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Very Fast Tunneling in the Early Stage of Reaction Dynamics
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The difference between quantum and classical survival probabilities for molecular dissociation dynamics in
the time domain, which arises mainly from quantum mechanical tunneling, has interesting characteristics that
are not noticed through the counterpart in energy domain. It is shown that the early stage undergoes a fast
tunneling, while the later stage is characterized with a long-lasting slow tunneling. The mechanism of this
behavior is analyzed in terms of a quasi-semiclassical theory featuring the geometrical distribution of the
so-called tunneling points. In particular, the role of dynamical tunneling is discussed as a phenomenon that
typifies the time dependence of tunneling dynamics. It is predicted that these tunneling characteristics will be
reflected in the isotope effect and should be experimentally observable.

I. Introduction extremely strong time dependence: very fast tunneling in the
. . . L early stage and slow and long-standing tunneling decay in the
The decaying, escaping, or dissociating process from a y s'ag 9 9 9 y

d state | tential basi d state like th later process. The former process seems to be rather counter-
prepared state in a potential basin or compound state Ik e, e Besides, we show numerically that this strong time

Feshbach resonance is fundamentally important in the dynam'csdependence can be observed clearly in an isotope effect
of molecules. The core excited resonance in electron scattering Recently, Wilkinson et al. have shown an experime'ntal

and agtoionization state are typical examples of such a decayingexample of nonexponential decay in quantum tunnéfirighey
state In glectron dynamics. O n the_ other hand, rearrangementhave observed a decay process of an ultracold sodium atom
dissociation, and structural isomerization of molecules causedout of an accelerating periodic optical potential created by a

by laser excitation are critical processes in modern reaction : : . S .
; . standing wave of light. Their conclusion is that the tunneling

?hy en (;irmI.CSS'a;hzlIRszaﬁz{:.izlf;n;tsﬁféggl;azls e;gﬂﬁ]rgurz)te of in the early stage is faster, which makes a significant deviation
v uary ISt vaiu from the exponential profile. In our theoretical study of the

thermgl molecular dissociation, which is also one of the typical tunneling dynamics of proton transfer, we have noticed a similar
decaying states. . . . .. phenomenon (very fast tunneling in the early stage). Although
In the study of molecular dissociation on a single potential o physical situation of our reaction system and that of
surface,_lt 1S C“.*C'a' to dlstlngw_sh the decays above and belo_w Wilkinson et al. are totally different, we have realized that there
a potential barrier. The mechanism of decay above the potentlalis a physical mechanism that accelerates the tunneling in the
barrier has been extensively studied already. For just an exampleearly stage. To explain this mechanism, we apply our developed
Agulng and Takatsuka have recently found t.hat aguantum ef'fec'[time-dependent guasi-semiclassical trajectory method (TDQSCT)
arising from the so-called periodic orbits suppresses the ¢ ig hased on a semiclassical theory of nonclassical Patfis.
exponential deca&Witr_} an energy below a b_arrier height, only After confirming that the TDQSCT reproduces the quantum
the quantum mechanical tunn.elmg can d”"‘? a Qecay. Pro.tondecay probability well, we analyze the time dependence of the
transfer is among the most typlcal chemical S|tu§tloqs we think tunneling rate in terms of the number and the geometrical
of as an examplef (.)f tunneling. In fact, the motivation (?f the |5cations of the tunneling points, from which the semiclassical
present study originated from a couple of case studies 0Ny nnejing paths emanate to leave the potential basin where they
mtramolecular proton transfer dynamics in 5-methyltropofone were initially prepared. We ascribe the fast tunneling in the early
_and d|c_hIoro_trquonéand intermolecular ‘.’O‘,’b'e proton .transfer stage to the fact that the number and the location of the tunneling
in formic acid dimer’ and so on. The majority of experimental  ;nts i the early stage are more favorable for accomplishing
and theoretical studies on tunneling so far perforhfdtve — nneling dynamics than in the later stage. We also show that

placed their focus on static quantities such as tunnel splitting, g, time-dependent characteristics in tunneling dynamics can
that is, the dynamics in the energy domain. However, the current,, clearly observed in the deuteron substitution of proton.

