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The conditional two-electron probability function, which defines the electron localization function (ELF) of
Becke and Edgecombe in the Kohn-Sham theory, is interpreted as the nonadditive (interorbital) Fisher
information contained in the electron distribution. The probability normalization considerations suggest a use
of the related information measure defined in terms of the unity-normalized probability distributions (shape
factors of the electron densities), as the key ingredient of the modified information-theoretic ELF. This modified
Fisher information density is validated by a comparison with the original two-electron probability function.
Illustrative applications to typical molecular systems demonstrate the adequacy of the modified information-
theoretic ELF in extracting the key features of the electron distributions in molecules. The overall Fisher
information itself and the associated information-distance quantities are also proposed as complementary
localization functions.

1. Introduction

Some years ago, the electron localization function (ELF) for
atomic and molecular systems was proposed by Becke and
Edgecombe.1 It has been successfully applied to visualize both
the atomic shell structure and the distribution of the bonding
and lone electron pairs in molecules, to classify and distinguish
between single and multiple chemical bonds, and to monitor
changes in the electron distribution in the bond-forming-bond-
breaking processes.2,3 An extension of the ELF to time-
dependent systems has also been reported.4

It is the main purpose of this paper to provide the information-
theoretic interpretation to the key ingredient of ELF, in terms
of the Fisher (locality) measure of information.5,6 It has been
used in the past to investigate the kinetic energy functionals,7,8

to derive the Kohn-Sham equations9 of the density functional
theory (DFT)10 from the extreme physical information principle
of Frieden,6 and to formulate the local thermodynamic-like
description of the molecular electronic structure.11 It will be
demonstrated that this analysis leads to alternative information
measures of the electron localization in molecular systems,
which will be tested against the original ELF. The proposed
information-theoretic ELF (IT-ELF) will be validated by ap-
plying it to interpret the electronic structure in selected
representative atomic and molecular systems.

2. Information-Theoretic Interpretation

The key ingredient of the electron localization function (ELF)1

is the leading term of the Taylor expansion of the Hartree-
Fock spherically averaged conditional (c) pair probability
Pc

σσ(r , s). This quantity measures the probability of finding in

the distances from a given (reference) electron atr the other
(dependent) electron of like spinσ

where both the kinetic energy densityτσ(r ) ) ∑i
σ τiσ(r ) and the

spin density

are the sums of additive contributions due to the molecular
orbitals (MO)æσ ) {æiσ}, representing the spatial parts of the
σ-type spin-orbitals. In the related one-determinant Kohn-
Sham (KS) approximation of DFT,10 the orbital densitiesGσ )
{Fiσ} are the (mutually closed) pieces of the overall spin density
Fσ

s of the separable (s) noninteracting system, which by
hypothesis equals that of the real interacting system of electrons
in a molecule: Fσ ) Fσ

s.
The probability functionDσ(r ) provides a measure of the

localization of the reference electron, reaching the smallest
values for the highly localized distribution of the reference
electron. Indeed, it vanishes in the limiting case of the one-
electron system and in the regions of the multielectron systems
dominated by a single, localizedσ spin-orbital of the reference
electron, which effectively excludes by the Pauli principle
another spinlike electron from its vicinity.
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Pc
σσ(r , s) ) 1/3Dσ(r )s2 + ... (1)

Dσ(r ) ≡ Dσ[Fσ; r ] ) ∑
i

σ

|∇æiσ(r )2 - 1/4∇Fσ(r )2/Fσ(r )

≡ ∑
i

σ

τiσ(r ) - 1/4∇Fσ(r )2/Fσ(r ) g 0 (2)

Fσ(r ) ) ∑
i

σ

[æiσ(r )]2≡ ∑
i

σ

Fiσ(r ) (3)
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The two terms of eq 2 have a precise information-theoretic
interpretation in terms of the density of the Fisher information
measure for locality,5,6 I(r ), of the one-electron probability
densityp(r ) ) q2(r ), ∫ p(r ) dr ) 1, whereq(r ) stands for the
distribution amplitude

This information measure characterizes the distribution sharp-
ness (localization), thus providing a complementary description
of the probability distribution to the familiar Shannon entropy12

with the latter reflecting the distribution smoothness (spread),
thus indexing the uncertainty contained inp.

