let us propose a set of simple rules by which the
effect of protein structure on pKa values can be understood and
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quantitatively predicted. We conclude by discussing the larger
implications of our work as well as future directions.

Small Molecule pKa Predictions

Methodology. On the basis of previous work,45-58 we
developed the following methodology for small molecule pKa

predictions (cf. Figure 1).59 The gas-phase basicity,∆Ggp, is
calculated at the MP2/6-31+G(2d,p)//RHF/6-31G(d) level of
theory,60 using frequencies scaled by 0.89 for the vibrational
free energy correction (∆Gvib; ∆Gtrans and ∆Grot are the
translation and rotational free energies, respectively),

The last term in eq 2 changes the reference state from 1 atm to
1 M [Kc ) Kp(R̃T) for AH f A- + H+ reactions, whereR̃ )
0.082 06 (L‚atm)/(mol‚K)].57

The solvation energy is calculated by the default solvation
method in the Gaussian98 program, which is Tomasi’s polarized
continuum model (PCM) using the united atom for Hartree-
Fock (UAHF) radii proposed by Barone, Cossi, and Tomasi,61

and gas-phase geometries. The UAHF model is a set of rules,
based on atomic number, connectivity, and charge, for deter-
mining radii of the spheres used to define the solute/solvent
boundary. The rules are determined empirically so that they
reproduce experimental solvation energies for small molecules.
The electrostatic contribution to the solvation energy is calcu-
lated using the dielectric PCM (D-PCM)62 and the ICOMP)
4 charge normalization procedure,63 whereas the dispersion-
repulsion and cavitation contributions are calculated by the
methods of Floris et al.64 and Pierotti,65 respectively (these are
default options in the Gaussian98 program),

The UAHF parametrization was done at the RHF/6-31G(d) level
of theory for neutral molecules and cations and RHF/6-31+G-

(d) for anions, using gas-phase geometries. This study uses the
same level of theory for the calculation of the solvation energy,
except that RHF/6-31+G(d)//RHF/6-31G(d) is used for anions
to avoid optimizing geometries twice.

Following Topol et al.,48 we use a value of-262.5 kcal/mol
for ∆Gs(H+).

Results and Discussion.The predicted pKa values for acetic
acid, methylamine, imidazole, phenol, and ethanethiol (small-
molecule models of common ionizable groups in proteins) are
listed in Table 1, together with the energy components defined
in eqs 2 and 3. The D-PCM/ICOMP) 4 procedure results in
pKa values that are within 0.9 pH units of experiment with a
root-mean-square deviation (RMSD) of 0.6 pH units. All
predicted pKa values are underestimated, and the RMSD can
be decreased to 0.3 pH units by increasing∆Gs(H+) to -261.8
kcal/mol, which is well within the range of experimental
estimates.9 Comparisons of predictions of previously published
methods indicate that the method proposed here is at least as
accurate, and often better.

The ICOMP ) 4 charge renormalization method is not
available in the GAMESS program66 (which we will use for
the protein pKa predictions), so the use of the integral equation
formalism67 PCM (IEF-PCM) without charge renormalization
(ICOMP) 0) is investigated here. The use of IEF-PCM/ICOMP
) 0 for the calculation of the solvation energies leads to
essentially unchanged results for methylamine and imidazole
(Table 1). Larger errors are observed for acetic acid, phenol,
and methanethiol, because charge penetration into the continuum
is more pronounced for anions. Thus, for the calculation of
protein pKa values it will be necessary to estimate the effect of
D-PCM/ICOMP) 4 on the ionizable residue in question. This
is accomplished by the ONIOM-PCM/X method, as described
below.

Effective Fragment Potential Method

The effective fragment potential (EFP) method,68,69is a hybrid
QM/MM method in which only the active part of a molecular
system is treated with ab initio quantum mechanics and the rest
is replaced by one or more EFPs. An EFP represents the static
electrostatic potential by a distributed multipole expansion27

(charges through octupoles at all atomic centers and bond
midpoints), whereas the electronic polarizability is represented
by dipole polarizability tensors for each valence (localized)
molecular orbital.36 The main feature that distinguishes the EFP
approach from other QM/MM methods is that the EFP is
generated from other QM calculations and does not contain any
adjustable parameters. Thus, in principle, the quality of the EFP
and, hence, the QM/EFP Hamiltonian is systematically improv-
able, in analogy with conventional electronic structure theory.

Figure 1. Thermodynamic cycle relating the pKa to the gas-phase
proton basicity∆Ggp) via the solvation energies [∆Gs] of the products
and reactants. The value 1.36 corresponds toRT ln(10) at 298 K in
kcal/mol.

