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The conditional two-electron probability function, which defines the electron localization function (ELF) of
Becke and Edgecombe in the Koh8ham theory, is interpreted as the nonadditive (interorbital) Fisher
information contained in the electron distribution. The probability normalization considerations suggest a use
of the related information measure defined in terms of the unity-normalized probability distributions (shape
factors of the electron densities), as the key ingredient of the modified information-theoretic ELF. This modified
Fisher information density is validated by a comparison with the original two-electron probability function.
lllustrative applications to typical molecular systems demonstrate the adequacy of the modified information-
theoretic ELF in extracting the key features of the electron distributions in molecules. The overall Fisher
information itself and the associated information-distance quantities are also proposed as complementary
localization functions.

1. Introduction the distances from a given (reference) electron iathe other

N ) dependent) electron of like spin
Some years ago, the electron localization function (ELF) for (dep ) P

atomic and molecular systems was proposed by Becke and 00 _1

Edgecombé.It has been successfully applied to visualize both P9 =10, + ... @)

the atomic shell structure and the distribution of the bonding ¢

and lone electron pairs in molecules, to classify and distinguish = rl = (r)2 =1 2

between single and multiple chemical bonds, and to monitor Dolr) = Dolpo 1l ZW(pm(r) V1) Tpo(1)

changes in the electron distribution in the bond-formibgnd- "

breaking processés. An extension of the ELF to time- _ 1 2

dependent systems has also been repdrted. = Z Tio(r) = 14V (1)Tpo(r) = O @
It is the main purpose of this paper to provide the information-

theoretic interpretation to the key ingredient of ELF, in terms where both the kinetic energy density(r) = 3¢ 7i,(r) and the

of the Fisher (locality) measure of informati®f.It has been spin density

used in the past to investigate the kinetic energy functioffals,

to derive the Kohr-Sham equatiorfof the density functional o ,

theory (DFT} from the extreme physical information principle po(r) = Z [9i(N]"= z Pio(r) 3)

of Frieden® and to formulate the local thermodynamic-like ! !

description of tha m(_)lecular glectromc structﬂ;ﬂ@t V‘_"” be __are the sums of additive contributions due to the molecular
demonstrated that this analysis leads to alternative information g ;i< (MO) ¢, = {¢i,}, representing the spatial parts of the

measures of the electrop Iocalizat.io.n in molecular systems, o-type spin-orbitals. In the related one-determinant Kehn
which will be tested against the original ELF. The proposed gpam (KS) approximation of DF¥fthe orbital densitieg, =

ir}fc_)rma_ttio?-the?retic IE;']: (ITI'EIEF) will ?e vtalidayed b{ ai)-d {pis} are the (mutually closed) pieces of the overall spin density
plying 1t to interpret the electronic structure in - selecte oo of the separable (s) noninteracting system, which by
representative atomic and molecular systems.

hypothesis equals that of the real interacting system of electrons
in a molecule: p, = pg.
The probability functionD,(r) provides a measure of the
The key ingredient of the electron localization function (ELF) localization of the reference electron, reaching the smallest
is the leading term of the Taylor expansion of the Hartree Vvalues for the highly localized distribution of the reference
Fock spherically averaged conditional (c) pair probability electron. Indeed, it vanishes in the limiting case of the one-

P2(r, s). This quantity measures the probability of finding in  €lectron system and in the regions of the multielectron systems
dominated by a single, localizedspin—orbital of the reference

* E-mail address: nalewajs@chemia.uj.edu.pl electron, which effectively excludes by the Pauli principle
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2. Information-Theoretic Interpretation
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The two terms of eq 2 have a precise information-theoretic ties of the latter can be also considered alternative energetic

interpretation in terms of the density of the Fisher information
measure for locality;® 1(r), of the one-electron probability
densityp(r) = g&(r), J p(r) dr = 1, whereq(r) stands for the
distribution amplitude

Ilp] = " p(r) [V In p(r)]*dr = [ |Vp(r)|/p(r) dr =
S flp; r]dr

=l1[q =4 [ |var)*dr = [ fg; r]dr 4

This information measure characterizes the distribution sharp-

ness (localization), thus providing a complementary description
of the probability distribution to the familiar Shannon entr&py

gp] = — [ p(r) log p(r) dr (5)

with the latter reflecting the distribution smoothness (spread),
thus indexing the uncertainty containedgn

measures of the electron localization.

