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The derivation of a semiclassical surface hopping procedure from a formally exact solution of the Schrodinger
equation is discussed. The fact that the derivation proceeds from an exact solution guarantees that all phase
terms are completely and accurately included. Numerical evidence shows the method to be highly accurate.
A Monte Carlo implementation of this method is considered, and recent work to significantly improve the
statistical accuracy of the Monte Carlo approach is discussed.

I. Introduction using the HellmanrFeynman forceF = —[Wf|aH/oR|W L]
where(l..indicates integration ovar.24-18 Other approaches,
which are referred to as surface hopping procedures, allow the
trajectories employed in the construction of the semiclassical
wave functions and/or transition probabilities to take abrupt hops
from one adiabatic energy surface to anoffef? Other
methods express the coefficients in eq 2cg§ = [n(t)]*?
exp[—ig;(t)] and treatn;(t) and g;(t) as canonically conjugate
action/angle variables that are added to the phase space of the
slow coordinatesR and momentd. Classical trajectories are
run in this enlarged phase space, and semiclassical wave
functions and/or transition probabilities are construéfec?

In this article, we focus on work in our group using a

Quantum mechanical effects can play an important role in
the dynamics of molecular systems. However, the numerical
applications of quantum mechanics to dynamical problems are
feasible only for systems with a small number of degrees of
freedom. Semiclassical methdd¥ provide a computationally
attractive approximation to fully quantum calculations, because
they use information obtained from classical trajectories to
construct approximate quantum wave functions, correlation
functions, and transition probabilities.

The coordinates in molecular systems are commonly divided
into a fast set and a slow seR. The fast set usually contains

the electronic coordinates, and the coordinates of the nuclei, . ) > 5 o
R, make up the slow set. In the Bor®ppenheimer (BO) or semiclassical surface hopping approé&i?> The derivation of

adiabatic approximation, the wave functions and energies for & formally exact solution to the nonadiabatic time independent
the fast subsystem are evaluated at fixed values for the slowSchrodinger equation (TISE) is discussed in section II. The

degrees of freedod? The BO Schrodinger equation is phase and prefactor associated with each term in this wave
function expansion have the form expected for semiclassical

f Py f ' wave functions, and each term corresponds to an integration
H@(iR) = B (R) 4(r'R) (1) over trajectories with a certain number ofphops between qt?antum
states. This wave function expansion can be generalized for
multidimensional systems and for time dependent problems as
a semiclassical approximation. The important feature in this
semiclassical development is the careful treatment of the phases
of all the terms, which are obtained starting from the formally
exact solution to the Schrodinger equation. This guarantees that
energy operator. all phasqs are treatg:d exactly'and pha'se interference between

Semiclassical metho#is? are widely used in modeling contributions from different trajectories is handled accurately.

physical systems of experimental interest when only one BO __The surface hopping expansions developed for the wave
electronic state is important. However, many important processes{Unction and the time dependent propagator are “primitive” wave

in experimental systems involve transitions between BO states.functions and propagators, because their semiclassical prefactors
A variety of semiclassical methods have been proposed for diverge at caustic points along the classical trajectories. Cor-

handling nonadiabatic transitions between BO stHteéd. These responding uniform versions of these surface hopping expan-
approaches often describe the electronic wave function as asions, which do not have these divergences, are also discussed.

linear combination of the BO states, The uniform propagator is an initial value representation (IVR),
because it is expressed as an integration over all possible initial
f _ phase space points for the surface hopping trajectories. An IVR
FrRY ch(t) 7nllR) ) has the advantage that it avoids the difficult search required by
the double ended boundary condition that must be satisfied by

One approach is to evaluatgt) using the time dependent the trajectories contributing to the primitive propagator.

Schrodinger equation for the fast degrees of freedom as the slow In section lll, the Monte Carlo implementations of these

degrees of freedom travel along classical trajectories calculatedsurface hopping procedures are discussed. The Monte Carlo

The HamiltonianH' is the sum of the kinetic energy for the
fast degrees of freedon,’, and the potential energy for the
systemV(r,R). Within the BO approximation, the ener@(R)
serves as the potential energy,(R) for the nuclear motion,
and the slow system Hamiltoniar® = TS + W,(R) governs
the motion of the nuclei, wher€s is the slow variable kinetic
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Figure 1. Diabatic potential energy surfaces for a model curve crossing
problems are plotted. The potential surfaces are giveMiby= —Vy,
= —tanhK — 2) tanhK + 2) andVi, = 0.1 expEX420).
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(r, andry), corresponding to the potential surfad#s andW..

procedure assigns a probability for hopping or not hopping for where the diabatic statesy;? and @9, are taken to be
each step along the trajectory and chooses between these optionmdependent o and the value oB(X) is determined by the
Methods for improving the statistical convergence of the Monte condition that the potential energy matrix is diagonal in the
Carlo procedure are considered. Step probabilities are developeddiabatic or BO representation. The elements of this diagonal
that include the effects of multiple hops within the step. This matrix, Wi(X) andWx(X), are the adiabatic state energies, and
allows for the use of larger steps, results in fewer hopping W(X) serves as the potential energy for the motion of the slow
trajectories, and reduces the interference between these trajeceoordinate when the system is in adiabatic stateFigure 1
tories. Another method for the improvement of the Monte Carlo showsV119(X), V224(X), andV128(X) for a model curve crossing
procedure utilizes the flexibility in the choice of the representa- problem. Suppose that a particle is traveling on surfagen

tion for the quantum states of the fast subsystem to reduce thethe positive direction from large negative values>ofwith
integrated coupling between the states, thereby reducing theenergyE. The particle can leave the interaction region traveling
importance of multihop trajectories. Tests of these methods arein either direction on either surface. We are interested in
discussed. It is found that the surface hopping method is evaluating the wave function for this system and the probability
extremely accurate and that the use of these procedures resultef each of these four possible outcomes.