TABLE 1: Computed and Experimental pKa’s of Small Molecules with Functional Groups Found in Amino Acid Residuesa

D-PCM/ICOMP) 4 IEF-PCM/ICOMP) 0

acid ∆EMP2 b ∆Gtrv
c ∆∆Gs

d,f pKa ∆∆Gs
d pKa exp

acetic acid 352.55 -13.28 -333.08 4.6 -330.81 6.2 4.8
methylamine 223.28 -13.25 -196.72 9.8 -196.76 9.8 10.6
imidazole 231.26 -12.66 -210.34 6.1 -210.19 6.2 7.0
phenol 354.43 -11.99 -329.20 9.7 -322.88 14.4 10.0
methanethiol 360.71 -10.02 -336.90 10.1 -331.85 13.8 10.3
RMSDe 0.6 2.6
Lys55 249.38 -12.26 -221.78 11.3 -223.61 9.9 11.1

a The individual energy components used to compute the pKa’s [Figure 1 and eq 2] are also given, in kcal/mol.b Gas-phase (electronic) deprotonation
energy: ∆EMP2//RHF, cf. eq 2.c Gas-phase free energy correction using 1 M reference state: sum of the last four terms in eq 1.d Change in solvation
energy: last three terms in the equation in Figure 1.e Root-mean-square deviation from experiment.f Calculated using D-PCM-X/ICOMP) 4, cf.
eq 3.

∆Ggp ) ∆EMP2//RHF+ ∆Gtrans+ ∆Grot + ∆Gvib +
RT ln(R̃T) (2)

∆Gs(X) ) ∆Gelec(X) + ∆Gcav(X) + ∆Gdisp-rep(X) (3)
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The EFP method was originally developed for the study of
discrete solvation effects,70-74 and several methodological
advances were thus necessary to apply the method to protein
pKa predictions.

Covalent Boundary.A method to treat the covalent boundary
between QM and EFP regions has been developed by Kairys
and Jensen75 in which a “buffer region” consists of localized
molecular orbitals (LMOs) that are kept frozen during the SCF.

Protein EFPs.A divide-and-conquer method for constructing
EFPs for proteins has been developed by Minikis, Kairys, and
Jensen.36 In this approach the protein is divided into smaller
overlapping pieces, for which a multipole expansion can be
generated ab initio, and then reassembled by excluding param-
eters from the region of overlap.

Free Energies.A vibrational analysis for partially optimized
systems that yields accurate free energy changes has been
developed by Li and Jensen.76 In this method only a subset of
the atoms (in our case the atoms in the ab initio region) are
displaced during a numerical Hessian calculation, resulting in
a “partial Hessian”. Our study shows that vibrational energy
and entropy changes for proton abstraction reactions calculated
using frequencies obtained in this manner are within 0.2 kcal/
mol of conventional values.

Solvation. The EFP interface with Tomasi’s polarized
continuum method for treating bulk solvation, developed by
Bandyopadhyay et al.,77,78was extended to protein-sized systems
by Li et al.59 by decreasing the memory requirement and
parallelizing the code.

Prediction of pKa Values in a Polyprotic Acid

Almost all proteins contain several (n) ionizable amino acids.
If these ionizable residues have a nonnegligible interaction
energy, then their pKa values will be interdependent. In principle,
the pKa of a particular site (i) is obtained by determining the
pH value at which the protonation probability,θi, is 0.5.7

However, the evaluation ofθi requires the free energies for all
sites for all possible (2n) protonation states,

Herexi
j is 1 or 0 depending on whether sitei is protonated or

unprotonated in protonation statej, respectively, andGj is the
free energy of protonation statej at a given pH. Several
techniques, such as Monte Carlo sampling, have been developed
for Poisson-Boltzmann-based methods to reduce the number
of energy evaluations, but the general approach is still too time-
consuming when the energies are evaluated using QM/MM.

However, the main intent of the QM/MM pKa prediction
method is to rationalize unusual pKa values that have already
been identified experimentally and for which MM/LPBE pKa

predictions already have been (or easily could be) performed.
Thus, the calculated or measured pKa values and site-site
interactions can be used to determine the optimum protonation
state at a given pH.

Here we use Lys55 in the protein turkey ovomucoid third
domain as an example. All pKa values have been determined
experimentally and through classical Poisson-Boltzmann cal-
culations, which also provides the predicted interaction between
sites (W).79

The MM/LPBE calculations predict that the pKa of Lys55 is
affected appreciably (i.e.,|W| > 0.1 pH units) by only three
residues, Tyr20, His52, and CysC56, so that any protonation
state can be used for the remaining residues. The respective
experimental pKa values of His52 and CysC56 residues are>8.6
and 3.6 pH units lower than that of Lys55. Both are therefore
>99.999% deprotonated at pH) 11.1 and can be treated as
100% deprotonated for the calculation of the pKa of Lys55. A
similar conclusion is reached by using the apparent pKa values
from the MM/LPBE calculations.