We have thus demonstrated that the key ingredient of the
ELF measures the nonadditive component of the Fisher infor-
mation measure for locality (intrinsic accuracy) in the MO
orbital resolution. This link between the molecular orbital
localization concept and the Fisher information should not come
as a surprise, since the latter itself characterizes the “narrowness
of the electron distribution (see eq 4). It is proportional to the
squared gradient of the MO in question, thus reflecting the
orbital localization (sharpness). Indeed, in the familiar normal
distribution case, it represents the inverse of the distribution
variance, called the invariance.

Hence, for the fixed electron density, and thus the fixed
overall Fisher informatiori,[o,; r] = f![ps; ] (eq 7) of the
system as a whole, the higher the additive Fisher information
in the MO resolutionf 2[p,; r] (eq 6), the lower the associated
magnitude of the associated nonadditive §dfp,; r] (eq 8),
and thus the higher the degree of the electron localization. One
can therefore conclude that the additive Fisher information itself

”

The kinetic energy term in eq 2 is seen to represent the sumcan be regarded as a basis for an alternative, direct measure of

of the orbital Fisher information densitfes

T(T(r) = z Tio(r) = 1/42 f [pia; r] = 1/42 fi(T[pi(}'; r] =

Y4t oL, 1] (6)

As such, it represents a quarter of the additive (a) Fisher

information densityf 3p,; r] contained in the orbital compo-
nentsp, = { pis} Of the overall spin density,. A reference to

the electron localization

o o
elfz(r) =f 2[’)0; r] = Z|Vpio(r)|2/pio(r) = 4z|v¢ia(r)|2
| |
9)
Finally, it should be observed that the above development

applies only to the real probability amplitudes (orbitals) of eq
4. Therefore, it does not hold for the complex Macke-type

eq 4 also shows that the second term in eq 2 can be similarly OrPitals, which yield the specified electron densite.g., the
identified as providing a quarter of the total (t) Fisher informa- Harriman equi-orbitals. The latter exhibit the identical spatial

tion density inpg, f(r) = f, [po; 1] = {100 1]

Y o) = o V(D py(r) = Y1 f Loy i 1] =
YdF e, it + 1000, 11} (7)

combining the additive (a) and nonadditive (n) parts.
Therefore, theD,(r) function of eq 2 is proportional to the
negative nonadditive contribution fc},(r), defined in terms of
the electron densities
D,(r) = =", 5lp, 1] 8)
This key ingredient of the ELF thus has a direct information-

theoretic interpretation in addition to the conditional probability
interpretation given in the original derivation.

As we have already remarked above, in the KS theory the

MO densitiesp,, or their probability amplitudes (KS orbita
@q, refer to the hypothetical noninteracting system, while the
overall densityp, corresponds to the interacting system. Hence,
the source of the nonadditivity of eq 8 is the electron interaction
in the real system. Therefore, the KS MO partitioning nonad-
ditivity f )[ps; r] in the total Fisher information densiNa[p,,;

distribution of electronspi,(r) = ps(r)/N,, and include the
density-dependent phase factor, which ensures their mutual
orthogonality. Indeed, for these orbital densities, the Fisher
information nonadditivity identically vanishes, as indeed ex-
pected of the uncorrelated electrons described by the equi-
orbitals wrongly interpreted as the real (nonorthogonal) one-
electron functions.