in a large reduction in the computational time required for a  This problem can be replaced by a piecewise constant

given level of statistical accuracy. problen?2 by partitioning theX-axis into intervals of width\ X,
with Xo, X3, ..., Xy labeling the interval boundaries, and replacing
IIl. Semiclassical Surface Hopping Method Wi(X), Wu(X), and 6(X) with constant values in each interval

and forX < Xp and X > Xy. This results in discontinuities in

We begin with a derivation of a formally exact solution to Wi, W,, and 6 at eachX;. The incoming particle oW, with
the one-dimensional multistate time independent Schrodingermassmand energie is described by the wave functign exp-
equation (TISE). For simplicity, the development here is limited (ikiX), wherekj = Pi/h andPj = [2m(E — W})]¥2 When this
to the two state case. The system can be defined in the diabatidncoming wave function encounters the discontinuity\ip W,
representation by the two state energiégd(X) and V,4(X), ando at Xq, it splits into four particle fluxes moving away from
and the diabatic coupling/1.%(X), whereX is the variable for Xo. These four fluxes correspond to reflected fluxes on each of
the slow subsystem. The quantum states for the fast subsystenthe two surfaces and transmitted (into the next interval) fluxes
in the adiabatic representation are given the terms of diabaticon each of the two surfaces, as described in Figure 2. These

states g9 and 9, fluxes are each described by wave functions of the @&
expikX), where+ (—) is used for the transmitted (reflected)
0.9 cosd sing\[#:° flux. The C;*) are determined by the requirement that the wave
P = X L 3) function and its derivative must be continuous at the discontinu-
P \=sind cosb [\, ity.22 Each transmitted flux travels across the next interval until
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it reaches the discontinuity a&. At this point, it splits into are again given by WKB-like expressions for the trajectory that
two transmitted and two reflected fluxes, and the coefficient hops fromW; to W, at X; and fromW, to W; at X,. The
G for each new flux is obtained as before. These new fluxes contribution with any sequence of any number of nonclassical
then travel across intervals and are split into four new fluxes events is obtained in the same way. The generalization of the
when the next discontinuity is encountered, and so on. The sumtwo state case to any number of quantum states is straightfor-
of all possible contributions of this sort at a pokibn surface ward?? The expansion obtained by summing all contributions

W gives the value of the wave function in that stateXaT his of this type is a formallyexactsolution of the multistate TISE

wave function satisfies the TISE for the piecewise constant in one dimension.

problem. As the width of the partition of the axis is made The reflection without hop terms, which are independent of

Sma"er, this wave function approaches the exact solution to thethe nonadiabatic Coup"ng' provide corrections to the semiclas-

original problem with continuou®Vi(X), Wx(X), and 6(X).2? sical approximation. If all terms containing reflections without
In the piecewise constant problem, the reflection and trans- hops are neglected in the wave function expansion, then the

mission coefficientsCj®), depend on the values 6f Py, and resulting wave function satisfies the Schrodinger equation to

P2 on both sides of the interval boundary. In the limit of small 5| orders in the nonadiabatic coupling and to the same (first)
AX, the coefficient for transmission with no change in adiabatic qrder ink as is the case with the WKB wave function for the
A6, APy, and AP,, whereas the coefficients for transmission = sjon, including reflections without hops, provides the exact
with a hop to the other adiabatic state and for reflection onto guantum wave function, the semiclassical approximation ob-
either adiabatic state are first orderA, APy, andAP,. For - tained by neglecting reflection without hop terms incorporates
this reason, transmissions with hop and all reflections are the complete and correct phase and amplitude for every possible
considered first-order events, and a path wiftist-order events  {rgjectory. This is important, because many surface hopping

is considered amth-order path. The zeroth-order path, corre- procedures fail to accurately account for all phase interference
sponding to transmission without hop at each boundary, gives gffects.

rise to the contributio?? ¥ = @11wa(Xi,X) in the AX— 0 limit
whereyi(X;,X) is the semiclassical WKB wave function for
the potentiaW;(X)

This semiclassical surface hopping expansion can be general-
ized for multidimensional problen3In multidimensional case,
the nonadiabatic coupling,; = [g,| V0= V6O is a vector,
A _ where(l.[indicates integration over the quantum coordinates.
_ / VN LRSS The component of the momentum parallel to the nonadiabatic
wwi(x’x) Pj(X) ex[{hj;i Pl(xl) Xm] ) coupling vector changes at each hop between adiabatic surfaces
so that energy is conserved. The multisurface wave function,
andX; is an arbitrary point in the incoming asymptotk £ 0) y(R), is given by the sum of the contributions from all hopping
region. and nonhopping trajectories that obey the appropriate initial
The contribution from all first-order paths with a transmission conditions and end aR. For instance, if the wave function
with hop at one discontinuityg; (and transmission with no hop  describes colliding structureless particles with eneggghen
at all other boundaries) is obtained by summing over the the trajectories must have moment@in the incoming region,
different Xj. In the AX — 0 limit, this sum becomes an  whereP is the appropriate relative momentum of the colliding
integration over the position of hop, and this contribution is particles. The transition amplitude in the multidimensional case
given by is similar to that in the one-dimensional case given by eq 7,
" ' except that @/dX is replaced with the magnitude oV
Y=,y T(X) A€ dX, (5) multiplied by the sign ofP;-Vé, and the one-dimensional
momentaP; and P, are replaced with the components of the