The kinetic energy term in eq 2 is seen to represent the sum
of the orbital Fisher information densities9

As such, it represents a quarter of the additive (a) Fisher
information densityf σ

a[Fσ; r ] contained in the orbital compo-
nentsGσ ) {Fiσ} of the overall spin densityFσ. A reference to
eq 4 also shows that the second term in eq 2 can be similarly
identified as providing a quarter of the total (t) Fisher informa-
tion density inFσ, f σ

t (r ) ≡ fσ [Fσ; r ] ≡ f σ
t [Fσ; r ]

combining the additive (a) and nonadditive (n) parts.
Therefore, theDσ(r ) function of eq 2 is proportional to the

negative nonadditive contribution tof σ
t (r ), defined in terms of

the electron densities

This key ingredient of the ELF thus has a direct information-
theoretic interpretation in addition to the conditional probability
interpretation given in the original derivation.

As we have already remarked above, in the KS theory the
MO densitiesGσ, or their probability amplitudes (KS orbitals10)
æσ, refer to the hypothetical noninteracting system, while the
overall densityFσ corresponds to the interacting system. Hence,
the source of the nonadditivity of eq 8 is the electron interaction
in the real system. Therefore, the KS MO partitioning nonad-
ditivity f σ

n[Gσ; r ] in the total Fisher information densityf σ
t [Gσ;

r ] in fact represents the electron interaction nonadditivity present
in the real molecular system. Moreover, since the additive Fisher
information densityf σ

a(r ) combines all theintraorbital contri-
butions, f σ

a[Gσ; r ] ) f σ
intra[Gσ; r ], the nonadditive part can be

alternatively interpreted as measuring theinterorbital Fisher
information density:f σ

n[Gσ; r ] ) f σ
inter[Gσ; r ].

The nonadditive Fisher information is related to the non-
additive and correlation kinetic energies.8 Therefore, the densi-

ties of the latter can be also considered alternative energetic
measures of the electron localization.

We have thus demonstrated that the key ingredient of the
ELF measures the nonadditive component of the Fisher infor-
mation measure for locality (intrinsic accuracy) in the MO
orbital resolution. This link between the molecular orbital
localization concept and the Fisher information should not come
as a surprise, since the latter itself characterizes the “narrowness”
of the electron distribution (see eq 4). It is proportional to the
squared gradient of the MO in question, thus reflecting the
orbital localization (sharpness). Indeed, in the familiar normal
distribution case, it represents the inverse of the distribution
variance, called the invariance.

Hence, for the fixed electron density, and thus the fixed
overall Fisher informationfσ[Fσ; r ] ) f σ

t [Gσ; r ] (eq 7) of the
system as a whole, the higher the additive Fisher information
in the MO resolution,f σ

a[Gσ; r ] (eq 6), the lower the associated
magnitude of the associated nonadditive partf σ

n[Gσ; r ] (eq 8),
and thus the higher the degree of the electron localization. One
can therefore conclude that the additive Fisher information itself
can be regarded as a basis for an alternative, direct measure of
the electron localization

Finally, it should be observed that the above development
applies only to the real probability amplitudes (orbitals) of eq
4. Therefore, it does not hold for the complex Macke-type
orbitals, which yield the specified electron density,13 e.g., the
Harriman equi-orbitals. The latter exhibit the identical spatial
distribution of electrons,Fiσ(r ) ) Fσ(r )/Nσ, and include the
density-dependent phase factor, which ensures their mutual
orthogonality. Indeed, for these orbital densities, the Fisher
information nonadditivity identically vanishes, as indeed ex-
pected of the uncorrelated electrons described by the equi-
orbitals wrongly interpreted as the real (nonorthogonal) one-
electron functions.

3. Normalization Considerations

As indicated in eq 4, the Fisher information functional,
reminiscent of von Weizsa¨cker’s nonhomogeneity correction14

to the density functional for the electronic kinetic energy, is
properly defined in terms of the unity normalized probability
distributions, i.e., the shape factors of the corresponding electron
densities, e.g.,

whereNσ ) ∫ Fσ(r ) dr is the total number of electrons of the
spin varietyσ, i.e., the number of the (singly occupied) KS
spin-orbitals{æiσ}. Enforcing the proper normalization of the
electron probability distribution gives rise to the total Fisher
information density of the electron shape-function

It should be realized that each orbital density represents the
unity normalized conditional probability distribution,πiσ(r ) ≡
πσ(r |i), of finding an electron with spinσ at a given location in

elfσ
F(r ) ≡ f σ

a[Gσ; r ] ) ∑
i

σ

|∇Fiσ(r )|2/Fiσ(r ) ) 4∑
i

σ

|∇æiσ(r )|2
(9)

pσ(r ) ) Fσ(r )/Nσ ∫ pσ(r ) dr ) 1 (10)

fσ[pσ; r ] ) fσ[Fσ; r ]/Nσ (11)