progress .Of ultrafast dynamics? readil_y Ie_ads us to project This paper is organized as follows. In section Il, we set up
tr;at the dlrecg measur.e]lmbent of tunr_lgllrgfm s,li)‘ih ?’Ubﬂe scales; tunneling problem and briefly outline the methods we use.
of energy and time will become widely feasible in the near |, qaction |11, we show and analyze the numerical results of

fﬁture. _Aslsumlgg thatr:h|s will be the ﬁase’ we r_eportfhﬁre OUr the quantum mechaical tunneling. Section IV concludes the
theoretical study on the prominent characteristics of the tun- jc. oo thaner with some remarks,

neling in the time domain, which will not necessarily be realized
by measurements in the energy domain. Here, it is shown with | Tunneling Dynamics in Time Domain with Quantum
the quantum wave packet approach that the tunneling has ang,asi-Semiclassical, and “Classical” Methods
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1.5 review the outline of the theory. The reader may skip to
subsection 1I.C.
1.0}, 1. Multidimensional Tunneling PathaNe try to find a
0.5 systematic class of nonclassical solutions in the Hamifton
: Jacobi equation
9,00 3S 1 _[os\2
05 _EZ_Z P +V(9) 3
. 0y,
1.0 L / Y, | \ N\ ) that would be used to describe quantum mechanical tunneling
a5l "/, . Q i . O\ in the Feynman path integrals or semiclassical theories. To find
15 1.0 05 0.0 05 1.0 15 them in the real-valued configuration spagewve start from a
q, little modified Hamilton—Jacobi equation
Figure 1. The potetial surface and a schematic representation of a 2
classical trajectory and three kinds of tunneling paths denoted as (A), 1 0y
(B), and (C) corresponding to the classification shown in section 11.B.3. =z ZUk —| + V(@) (4)
The left half of the entire space is denoteddrom which a quantum ot 2 a0

wave packet escapes. An optical potential is sgf & 0.5 (not shown).
where the constant assigned to each dimensjgrecalled the
potential that is intended to model a proton transfer system. parity of motion, can take only positive or negative unity.
The Hamiltonian used here is Equation 4 withox = 1 for all k is nothing but the original
Hamilton—Jacobi equation, but otherwise, it gives different

1 . R solutions. Equation 4 is related to the modified Hamiltonian
H(a, ) =5 (B + ) + 0.125(q” — 1) +

1
[o, +y(@Z— DI} @) H(o) = Zo@ﬁ + V() (5)

We setm = 1 andh = 0.1. The skew parameter is chosen to
be y = 1.0, which results in a potential form as in Figure 1.
This potential supports four bound states below the potential 105,
barrier 0.125. We integrate the time-dependent Stihger p=———
equation with an initial wave packdi(d, t = 0) of the following
standard form

wherepy is a quasi-momentum, which is real-valued. By writing

(6)

K _;k a0,

one can readily construct a solution of eq 4 as
— 2\12 1. [,
©(@, 0= (%) exp[‘ﬁ(q —A P @- ) @ (@9 = [ 3 0P~ Ha P o W

whereq = (g, Qy)- Gc and Pc are two-dimensional vectors
representing the initial position and associated momentum,
respectively, at the center of the wave packet. The energy of
this type of wave packet is often characterized in termts.gfes
which is the sum of the potential energydatand the classical
kinetic energy arising from.. The survival probability for this
packet to remain in a potential basin resisting the tunneling is
considered. The center of an initial wave packet is pugo# d
(—1, 0) andp. = (0.2, 0.283), resulting ikcenter= 0.06, which d—(okr)k) =—
is considerably lower than the potential barrier. However, L
because of the rather sharp Gaussian shape, the energy expecta- ) . )
tion value[®|H|®results in 0.1886, which is higher than the Notice that, |_f all the parmc_es are negative, the resultant paths
barrier height by 0.0636. In this study, the dynamics is P€COMe equivalent to the instanton paths. _
terminated just after proton transfer is accomplished by placing 1 n€ derivative ofS; generates a natural vector field on
an absorption potential (artificial optical potential) of the form configuration space, that is
Vop(0x) = 0.5(gx — 0.5) only in the regiorgx = 0.5, lest the N _ _
wz;ve packet should come back to the original potential basin op(a) = (04p,(0), 0,P,(0), o5P5(), ***) 9)
through another tunneling or recrossing. To calculate the survival
probability, we define an are@ in which the norm of the wave
acket is to be calculated. It is the left half of the space of Figure
1. the boundary of which is set g = 0 P ’ Vop(@) = [y/o,p,(0), /o P0), y/o(a), =] (10)
The quantum propagation of a wave packet is achieved with
the FF?% and symplectic integrator methdd22both of which
are well-established.

