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The difference between quantum and classical survival probabilities for molecular dissociation dynamics in
the time domain, which arises mainly from quantum mechanical tunneling, has interesting characteristics that
are not noticed through the counterpart in energy domain. It is shown that the early stage undergoes a fast
tunneling, while the later stage is characterized with a long-lasting slow tunneling. The mechanism of this
behavior is analyzed in terms of a quasi-semiclassical theory featuring the geometrical distribution of the
so-called tunneling points. In particular, the role of dynamical tunneling is discussed as a phenomenon that
typifies the time dependence of tunneling dynamics. It is predicted that these tunneling characteristics will be
reflected in the isotope effect and should be experimentally observable.

I. Introduction

The decaying, escaping, or dissociating process from a
prepared state in a potential basin or compound state like the
Feshbach resonance is fundamentally important in the dynamics
of molecules. The core excited resonance in electron scattering
and autoionization state are typical examples of such a decaying
state in electron dynamics. On the other hand, rearrangement,
dissociation, and structural isomerization of molecules caused
by laser excitation are critical processes in modern reaction
dynamics. The RRKM (Rice-Ramsperger-Kassel-Marcus)
theory is actually a statistical method to evaluate the rate of
thermal molecular dissociation, which is also one of the typical
decaying states.

In the study of molecular dissociation on a single potential
surface, it is crucial to distinguish the decays above and below
a potential barrier. The mechanism of decay above the potential
barrier has been extensively studied already. For just an example,
Agung and Takatsuka have recently found that a quantum effect
arising from the so-called periodic orbits suppresses the
exponential decay.1 With an energy below a barrier height, only
the quantum mechanical tunneling can drive a decay. Proton
transfer is among the most typical chemical situations we think
of as an example of tunneling. In fact, the motivation of the
present study originated from a couple of case studies on
intramolecular proton transfer dynamics in 5-methyltropolone2

and dichlorotrpolone,3 and intermolecular double proton transfer
in formic acid dimer,4 and so on. The majority of experimental
and theoretical studies on tunneling so far performed5,6 have
placed their focus on static quantities such as tunnel splitting,
that is, the dynamics in the energy domain. However, the current
progress of ultrafast dynamics8-12 readily leads us to project
that the direct measurement of tunneling in such subtle scales
of energy and time will become widely feasible in the near
future. Assuming that this will be the case, we report here our
theoretical study on the prominent characteristics of the tun-
neling in the time domain, which will not necessarily be realized
by measurements in the energy domain. Here, it is shown with
the quantum wave packet approach that the tunneling has an

extremely strong time dependence: very fast tunneling in the
early stage and slow and long-standing tunneling decay in the
later process. The former process seems to be rather counter-
intuitive. Besides, we show numerically that this strong time
dependence can be observed clearly in an isotope effect.

Recently, Wilkinson et al. have shown an experimental
example of nonexponential decay in quantum tunneling.13 They
have observed a decay process of an ultracold sodium atom
out of an accelerating periodic optical potential created by a
standing wave of light. Their conclusion is that the tunneling
in the early stage is faster, which makes a significant deviation
from the exponential profile. In our theoretical study of the
tunneling dynamics of proton transfer, we have noticed a similar
phenomenon (very fast tunneling in the early stage). Although
the physical situation of our reaction system and that of
Wilkinson et al. are totally different, we have realized that there
is a physical mechanism that accelerates the tunneling in the
early stage. To explain this mechanism, we apply our developed
time-dependent quasi-semiclassical trajectory method (TDQSCT)14

that is based on a semiclassical theory of nonclassical paths.15-19

After confirming that the TDQSCT reproduces the quantum
decay probability well, we analyze the time dependence of the
tunneling rate in terms of the number and the geometrical
locations of the tunneling points, from which the semiclassical
tunneling paths emanate to leave the potential basin where they
were initially prepared. We ascribe the fast tunneling in the early
stage to the fact that the number and the location of the tunneling
points in the early stage are more favorable for accomplishing
tunneling dynamics than in the later stage. We also show that
such time-dependent characteristics in tunneling dynamics can
be clearly observed in the deuteron substitution of proton.