I[p] ) ∫ p(r ) [∇ ln p(r )]2 dr ) ∫ |∇p(r )|2/p(r ) dr ≡
∫ f[p; r ] dr

) I[q] ) 4∫ |∇q(r )|2 dr ≡ ∫ f[q; r ] dr (4)

S[p] ) -∫ p(r ) log p(r ) dr (5)

τσ(r ) ) ∑
i

σ

τiσ(r ) ) 1/4∑
i

σ

f [Fiσ; r ] ≡ 1/4∑
i

σ

fiσ[Fiσ; r ] ≡
1/4 f σ

a[Fσ ; r ] (6)

1/4f σ
t (r ) ) 1/4|∇Fσ(r )|2/Fσ(r ) ) 1/4f σ

t [Gσ ; r ] )
1/4{f σ

a[Gσ ; r ] + f σ
n[Gσ ; r ]} (7)

Dσ(r ) ) -1/4f σ
n[Fσ ; r ] (8)
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space, when it is known beforehand that this electron occupies
the specifiedith MO (a parameter)

Here,piσ(r ) is the joint probability of simultaneous events in
which an electron is found atr and it originates from spin-
orbital æiσ, while the orbital probability vectorPσ ) {Piσ )
1/Nσ} groups for the condensed probabilities of finding an
electron of spinσ on a specified MO.

It should be emphasized that the molecular spin probability
distribution pσ(r ) should be compared in terms of the Fisher
information descriptors only with the molecularly normalized
MO joint distributions{piσ(r )} (eq 12), since only these orbital
probability densities characterize the orbital distributions of
electrons as subsystems-in-the-molecule. This is in contrast to
the conditional probabilitiesπσ(r ) ) {πσ(r |i)} ) Gσ(r ), equal
to the orbital electron densities, which describe the separate
probability distributions, as indeed reflected by the unity
normalization of each of them.

Since the gradient of the logarithm of the joint probability
distributionspσ(r ) ) {piσ(r )} (see eq 4) is solely determined
by the local, conditional probability factorπiσ(r )

the additive Fisher information density of the joint probability
distribution satisfies the following grouping rule for combining
the intraorbital contributions into the molecular information
content

and hence

In other words, the additive Fisher information in the joint MO
probabilitiespσ(r ) ) {piσ(r )} is the mean value of the Fisher
information contained in the orbital densitiesGσ, i.e., the
conditional electron probabilitiesπσ, with the unbiased weight-
ing factors for each orbital,Piσ ) Pσ ) 1/Nσ, determining the
relevant weighting factor for each orbital “group” of events.

This grouping principle for the Fisher information can be
compared with the corresponding formula12,15 for the additive
Shannon entropy in the MO resolution (see eq 5)

where we have used the normalization condition for the
conditional orbital densities (see eq 12),∫ πσ(r |i) dr ) 1,
involving the integration over the spatial event variabler for
the fixed parameteri. This entropy combination rule reflects
the fact that the overall uncertainty in the MO distributionspσ
does not depend on specific stages of acquiring knowledge about
the distributions in question, here involving the intraorbital
(conditional) probability stage and that of the (identical)
probabilities of the MO in the molecule as a whole. The above
combinational formula expresses the overall Shannon entropy
in the MO joint probabilitiespσ(r ) as the sum of the entropy in
the equalized group probabilitiesPσ ) {1/Nσ} and thePσ-
weighted average of the intragroup entropies, reflecting the
uncertainties in the conditional probabilitiesπσ(r ) ) {πσ(r |i)}.
This comparison shows that, due to the local character of the
Fisher information, the analogue of the global group uncertainty
term of eq 15 is missing in the grouping formula (eq 14b).