Finally, the experimental pKa values of Tyr20 and Lys55 are
equal and are predicted to interact byW ) 0.6 pH units. Thus,
in computing the pKa value of Lys55, we should consider both
protonated and deprotonated Tyr20; i.e., we need to compute
energies of four protonation states, which is manageable. (In
practice deprotonaing Tyr20, which is included in the ab initio
region, results in spontaneous proton transfer from Lys55.)

After our proof-of-concept study, Nielsen and McCammon
used a similar approach to compute pKa values of select residues
using Poisson-Boltzmann calculations.80

Proof of Concept: Prediction of the pKa Value of Lys55
Using QM/MM

Methodology.The solution structure of OMTKY3 has been
determined using NMR by Hoogstraten et al.81 and was obtained
from the Protein Data Bank (entry 1OMU). We use the first of
the 50 conformers without further refinement of the overall
structure.

(1) The electronic and geometric structures of the Lys55 and
Tyr20 side chains are treated quantum mechanically at the MP2/
6-31+G(2d,p)//RHF/6-31G(d) level of theory (Figure 2), and
the rest of the protein is treated with an EFP, described in more
detail below. The use of the diffuse functions on atoms near
the buffer region causes SCF convergence problems due to
couplings with the induced dipoles in the EFP region, so the
6-31+G(2d,p) basis set was used only for the CδH2CεH2-
NH3‚‚‚HO-Cê(Cε1,2H)2 atoms in the MP2 calculation.

(2) The ab initio region is separated from the protein EFP by
a buffer region75 composed of frozen localized molecular orbitals
(LMOs) corresponding to all the bond LMOs connecting the
bold atoms in Figure 2a, as well as the core and lone pair LMOs

Figure 2. (a) Subsystem of OMTKY3 used to obtain the buffer region
(bold) used for (b) ab initio/buffer/EFP regions (red/blue/green) used
for the computation of the pKa of Lys55.

θi ) 〈xi〉 )

∑
j

2n

xi
je-Gj/RT

∑
j

2n

e-Gj/RT

(4)
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belonging to those atoms. The Pro22 buffer is needed to describe
its short-range interactions with Tyr20.33 The buffer LMOs are
generated by an RHF/6-31G(d) calculation on a subset of the
system (shown in Figure 2a), projected onto the buffer atom
basis functions, and subsequently frozen in the EFP calculations
by setting select off-diagonal MO Fock matrix elements to zero.
The ab initio/buffer region interactions are calculated ab initio
and thus include short-range interactions.

(3) The EFP describing the rest of the protein is generated
by nine separate ab initio calculations on overlapping pieces of
the protein truncated by methyl groups. Two different regions
of overlap are used depending on whether it occurs on the
protein backbone or on a disulfide bridge, as described in ref
36. The electrostatic potential of each protein piece is expanded
in terms of multipoles through octupoles centered at all atomic
and bond midpoint centers using Stone’s distributed multipole
analysis.27 The monopoles of the entire EFP are scaled to ensure
a net integer charge and the dipole polarizability tensor due to
each LMO in the EFP region is calculated by a perturbation
expression, as described in ref 36.

Free Energy. The vibrational free energy (Gvib) of the
optimized part of the ab initio region is calculated by the partial
Hessian vibrational analysis (PHVA) method.76

Solvation Energy.The solvation energy (∆Gs) is calculated
using the ONIOM-PCM/X approach82 that combines IEF-PCM/
ICOMP ) 0 protein solvation energies with D-PCM/ICOMP
) 4 solvation energies of model systems, The model system

consists of the side chains of Lys55 and Tyr20 (shown here for
the protonated state).

UAHF spheres are used for the atoms of the entire system,
and the cavitation and dispersion-repulsion energies are
calculated as above. The protein solvation energies are calculated
using the EFP/IEF-PCM interface developed by Bandyo-
padhyay, Gordon, Mennucci, and Tomasi77,78 and extended to
protein-sized systems for the calculations described here by
decreasing the memory requirement and parallelizing the code.

The EFP/PCM interface is similar to an all-ab initio PCM
calculation except that the electrostatic potential (V) of the EFP
region is due to its multipole representation of the electrostatic
potential. The induced surface charges influence the induced
dipoles, and this contribution is iterated to self-consistency. In
this study, we found several cases of divergence, presumably
where surface charges are close to a polarizability tensor. Thus,
the polarizability tensors are removed for the single point
calculations necessary for the solvation energies.