Ar = [P1(X)/P(X)]¥2 is the WKB prefactor for the trajectory ~ VectorsP1 andP; parallel to7z:.

that travels on initial adiabatic surfad#, from X; to X;, hops Every term in the one-dimensional surface hopping expansion
to W5 at X3, and then travels fronX; to X on W5, andSy is the diverges at turning points in the classical motion, because the
WKB phase function for this hopping trajectory, prefactors have #&~2 dependence. The divergence of the
prefactor at a turning point (or a caustic in the multidimensioinal
X X . . . .
S = L ilpl(y) dy + fxlF’z(Y) dy (6) case) results in the usual semiclassieat/2 addition to the

phasé®. An alternative uniform semiclassical surface hopping
expansion of the wave function has recently been derived by

The transmission coefficient in eq 5 is given by L . . ) .
generalizing the globally uniform single surface semiclassical

(P, +P,) do wave functiort® to the multisurface cas®.This global uniform
T2 T oIz ax (7) wave function does not diverge at caustic points. It should be
2(P,P,) noted that, because these primitive and uniform semiclassical

surface hopping wave function expansions are constructed using
The contribution from all paths with a single reflection with no  jnformation gathered from classical trajectories, they cannot
hop and the contribution from all paths with a single reflection account for tunneling without additional features, as is com-
with a hop are obtained analogously to eq 5. monly the case with semiclassical methods.

The contributions from all higher order paths can also be  \;nerical studies have shown that neglecting contributions
obtained |n.th|.s manner. The °°“‘T'b“F'°” from all paths with involving the reflections with hops while keeping the contribu-
two transmission with hop events is given by tions from transmission with hop terms generally results in very

X X iSoo/h good accuracy? 2> The semiclassical and quantum transition
Y1 =@ j;q dX; L/;ldXz T3(Xy) T1(X;) Arr€ (8) probabilities are compared in Table 1 for a one-dimensional
curve crossing proble?. The diabatic potential surfaces are
wherety; = —112. The prefactorArr and phase functiosrr shown in Figure 3. The initial state is the state with lower energy
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0.5 1 (IVR).1457First, consider the single surface case. The primitive
04 1 single surface propagator has the form
J h
S 03 K(R,R,t) = ZAl e (10)
0.2 4
0.1 where the sum is over all classical trajectories startin@at
0 and ending aR; at timet. The phase function is the classical
o 1 2 3 4 s action for the trajectory
X t
Figure 3. Diabatic potential energy surfac®s; = 3 exp(3X), V22 SRyR, Y = !/(‘)(T —V)dy (11)
= 3 exp(3X) — exp(—2X) + 0.1, andV;; = 0.0 1 — tanh[2KX —
2)]t are plotted. whereT is the kinetic energy an¥ is the potential energy.

TABLE 1: Comparison of Semiclassical (SC) and Quantum The prefactorA can be expressed as

(Q) Transition Probabilities for the Model Problem

Corresponding to the Diabatic Potential Energy Surfaces L wdl S [|M?
That Are Plotted in Figure 3 ARy R, = | (=27ih) 7| (12)
2
E (au) p1(SC) p1A(Q)
0.25 0.981 0.953 Alternatively, the IVR version of the single surface propagator
0.50 0.661 0.659 is expressed as a integration over the initial phase space point
0.75 0.391 0.389 {Ro, Po} of the classical trajectorié4>
1.00 0.130 0.131
1.50 0.764 0.765 VR
2.00 0.032 0.032 KYR(R,,R,t) = dP, g(R;Ry,Py)*
3.00 0576 0575 (RiRaD 0 9(R1RoPo)
5.00 0.00002 0.00002 iSh
10.0 0.079 0.079 9(RzR,P)CE™ (13)

at largeX, and the other state is the final state. The semiclassical whered is the dimensionality oR and
probabilities are evaluated using the primitive surface hopping
expansion ignoring reflection with hop terms. The particle mass

is taken to be the mass of a proton and atomic units are 9(RR,P) = (_) exg{ rR = R) + P R-RY

employed. The agreement between the semiclassical and (14)
quantum transition probabilities is excellent over the entire range
of energies considered. is a Gaussian function with average positiBnand average

Only solutions to the TISE have been considered up to this momentumP;. The constanty determines the width of the
point. A similar semiclassical surface hopping expansion can Gaussian. The phase functigis again the classical action
be developed that satisfies the time dependent Schrodingerevaluated along the trajectory. The prefactor is giveh by
equation (TDSE) to first order i and all orders in the
nonadiabatic coupling* The propagator for the entire system C(RoPo,t)
becomes a matrix in the adiabatic state representation

Kao(R1,Rot) = [ (1, RL)IK(r 1,R1,r2,R2,t)|cpb(r2,R2)D(9)

1/2

BP oP
1 t (15)