Therefore, the total and additive Fisher information densities
of eqs 6 and 7, which determine the nonadditive component of
eq 8, have the same linear scaling with the overall number of
electrons, when expressed in terms of the molecularly normal-
ized probabilities

and

and hence

The conditional probability densitiesπσ(r ) ) {πσ(r |i)} ) Gσ-
(r ) of eq 12 provide the convenient framework for an explicit
expression for the nonadditive Fisher information density in
terms of these MO probability variables (see eqs 12 and 15)

4. Electron Localization Functions

It follows from the original, two-electron conditional prob-
ability meaning ofDσ(r ) that the smaller the probability of

Fiσ(r ) ) piσ(r )/Piσ ≡ πiσ(r )

Piσ ) ∫ piσ(r ) dr ) 1/Nσ ≡ Pσ

∑
i

σ

piσ(r ) ) pσ(r )

∑
i

σ ∫ piσ(r ) dr ) ∫ πiσ(r ) dr ) ∑
i

σ

Piσ ) 1 (12)

∇ ln piσ(r ) ) ∇ ln[Piσ πσ(r |i)] ) ∇ ln πσ(r |i) (13)

f σ
a[pσ; r ] ) ∑

i

σ

Piσ fiσ[πiσ; r ] ) Pσ f σ
a[πσ; r ] (14a)

I a[pσ] ) ∫ f σ
a[pσ; r ] dr ) ∑

i

σ

Piσ ∫ fiσ[πiσ; r ] dr )

∑
i

σ

Piσ I[πiσ] (14b)

Sa[pσ] ) -∑
i

σ ∫ piσ(r ) log piσ(r ) dr ) -∑
i

σ ∫ Piσ

πσ(r |i) log [Piσπσ(r |i)] dr

) -∑
i

σ

Piσ log Piσ -∑
i

σ

Piσ ∫ πσ(r |i)

log πσ(r |i) dr ≡ S(Pσ) + ∑
i

σ

PiσS(πiσ)

) log Nσ + Nσ
-1∑

i

σ

S(πiσ) (15)

fσ[Fσ; r ] ) Nσ fσ[pσ; r ]

f σ
a[Gσ; r ] ) f σ

a[πσ; r ] ) Nσ f σ
a[pσ; r ] (16)

Dσ(r ) ) -1/4Nσ(fσ[pσ; r ] - f σ
a[pσ; r ]) ≡

-1/4Nσf σ
n[pσ; r ] ≡ Nσdσ[pσ; r ] (17)

f σ
n[pσ; r ] ) |∇pσ(r )|2/pσ(r ) - ∑

i

σ

|∇piσ(r )|2/piσ(r ) )

Nσ
-1{fσ[Fσ; r ] - f σ

a[Gσ; r ]}

) Nσ
-1∑

i

σ

∑
j

σ

∇πiσ(r )‚∇πjσ(r ) [Fσ(r )-1 -

πiσ(r )-1δij] (18)
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finding a second spin-like electron near the reference point at
r the more highly localized is the reference electron.1 Therefore,
there is an overall “inverse” relationship between this conditional
probability, proportional to the negative nonadditive component
of the Fisher information in MO resolution, and a realistic
measure of the electron localization.

The original ELF1 has been constructed using the following
“squared” reciprocity relation

with respect to the local density approximation (LDA) value

This definition, dimensionless and invariant with respect to the
unitary transformations of orbitals, has been designed to directly
reflect the electron localization relative to the above LDA
reference. It assumes the values between 0 and 1 and exhibits
the desirable features of reaching the upper limit ELF) 1 for
the perfect localization and ELF) 1/2 for a delocalized
(homogeneous) electron gas. It should be realized, however,
that this expression has been “tailored” somewhat arbitrarily

by selecting the square oføσ ) Dσ/Dσ
0 in the denominator and

adopting the uniform density electron gas reference to give ELF
) 1/2. This particular version of ELF was shown to realistically
reveal the location of atomic shells as well as the core and
valence (binding and lone) electron pairs in molecules. Clearly,
any alternative choice of ELF should also deliver all these
features of the electron configuration with comparable accuracy
and clarity of the graphical visualization.

As we have argued in the preceding section, the overall and
MO information-theoretic quantities should be expressed in
terms of the overall shape factor (eq 10) and probabilities of
the orbital subsystems in molecules (eq 12). The LDA reference
function expressed in terms of the molecular probability
distribution becomes

Hence, the modified ELF ratio (see eq 17)

which can be used to construct the IT-ELF.

Figure 1. Plots of ELF (dashed line) and IT-ELF for Ne, Ar, Kr, and Xe.