which is to be integrated along a trajectory that is generated by
the modified Hamiltonian, eq 5. Except for the trivial case of
ox = 1 for all k, & does not satisfy the original Hamilten
Jacobi equation, eq 3. More explicitly, the path ) in phase
space can be generated in terms of the associated canonical
equations of motion

d
(o) . 48% _ 9H(o)
a0 dt  d(opy)

)

Making use of this, we now define a new vector field by

So far, we do not have to know a generating function that gives
this field. Define the individual component on this vector field

B. Quasi-Semiclassical Method.To analyze the above at (1) as
calculated quantum dynamics, we apply a quasi-semiclassical 35,(a, 1)
theory based on the generalized classical paths (nonclassical SRR Y @pk (11)
paths). To be self-contained as much as possible, we briefly Glen
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It is obvious thatoSy(q, t)/dqx formally satisfies

3S,(a, Hf?

1

5 +V(a) = H(0)

12)

O

So far, only the differential vector field is defined, but the value
of Syi(q, t) is not. Although an infinite number of functions
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In applying the tunneling paths in a semiclassical method,
particular quantum phases such as the Maslov phase arise at
the entrance and exit points of a tunneling path. The reader
should refer to refs 1419 for this aspect. However, we simplify
the calculation here by neglecting the semiclassical amplitude
and all the quantum mechanical phases. Only the distribution
of paths in configuration space, in which the tunneling contribu-
tion is included, is utilized to simulate the density of a wave

can be made up whose derivative give the same vector ﬁeldvpacket. We call this simplified approach the time-dependent

one may specify its value by integrating eq 11 along the vector
field, that is, a pathd, p) of eq 8 such that

Sdan=/3 Jo b do, — Ho) dt  (13)

with an appropriate initial condition. Since the energy is
conserved in eq &l(0) in eq 13 is actually a constant along a
path. Thus, combining egs $13, we see

B (E 2
90

1

22

+V(a) (14)

at

In the starting equation, eq 4, one must assign the parities to

the individual coordinates. This procedure may require a
coordinate transformation ig-space. Specifying the parity set

implies that the entire space is divided into two parts as seen in

eq 10, with one having real-valued momenta (positive parities)

and the others bearing pure imaginary momenta (negative
parities), although energy exchange among these two subspace;
takes place (the total energy is conserved). As long as the parity
set is kept fixed, so is the separation of the space. Thus, different

type of solutions are given by resuming at eq 4 with a different

set of parities and different directions associated with the

negative parities. The global tunneling solution should be

described in terms of path integration over many of those

different paths and connecting the paths of different parity sets.
2. Tunneling ProbabilityA local semiclassical wave function

is given as

y=AexlzSy) (15)
where the preexponential factdr represents the amplitude.

Since the HJ actiorfyy;in eq 13, is generally complex-valued,
we rewriteSy; in the standard form as

Su=%tIi§ (16)
Inserting eq 16 into eq 15, we see
Yy=A exp(—%‘s‘) exp{%sp) a7

where the phase convention $g; is taken so tha§ becomes
positive. From eq 17, dumping of the norm due to tunneling is

estimated as
ex;{—Z )

It is generally expected that the magnitude of the imaginary

Im Sy
h

(18)

guasi-semiclassical trajectory (TDQSCT) method.

3. Branching of the Trajectories and Siwal Probabilities.

To estimate the tunneling probability, it is crucial to recognize
that each path can bifurcate many times because of tunneling.
Those paths that are born from tunneling can further branch.
Another characteristic feature to the quasi-semiclassical ap-
proach is that a weight (mimicking the quantum populatin
arising fromA of eq 17) is assigned to each path. The weight
of a path is unity at = 0 and can change every time the
branching occurs. Let us consider a single incidence of tunneling
bifurcation of a trajectory. Assume that the weight of this
trajectory happens to b@ before this tunneling. Here, a
tunneling path emanates from it, and this classical path keeps
running even after this event. Then, there are three patterns in
tunneling paths (see a schematic example in Figure 1).