3. Normalization Considerations

As indicated in eq 4, the Fisher information functional,
reminiscent of von WeizZs&er's nonhomogeneity correctith
to the density functional for the electronic kinetic energy, is
properly defined in terms of the unity normalized probability
distributions, i.e., the shape factors of the corresponding electron
densities, e.g.,

Po(r) = o, ("N, [ p,(r)dr =1 (10)
whereN, = [ py(r) dr is the total number of electrons of the
spin varietyo, i.e., the number of the (singly occupied) KS
spin—orbitals{ ¢is} . Enforcing the proper normalization of the

r]in fact represents the electron interaction nonadditivity present €lectron probability distribution gives rise to the total Fisher
in the real molecular system. Moreover, since the additive Fisher information density of the electron shape-function

information densityf i(r) combines all thentraorbital contri-
butions,f [ps; r] = " p,; r], the nonadditive part can be
alternatively interpreted as measuring tinéerorbital Fisher
information density:f [pg; 1] = f "o, r].

The nonadditive Fisher information is related to the non-
additive and correlation kinetic energi€$herefore, the densi-

folPoi 1] = folog: TN, (11)

It should be realized that each orbital density represents the
unity normalized conditional probability distributiom;,(r) =
7,(rli), of finding an electron with spip at a given location in
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space, when it is known beforehand that this electron occupies
the specifiedth MO (a parameter)

STl ==Y [P logp,rydr==% [P,
7,(r[i) log [P, (r|i)] dr

= —i P, log Pig—i Piofﬂg(rli)

log z (rli) dr = SP,) + i P, (i,

pio(r) = pia(r)lpio = ‘T[ia(r)

Pi()' = f pi()’(r) dr = 1/N0

z pio(r) = pa(r)

=logN, + Nz (o) (15)

f S po(rydr = [ m,(r)dr = Z P,=1 (12

Here, pis(r) is the joint probability of simultaneous events in
which an electron is found at and it originates from spin
orbital ¢is, while the orbital probability vectoP, = {Pj,
1/N,} groups for the condensed probabilities of finding an
electron of spirno on a specified MO.

where we have used the normalization condition for the
conditional orbital densities (see eq 12),7,(r|i) dr 1,
involving the integration over the spatial event variableor

the fixed parameter. This entropy combination rule reflects
the fact that the overall uncertainty in the MO distributiqns
does not depend on specific stages of acquiring knowledge about
the distributions in question, here involving the intraorbital

It should be emphasized that the molecular spin probability (conditional) probability stage and that of the (identical)
distribution p,(r) should be compared in terms of the Fisher Probabilities of the MO in the molecule as a whole. The above

information descriptors only with the molecularly normalized combinational formula expresses the overall Shannon entropy
MO joint distributions{ pi,(r)} (eq 12), since only these orbital N the MO.Jomt probablhtlespa(r.)l as the sum of the entropy in
probability densities characterize the orbital distributions of the equalized group probabilitie8, = {1/N,} and theP,-
electrons as subsystems-in-the-molecule. This is in contrast toWeighted average of the intragroup entropies, reflecting the
the conditional probabilities,(r) = {7,(r[i)} = po(r), equal uncertainties in the conditional probabilitieg(r) = {ms(rli)}.

to the orbital electron densities, which describe the separate ThiS comparison shows that, due to the local character of the
probability distributions, as indeed reflected by the unity Fisher information, the analogue of the global group uncertainty

normalization of each of them.

Since the gradient of the logarithm of the joint probability
distributionsp,(r) = {pis(r)} (see eq 4) is solely determined
by the local, conditional probability factor;,(r)

Vinp,(r)=VIn[P, x

io (1] = Vinz,(rfi)  (13)

the additive Fisher information density of the joint probability
distribution satisfies the following grouping rule for combining
the intraorbital contributions into the molecular information

content

fi[po; r] = z Pio fia[‘nio; I"] = Po f i[”a; I"] (14a)
T

and hence

1 p,] = [ filp,; rldr = Z P, J ol 1] dr =
i Pio I[ﬂio] (14b)

In other words, the additive Fisher information in the joint MO
probabilitiesp,(r) = {pis(r)} is the mean value of the Fisher
information contained in the orbital densitigs, i.e., the
conditional electron probabilities,, with the unbiased weight-
ing factors for each orbitaR, = P, = 1/N,, determining the
relevant weighting factor for each orbital “group” of events.