ELFσ(r ) ) (1 + øσ[Gσ; r ]2)-1 øσ[Gσ; r ] ) Dσ[Gσ; r ]/Dσ
0(r )
(19)

Dσ
0(r) ) Dσ

0[Fσ; r] ) [3(6π)2/3/5]Fσ(r)
5/3 (20)

dσ
0[pσ(r )] ) [3(6π)2/3/5][Fσ(r )/Nσ]

5/3 ) Dσ
0[Fσ; r ]/Nσ

5/3

(21)

øσ[pσ; r ] ) dσ[pσ; r ]/dσ
0(pσ(r )) ) Nσ

2/3Dσ(r )/Dσ
0(r ) )

Nσ
2/3øσ[Gσ; r ] (22)
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The simplest option is to use the ordinary “inverse” relation-
ship in the spirit of the original expression (eq 19)

Above, we have modified the original construction to regain
the assumed normalization of Becke and Edgecombe: elfσ(r )
) 1/2 for the perfectly delocalized, homogeneous electron gas,
whenøσ[Gσ; r ] ) 1, and elfσ(r ) ) 1, for the perfectly localized
case, whenøσ(Gσ; r ) ) 0.

It should also be observed that the original ELF of eq 19 is
recovered through the corresponding squared inverse relationship

In Figure 1, representative graphs of the IT-ELF function
elfσ(r ) (eq 23) for the rare gas atoms Ne, Ar, Kr, and Xe are
presented. For comparison, the dashed curves represent the
original function ELFσ(r ) (eq 19). The qualitative behavior of
the two curves is seen to be very similar. In general, the IT-
ELF exhibits smaller outer amplitudes and thus a larger spatial
extension than the original ELF. Figures 2 and 3 report
illustrative comparisons of the molecular ELF and IT-ELF plots.
Again, the topology of the two functions is qualitatively the
same. The atomic shell structures as well as lone pairs are clearly
displayed by both functions. As already discussed for the rare
gas atoms, the main difference is the decay of the outer
amplitudes, faster in the case of the squared inverse relationship
of the original ELF. As a consequence, the IT-ELF generates a

chemically “softer”, i.e., more extended distribution of the
localized electrons in comparison to the “harder” distribution
resulting from the original ELF definition. A reference to the
NH3 and PH3 plots in Figures 2 and 3 also reveals that the IT-
ELF distinguishes lone pairs and hydrogen atoms somewhat
more clearly than the original localization function. The
comparison of ELF and IT-ELF of [1.1.1] and [2.2.2] propel-
lanes in Figure 4 demonstrates the topological similarity of the
two functions.

All calculations have been performed with deMon2k21 using
the local VWN functional22 in combination with the DZVP basis
set.23 The molecular structures were optimized at the respective
level of theory.

5. Concluding Remarks

It has been shown that the conditional two-electron probability
function, which defines the ELF,1 in fact measures in the MO
resolution the nonadditive part of the density of the Fisher
information for locality (intrinsic accuracy). This interpretation
gives rise to the modified IT-ELF, based upon the first-power
inverse relationship, which compares favorably with the original
ELF. Additional possibilities are offered by the Fisher informa-
tion distance concept,11,16related to the Kullback-Leibler cross-
entropy17

between the (normalized) molecular (p) and promolecular (p0)18

probability distributions of electrons. The density of the above

Figure 2. Plots of ELF and IT-ELF for N2, H2O, and NH3 on selected
planes. The color scale for the ELF values is given in the bottom of
the figure.

Figure 3. Plots of ELF and IT-ELF for PH3 and B2H6 on selected
planes. The color scale for the ELF values is given in the bottom of
the figure.

∆S[p|p0] ) ∫ p(r ) ln [p(r )/p0(r )] dr g 0 (25)

elfσ(r ) ) Nσ
2/3/(Nσ

2/3 + øσ[pσ; r ]) ) (1 + øσ[Gσ; r ])-1 (23)

ELFσ(r ) ) Nσ
4/3/(Nσ

4/3 + øσ[pσ; r ]2) ) (1 + øσ[Gσ; r ] 2)-1

(24)
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entropy deficiency (missing information) was previously shown
to also reveal all chemically important features of the molecular
electronic structure,19,20including the localized bonding and lone
electrons, orbital hybridization, and so on. Also, the density of
the molecular displacement of the Shannon entropy (eq 5),
relative to that of the promolecular (free-atom) distribution,∆H
) S[p] - S[p0], has been found to provide a useful tool for
diagnosing the molecular electron density in terms of chemical
concepts (eq 20c). Indeed, these two information concepts are

mutually related, since the Fisher informationI[p] is proportional
to the cross-entropy (entropy deficiency) of Kullback and
Leibler17 between the probability distributionp(x) and its
infinitesimally shifted versionp(x + ∆x).6
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