This paper is organized as follows. In section II, we set up
our tunneling problem and briefly outline the methods we use.
In section III, we show and analyze the numerical results of
the quantum mechaical tunneling. Section IV concludes the
present paper with some remarks.

II. Tunneling Dynamics in Time Domain with Quantum,
Quasi-Semiclassical, and “Classical” Methods

A. Quantum Wave Packet Propagation.We study the
following tunneling dynamics on a 2-dimensional double well
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potential that is intended to model a proton transfer system.
The Hamiltonian used here is

We setm ) 1 andp ) 0.1. The skew parameter is chosen to
be γ ) 1.0, which results in a potential form as in Figure 1.
This potential supports four bound states below the potential
barrier 0.125. We integrate the time-dependent Schro¨dinger
equation with an initial wave packetΦ(qb, t ) 0) of the following
standard form

where qb ) (qx, qy). qbc and pbc are two-dimensional vectors
representing the initial position and associated momentum,
respectively, at the center of the wave packet. The energy of
this type of wave packet is often characterized in terms ofEcenter,
which is the sum of the potential energy atqbc and the classical
kinetic energy arising frompbc. The survival probability for this
packet to remain in a potential basin resisting the tunneling is
considered. The center of an initial wave packet is put onqbc )
(-1, 0) andpbc ) (0.2, 0.283), resulting inEcenter) 0.06, which
is considerably lower than the potential barrier. However,
because of the rather sharp Gaussian shape, the energy expecta-
tion value〈Φ|H|Φ〉 results in 0.1886, which is higher than the
barrier height by 0.0636. In this study, the dynamics is
terminated just after proton transfer is accomplished by placing
an absorption potential (artificial optical potential) of the form
Vopt(qx) ) 0.5i(qx - 0.5) only in the regionqx g 0.5, lest the
wave packet should come back to the original potential basin
through another tunneling or recrossing. To calculate the survival
probability, we define an areaΩ in which the norm of the wave
packet is to be calculated. It is the left half of the space of Figure
1, the boundary of which is set atqx ) 0.

The quantum propagation of a wave packet is achieved with
the FFT20 and symplectic integrator method,21,22both of which
are well-established.

B. Quasi-Semiclassical Method.To analyze the above
calculated quantum dynamics, we apply a quasi-semiclassical
theory based on the generalized classical paths (nonclassical
paths). To be self-contained as much as possible, we briefly

review the outline of the theory. The reader may skip to
subsection II.C.

1. Multidimensional Tunneling Paths.We try to find a
systematic class of nonclassical solutions in the Hamilton-
Jacobi equation

that would be used to describe quantum mechanical tunneling
in the Feynman path integrals or semiclassical theories. To find
them in the real-valued configuration spaceq, we start from a
little modified Hamilton-Jacobi equation

where the constant assigned to each dimensionσk, called the
parity of motion, can take only positive or negative unity.
Equation 4 withσk ) 1 for all k is nothing but the original
Hamilton-Jacobi equation, but otherwise, it gives different
solutions. Equation 4 is related to the modified Hamiltonian

wherepjk is a quasi-momentum, which is real-valued. By writing

one can readily construct a solution of eq 4 as

which is to be integrated along a trajectory that is generated by
the modified Hamiltonian, eq 5. Except for the trivial case of
σk ) 1 for all k, Scl does not satisfy the original Hamilton-
Jacobi equation, eq 3. More explicitly, the path (q, pj) in phase
space can be generated in terms of the associated canonical
equations of motion

Notice that, if all the parities are negative, the resultant paths
become equivalent to the instanton paths.

The derivative ofScl generates a natural vector field on
configuration space, that is

Making use of this, we now define a new vector field by

So far, we do not have to know a generating function that gives
this field. Define the individual component on this vector field
at (q, t) as

Figure 1. The potetial surface and a schematic representation of a
classical trajectory and three kinds of tunneling paths denoted as (A),
(B), and (C) corresponding to the classification shown in section II.B.3.
The left half of the entire space is denoted asΩ, from which a quantum
wave packet escapes. An optical potential is set atqx ) 0.5 (not shown).
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It is obvious that∂SHJ(q, t)/∂qk formally satisfies