In the current implementation,∆Gdisp-rep [cf. eq 3] is
calculated only for the ab initio and buffer region. Furthermore,
surface smoothing by the generation of additional spheres83 is
prevented (by using RET) 100 in the $PCM group), because

the number of added spheres never converged for the protein
within the memory available.

pKa of Lys55. The pKa of Lys55 computed using this
approach is 11.3 pH units, which is in good agreement with
the experimental value79 of 11.1 considering the uncertainty in
the experimental values is roughly(0.1 pH units. Though this
result suggests that the pKa values of ionizable residues in
proteins can be predicted with the same accuracy as that of small
molecules by using QM/MM, many more cases must be
investigated to test this issue. Toward this end, we addressed
the two most time-consuming aspects of the QM/MM protein
pKa prediction methodology.

Three Further Methodological Improvements

Faster, Iterative Solution to the PCM Equations. The
calculation of the solvation energy was by far the most time-
consuming and memory intensive aspect of the pKa prediction.
For OMTKY3, roughly 10 days of CPU and 4 GB of RAM are
required for the evaluation of the two solvation energies needed
for a pKa prediction using three nodes on a four-node RS/6000
44P 270 workstation. Clearly, this makes a systematic study of
protein pKa values difficult, and here we describe how we
addressed this problem.

In the PCM the solute molecule is placed in the bulk solvent
described as a polarizable continuum with a dielectric constant
ε. The cavity the solute molecule occupies in the bulk solvent
is defined as a set of interlocking spheres centered at atoms or
atomic groups. The surface of the cavity is the boundary between
the solute and solvent. In the PCM the apparent surface charge
(ASC) method is used to describe the electrostatic interaction
between the solute and the bulk solvent. To numerically solve
the electrostatic boundary equation, the continuous charge
distribution on the boundary surface is divided into a set of
point charges at a finite number of boundary surface elements,
called tesserae. The resulting vector of ASCs,q, are obtained
by solving the matrix equation,

where the vectorV is the molecular electrostatic potential of
the solute andC is a matrix that describes the interaction
between the ASCs. For a small molecule with a low number of
tesserae, the most efficient solution of eq 5 is matrix inversion

However, for larger molecules such as proteins the inversion
of C becomes extremely memory and CPU-intensive, and an
iterative solution

proves computationally more efficient. Thus, together with
Christian Pomelli, we implemented an iterative solution of the
QM/EFP/PCM implementation.84 In general, we found the use
of the direct inversion of the iterative subspace (DIIS) method
is needed to obtain convergence. In addition, we introduced three
methodological innovations to further reduce the CPU time: (1)
A looser convergence criterion for the PCM equation solution
is used at early SCF steps. (2) Various multipole expansions
are introduced to treat long-range electrostatic interactions. (3)
Virtually all aspects of solving the IEF-PCM equations are
parallelized.

The combined methodological innovations reduce the CPU
and memory requirements by an order-of-magnitude.

∆Gs(Protein:D-PCM/ICOMP) 4) )
∆Gs(Protein:IEF-PCM/ICOMP) 0) +

∆Gs(Model:D-PCM/ICOMP) 4) -
∆Gs(Model:IEF-PCM/ICOMP) 0) (3)

Cq ) -V (5)

q ) -C-1V (6)

q(n) ) -C0
-1(V - C1q

(n-1)) (7)
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Prediction of Relative pKa Values.When implementing the
iterative solution to the PCM equations, we removed an
approximation introduced in the original EFP/PCM interface.84

As a result, the predicted pKa value of Lys55 in OMTKY3
changed from 11.3 to 10.6 pH units. Though this increases the
deviation from experiment to 0.5 pH units, this error is now
comparable (both in sign and magnitude) to the 0.8 unit error
obtained for methylamine (Table 1). We remove this systematic
error by computing the free energy (∆G) for the following
reaction

via calculations of the free energy of each protonation state

whereG(X) is calculated as before [cf. eq 2]. Finally, the pKa

of Lys55H+ is calculated as the pKa shift relative to the
experimental pKa value of methylamine.