‘2 R, | 9P, Z'Vh 2'yha_Po  2iyh aR,

Equation 13 expresses the time dependence of the propagator
whereg, andgy, are adiabatic quantum states, andindicates in terms of fixed width Gaussian functions that travel along
integration over the; andr, quantum variables. The semiclas- classical trajectories. The specific IVR given by eqs-13 has
sical surface hopping expansfdexpresse&a,(R1,Rz,t) as the been found to be a very useful semiclassical approximation to
sum of contributions from all energy conserving paths that start the full quantum propagator and is widely employed.
on surfacea at R; and end on surface at R in time t. These The generalization of the IVR propagator for multistate
paths can include any number of hops, and they obey the problems has the forth
classical equations of motion between hops. As before, the
component of the momentum parallel to the nonadiabatic VR VRO VRN
coupling vector is altered at each hop to conserve energy. The Kap (RuRot) = KT (RLRD0,, + ) Koy (R1R1)
zero hop contribution t&,5(R1,R2,t) is the well-known single n= (16)
surface semiclassical propagat@mnd the expansion has a form

analogous the surface hopping expansion for the time indepen-wherekVRO(Ry,R,,t) is the single surface IVR propagator. The
dent wave function. . nth term in the summation in eq 16 contains contributions from
As is the case with the propagator for single surface problems, trajectories withn hops between adiabatic surfaces. Itk

the magnitude of the propagator diverges at caustics along theorder in the nonadiabatic coupling. Neglecting reflection terms
trajectory. It also shares with the single surface propagator the again, the first-order term is

need to search for all trajectories that satisfy specific boundary

conditions. In the multisurface case, this search is for all hopping g 1 1 t IVR

and nonhopping trajectories that starfRatand end aR; at a Kab " (RyRa0) = (27th) ddeo dP, j;dtl Tan (t)

timet later. These problematic issues can be avoided by casting . dsh

the multisurface propagator as an initial value representation 9(Ry;RPo)*9(R; R, P)Ce™ (17)
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Equation 17 has a form similar to that of eq 13 with the addition
of the integration over the time of the hofa, Equation 17

expresses the first-order (in the nonadiabatic coupling) contribu-

Herman

steps and by the semiclassical prefactor. These nonhopping and
hopping amplitudes for thigh stepa;1 anday;, can be employed
in a Monte Carlo procedure to decide whether the trajectory

tion to the propagator as an integration over the initial phase should hop in this step. The probability for staying\Whnduring
space points of single hop trajectories. Each trajectory evolvesthe step is taken to bp; = |ay1|//D; and the probability for

on the initial adiabatic surfac®#yx(R), according to the classical
equations of motion until timé;. At t;, it undergoes a hop to

hopping toW. is taken to bep, = |ay1|/D;, whereD; = |ai1| +
|az1| so thatp; + p2 = 1. If a computer generated pseudo-

Wh(R) and then continues on this surface. The component of random numbek is smaller tharp,, then the trajectory stays

the momentum parallel to the nonadiabatic coupling vector

on the same surface in this step&l&= py, then the trajectory

changes so that the energy is unchanged by the hop. The hoops in this step. In the discussion below, it is useful to express
also results in changes in the stability matrixes that appear inthe amplitude associated with each outcome forjthestep,

the prefactor, eq 1556 The amplitude for the hop af in eq
17 is given by®

C(t
ab SINCy* nab)atg

wherem is the massyap is the magnitude of the vectoyap
times the sign oPanan, Ca is the value of the prefactor &t
before the hop, an@, is its value att; after the hop. This

(Pa;y + Pb;y)

2m

T%R (t) =-—

(18)

ay1 Or a1, as the probability for that outcome multiplied by a
modified amplitudec;. Thus, ¢ = ax/p, = Djagi/|azi| if the
hopping outcome is selected, agd= a;1/p1 = Djaud/|aq| if it

is not.

If the Monte Carlo procedure selects the option to hop during
this step, then on the next step the amplitudes for staying on
the same surface and for hopping bacRAfpare evaluated as
in eqs 19 and 20 ang; andp, are defined as before, except
that roles of the indices 1 and 2 are reversed jaisdeplaced

equation assumes a single mass in the problem. If this is notby j + 1. The procedure is repeated for each step along the

the case, then mass weighted coordinates can be employed.

trajectory until a specified point in the final asymptotic region,

The second-order term in the nonadiabatic IVR propagator X, is reached. The contribution from the trajectory is obtained

contains the contributions from all trajectories with two hops.
It has a form similar to that of eq 17 with a summation over all
intermediates states integrations over the two hopping times,
t; andty, with 0 < t; < t, < t, and two transition amplitudes,
one for the hop from stateto statec att; and one for the hop
from statec to stateb at t,. These transition amplitudes are
given by eq 18. Theith-order term in eq 16 has summations
over all possible sequences of the- 1 intermediate states,
integrations over th@ hopping times, and transition ampli-
tudes.