So far, only the differential vector field is defined, but the value
of SHJ(q, t) is not. Although an infinite number of functions
can be made up whose derivative give the same vector field,
one may specify its value by integrating eq 11 along the vector
field, that is, a path (q, pj) of eq 8 such that

with an appropriate initial condition. Since the energy is
conserved in eq 8,H(σ) in eq 13 is actually a constant along a
path. Thus, combining eqs 11-13, we see

In the starting equation, eq 4, one must assign the parities to
the individual coordinates. This procedure may require a
coordinate transformation inq-space. Specifying the parity set
implies that the entire space is divided into two parts as seen in
eq 10, with one having real-valued momenta (positive parities)
and the others bearing pure imaginary momenta (negative
parities), although energy exchange among these two subspaces
takes place (the total energy is conserved). As long as the parity
set is kept fixed, so is the separation of the space. Thus, different
type of solutions are given by resuming at eq 4 with a different
set of parities and different directions associated with the
negative parities. The global tunneling solution should be
described in terms of path integration over many of those
different paths and connecting the paths of different parity sets.

2. Tunneling Probability.A local semiclassical wave function
is given as

where the preexponential factorA represents the amplitude.
Since the HJ action,SHJ in eq 13, is generally complex-valued,
we rewriteSHJ in the standard form as

Inserting eq 16 into eq 15, we see

where the phase convention toSHJ is taken so thatSI becomes
positive. From eq 17, dumping of the norm due to tunneling is
estimated as

It is generally expected that the magnitude of the imaginary
part should become larger as more negative parities are used,
which results in an exponentially smaller tunneling probability.
Therefore, we henceforth consider only tunneling paths with
one negative parity.

In applying the tunneling paths in a semiclassical method,
particular quantum phases such as the Maslov phase arise at
the entrance and exit points of a tunneling path. The reader
should refer to refs 14-19 for this aspect. However, we simplify
the calculation here by neglecting the semiclassical amplitude
and all the quantum mechanical phases. Only the distribution
of paths in configuration space, in which the tunneling contribu-
tion is included, is utilized to simulate the density of a wave
packet. We call this simplified approach the time-dependent
quasi-semiclassical trajectory (TDQSCT) method.

3. Branching of the Trajectories and SurViVal Probabilities.
To estimate the tunneling probability, it is crucial to recognize
that each path can bifurcate many times because of tunneling.
Those paths that are born from tunneling can further branch.
Another characteristic feature to the quasi-semiclassical ap-
proach is that a weight (mimicking the quantum population|A|
arising fromA of eq 17) is assigned to each path. The weight
of a path is unity att ) 0 and can change every time the
branching occurs. Let us consider a single incidence of tunneling
bifurcation of a trajectory. Assume that the weight of this
trajectory happens to beP before this tunneling. Here, a
tunneling path emanates from it, and this classical path keeps
running even after this event. Then, there are three patterns in
tunneling paths (see a schematic example in Figure 1).

(A) Path of direct tunneling, which simply travels through
the tunneling space into the neighboring basin, thereby ac-
complishing the tunneling (Figure 1A). The associated tunneling
probability is given byp ) P exp(-2|Im SHJ|/p), whereSHJ is
the relevant action integral. On the other hand, the classical
trajectory keeps running with a remaining weightsV(t) ) P[1
- exp(-2|Im SHJ|/p)]. In this particular study, those paths
achieving tunneling are forced to quit after the tunneling.

(B) Tunneling path of fading away deep into the tunneling
space and not coming back to the classical space (Figure 1B).
This path does not contribute to the tunneling at all, sinceP
exp(-2|Im SHJ|/p) ) 0, and the classical trajectory runs as
though nothing happened, retaining the same weightP.

(C) Tunneling path that comes back to the classical space in
the original basin, where a new classical trajectory is “born”
(Figure1C). We now have two classical trajectories: the mother
trajectory with a weightsV(t) ) P[1 - exp(-2|Im SHJ|/p)] and
the daughter classical trajectory having the weightsV(t) ) P
exp(-2|Im SHJ|/p). The sum of the weights of these two classical
trajectories is invariant, and since both trajectories remain in
the original potential basin, they do not contribute to acquiring
the tunneling probability at this instance. However, these
trajectories can further bifurcate and generate tunneling paths
afterward.