Hybrid EFP/MM Representation of the Protein. The use
of the iterative PCM shifts the computational bottleneck to the
construction of the protein EFP from separate ab initio calcula-
tions. We therefore investigated whether an EFP representation
is needed for the entire protein or whether protein regions far
from the ionizable residue could be represented by atom-
centered charges from biomolecular force field such as AMBER,
CHARMM, and OPLS-AA. To construct an EFP/MM repre-
sentation of the protein, we had to alter our divide-and-conquer
method for constructing protein EFPs as described in ref 85.

pKa Predictions.85 Table 2 lists the pKa computed by a QM/
buffer/EFP/MM model in which the protein environment within
14 Å is treated by an EFP and the rest of the protein is treated
with either AMBER, CHARMM, or OPLSAA charges (Figure
3). The pKa values predicted by this “four-layer” approach are
all within 0.4 pH units of the experimental value, compared
with a maximum error of 0.3 pH units for the all-EFP
approaches. Thus, the EFP does not need to be calculated ab
initio for the entire protein, leading to significant CPU-time
savings. The charges from all three force fields appear of equal
quality. However, using another computationally inexpensive
approach such as AM1 for the>14 Å region leads to a less
satisfactory pKa of 10.4.

Decreasing the EFP region to 9 Å and using the AMBER
force field for the rest of the protein does not increase the error
appreciably. Still, the sole use of force field charges increases

the error by as much as 1.6 pH units. It is interesting to note
that the “error” (relative to the all-EFP value) in the gas-phase
PA is as much as 12 kcal/mol, but that roughly 10 kcal/mol of
this error is “screened” by the PCM. The error is likely due to
inherent limitations in the atom-centered charge model, rather
than the numerical values of the charges themselves. For
example, using an all-EFP representation consisting only of
atom-centered charges (but otherwise calculated as before)
results in a pKa error of 3 pH units. The better performance of
the MM charges is presumably due to the underlying param-
etrization of the force fields against high-level ab initio
calculations. In all cases discussed so far, the effect of the
various representations of the protein electrostatic potential have
small (g0.62 kcal/mol) effects on the thermochemical energy
contribution to the pKa.

After the conclusion of this study it occurred to us to estimate
the pKa perturbation due to the>14 Å region, by recalculating
the pKa without this part of the EFP. Surprisingly, this resulted
in a pKa value of 10.9, indicating that the>14 Å region has
negligible effect on the pKa. This observation led us to
investigate the QM-based method for pKa prediction described
next.

Minimal Model for p Ka Predictions

At this point we decided to reevaluate all aspects of our pKa

prediction methodology in light of the previous studies with
the aim of finding the simplest possible computational model
that consistently delivered accurate pKa values for proteins.86

Energy Calculation. In preliminary small molecule studies
(data not published) we found that the use of isodesmic reactions
[e.g., eq 8] allowed us neglect the thermochemical contributions
to the free energy

which leads to a significant time savings because we no longer
have to compute the Hessian. Similarly, the use of the isodesmic
reaction allowed us to compute the solvation energy using IEF-
PCM and ICOMP) 2, thus obviating the need for the ONIOM-
PCM correction.

As part of this work we also discovered that the use of only
60 initial tesserae/atom resulted in lack of rotational invariance
of the solvation energy, but that 240 tesserae/atom led to
acceptable results.

TABLE 2: p Ka Values Computed Using Various
Combinations of EFP and MM Chargesa

method ∆EMP2//RHF ∆Gtherm ∆Gs pKa

experimental 11.1
14 Å EFPs+ CHARMM 24.45 0.70 -24.99 10.7
14 Å EFPs+ OPLSAA 24.98 0.67 -25.33 10.8
14 Å EFPs+ AMBER 24.85 0.67 -25.25 10.8
14 Å EFPs+ AM1 29.67 0.69 -30.62 10.4
9 Å EFPs+ AMBER 25.77 0.68 -25.17 11.5
all AMBER 38.10 0.47 -40.06 9.5
all CHARMM 39.88 0.63 -42.00 9.5
all OPLSAA 39.93 0.62 -41.69 9.8
all atom-centered EFP 35.35 0.41 -30.99 14.1

a The pKa values are computed as described for Lys55 in Table 1
(DPCM/ICOMP) 4) but using eqs 8-10.

Lys55H+ + CH3NH2 T Lys55+ CH3NH3
+ (8)

∆G ) [G(Lys55)- G(Lys55H+)] - [G(CH3NH2) -

G(CH3NH3
+)] (9)

pKa(Lys55H+) ) 10.6+ ∆G/1.36 (10)

Figure 3. Ab initio/buffer/EFP/MM regions (red/blue/green/yellow)
used for the computation of the pKa of Lys55.