[ll. Numerical Implementation
In this section, a Monte Carlo procedure is described to

numerically implement the method discussed in the previous

section?>%7 Trajectories are started at some poMjtin the

asymptotic incoming region on a chosen adiabatic potential

energy surface with the appropriate initial momentum. The
trajectories are divided into steps of lengifX. At each step
the contribution to the nonhopping trajectory is
. Xi—
ay; = exp|(ifh) Li' Pyy) dy] 19)
where the system is in quantum state one ngX;+1) is the

point at the beginning (end) of the step. Here we allow for the
possibility thatAX = Xj+1 — X is moderately large. In this

by multiplying together thec; factors from all steps. The
contributions from all trajectories that end on each final surface
W are averaged and the result is multiplied by the appropriate
semiclassical prefactoP[(X;)/Pi(X;)]*2 to obtain the value of
the wave function o\t at X;. Because this is a time independent
stationary state problem, the probability of a particle coming
in on W; and going out o, wheref can be 1 or 2, is given
by the ratio of the outgoing flux and the incoming flux; i.py
= |y1(X0)|2P(Xe)/ |1 1(X:)|12P1(X;). Notice that thePy/P; factor in
pir cancels the contribution from the wave function prefactors.
This method offers a potentially highly accurate procedure
for obtaining transition probabilities. The contribution for each
trajectory contains the product of tloefactors. Because each
¢ is proportional td);, the trajectory contribution is proportional
to the product of the;

(21)

D=1
]

If D can be much larger than 1, then there must be significant
cancellation between trajectory contributions to obtain the
correct value for the wave function. This cancellation can result
in very large sampling errors in a Monte Carlo calculation with
a fixed number of trajectories. In the remainder of this section,
techniques are discussed that can dramatically improve the
efficiency and reduce the statistical errors in Monte Carlo

case, the integral in eq 19 is evaluated numerically by taking a calculations of this type.

sufficient number of small substeps of widéX within the
interval fromX; to Xj+1 so that it can be accurately calculated.
As is demonstrated below, the use of a relatively lakgecan
improve the numerical efficiency of the Monte Carlo procedure.
The nonhopping term in the wave function, eq 4, is obtained
by multiplying a;1 by similar contributions from the other
intervals and by the semiclassical prefactor.

The contribution to the one hop integral eq 5 in which the
hop from surface one to surface two comes in jihestep is
obtained by multiplying the hopping amplitude for tjke step

f, = ‘/’:J(Hldy le(y) eXp[(i/h)szl dz+ (i/h)j)‘/xjﬂpz d(zz]o)

by nonhopping amplitudes of the form of eq 19 from the other

A. Improved Step Amplitudes. Consider the simple curve
crossing problem with the diabatic potential surfates =
tanh(X), Vo4 = —Vi19, and Vi? = A exp(—X?3/20). The
surfaces/;19 andV,,f cross atX = 0. The nonadiabatic coupling
is Ni2 = @2|d§01/dXD= do/dX, andf = 1/2 tan‘1[2V12d/(Vlld —
V9] If the magnitude of the diabatic coupling? is relatively
small nearX = 0, 512 is sharply peaked at the crossing point
with a width proportational tA;2. As Ai» goes to zeroyiz
approachesn/2)d(X), whered(X) is the Dirac delta function.
This shows that the nonadiabatic coupling is often very large
near a point where the diabatic surfaces cross. If a large step
size was used, then the probability for hopping would be very
high. If this step was divided into two steps of half the size,
then there would still be a relatively large Monte Carlo
probability of a hop in each of the two smaller steps and there
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would be a good probability that the Monte Carlo procedure tion that all hops occur at the midpoint of the step. A better
would choose to hop t8V; in the first step and back t@/ in approximation can be developed as follow&8 The general
the second. This double hop option is not accounted for when two-by-two unitary matrix can be expressed as

the larger step size is employed, and a very small step size would

have to be employed in the Monte Carlo method to obtain good _ian|€™ cosf) —€" sin(y)
results. A=e e siny) e " cosf) =
A useful variation on the Monte Carlo procedure is obtained

by assuming the width of the step is sufficiently small that the yhere o, 8, v, and & are real constants. The higher order
differencein the phase integral for trajectories that hop at approximation is obtained by expressing the phase in the single
different points during the step is small and can be neglected. o, double hop, and higher hop integrals in the surface hopping
If the phase for all trajectories that hop during the step iS eypansion for the wave function as a zeroth-order approximation
evaluated as though all hops occur at the midpoint of the step,pjys a correction term. The zeroth-order approximation treats
then the integrals corresponding to one, two, three, ... hops )| hops as occurring at the same pokit, and phase correction
during the step can be performed analyticafy”*Summing  terms are treated as small. The exponentials of the phase
contributions from all nonhopping, one hop, o hop, ... correction terms are then expanded in a Taylor series. The
trajectories within this approximation, the amplitudes for the parameters,, a, B, v, andé are chosen so that each element
different possible outcomes during the interval are found to be of g 25 agrees with the exact result to third ordea) If X,

aj = exp(i§/h) cosf), a1 = exp(iSu/h) sin(y), andaw, = — is chosen so that the phases &o5 anda,; are the same as in
exp(iSio/h) sinfy). The quantityy is given by /712(y) dy andS; the earlier model, théa® o = (Si1 + $2)/2, 0 = S — @,

= [P(y) dy, where the integrations are over the step &nd

defined to beP; (P;) for first (second) half of the step. The Monte Xis1 1y

Carlo procedjure can be performed as described above using V= ijj dy 7;5(Y) COS(ELhdZ[PZ(Z) - Pl(z)]) (26)
these improveay;. Because these amplitudes include multihop

contributions, they can provide accurate results with relatively and

large step sizes in regions of large coupling.