4. Tunneling Points.We locate next the tunneling points from
which a tunneling path can branch. Suppose a classical trajectory
starts at a phase space point (q(0), p(0)) and reaches (q(t), p(t))
in time t. Taking into account the fact that bothq(0) andp(0)
are independent variables, one can define the density of
trajectories at a pointq(t) in such a way that

where, for instance, [∂p(t)/∂q(0)] is a Jacobian matrix. The
physical meaning of this expression is as follows: A small
deviation of the initial positionq(0) f q(0) + ∆q would shift
the final position as (q(t), p(t)) f (q(t) + δq, p(t) + δp). Then,
δp/δq represents the concentration of the trajectories projected
onto the configuration space atq(t), the trajectories which were
initially included in the interval of∆q. The same thought applies
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independently to an initial shift in momentum space such that
p(0) f p(0) + ∆p. We should sum these two independent
contributions after taking a limit of∆q f 0 and ∆p f 0.
Equation 19 describes these treatments collectively in multidi-
mensional phase space. Incidentally,|∂p(0)/∂q(t)| and |∂q(0)/
∂q(t)| appear as the amplitude factors of the semiclassical kernels
K(q, q0, t) and K(q, p0, t), respectively. The caustic points at
which ∂p(0)/∂q(t) ) ∞ (∂q(0)/∂q(t) ) ∞) bring about a
divergence toK(q, q0, t) (K(q, p0, t)). Since we are seeking the
places of high density of the trajectories inq-space, it is natural
to take account of the caustics both ofK(q, q0, t) andK(q, p0,
t) systematically. On the basis of this geometrical characteristic,
we define the tunneling points to be those that make∂p(t)/∂q(t)
infinity. For more details, see ref 14.

For a tunneling path to branch from its mother trajectory,
two more conditions are required: a smooth connection between
these paths and the initial direction (momentum) of the tunneling
path. We refer these rather precise aspects to ref 14.

An important fact to be noted in our study is that the tunneling
points are not fixed in space-time but are evolved, in clear
contrast to the so-called turning point in the energy domain
dynamics. For instance, the turning points for a one-dimensional
oscillator are those satisfyingE ) V(q). However, not only the
number, but also the location, of the tunneling points can change
in time, as shown in Figure 2.

C. Initial Conditions for Sampled Paths in Quasi-
Semiclassical and “Classical” Calculations.We determine the
initial conditions of sampled trajectories in phase space in terms
of the Wigner distribution function23

For a coherent Gaussian function like eq 2,ΓQM(q, p) happens
to be equal to the direct product of|Φ(q)|2 and|Φ̃(p)|2, where
Φ̃ is the momentum representation ofΦ. Although other phase-
space distribution functions (for instance, see refs 24 and 25)
may be applied, we adopt this product for this particular purpose.
It is well-known that as the lowest order of the full quantum
equation of motion in phase space, the classical Louiville
equation, is obtained as

whereΓCL(q, p) is accordingly the lowest approximation to the
exactΓQM(q, p) and is usually regarded as one of the semiclas-
sical approximations.26,27 We put the subscript CL onΓCL(q,
p) in this particular study to stress that no tunneling path is
taken into account. Thus,ΓCL(q, p) can be propagated only with

classical trajectories. The difference

and all the quantities associated with this difference represent
the intrinsic quantum effect originated from the nonclassical
dynamics.

From the semiclassical point of view, the tunneling seems to
be achieved through two channels. Recall first thatΓCL(q, p, 0)
made from the wave packetΦ havingEcenter) 0.06, which is
lower than the barrier height, has components whose classical
energies are high enough to surmount the barrier. Thus, these
classical trajectories may represent the decay within the scheme
of classical dynamics. The tunneling thus represented is called
shallow tunneling. On the other hand, the lower-energy com-
ponent ofΓQM(q, p, t) can also leak from the basin because of
quantum wave penetration into the potential barrier. This part
of tunneling should be described only in the higher-order terms
of the Wigner function, as in eq 22. This is called the deep
tunneling, which indeed requires nonclassical paths. The so-
called dynamical tunneling is another well-known example,
which is tunneling between two disjointed classical tori in phase
space. The paths in the generalized classical mechanics that are
considered in the preceding subsections are intended to represent
paths of the deep tunneling. The inevitable coexistence of deep
and shallow tunnelings constitutes a generic situation when
tunneling dynamics is studied with a quantum wave packet. In
the present study, our focus is placed on the effect of the deep
tunneling, and therefore, all the quantities arising fromΓCL(q,
p, t) alone are referred to as classical ones in what follows.