G ) Eele + Gsol (11)
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Protein Model Construction. The approach was tested for
the five Asp and Glu residues in OMTKY3. When calculating
the pKa values of carboxyl groups, we used propanoic acid as
a reference compound for which the experimental values is 4.87
pH units. First a “small model” is designed that includes (1)
the side-chain of the ionizable Glu or Asp residue, (2) the two
amide groups next to the CR of the Glu or Asp side chain, and
(3) all groups that form hydrogen bonds with the carboxyl group
of interest (Figure 4).

The coordinates of the atoms in each model are taken from
the PDB file 1PPF.87 Hydrogen atoms were added to the PDB
structure with the WHAT IF program88,89 at pH ) 7. Several
new protons were added manually to satisfy the unfilled valences
where atoms were removed in constructing the small model.
All of the carboxyl side chains were originally in the unproto-
nated form. The acid forms were obtained by adding the acidic
protons to the carboxylate groups. Two or three protonation sites
(i.e., conformers of the COOH group) were considered for each
acid form, whereas only one base form was considered. The
total free energy of the acid form is taken to be the “confor-
mational average” of the free energies of each conformer (Gi),90

whereG0 is the lowest energy conformer and∆Gi ) Gi - G0.
From the latter form of eq 12 it can be seen that only low-
energy conformers (∆Gi < 2RT ≈ 1 kcal/mol at 25 °C)
contribute significantly to the free energy. If significant, this

contribution will lower the free energy of the acid, thereby
increasing the pKa. Physically, this pKa increase is entropic in
nature, because several accessible protonation states increase
the protonation probability. In our study this contribution is
always less than ca. 0.2 pH units.

Because we seek the simplest possible computational model
that consistently reproduces the experimental pKa values, we
optimize only a few structural parameters. The positions of the
atoms in the carboxyl group (CH2COO- or CH2COOH) are
optimized by energy minimization, except that the Cartesian
coordinates of one of the oxygens are kept fixed (except for
Glu43). This allows for the carboxyl bond lengths and angles
to adjust to the change in protonation state without greatly
altering the overall structure. Additionally for Asp7, Glu19, and
Asp27, the positions of the neighboring OH protons of Ser9,
Thr17, and Tyr31, respectively, are also optimized because their
positions are predicted to depend significantly on the protonation
state of the carboxyl group.

Often the pKa predicted using the small model (SM) is quite
close to the experimental value, indicating that the most
important intraprotein interactions are included in the SM. To
analyze the interactions further, we construct several small
models in which key hydrogen bonds are removed; these are
called very small (VS) models (see, e.g., Figure 4). We also
construct a side chain (SC) model, in which the peptide
backbone atoms are replaced by a methyl group, to determine
the effect of the peptide groups on the pKa.

To determine the effect of protein groups not directly
hydrogen bonded to the carboxyl group, we construct several
medium models (MMs) in which side chains in the vicinity of
the carboxyl group are added one at a time, without geometry
re-optimization. The model in which all of the neighboring
groups are included is termed the large model (LM), and the
pKa obtained using this large model is taken to be our best
prediction of the experimental value. In general the pKa values
change very little on going from the SM to the LM. For this
reason we have not considered models larger than the LMs.

Representative Example: Computation and Rationaliza-
tion of the pKa of Asp27. The crystal structure of OMTKY3
(1PPF) shows three possible hydrogen bonds to the carboxyl
group of Asp27: Tyr31-OηH‚‚‚Oδ2-Asp27 (Oη-Oδ2 distance)
2.5 Å), Asp27-NH‚‚‚Oδ1-Asp27 (N-Oδ1 distance) 2.9 Å), and
Lys29-NH‚‚‚Oδ1-Asp27 (N-Oδ1 distance) 2.9 Å). Accord-
ingly, the small model of Asp27 (SM27) includes these
interactions in addition to the amide group of Asn28, as shown
in Figure 4d. For the acid form, two different proton positions
were used: Asp27-Oδ2H‚‚‚OηH-Tyr31 and Asp27-HOδ2‚‚‚HOη-
Tyr31 (acid forms I and II, respectively).

Upon energy minimization of SM27, acid form I is the lowest
in energy, with form II 3.5 kcal/mol higher in energy. Both
contributions to the free energy are included86 and result in a
pKa of -0.1 pH units, significantly less than the experimental
value of 2.2. We show below that the pKa is increased
significantly in larger models.

Removal of the Tyr31 side chain (VS27a, Figure 4b) followed
by geometry reoptimization, results in a pKa increase of 1.8 pH

Figure 4. Model compounds for Asp27 of OMTKY3 and their
computed pKa values. The positions of the atoms in bold were energy
minimized. Acid form I is shown.