(A) Path of direct tunneling, which simply travels through
the tunneling space into the neighboring basin, thereby ac-
complishing the tunneling (Figure 1A). The associated tunneling
probability is given byp = P exp(—2|Im Sy,l/A), whereSy; is
the relevant action integral. On the other hand, the classical
tsrajectory keeps running with a remaining weightt) = P[1
— exp(=2/lm Syl/h)]. In this particular study, those paths
achieving tunneling are forced to quit after the tunneling.

(B) Tunneling path of fading away deep into the tunneling
space and not coming back to the classical space (Figure 1B).
This path does not contribute to the tunneling at all, siRce
exp(=2|/Im Sy/h) = 0, and the classical trajectory runs as
though nothing happened, retaining the same werght

(C) Tunneling path that comes back to the classical space in
the original basin, where a new classical trajectory is “born”
(Figure1C). We now have two classical trajectories: the mother
trajectory with a weighsu(t) = P[1 — exp(—2|Im Sy;//A)] and
the daughter classical trajectory having the weiglft) = P
exp(=2|Im Sy|/h). The sum of the weights of these two classical
trajectories is invariant, and since both trajectories remain in
the original potential basin, they do not contribute to acquiring
the tunneling probability at this instance. However, these
trajectories can further bifurcate and generate tunneling paths
afterward.

4. Tunneling PointsWe locate next the tunneling points from
which a tunneling path can branch. Suppose a classical trajectory
starts at a phase space poigt0), p(0)) and reachegy(t), p(t))
in time t. Taking into account the fact that botj(0) andp(0)
are independent variables, one can define the density of
trajectories at a poing(t) in such a way that

ap(t) _ de(’ ap(t)] [aq(O)] N lap(t)] [ap(O)
aae) — \laa)][da(t)]  [3p(0)][ da(t)
where, for instance,dp(t)/ag(0)] is a Jacobian matrix. The

physical meaning of this expression is as follows: A small
deviation of the initial positiom(0) — q(0) + Aq would shift

) (19)

part should become larger as more negative parities are usedthe final position asd(t), p(t)) — (q(t) + 6q, p(t) + op). Then,

which results in an exponentially smaller tunneling probability.
Therefore, we henceforth consider only tunneling paths with
one negative parity.

oploq represents the concentration of the trajectories projected
onto the configuration space @(t), the trajectories which were
initially included in the interval ofAg. The same thought applies
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Figure 2. Time evolution of the tunneling points. (a) A classical trajectory trapped inside the left basin. (b) Tunneling points generated on this
trajectory during 0< t < 50. (c) Those for 456< t < 500. As time passes, the tunneling points tend to be shifted to the envelope line of the path
in panel (a) and seem more like the so-called turning points.

independently to an initial shift in momentum space such that classical trajectories. The difference
p(0) — p(0) + Ap. We should sum these two independent

contributions after taking a limit oAqg — 0 and Ap — 0. Fom(@ p ) = Tel(@,p, 1) (22)
Equation 19 describes these treatments collectively in multidi-
mensional phase space. Incidental§p(0)/aq(t)| and |9q(0)/ and all the quantities associated with this difference represent

aq(t)| appear as the amplitude factors of the semiclassical kernelsthe intrinsic quantum effect originated from the nonclassical
K(d, do, t) andK(a, po, t), respectively. The caustic points at dynamics.

which ap(0)/ag(t) = o (8g(0)/ag(t) = ) bring about a From the semiclassical point of view, the tunneling seems to
divergence td(q, go, t) (K(g, po, ). Since we are seeking the  be achieved through two channels. Recall first fhat(q, p, 0)
places of high density of the trajectoriesgfspace, it is natural made from the wave packdi havingEceneer= 0.06, which is

to take account of the caustics bothK(, qo, t) andK(q, po, lower than the barrier height, has components whose classical
t) systematically. On the basis of this geometrical characteristic, energies are high enough to surmount the barrier. Thus, these
we define the tunneling points to be those that mai(g/aq(t) classical trajectories may represent the decay within the scheme
infinity. For more details, see ref 14. of classical dynamics. The tunneling thus represented is called

For a tunneling path to branch from its mother trajectory, shallow tunneling. On the other hand, the lower-energy com-
two more conditions are required: a smooth connection betweenponent ofl om(q, p, t) can also leak from the basin because of
these paths and the initial direction (momentum) of the tunneling quantum wave penetration into the potential barrier. This part
path. We refer these rather precise aspects to ref 14. of tunneling should be described only in the higher-order terms