These improved amplitudes also have the appealing charac-g — —s)2— (ayr 4z 7. (2) [Cds
teristic that the matrix P=Gu= %) fxi y Zl(y)fy 2 )j;’
[P(s) = Py(9)] (27)

A= (all a12) 22)
Ay Ay, The P, — Py terms in egs 26 and 27 arise from the expansion
of the phase correction terms.

is unitary. This feature is lacking in the original amplitudes. If This higher order expression féx has been tested on the
the incoming particle is on surfage then the component of  one-dimensional two state model problem shown in Figure 1,
the wave function on surfade at the end of theNth step is ~ where atomic units are employed and the particle has the mass
given by mg[P;(%)/Pu(Xn)]1¥2, wheremy; is an element of of a proton®” At E = 2.8, the quantum transition probability
for an incoming particle on lower surface ending on the upper
surface is found to b@i» = 0.640. This quantum transition
probability is evaluate using a Runge-Kutta method to integrate
the two state Schrodinger equation. If a step siz&Xf= 0.1025

andA® is theA matrix for theith interval. The probability that  is employed in the matrix multiplication method, as described

N
M = [A® (23)

an incoming particle in statewill end in statek, py, is given by egs 23 and 24, the semiclassical surface hopping method
by the ratio of the outgoing and incoming fluxes, which yields givespi = 0.659 if the simple form of thé\ matrix, egs 19
the result and 20, is employed angh, = 0.641 if the higher order form
is usect’ If a step size is doubled tAX = 0.205, then the
Pk = |mkj|2 (24) higher orderA yields p;; = 0.651, which is still of higher

accuracy than the results using the lower odd@nd the smaller

If the A® are unity, therM is unitary, and this guarantees that step size.
the sum of the probabilities for the possible outconmgs+ If the Monte Carlo method described above had been used
pi2, is equal to 1, and conservation of probability is guaranteed. in the calculations, then each trajectory would be multiplied by

It should be noted that the simple matrix multiplication the factor ofD, eq 21. The larger the value @, the more
expression, eq 23, is only useful for one-dimensional problems, cancellation there must be between contributions from different
because multidimensional cases are complicated by the fact thatrajectories to arrive at the correct valuepas. The value oD
the trajectories change direction at each hop. Therefore, thefor the calculation using the higher orderandAX = 0.205 is
Monte Carlo procedure must be used for multidimensional D = 4.86, and the value oD when the lower ordeA is
problems. However, when various approximations on one- employed and\X = 0.1025 isD = 9.8657 Because is about
dimensional problems are tested, the matrix multiplication twice as large in the latter case, the relative statistical error in
expression provides a very efficient way of exactly summing a Monte Carlo calculation of the wave function would have to
the contributions from all possible trajectories. The comparison be roughly half as great as it is in the higher order calculation
of matrix multiplication results with exact quantum calculations to obtain a comparably accurate result. Assuming that the
allows for the determination of the ultimate accuracy of various relative statistical error hashy,~1/2 dependence on the number
semiclassical approximations, independent of statistical errorsof trajectories sampled, then the use of the higher okdetrix
introduced by a Monte Carlo calculation. is expected to cut the number of trajectories needed to achieve

The improveda; amplitudes for a single step, eqs 19 and a desired accuracy by about a factor of 4.
20, include the contributions from multihop terms. The phase B. Selecting a Good Representation of the Quantum
factors in these amplitudes are evaluated under the approxima-States.An adiabatic representation of the quantum states of the
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TABLE 2: Value of G and Semiclassical;, for the
Adiabatic (A), Diabatic (D), and Optimal (O)
Representations for Curve Crossing Problerf

E GMA) GD) GO) GAO) piAA) piAD) piAO) piAQ)
1.3 157 248 124 120 043 043 044 043
20 157 180 112 110 051 051 051 051
50 157 109 090 090 065 0.65 0.65 0.65
100 157 7.64 076 076 074 074 074 0.74
200 157 540 0.64 066 081 081 081 081
400 157 382 054 056 0.86 086 086 0.86
1000 157 242 044 046 091 091 091 091
200.0 157 170 038 040 093 093 093 093

@ The quantum (Qp12 is given for comparison. The value &f for
the approximate optimal (AO) representation is also given.

Herman

For the model considered here with a single crossinygf

and Vo4, G = z/2 in the adiabatic representation at Bll G
becomes smaller d&sincreases for both the diabatic representa-
tion and the optimal representation, reflecting the fact that the
diabatic representation provides a better description of the curve
crossing dynamics at higher energies (faster collisions)e At

= 1.3, the optimal representation give&ahat is about a factor

of 0.8 times thes for the adiabatic representation. Thus, single
hop trajectories are roughly 0.8 times as likely if the optimal
representation is employed than if the adiabatic representation
is used. One would expexthop trajectories to be roughly (0"8)
times as likely in the optimal representation. Thus, one would
expect a significant reduction in the importance of multihop
trajectories when optimal representation is employed.EAs

fast subsystem has been employed in the development of theincreases, the reduction i@ obtained by using the optimal
nonadiabatic semiclassical surface hopping wave functions andrepresentation is more pronounced.EAt 40, the value oz
propagators up to this point. The adiabatic representation of thefor the optimal representation is about one-third its value for
guantum states has the property that it diagonalizes the matrixthe adiabatic representation. Table 2 also presents results for