There are basically two ways of sampling the classical paths
based onΓ(q, p, 0) (no matter whether the tunneling paths are
to be bifurcated eventually): (i) a uniform random sampling
from a uniform phase space, and to each path, the valueΓ(q, p,
0) is assigned; and (ii) the so-called importance sampling to
mimic the distributionΓ(q, p, 0), but all the paths are initially
(only initially) associated with unity as the value of the existing
probability. The second procedure is not always possible, in
general, since the Wigner distribution can locally take a negative
value in general. However, as far as the our chosen initial wave
function, namely, the coherent Gaussian is concerned,Γ(q, p,
0) is positive semidefinite everywhere. For simplicity of the
calculations, we take the second approach in this paper.

D. Survival Probability. Quantum mechanical survival
probability against the leak of a wave packet in the regionΩ is
defined as28

According to the quasi-classical method, the corresponding

Figure 2. Time evolution of the tunneling points. (a) A classical trajectory trapped inside the left basin. (b) Tunneling points generated on this
trajectory during 0< t < 50. (c) Those for 450< t < 500. As time passes, the tunneling points tend to be shifted to the envelope line of the path
in panel (a) and seem more like the so-called turning points.

ΓQM(q, p) ) ( 1
2πp)N ∫ dxΦ*(q + x

2)Φ(q - x
2) exp[ i

p
px]

(20)

[ ∂∂t
+ ∂H

∂p
∂
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- ∂H

∂q
∂

∂p]ΓCL(q, p, t) ) 0 (21)
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classical survival probability is given as

whereM is the total number of sampling paths, andM(q, t) is
the number of classical paths found in a small bin atq in Ω
and at timet. To calculate the quasi-semiclassical survival
probability, it should be taken into account that a single
trajectory can undergo the three types of branching many times,
changing its weightP anew in a recursive manner as discussed
in section II.B.3. The survival probability is thus given as the
ratio of the sum of all the weightssVi(t) counted over the
trajectoriesi that remain in the original basin to the total initial
weights (M), that is, the total number of the initial trajectories.
(See section II.B.3. forsV(t).) We thus have

III. Characteristics of Tunneling in Early and Late
Stages

A. Total Profile of the Survival Probability. For the system
described in section II.A., the survival probabilities obtained
by quantum (QM), quasi-semiclassical (SC), and classical (CL)
methods are shown in Figure 3 as a function of time. The
classical and quasi-semiclassical survival probabilities were
estimated with 1000 trajectories. The so-called local analytic
integrator (LAI) was used for integration of trajectories.29 As
seen in the figure, the global decay process is superposed with
a steplike feature in any level of approximation. This stepwise
feature arises from the swinging motion of the wave packet or
the ensemble of classical trajectories in the basin: When the
packet happens to be located at the remote site from the potential
barrier, the decay slows down. It is also interesting to realize
that the classical decay lasts long even after the major bunch
of trajectories have escaped. This is because the coupling among
different modes keeps causing the dispersion or randomization
of energy among them, and the remaining trajectories can
eventually acquire an energy in the mode of crossing over the
barrier.

B. Fast Tunneling in the Early Stage and Slow Tunneling
in the Late Stage.To identify the (deep) tunneling contribution
alone, we subtract the classical survival probability from the

full quantum counterpart, defining

where 1 - SPQM(t) and 1 - SPCL(t) are, respectively, the
quantum and classical populations that have leaked away from
the basin accumulated by timet. We also defineΠSC(t) in a
similar way. Basically,ΠQM(t) represents the total population
that leaks from the basin up to timet because of quantum effects
in the sense of eq 22. Figure 4b showsΠQM(t) andΠSC(t) in
somewhat long-scale dynamics for 0< t < 500, whereas panel
(a) magnifies the part of the early-stage dynamics 0< t < 50.
Panel (a) strongly suggests that the massive tunneling leak has
taken place in the very early stage of the dynamics; the majority
of tunneling is accomplished by the time oft ≈ 15, and after it,
the tunneling rate becomes very small. Since the quasi-
semiclassical survival probability shows a good agreement with
the full quantum value, it supports the view that the tunneling
is dominated by the early-stage dynamics.