An important fact to be noted in our study is that the tunneling of the Wigner function, as in eq 22. This is called the deep
points are not fixed in spaeg¢ime but are evolved, in clear  tunneling, which indeed requires nonclassical paths. The so-
contrast to the so-called turning point in the energy domain called dynamical tunneling is another well-known example,
dynamics. For instance, the turning points for a one-dimensional which is tunneling between two disjointed classical tori in phase
oscillator are those satisfyirig = V(q). However, not only the space. The paths in the generalized classical mechanics that are
number, but also the location, of the tunneling points can change considered in the preceding subsections are intended to represent
in time, as shown in Figure 2. paths of the deep tunneling. The inevitable coexistence of deep

C. Initial Conditions for Sampled Paths in Quasi- and shallow tunnelings constitutes a generic situation when
Semiclassical and “Classical” CalculationsWe determine the  tunneling dynamics is studied with a quantum wave packet. In
initial conditions of sampled trajectories in phase space in termsthe present study, our focus is placed on the effect of the deep

of the Wigner distribution functioi tunneling, and therefore, all the quantities arising frbea(q,
1w . p, t) alone are referred to as classical ones in what follows.
* X X i : : .
Com(@, p) = (—) dxd ( + —)q)( _ _) exp{— ><] There are basically two ways of sampling the classical paths
oul(@ P) = (57 f 42972 P based orl(q, p, 0) (No matter whether the tunneling paths are
(20) to be bifurcated eventually): (i) a uniform random sampling

from a uniform phase space, and to each path, the J&lyep,

0) is assigned; and (ii) the so-called importance sampling to

mimic the distributionl'(qg, p, 0), but all the paths are initially

(only initially) associated with unity as the value of the existing

probability. The second procedure is not always possible, in

general, since the Wigner distribution can locally take a negative

value in general. However, as far as the our chosen initial wave

function, namely, the coherent Gaussian is concerhiégl,p,

0) is positive semidefinite everywhere. For simplicity of the

9 9H 9 oH 9 calculations, we take the second approach in this paper.

a a_pﬁ - %% I'c (g, p,t)=0 (21) D. Survival Probability. Quantum mechanical survival
probability against the leak of a wave packet in the regis

wherelci(q, p) is accordingly the lowest approximation to the defined a¥’

exactl'om(q, p) and is usually regarded as one of the semiclas-

sical approximationg®2” We put the subscript CL ofic.(q, SPyw(t) = fg d(q, t)* P(q,t) dq (23)

p) in this particular study to stress that no tunneling path is

taken into account. Thu§¢ (g, p) can be propagated only with  According to the quasi-classical method, the corresponding

For a coherent Gaussian function like ed3m(q, p) happens

to be equal to the direct product gb(q)|2 and |®(p)|2, where

® is the momentum representationdf Although other phase-
space distribution functions (for instance, see refs 24 and 25)
may be applied, we adopt this product for this particular purpose.
It is well-known that as the lowest order of the full quantum
equation of motion in phase space, the classical Louiville
equation, is obtained as
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Figure 3. Quantum (QM, full line), quasi-semiclassical (SC, dotted
line), and classical (CL, dashed line) survival probabilities.

classical survival probability is given as 010
1
£ M(@. 9 0.05
SReL(B) = YR (24)
whereM is the total number of sampling paths, avdq, t) is 0.000 100 200 300 400 500

the number of classical paths found in a small birgan € Time

and at timet. To calculate the quasi-semiclassical survival rigyre 4. Difference between the classical and quantum survival
probability, it should be taken into account that a single probabilities (full line) denoted by QM. The same between the classical
trajectory can undergo the three types of branching many times,and quasi-semiclassical survival probabilities (dotted line) is denoted
changing its weighP anew in a recursive manner as discussed by SC. Panel (a) is a magnification of panel (b).