This grouping principle for the Fisher information can be
compared with the corresponding formtfi&? for the additive
Shannon entropy in the MO resolution (see eq 5)

term of eq 15 is missing in the grouping formula (eq 14b).

Therefore, the total and additive Fisher information densities
of eqs 6 and 7, which determine the nonadditive component of
eq 8, have the same linear scaling with the overall number of
electrons, when expressed in terms of the molecularly normal-
ized probabilities

folog 11 =N, f,[p,: ]
and
folpgr 11 = 15[, 11 =N, 15[p,; 1] (16)
and hence
Dy(r) = = 14N, (f,[Pyi 1] = £ 5lpoi 1) =
_1/4Naf g[pa’ r] = NUdU[pO‘; r] (17)
The conditional probability densities,(r) = {mws(r|i)} = po-
(r) of eq 12 provide the convenient framework for an explicit

expression for the nonadditive Fisher information density in
terms of these MO probability variables (see eqs 12 and 15)

Folps: 1= 1VP,(FIP,(r) = 3 VRN Ipi(r) =

N, {f, Lo 1T — T 3lp, 1}

— NS Vi ()Y, ) [, () -
]
JTia(r)_léij] (18)

4. Electron Localization Functions

It follows from the original, two-electron conditional prob-
ability meaning ofD,(r) that the smaller the probability of
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D;st ance [ﬁ]

Di;t ance [151]

Figure 1. Plots of ELF (dashed line) and IT-ELF for Ne, Ar, Kr, and Xe.

finding a second spin-like electron near the reference point at by selecting the square @f = D,/D,° in the denominator and

r the more highly localized is the reference electrdimerefore, adopting the uniform density electron gas reference to give ELF
there is an overall “inverse” relationship between this conditional = 1/,. This particular version of ELF was shown to realistically
probability, proportional to the negative nonadditive component reveal the location of atomic shells as well as the core and
of the Fisher information in MO resolution, and a realistic valence (binding and lone) electron pairs in molecules. Clearly,

measure of the electron localization. any alternative choice of ELF should also deliver all these

The original ELF has been constructed using the following features of the electron configuration with comparable accuracy
“squared” reciprocity relation and clarity of the graphical visualization.

As we have argued in the preceding section, the overall and

ELF,(r) = (1 + x,[p, r]2)71 XolPoi T1=D,lp, r]/DUO(r) MO information-theoretic quantities should be expressed in

(19) terms of the overall shape factor (eq 10) and probabilities of

the orbital subsystems in molecules (eq 12). The LDA reference
with respect to the local density approximation (LDA) value function expressed in terms of the molecular probability

distribution becomes

D,’(r) = D, p,: 11 = [3(6m)*5]p,(N*°  (20)
d,p, (1] = [3(67)*%5][0,(r)IN,]** = D, p,,; 1IN,

This definition, dimensionless and invariant with respect to the (21)
unitary transformations of orbitals, has been designed to directly
reflect the electron localization relative to the above LDA
reference. It assumes the values between 0 and 1 and exhibits Coa . 0 203 0/
the desirable features of reaching the upper limit ELR for ZolPgi 1= [P 11/d,7(Py(r)) = N, ™D, (1)/D, (1) =
the perfect localization and ELF= Y, for a delocalized N, 2% [p,: ] (22)
(homogeneous) electron gas. It should be realized, however,
that this expression has been “tailored” somewhat arbitrarily which can be used to construct the IT-ELF.