In Figure 4a is observed a fine structure forΠQM(t); it
increases quickly to have a peak at aboutt ) 3 but soon dumps,
making a bottom at aboutt ) 7. This implies that the classical
decay should have a retardation relative to the quantum
counterpart, or the first massive quantum leak takes place in
advance of the classical one. One may wonder however that
this time lag may strongly depend on the fact that we have
chosen the Wigner distribution as an initial condition. However,
a similar feature is observed in the quasi-semiclassical quantity
ΠSC(t) (Figure 4), for which the initial condition of the classical
pathsΓ(q, p, 0) is completely the same as that for the classical
simulation. Therefore, the time lag in the early stage of the decay
should be a reflection of the tunnel effect.

After t ) 100, bothΠQM(t) andΠSC(t) become much more
steady. This type of tunneling in the late stage is called “slow
tunneling” in this paper. Since the slow tunneling lasts for a
very long time, it is conceived to dominate the static quantities

Figure 3. Quantum (QM, full line), quasi-semiclassical (SC, dotted
line), and classical (CL, dashed line) survival probabilities.

Figure 4. Difference between the classical and quantum survival
probabilities (full line) denoted by QM. The same between the classical
and quasi-semiclassical survival probabilities (dotted line) is denoted
by SC. Panel (a) is a magnification of panel (b).

ΠQM(t) ) [1 - SPQM(t)] - [1 - SPCL(t)] (26)

SPCL(t) )

∑
q∈Ω

M(q, t)

M
(24)

SPSC(t) )

∑
i)1

M

sVi(t)

M
(25)
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to be observed in the energy domain such as the tunnel splitting.
Furthermore,ΠQM(t) increases almost linearly, the slope of
which seems to give an estimate of the tunneling rate. To be
more precise, however, the time-dependent tunneling rate should
be defined as

However, the numerically given curves ofΠQM(t) andΠSC(t)
are too rugged to take a derivative, and hence, we smooth them
by averaging as

LikewiseΠ̂SC(t) is defined. As is shown in Figure 5, the overall
features of bothΠ̂QM(t) andΠ̂SC(t) now appear to be monotoni-
cally increasing, although the effect of the time lag of the
classical decay is still noticeable. The smoothed curves also
suggest that the tunneling rate becomes slow as time passes.
To quantify this visual impression, we consider the tunneling
rate for a given population remaining in the basin at timet,
which is defined as

where∆t is a short time interval.∆QM(t) is also oscillatory when
a very small limit of∆t is taken. Therefore, once again, we
smooth it by taking its average as

Figure 6 displays the global feature of∆̂QM(t) (panel (b)) and
its magnification for the early stage (panel (a)). It shows

explicitly that the tunneling rate becomes smaller as time passes.
(Recall that this is not the total amount of the tunneling
population at timet.) With the above time average, the∆̂QM(t)
seems to be approaching an asymptotic value very slowly. In
reality, the decay part of Figure 6b turns out to be of a form of
the power oft, that is t-R (with R being a little smaller than
unity), which indicates that the tunneling decay rate (per unit
population) is scale-invariant with respect to timet and does
not seem to converge to a constant as far as this time range is
concerned. Besides, this numerical result suggests that

where the first term on the right-hand side represents decay due
to tunneling alone and the second one does the rest. This is
valid only when the tunneling decay is physically independent
from all the other mechanisms that cause decay. However, the
general validity of eq 31 and the associated mechanism are yet
uncertain. In any case, we have thus confirmed that the rate of
the tunnel decay is very fast in the initial stage, the reason for
which is analyzed below.

C. Origin of the Fast Tunneling in the Early Stage.Judging
from the good agreement of our quasi-semiclassical survival
probability with the full quantum values, we think we may
utilize this method for an analysis of the origin of the fast
tunneling in the early stage. We recall in Figure 4 that the first
massive tunneling took place aroundt ) 3. To understand this,
we first note that the tunneling points are time-dependent and
generated as a result of nonlinear dynamics, since the quantities
in eq 19 are all determined through an equation of motion for
the stability matrix.29 In other words, the tunneling points evolve
in time in clear contrast to the so-called turning points considered
in the stationary-state (energy domain) semiclassical mechanics.