in section I1.B.3. The survival probability is thus given as the
ratio of the sum of all the weightsyi(t) counted over the
trajectoried that remain in the original basin to the total initial e () = [1 — SP-.(D)] — [1 — SP- (t 26
weights (M), that is, the total number of the initial trajectories. ou® =1 u(®1 ~ et (0] (26)
(See section 11.B.3. fosu(t).) We thus have

full quantum counterpart, defining

where 1— SPom(t) and 1 — SR (t) are, respectively, the
" guantum and classical populations that have leaked away from
the basin accumulated by tinteWe also defindIsq(t) in a
sv;(t) similar way. Basically ITom(t) represents the total population
SP(t) = - (25) that leaks from the basin up to tirhbecause of quantum effects
in the sense of eq 22. Figure 4b sholigm(t) and ITsd(t) in
somewhat long-scale dynamics for0t < 500, whereas panel
(a) magnifies the part of the early-stage dynamics D< 50.
Panel (a) strongly suggests that the massive tunneling leak has
taken place in the very early stage of the dynamics; the majority
A. Total Profile of the Survival Probability. Forthe system  of tunneling is accomplished by the timetof 15, and after it,
described in section Il.A., the survival probabilities obtained the tunneling rate becomes very small. Since the quasi-
by quantum (QM), quasi-semiclassical (SC), and classical (CL) semiclassical survival probability shows a good agreement with
methods are shown in Figure 3 as a function of time. The the full quantum value, it supports the view that the tunneling
classical and quasi-semiclassical survival probabilities were is dominated by the early-stage dynamics.
estimated with 1000 trajectories. The so-called local analytic  In Figure 4a is observed a fine structure fBigm(t); it
integrator (LAI) was used for integration of trajectorf@sAs increases quickly to have a peak at ahioat3 but soon dumps,
seen in the figure, the global decay process is superposed withmaking a bottom at abowt= 7. This implies that the classical
a steplike feature in any level of approximation. This stepwise decay should have a retardation relative to the quantum
feature arises from the swinging motion of the wave packet or counterpart, or the first massive quantum leak takes place in
the ensemble of classical trajectories in the basin: When theadvance of the classical one. One may wonder however that
packet happens to be located at the remote site from the potentiathis time lag may strongly depend on the fact that we have
barrier, the decay slows down. It is also interesting to realize chosen the Wigner distribution as an initial condition. However,
that the classical decay lasts long even after the major buncha similar feature is observed in the quasi-semiclassical quantity
of trajectories have escaped. This is because the coupling amondIsd(t) (Figure 4), for which the initial condition of the classical
different modes keeps causing the dispersion or randomizationpathsI'(g, p, 0) is completely the same as that for the classical
of energy among them, and the remaining trajectories can simulation. Therefore, the time lag in the early stage of the decay
eventually acquire an energy in the mode of crossing over the should be a reflection of the tunnel effect.
barrier. After t = 100, bothITgu(t) andIIsA(t) become much more
B. Fast Tunneling in the Early Stage and Slow Tunneling steady. This type of tunneling in the late stage is called “slow
in the Late Stage.To identify the (deep) tunneling contribution  tunneling” in this paper. Since the slow tunneling lasts for a
alone, we subtract the classical survival probability from the very long time, it is conceived to dominate the static quantities

lll. Characteristics of Tunneling in Early and Late
Stages
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Figure 5. Accumulated tunneling probabilities averaged over the time

t. See eq 28. Panel (a) is a magnification of panel (b). QM and SC
denote quantum and quasi-semiclassical results, respectively.

Figure 6. Tunneling rate with respect to the unit population that
remains in the basin at time The data are averaged in the maner of
eq 30. Panel (a) is a magnification of (b). QM and SC denote quantum
and quasi-semiclassical results, respectively.
to be observed in the energy domain such as the tunnel splitting. - . .
. . explicitly that the tunneling rate becomes smaller as time passes.

Furthermore Ilgu(t) increases almost linearly, the slope of S ;

. . - . (Recall that this is not the total amount of the tunneling
which seems to give an estimate of the tunneling rate. To be

more precise, however, the time-dependent tunneling rate shouloPolOUl"’ltlon at tim.) Wr']t.h the above time avelrage, me?“l"(t)l
be defined as seems to be approaching an asymptotic value very slowly. In