G ) -RT ln[ ∑
i

conformers

exp(-Gi/RT)]

) G0 - RT ln[1 + ∑
i*0

conformers

exp(-∆Gi/RT)] (12)
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units. Comparison of the VS27a pKa (1.7) to that of the SC27
(4.8, Figure 4a) indicates that the amide hydrogen bonds are
primarily involved in lowering the pKa relative to propanoic
acid.

Larger models are constructed from SM27 by adding the
Leu48 side chain (MM27a, Figure 4e), followed by the Lys29
side chain (MM27b, Figure 4f), and finally part of the Ser26
and Gly25 main chain (LM27, Figure 4g). These additions
increase the pKa by 0.5, 0.7, and 0.7 pH units, respectively, so
that the pKa of LM27 is 1.9, in good agreement with the
experimental value of 2.2 pH units. All groups contain aliphatic
protons that are within 3.0 Å of the carboxyl oxygens of
Asp27: Leu48-Cγ1H′‚‚‚Oδ1 (2.84 Å), Leu48-Cγ1H‚‚‚Oδ2 (2.81
Å), Lys29-CâH‚‚‚Oδ1 (2.87 Å), Lys29-CδH‚‚‚Oδ2 (2.98 Å),
Gly25-CRH‚‚‚Oδ1 (2.80 Å). These rather weak interactions
effectively desolvate the carboxyl group of Asp27, thereby
raising the pKa. It is especially interesting to note that the
aliphatic portion of a Lys residue can increase the pKa of a
neighboring carboxyl group.

Other Carboxyl pKa Values in OMTKY3. The QM-based
pKa prediction and rationalization methodology has also been
applied to the remaining four carboxyl pKa values on OMTKY3,
and the results for the largest models are listed in Table 3,
together with values predicted using a variety of classical
electrostatic approaches.9,11,79,91

Before comparing the results, we note that the classical
methods are intended to predict pKa values with relatively little
user intervention, whereas our method is used to interpret pKa

values and in the case of Asp7/Glu10 relies on the experimen-
tally determined pKa’s to determine protonation states. However,
it is clear that despite using relatively small protein models,
our results are at least as good as the current literature values.
Unlike the current approach, the classical methods all predict a
relatively high pKa for Asp27. In general, Schutz and Warshel23

have noted that these methods tend to underestimate pKa shifts.
Analyses of these pKa values reveal that the single biggest

contributor to low carboxyl pKa values in OMTKY3 is backbone
amide hydrogen bonding to the carboxyl oxygens. This observa-
tion is consistent with the study by Gunner and co-workers92

who suggested that the electrostatic potential due to amide bonds
will tend to lower pKa values of Asp and Glu residues.
Furthermore, the chemical shifts of some of these amide protons
are affected by the deprotonation of the neighboring carboxyl
group.93

Hydrogen bonds from side chain hydroxyl groups of serine
and tyrosine to the carboxyl groups of Asp7 and Asp27 have
effects on the pKa values that are similar to those of amide NH

hydrogen bonds. Other mutagenesis studies94-96 have shown
that hydrogen bonding to neutral and charged residues can affect
the pKa of ionizable residues by up to 1.694 and 2.496 units,
respectively.

Analysis of the pKa of Asp27 shows that neighboring
hydrophophic regions can raise the pKa by as much as 0.7 pH
units. Very interestingly, the aliphatic part of the Lys29 side
chain is predicted to raise the pKa of Asp27 by 0.5 pH units.
The combined effect of the hydrophobic interactions on the pKa

of Asp27 is predicted to be 2.0 pH units. The importance of
hydrophobic environments in determining the pKa has been
emphasized previously, in particular by Mehler, Warshel, and
Garcia-Moreno.1,9,16,97,98

Neighboring charged residues such as Lys (for Asp7, Glu10,
and Asp27) or Arg (in the case of Glu19) are predicted to have
more modest effects (e0.5 units) than hydrogen bonding on
the OMTKY3 carboxyl pKa’s. In the case of Glu19, this
observation is supported by experiment:99 the pKa of Glu19 is
increased by 0.2 and 0.4 units in R21A and T17V mutants of
OMTKY3.

In general, we conclude that the prime determinants of the
Asp and Glu pKa values in OMTKY3 are local interactions
within ca. 4-5 Å of the ionizable residue.

QM-Based pKa Predictions for Other Proteins

Thus far, our QM-based pKa prediction methodology has been
used to predict four other low pKa values of Asp and Glu
residues located at the N-termini of helices in three other proteins
(Table 4).