We first show the time dependence of the number of tunneling
points during 0< t < 20 (Figure 7). It turns out that the time
dependence is rather strong. In particular, we observe a

Figure 5. Accumulated tunneling probabilities averaged over the time
t. See eq 28. Panel (a) is a magnification of panel (b). QM and SC
denote quantum and quasi-semiclassical results, respectively.

1
SPQM(t)

dΠQM(t)

dt
(27)

Π̂QM(t) ) 1
t ∫0

t
ΠQM(s) ds (28)

∆QM(t) ) 1
SPQM(t)

Π̂QM(t + ∆t) - Π̂QM(t)

∆t
(29)

∆̂QM(t) ) 1
t ∫0

t
∆QM(s) ds (30)

Figure 6. Tunneling rate with respect to the unit population that
remains in the basin at timet. The data are averaged in the maner of
eq 30. Panel (a) is a magnification of (b). QM and SC denote quantum
and quasi-semiclassical results, respectively.

SPQM(t) ) SPQM(0) exp(-ct1-R) + rest(t) (31)
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significant fluctuation beforet ≈ 5 and a sharp peak att ) 2.
Thus, it is conceived that the tunneling paths that were generated
at t ≈ 2 should have taken much population out of the basin
and spend a short timet ≈ 1 to reach the absorbing boundary.
Thus, this collective event should have caused the rapid decay
of the survival probability at this very early stage aroundt ) 3.
After this, the distribution of the tunneling points seems to be
dispersed, and time dependence of the fluctuation become rather
steady. However, it is also clear from Figure 7 that the number
of the tunneling points alone does not account for the entire
behavior in Figure 6.

We therefore examine the spatial distribution of the tunneling
points that are generated during a given time interval at two
selected times (Figure 8); one is sampled in the early stage 0<
t < 10 (panel (a)), and the other is taken from a later stage 400
< t < 410 (panel (b)). Above all, it is noticed in Figure 8 that
the number of the tunneling points yielded during 0< t < 10
is much larger than that observed in the period of 400< t <
410. This is merely a reproduction of the above fact. Another
important fact is that the tunneling points in the early stage have
a much wider distribution in space. In particular, there are many
tunneling points deep in the transition-state region. Obviously,
these tunneling points have been marked by the trajectories of
high energy, and the resultant tunneling paths are supposed to
have equally high energies due to the energy conservation.15

Hence, the tunneling paths of high energy tend to readily escape
because of the geometrically favorable location of the tunneling
points. In addition, the geometrical length of these tunneling
paths should be short, since they will soon reach the next basin.
Furthermore, given a high energy and a short pathway, a
tunneling path should have small|Im SHJ| (see eq 18), which
implies that the associated tunneling probability is expected to
be generally high.

The role of classical trajectories having energy higher than
the potential barrier is particularly interesting. Even if the total

energies are higher than the barrier, some of them do not
surmount the barrier at once and return to the basin area, if the
energy is concentrated in the mode transversal to the reaction
coordinate. This can happen only in the multidimensional
system. These trajectories can give birth to tunneling paths
before they finally accomplish their own classical escape. This
tunneling is regarded as dynamical tunneling by definition.30,31

Therefore, the mother classical trajectories should lose their
survival probabilitysV(t), compensating the population of the
newly born tunneling paths. Since even these remaining classical
trajectories eventually escape from the basin classically,32 the
overall escape probability accumulated (time-integrated) from
all these classical trajectories and associated tunneling paths
should be unchanged by the presence of the dynamical tunnel-
ing. However, the time profile of the decay may be strongly
affected, since the escape in the early stage is greatly enhanced
(accelerated) by the dynamical tunneling. It is quite likely that
the first massive quantum leak at aboutt ) 3 occurring ahead
of the classical one (Figure 4a) is partly due to these tunnelings
above the potential barrier.