reality, the decay part of Figure 6b turns out to be of a form of

1 dgy() the power oft, that ist™® (with a being a little smaller than
—_omt/ 27) unity), which indicates that the tunneling decay rate (per unit
SPou(t)  dt population) is scale-invariant with respect to timand does
) ) not seem to converge to a constant as far as this time range is
However, the numerically given curves Bliow(t) and ITs(t) concerned. Besides, this numerical result suggests that
are too rugged to take a derivative, and hence, we smooth them
by averaging as SPoy(®) = SPyy(0) expct ™) +restt)  (31)
~ 1 ,t
Hon® =7 S Tlgu(s) ds (28) where the first term on the right-hand side represents decay due

to tunneling alone and the second one does the rest. This is
LikewiseITsd(t) is defined. As is shown in Figure 5, the overall  Vvalid only when the tunneling decay is physically independent
features of botﬂ/_\IQM(t) andITsd(t) now appear to be monotoni-  from all the other mechanisms that cause decay. However, the
cally increasing, although the effect of the time lag of the general validity of eq 31 and the associated mechanism are yet
classical decay is still noticeable. The smoothed curves alsouncertain. In any case, we have thus confirmed that the rate of
suggest that the tunneling rate becomes slow as time passedhe tunnel decay is very fast in the initial stage, the reason for
To quantify this visual impression, we consider the tunneling Which is analyzed below.

rate for a given population remaining in the basin at tine C. Origin of the Fast Tunneling in the Early Stage.Judging
which is defined as from the good agreement of our quasi-semiclassical survival
R R probability with the full quantum values, we think we may
1 gu(t + At) — Tgy(®) utilize this method for an analysis of the origin of the fast
Agu(t) = SPou(® At (29) tunneling in the early stage. We recall in Figure 4 that the first

massive tunneling took place aroutet 3. To understand this,
we first note that the tunneling points are time-dependent and
generated as a result of nonlinear dynamics, since the quantities
in eq 19 are all determined through an equation of motion for
the stability matri>é® In other words, the tunneling points evolve
N 1 pt in time in clear contrast to the so-called turning points considered
AQM(t) 1 LAQM(S) ds (30) in the stationary-state (energy domain) semiclassical mechanics.
. We first show the time dependence of the number of tunneling
Figure 6 displays the global feature Abwm(t) (panel (b)) and points during O< t < 20 (Figure 7). It turns out that the time
its magnification for the early stage (panel (a)). It shows dependence is rather strong. In particular, we observe a

whereAt is a short time intervalAgu(t) is also oscillatory when
a very small limit of At is taken. Therefore, once again, we
smooth it by taking its average as
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50 energies are higher than the barrier, some of them do not
o surmount the barrier at once and return to the basin area, if the
<40} energy is concentrated in the mode transversal to the reaction
e coordinate. This can happen only in the multidimensional
2 30 | system. These trajectories can give birth to tunneling paths
c . . - . .
3 I before they finally accomplish their own classical escape. This
Bog | tunneling is regarded as dynamical tunneling by definifioH.

E | Therefore, the mother classical trajectories should lose their
g 10 | survival probabilitysy(t), compensating the population of the
2 newly born tunneling paths. Since even these remaining classical
I trajectories eventually escape from the basin classiéatlye
OO 5 10 15 20 overall escape probability accumulated (time-integrated) from
time all these classical trajectories and associated tunneling paths

should be unchanged by the presence of the dynamical tunnel-
ing. However, the time profile of the decay may be strongly
affected, since the escape in the early stage is greatly enhanced

Figure 7. Fluctuation of the number of the tunneling points in time in
the early stage.

1.5 (accelerated) by the dynamical tunneling. It is quite likely that
1o the first massive quantum leak at about 3 occurring ahead
: of the classical one (Figure 4a) is partly due to these tunnelings
q 0.5 above the potential barrier.
y

All these characteristic events happen in the early stage, since
the classical paths of such high energies disappear from the basin
in some relatively short time, as the classical survival probability
SR (t) shows in Figure 3. As a result, only the classical paths
of low energy remain in the basin without classical escaping,
which give birth to the tunneling points only in the deep region

0.0

-0.5

-1.0
-15 1.0 -05 0.0

9 of the basin. For exactly the opposite reason to the case of the

Figure 8. Spatial distribution of the tunneling points generated during high-energy paths, tunneling paths branched from such low-

(@ 0=t <10 and (b) 400< t < 410. energy classical paths tend to have a small tunneling probability.

o ] Hence, tunneling in the late stage is not as active as in the early
significant fluctuation befor¢ ~ 5 and a sharp peak &at= 2. stage. It is concluded therefore that the spaime evolution