Vit = [gi|H'|g;0) where Hf is the Hamiltonian for the fast

the transition probability for a particle coming in on the lower

subsystem. The diabatic representation, on the other hand, isadiabatic surface and ending on the upper adiabatic sutface.
defined such that the kinetic energy operator for the slow The quantum transition probabilities are again calculated using

subsystem is diagonal. In this ca$,is no longer diagonal. It

a Rugge-Kutta integration. The data confirm that the semiclas-

is also possible to choose a representation that is neithersical surface hopping method accurately reproduces the quantum
adiabatic nor diabatic. In a two state problem, this general transition probability in all representations considered.
representation can still be defined in terms of the diabatic states  The method just described involves a nonlocal optimization

by eq 3, but without requiring tha#(R) be chosen so that
[gi|H|¢;Clis diagonal at eacR. The flexibility in the choice
of (R) can be used to improve the efficiency of the Monte

of 6(X). This was numerically accomplished by choosing a set
of equally spaced points on théaxis, Xo, X1, Xz, ..., Xy, and
replacing the integral in eq 29 with a finite difference ap-

Carlo calculations. The semiclassical surface hopping wave proximation3® This discretizeds depends on the value 6fat
function or propagator can be modified to allow for a general each of theX points. The problem is then a multivariable
representatiof? The expressions for the propagator and wave minimization problem. The results from calculati8tshow that
function remain as before, except that the nonadiabatic coupling,the 6(X), Wi(X), andWx(X) for the optimal representation are

7it, IS replaced with

S = ;¢ T IMVid (27P;) (28)

In this expresion,Vi and ni; = [f|Veild depend on the

essentially the same as for the adiabatic representation when
|X| > 0. However, axX approaches the crossing point at zero,
the representation crosses over to the diabatic representation
(i.e.,0 = 0). The optimal representation is close to the adiabatic
representation at larg¥|, because the coupling in the adiabatic

representation chosen. The energy conserving change in Moyepresentation is smaller in this region than in the diabatic
mentum at a hop is required to be in the direction parallel to representation. However, the adiabatic coupling® = doad

if-

dX becomes large at smak|, and the optimal representation

Once the semiclassical surface hopping wave function and 4\ids this large coupling by switching over to the diabatic
propagator have been defined for a general representation, therepresentation aX goes to zero.

flexibility in the choice of the representation can be utilized to

reduce the average number of hops along a trajectory in the
Monte Carlo procedure. This is accomplished by choosing the
anglef at each point along the trajectory so as to minimize the

integral of the magnitude of the couplinig;s|, where this integral

is taken over the entire trajectory. The actual integral minimized

in calculations i2°

21172

[ 2 if
G= [ |m+ P
1

dx (29)

The sharpness of the crossover depends on the energy and
the X dependence 0,4, V119, andV, 4 in the region near the
crossing point. A simpler numerical approach is to use an
analytical switching function to hav#X) cross over fron92d(X)
far from the crossing point t6 = 0 at the crossing point. A
hyperbolic tangent functiori(X) = |[tanhX/w)|, is an example
of a simple crossover function that has been employed in
numerical studie®? In these studies, the value of the crossover
width wis estimated at each point along the trajectory by taking
w to be the value that is optimal for the corresponding Lardau
Zenef%1 (i.e., constanlVi, and constant \dy/dx — dVo/dXx)

The PiP; factor in the denominator is employed because a hop Problem. In this approach is X dependent. The representation

from W, to W would have a factor oP;2 whereas a hop from
W; to W, would have a factor oP2. Equation 29 accounts for
hops in both directions.

Consider the simple curve crossing example with?
-V, = tanh), Vi = exp(=X420), andm = 1836.2 au.
Results forG for the adiabatic, diabatic, and optimal representa-
tions are reported in Table 2 for different values®$® The

value ofG for the diabatic and optimal representations depends

on E through theP;P; factor in eq 29. The result for the adiabatic
representation is independenttfbecausé/;, = 0 in this case.

obtained by this procedure is referred to as the approximation

optimal representation (AOR). The data presented in Table 2

show that the value db obtained when the AOR is employed

is not significantly higher than th@ for the optimal representa-

tion (OR). (The slightly higher value @ for the OR at lowE,

compared with the AOR, results from incomplete convergence

of the minimization problem involved in obtaining the OR.)
Figure 4 presents resuitsfor the transition probabilityp;»

as a function of energy for the two crossing point model shown

in Figure 1. The solid line is the quantum transition probability
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1 dependent results for which the agreement with the quantum
o e n' q results is are not noticeably different from that shown in Figure
.8 1 | 4_57
06 | It The statistical accuracy of Monte Carlo calculation&at
o ‘ 2.8 using the semiclassical surface hopping procedure is also
04 - J’ e considered in Table 3. A sample of 10 000 trajectories is used
S in each calculation. The statistical erwis estimated for each
0.2 1 ' calculation by dividing the sample infds = 100 subsamples
1 of 100 trajectories each. The error is then obtained as the root-
0 ~— 4 T mean-squared deviation of the subaverages divided by square
1 3 5 root of Ns — 1. This analysis assumes that the statistical errors
E in the Monte Carlo calculations scale adNg¥?, whereN is

Figure 4. Quantum (solid line) and semiclassical (dots) transition the number of trajectories in the sample. This dependence has
probabilities are plotted as a function of energy for the model problem peen verified numerically. If the calculations are run with 100
corresponding to diabatic potential surfaces shown in Figure 1. subsamples of 1000 trajectories each, then the calculated errors