All these characteristic events happen in the early stage, since
the classical paths of such high energies disappear from the basin
in some relatively short time, as the classical survival probability
SPCL(t) shows in Figure 3. As a result, only the classical paths
of low energy remain in the basin without classical escaping,
which give birth to the tunneling points only in the deep region
of the basin. For exactly the opposite reason to the case of the
high-energy paths, tunneling paths branched from such low-
energy classical paths tend to have a small tunneling probability.
Hence, tunneling in the late stage is not as active as in the early
stage. It is concluded therefore that the space-time evolution
of the tunneling points causes the fast tunneling in the early
stage and a slow feature in the late stage.

Another interesting feature observed in Figures 4 and 5 is
thatΠSC(t) (Π̂SC(t)) becomes a little larger thanΠQM(t) (Π̂QM-
(t)) in the later stage. Since

this implies that the full quantum mechanical survival probability
is larger than the quasi-semiclassical counterpart. This is
presumably explained in terms of the role of periodic orbits,1

but this aspect is beyond the scope of the present paper.
D. Isotope Effect in the Time Domain.We finally explore

the dynamical isotope effect that may be observed experimen-
tally in the time domain. The quantum mechanical survival
probability of a proton is compared with that of a deuteron on
the same potential function as above. For the corresponding
deuteron transfer system, we set the massm ) 2, assuming
that the other part of a molecule supporting the deuteron is very
heavy. Figure 9 shows the difference between the quantum
survival probability of a proton and that of a deuteron, that is

The tunneling rate of the deuteron should be much smaller.
Hence,ΠDP is always positive as seen in Figure 9. Besides the
tunneling, the dynamics of the deuteron should bear more
classical nature in any aspect. In this aspect, it should make
sense to compareΠDP(t) with ΠQM(t) in eq 26, since

The overall features ofΠDP(t) with ΠQM(t) are somewhat

Figure 7. Fluctuation of the number of the tunneling points in time in
the early stage.

Figure 8. Spatial distribution of the tunneling points generated during
(a) 0 < t < 10 and (b) 400< t < 410.

ΠSC(t) - ΠQM(t) ) SPQM(t) - SPSC(t) (32)

ΠDP ) SPQM,deuteron- SPQM,proton (33)

ΠQM(t) ) SPCL,proton- SPQM,proton (34)
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similar, although this comparison is not necessarily a consistent
one, sinceΠQM(t) includes SPCL,proton rather than SPCL,deuteron.

Returning to Figure 9, we emphasize thatΠDP is also strongly
time-dependent. In the early stage of the reaction,t < 100, the
difference is very large and oscillatory, reflecting the compli-
cated dynamics arising from not only tunneling but also the
difference in the speed of wave packet motions. This fact also
suggests that tunnel effect is important especially in the early-
stage dynamics.ΠDP(t) becomes very small at aboutt ) 100,
which implies that the massive escape of the deuteron wave
packet is also accomplished by this time. Aftert ) 100, it
increases very slowly for a long time (t > 100). Again, this
almost linear increase should reflect a difference between the
tunneling rates of a proton and a deuteron. The present example
demonstrates that both “fast” and “slow” tunneling can be
observed in a real time measurement.

Concluding Remarks

We have discussed the time-dependent characteristics of
quantum mechanical tunneling: fast tunneling in the early stage
and slow and long-lasting tunneling in the later stage. They have
been studied from two aspects; one is time-dependent quasi-
semiclassical theory to understand the physical origin of the
characteristics, and the other is a possible experimental realiza-
tion of it through an isotope effect.

Using the quasi-semiclassical theory, we have clarified the
relationship between survival probability and the tunneling
points; the space-time evolution of the tunneling points is
primarily important to describe the difference of the tunneling
dynamics in the early and late stages. In particular, we have
discussed the role of dynamical tunneling to characterize the
time dependence of tunneling dynamics that is not appreciated
in the integrated survival probability. Slow tunneling in the long
time region is also important, because it should dominate the
time-independent feature of tunneling that should be observed
through stationary quantities such as the tunneling splitting. Such
characteristics of tunneling dynamics may be directly observed

in terms of the isotope effect. So far, the experimental studies
on tunneling are made mostly in the energy domain. However,
by performing a pump-probe experiment of the excited-state
proton transfer and monitoring the survival probability before
and/or after the reaction on the excited state, and by comparing
proton transfer with deuteron transfer, the time-dependent
features of tunneling dynamics discussed in this paper should
be observed in real time.
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