Thus, it is conceived that the tunneling path_s that were genera_tedof the tunneling points causes the fast tunneling in the early

and spend a short tinte~ 1 to reach the absorbing boundary.  another interesting feature observed in Figures 4 and 5 is
Thus, this collective event should have caused the rapid decayihat[1((t) (ITso(t)) becomes a little larger thafom(t) ((Tou-

of the survival probability at this very early stage arowrd3. (t)) in the later stage. Since
After this, the distribution of the tunneling points seems to be
dispersed, and time dependence of the fluctuation become rather Ts(t) — M) = SPoy(® — SPt) (32)

steady. However, it is also clear from Figure 7 that the number
of the tunneling points alone does not account for the entire
behavior in Figure 6.

We therefore examine the spatial distribution of the tunneling
points that are generated during a given time interval at two
selected times (Figure 8); one is sampled in the early stage 0O
t < 10 (panel (a)), and the other is taken from a later stage 400
<t < 410 (panel (b)). Above all, it is noticed in Figure 8 that
the number of the tunneling points yielded duringcG < 10
is much larger than that observed in the period of 400 <
410. This is merely a reproduction of the above fact. Another
important fact is that the tunneling points in the early stage have
a much wider distribution in space. In particular, there are many
tunneling points deep in the transition-state region. Obviously,
these tunneling points have been marked by the trajectories of
high energy, and the resultant tunneling paths are supposed to .. —sp _sp
have equally high energies due to the energy conservétion. bP QM.deuteron QM,proton
Hence, the tunneling paths of high energy tend to readily escape )
because of the geometrically favorable location of the tunneling The tunneling rate of the deuteron should be much smaller.
points. In addition, the geometrical length of these tunneling HenceIlop is always positive as seen in Figure 9. Besides the
paths should be short, since they will soon reach the next basin.tunneling, the dynamics of the deuteron should bear more
Furthermore, given a high energy and a short pathway, a Classical nature in any aspect. In t_hls aspect, it should make
tunneling path should have smalin Sy (see eq 18), which ~ Sense to comparHpp(t) with Ilgu(t) in eq 26, since
implies that the associated tunneling probability is expected to
be generally high. Iou(t) = SPeL proton — SPom,proton (34)

The role of classical trajectories having energy higher than
the potential barrier is particularly interesting. Even if the total The overall features oflpp(t) with ITom(t) are somewhat

this implies that the full quantum mechanical survival probability
is larger than the quasi-semiclassical counterpart. This is
presumably explained in terms of the role of periodic orbits,
but this aspect is beyond the scope of the present paper.

D. Isotope Effect in the Time Domain.We finally explore
the dynamical isotope effect that may be observed experimen-
tally in the time domain. The quantum mechanical survival
probability of a proton is compared with that of a deuteron on
the same potential function as above. For the corresponding
deuteron transfer system, we set the mass 2, assuming
that the other part of a molecule supporting the deuteron is very
heavy. Figure 9 shows the difference between the quantum
survival probability of a proton and that of a deuteron, that is

(33)
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Figure 9. Difference of the quantum survival probabilities for deuteron

and proton; SBu,deuteron— SPom proton

300 400 500

similar, although this comparison is not necessarily a consistent
one, sincellgm(t) includes SR proton rather than S deuteron
Returning to Figure 9, we emphasize thkfp is also strongly
time-dependent. In the early stage of the reaction,100, the
difference is very large and oscillatory, reflecting the compli-
cated dynamics arising from not only tunneling but also the
difference in the speed of wave packet motions. This fact also
suggests that tunnel effect is important especially in the early-
stage dynamicdlIpp(t) becomes very small at about= 100,

which implies that the massive escape of the deuteron wave g,

packet is also accomplished by this time. Afte= 100, it
increases very slowly for a long timé¢ ¢ 100). Again, this

almost linear increase should reflect a difference between the

Ushiyama and Takatsuka

in terms of the isotope effect. So far, the experimental studies
on tunneling are made mostly in the energy domain. However,
by performing a pumpprobe experiment of the excited-state
proton transfer and monitoring the survival probability before
and/or after the reaction on the excited state, and by comparing
proton transfer with deuteron transfer, the time-dependent
features of tunneling dynamics discussed in this paper should
be observed in real time.
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