TABLE 3: Semiclassical Results for Curve Crossing are about 1/1% smaller than the errors shown in Table 3. For
Problem in Figure 1 at E = 2.8 example, when this larger calculation is performed for the case
representation A AX pw pwc o D [hopsd whereAX = 0.1025, the AOR is used, and the higher order

adiabatic lower order 0.005125 0.640 0.475 0235 19.9 297 IS €employed, then the calculateds 0.0089, as compared with
adiabatic  lower order 0.05125 0.645 0.745 0213 13.7 2.65 0.029 for the corresponding calculation shown in Table 3. As
adiabatic  lower order 0.1025  0.659 0.605 0.103 9.86 2.47 is clear from the data in Table 3, much larger trajectory samples
adiabatic hlgher order 0.1025 0.641 0.569 0.086 8.88 2.36 than those emp|oyed here are necessary to Obtain accurate

adiabatic  higher order 0.205 0.651 0.619 0.045 4.86 1.95 . . .
AOR lower order 0.005125 0.637 0.594 0.041 487 157 transition probabiliies wheD is relatively large, whereas the

AOR lower order 0.1025 0.638 0.649 0.031 4.06 1.43 Statistical errors are quite smail~ 0.02 for the calculations
AOR higher order 0.1025 0.636 0.644 0.029 3.78 1.36 with small values oD. It is interesting to compare the results
AOR higher order 0.205  0.635 0.661 0.022 2.97 1.14 for the basic calculation (i.e., lower ordér, adiabatic repre-
apyw is matrix multiplicationpy. pwc is the value ofpy. from a sentation) withAX = 0.05125 with those for the most refined
10 000 trajectory Monte Carlo calculation, amis the estimated Monte  calculation (i.e., higher ordeA, AOR) with AX = 0.205,
Carlo statistical error. See text for definition of other quantities. because these have similar accuracies when the matrix multi-

plication method is employed. It is found that the latter
and the dots are semiclassical surface hopping transition cajculation shows a 10-fold improvement in the statistical error
probabilities obtained using the matrix multiplication method gver the former. Because ~ 1INgY2, it is expected that a
with AX = 0.005125. The oscillations in the transition calculation of around 1 000 000 trajectories would be required
prObabl'lty result from the interference between trajeCtOfieS that to obtain the same level of accuracy using the basic method as
hop between surfaces near the first crossing point and thoseis obtained using the most refined calculation in a 10 000
that hop between surfaces near the second crossing point. Therajectory calculation. A detailed analysis of the statistics of the
semiclassical surface hopping procedure clearly provides very problen?” shows that the statistical error in the most refined
high accuracy results at all energies, and it accurately accountscalculations reported in Table 3 is mainly due to fluctuations
for the phase interference between the various hopping trajec-in the number of trajectories ending in each state, rather than

tories. from an inability to accurately account for the phase cancellation
Table 3 provides data on the accuracy of various calculations between the trajectories ending in a given state.
using either the lower orde& matrix or the higher ordeA The results obtained for this two state problem with two curve

matrix, using either the adiabatic representation or the AOR, crossing points have also obtained employing the widely used
and using different values @X.5” The results demonstrate that  Tully’s fewest switches (TFS) methdd.lt is found that the

for a given level of approximation foh and for a fixed value fewest switches model does not accurately account for the
of AX, the use of the AOR significantly reduced the valu®of interference between hopping trajectories, and this results in
while maintaining similar accuracy. For example, when the inaccurate results for this problem. On the other hand, the
lower orderA is employed and\X = 0.05125D = 13.7 if the statistical errors in the TFS results are significantly smaller than
adiabatic representation is used dbd= 4.87 if the AOR is those found in even the most refined calculations considered in
used. If the higher ordeh is utilized andAX = 0.1025, then Table 3. The reason for this is that the TFS approach provides
D = 8.88 using the adiabatic representation Brnet 3.78 when transition amplitudes for both surfaces, independent of the
the AOR is employed. These reductionsDnare expected to ~ surface on which the trajectory ends, whereas the surface
result in a significant improvement in the efficiency of the Monte hopping method discussed in this work provides a nonzero
Carlo method due to a large reduction in the number of amplitude only for the final surface for the trajectory and a zero
trajectories that are needed to obtain a desired level of statisticalamplitude for the other surface. This results in a smaller
accuracy. All of the calculations just mentioned yield highly fluctuation in the value of the amplitudes from trajectory to
accurate transition probabilities by the matrix multiplication trajectory for the TFS method.

method. If the higher ordek and the AOR are used, thexX Table 3 also includes the average number of hops per
= 0.205 can be employed without loss of accuracy. In this case, trajectory for each calculation. As expected, increasing the size
D = 2.97. Thus, there is an overall reductiorDrfrom 13.7 to of AX decreases the average number of hops, because multihop
2.97 without loss of accuracy by increasing the ordefA @ind contributions within a single step become more important and
using the AOR. Matrix multiplication calculations using the these are incorporated into the amplitude for hopping or not
higher orderA, the AOR, andAX = 0.205 provide energy  hopping during the step. The average number of hops per
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techniques have been employed to reduce the phase interference
problems for single surface Monte Carlo calculati&hs? It
will, in all likelihood, be important to use all of these techniques

1.0 1

Lower Adiabatic Population

0.8 in tandem to obtain a generally accurate and efficient semiclas-
- sical surface hopping method for multidimensional problems.
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