Further, we have demonstrated that the methodology performs
equally well for the prediction of cysteine100 and histidine pKa

values that are significantly shifted from the usual values. Here
ethanethiol and 4-methylimidazolium are used as respective
reference compounds, in place of propanoic acid [cf. eq 8].
Analyses similar to that depicted in Figure 4 indicate that amide
and serine hydrogen bonds are responsible for the low pKa

values of Cys282 and Cys232, whereas desolvation is respon-
sible for the low pKa of His149 in xylanase. This is in agreement
with our main conclusion of our OMTKY3 study that hydrogen
bonding and desolvation appear to be the primary determinants
of protein pKa values.

Recent Developments

The geometry optimizations have up until recently been done
in the gas phase, because we encountered numerical instabilities
when optimizing using the continuum solvation model. Very
recently, we have solved this problem101 and are now routinely
optimizing geometries in the aqueous phase as part of our pKa

predictions. This has also allowed us to remove the constraints
imposed on the carboxyl groups mentioned above. We have
also recently found that B3LYP can be used instead of MP2

TABLE 3: Comparison between the pKa’s Predicted for
OMTKY3 in the Current Study and Previous Studiesa

residue exptlb
current
studyc Forsythd Nielsene Mehlerf Havranekg

Asp7 2.5 2.4 2.9 2.7 2.9 2.1
Glu10 4.1 4.3 3.4 3.6 4.1 4.0
Glu19 3.2 2.7 3.2 2.7 3.6 3.1
Asp27 2.2 1.9 4.0 3.4 3.3 2.9
Glu43 4.8 4.5 4.3 4.3 4.4 5.6
rmsd 0.3 0.9 0.7 0.6 0.5
max. error 0.5 1.8 1.2 1.1 0.8

a The pKa values are calculated using eqs 8-10 [but using propanoic
acid instead of methylamine], and eq 11 instead of eq 2.b Reference
93. c The predicted pKa’s based on the large models (LMs) and B3LYP
instead of MP2 are 2.2(Asp7), 4.4(Glu10), 2.2(Glu19), 2.2(Asp27), and
4.9(Glu43), with a rmsd) 0.5 and the maximum error) 1.0.
d Reference 79.e Reference 11.f Reference 9.g Reference 91.

TABLE 4: List of p Ka Values Computed So Far with Our
QM-Based pKa Prediction Methodologya

pKa

protein residue computed experimental standard

RNase H1 Asp102 2.0 < 2.0 4.0
lysozyme Glu7 2.7 2.9 4.4
lysozyme Asp87 2.8 2.1 4.0
cryptogein Asp21 2.5 2.7 4.0
creatine kinase Cys282 6.1 5.6 9.1
R1-antitrypsin Cys232 7.5 6.9 9.1
xylanase His149 1.2 <2.3 6.4

a See Table 3 for details of the pKa calculations.
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with no loss of accuracy in cases where hydrogen bonds are
not unusually strong (e.g., for N-O distances greater than 2.8
Å). The use of B3LYP has improved the computational
efficiency of our method significantly.

Furthermore, the approach has been successfully extended
to the prediction of reduction potentials of metalloproteins.102

Finally, our analyses of pKa determinants have led us to
propose a set of quantitative structure/pKa relationships that form
the basis for our empirical protein pKa predictor PropKa (http://
propka.chem.uiowa.edu).24

Conclusions and Future Directions

We have demonstrated that ab initio quantum mechanics and
hybrid ab initio-QM/MM can be used, in conjunction with a
continuum treatment of the solvent, can be used to accurately
predict and rationalize pKa values of select ionizable residues
in proteins. Compared to existing pKa prediction methods, our
QM-based methods require significantly more CPU time but
include significantly fewer empirical parameters: (1) the
experimentally determined structure, which is refined by energy
minimization in the region around the ionizable residues, and
(2) the atomic radii used in the calculation of the solvation
energy, which are obtained for individual functional groups by
fits to the solvation energy of small molecules.

Thus one use of our methodology is to analyze cases where
traditional force field-based pKa prediction method fails. In cases
where our method offers correct predictions, our results can then
be used to identify the source of the errors in the traditional
methods, such as errors in intraprotein interaction or solvation
energies, or local structural rearrangements that are typically
neglected. In cases where our method fails as well, the most
likely sources of error are gross errors in the experimentally
determined protein structure or significant structural rearrange-
ments upon titration. Our work so far, though still at an early
stage, suggests that such cases represent exceptions and that
large-scale dynamical fluctuations of the protein structure have
a relatively small (<0.5 pH unit) effect on most protein pKa

values. Rather, our most recent work suggests that the majority
of pKa values are governed by local interactions (within roughly
7 Å of the ionizable residue) and that these interactions can be
quantitatively understood by a set of simple rules. On the other
hand, residues for which this is not the case will likely be the
most interesting.
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