Hence, the modified ELF ratio (see eq 17)
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IT-ELF ELF IT-ELF

PH;

BiH,

BiHg

L] a2 a4 o8 ak 1

Figure 2. Plots of ELF and IT-ELF for HZO_, anq NH_ on selected Figure 3. Plots of ELF and IT-ELF for Pkland BHs on selected
planes. The color scale for the ELF values is given in the bottom of ;anes. The color scale for the ELF values is given in the bottom of
the figure. the figure.

The simplest option is to use the ordinary “inverse” relation-

ship in the spirit of the original expression (eq 19) chemically “softer”, i.e., more extended distribution of the

localized electrons in comparison to the “harder” distribution
o3 23 o — resulting from the original ELF definition. A reference to the
elf,(r) = N,"7(N," + x,[pg: 1) = (L + x,[ps 1]) (23) NH3 and PH plots in Figures 2 and 3 also reveals that the IT-
- o ] ~ ELF distinguishes lone pairs and hydrogen atoms somewhat

Above, we have modified the original construction to regain more clearly than the original localization function. The
thel assumed normalization of Becke and Edgecombe(relf  comparison of ELF and IT-ELF of [1.1.1] and [2.2.2] propel-
= 1/ for the perfectly delocalized, homogeneous electron gas, |anes in Figure 4 demonstrates the topological similarity of the
wheny,[ps r] = 1, and elf(r) = 1, for the perfectly localized  two functions.
case, wher,(ps; 1) = 0. o Al calculations have been performed with deMoARlsing

It should also be observed that the original ELF of eq 19 is the |ocal VWN function@?in combination with the DZVP basis
recovered through the corresponding squared inverse relationshiget23 The molecular structures were optimized at the respective

level of theory.

ELF,(r) = N,"I(N,** + 2,[py; 11%) = (L + x,lopi 119

(24) 5. Concluding Remarks

. . . It has been shown that the conditional two-electron probability
In Figure 1, representative graphs of the IT-ELF function function, which defines the ELFjn fact measures in the MO

glrfg(sre)n(ti?j.22):O(Z(}r?ﬁ)z;zriirseor?a?hitodrgthez’ ervlérs ?Qgré(sistrihéesolutiqn the none}ddipive_ part of the densi_ty_of the Fi;her
original function ELF(r) (eq ’19)- The qualitative behavior of ihformation for locality (intrinsic accuracy). This interpretation

the two curves is seen to be very similar. In general, the IT- gives rise to the modified IT-ELF, based upon the first-power

ELF exhibits smaller outer amplitudes and thus a laraer spatial inverse relationship, which compares favorably with the original
. L P . gersp ELF. Additional possibilities are offered by the Fisher informa-
extension than the original ELF. Figures 2 and 3 report

- ; 16 . )
illustrative comparisons of the molecular ELF and IT-ELF plots. t;ﬁl:rgg}f;\nce concept;erelated to the KullbackLeibler cross
Again, the topology of the two functions is qualitatively the

same. The atomic shell structures as well as lone pairs are clearly

displayed by both functions. As already discussed for the rare ASplp] = J p(r) In [p(r)/p’(r)] dr = 0 (25)
gas atoms, the main difference is the decay of the outer

amplitudes, faster in the case of the squared inverse relationshigbetween the (normalized) molecula) &nd promoleculamP)18

of the original ELF. As a consequence, the IT-ELF generates a probability distributions of electrons. The density of the above
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ELF IT-ELF mutually related, since the Fisher informatifp] is proportional

to the cross-entropy (entropy deficiency) of Kullback and
Leibler!” between the probability distributiop(x) and its
infinitesimally shifted versiorp(x + AXx).6

Acknowledgment. This work was financially supported by
the CONACYyT projects 40379-F and G34037-E.

References and Notes

(1) Becke, A. D.; Edgecombe, K. B. Chem. Phys199Q 92, 5397.

(2) savin, A.; Nesper, R.; Wengert, S.;9ster, T. F.Angew. Chem.,
Int. Ed. Engl.1997, 36, 1808.

(3) Silvi, B.; Savin, A.Nature (London)1994 371, 683.

(4) Marques, M. A. L.; Gross, E. K. LAnnu. Re. Phys. Chem2004
55, 427.

(5) Fisher, R. AProc. Cambridge Philos. S0d925 22, 700.

(6) Frieden, B. RPhysics from Fisher Informatior- A Unification
Cambridge University Press: Cambridge, 2000.

(7) Sears, S. B.; Parr, R. G.; Dinur, lsr. J. Chem.198Q 19, 165.

(8) Nalewajski, R. FMol. Phys.2003 101, 2369;Chem. Phys. Lett.
2003 367, 414.

(9) Nalewajski, R. FChem. Phys. Let003 372, 28.

(10) Hohenberg, P.; Kohn, WPhys. Re. B 1964 136, 864. Kohn, W.;
Sham, L. JPhys. Re. A 1965 140, 1133.

(11) Nalewajski, R. FAnn. Phys. (Leipzig2004 13, 201.

(12) Shannon, C. FBell Syst. Tech..J1948 27, 379, 623.

(13) Macke, W.Z. Naturforsch195Q 5a, 192. Harriman, J. EPhys.
Rev. A1981, 24, 680. See also: March, N. FPhys. Re. A1982 26, 1845.
Zumbach, G.; Maschke, KPhys. Re. A 1983 28, 544;1984 29, 1585.

(14) von Weizseker, C. F.Z. Phys.1935 96, 431.

d - " - e —— (15) Nalewajski, R. FJ. Math. ChemSubmitted.

X (16) Nalewajski, R. F.; Parr, R. G. Phys. Chem. 2001, 105 7391.
Figure 4. Plots of ELF and IT-ELF for [1.1.1] propellane (top) and (17) Kullback, S.; Leibler, R. AAnn. Math. Stat1951, 22, 79. Kullback,
[2.2.2] propellane (bottom). The color scale for the ELF values is given S. Information Theory and Statistic¥Viley: New York, 1959.
in the bottom of the figure. (18) Hirshfeld, F. L.Theor. Chim. Actd977, 44, 129.

(19) Nalewajski, R. FPhys. Chem. Chem. Phy2002 4, 1710;Adv.
. S . . Quantum Chem2003 43, 119.
entropy deficiency (mls_smg |_nformat|on) was previously shown (20) Nalewajski, R. F. ®itka, E.; Michalak, Alnt. J. Quantum Chem.
to also reveal all chemically important features of the molecular 2002 87, 198. (b) Nalewajski, R. F.:\itka, E.Phys. Chem. Chem. Phys.
electronic structuré®including the localized bonding and lone 2002 4, 4952. (c) Nalewajski, R. F. Broniatowska, &.Phys. Chem. A

) L : 2003 107, 6270.
electrons, orbital hybridization, and so on. Also, the density of (21) Koster, A. M.; Calaminici, P.; Flores, R.; Geudtner, G.; Goursot,

the molecular displacement of the Shannon entropy (eq 5), A; Heine, T.; Janetzko, F.; Patchkovskii, S.; Reveles, J. U.; Vela, A.;
relative to that of the promolecular (free-atom) distributitfi galahub fIIDV.v R. deMon2k; The deMon Developers, 2005, www.
— _ i emon-so are.com.

. Spl . Spo], has been found to prOYIdg a useful tool f(?r (22) Vosko, S. H.; Wilk, L.; Nusair, MCan. J. Phys198Q 58, 1200.
diagnosing the molecular electron density in terms of chemical (23) Godbout, N.; Salahub, D. R.: Andzelm, J.; Wimmer,G&n. J.

concepts (eq 20c). Indeed, these two information concepts arePhys.1992 70, 560.




