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This paper examines local anharmonic vibrations in molecules using an analysis that starts with an ab initio
potential energy surface, fits a model potential constructed of Gaussian basis functions, and proceeds to a
quantum mechanical analysis of the anharmonic modes using Cartesian harmonic oscillator basis functions
in a variational calculation. The objective of this work is to suggest methods, with origins in nuclear and
molecular (electronic) quantum mechanics, that should be useful for the accurate analysis of the local
anharmonic motions of hydrogen, and perhaps other atoms or small molecular fragments, residing in molecularly
complicated but otherwise harmonic environments.

1. Introduction advantage in using the harmonic modek(r — r)? with k the
usual force constant, in place of a Gaussian basis function in
f the complete model potential. In fact, generally better model
potential energy fits to the original surface result if one uses
the same basis functions for each bond. If, however, one plans
not to includercy in the quantal, anharmonic analysis, it is
computationally more efficient in the subsequent treatment to
rearrange the potential into two effective bond terms the
Scoefficients of which arecy-dependent. Thus, one has

This paper presents an analysidaal anharmonic motion
of atoms in molecules that is constructed largely in the spirit o
nuclear (viz., shell mod8|, molecular and solid statequantum
mechanical calculations. The analysis is local, much as the
LCAO and related approximations are local in nuclear, molec-
ular, and solid-state electronic calculatiens.

To begin, with HCN as the example to illustrate the approach,
it is possible to determine accurate local hydrogen bond energie
with reference to the harmonically semirigid framework of the _ ) b2 b ?—ubor?
remainder of the molecule (i.e., CN) using any of the variety V= + z //,Me 4 Z %l,ue S
of available ab initio quantum chemistry computational pack- ;21”,%, “
ages. It is possible next to fit the energies to a model potential (1.2)
function, which here is a series in the Gaussian basis functions. .

For HCN in particular, withry = rcp, > = ryg, andrs = rey, with
the Gaussian potential has the féPm

V= V0 + Z Al,me_mhrlz + Z B:'T,.ine—mhnz—anI‘JZ +
1N St =N, T Z Blgieﬂ’bﬁ?’z (1.4)

m+n=N

HZ Cl'mvne—|b1r12_mb2f22_nb3l'32 (11)
I+mFn=N

By =Vo+ Y Ag, e (1.3)
u

and

In eq 1.1,N is the collective upper limit of the exponent, or @, , =B+ z vae—"bmz (1.5)

sum of exponents, of any individual term in the potential; in ' ’ Tl

the calculations reported later in the paper, the maximum

polynomial order is generally taken to be= 10. The matrix elements in the quantum mechanical analysis of
Although the model potential energy function for the hydro- anharmonicity therefore make use of eq 1.2.

genic degrees of freedom, in the example HCN, is a linear ~ Finally, in any quantum mechanical analysis of the motions

combination of Gaussian basis functions raised to simple powers,0f hydrogen in a molecule, there is the question of the choice

alternate forms of model potential employ angle-arguments, of expansion/reference points. A natural point of reference is

either directly or as further arguments of transcendental func- the point of (mechanical) equilibrium with respect to the heavier

tions, in addition to distance variablé3he use here of three ~ atom to which hydrogen is attached. Working with such a

bond vectors for HCN, one of which is linearly dependent, reference, one naturally adopts a sequence of bond and angle

implies the law of sines. As a consequence, there are enoughcoordinates suitable to the molecule involved. There has been

distance variables included in the model potential to account much work using this approachOn the other hand, for the

for angle-bend degrees of freedom. analyses of systems in which hydrogen, in particular, may

This model potential treats each bond, including the (assumed)migrate via a series of local minima in a large and extended
classical bond, CN, in the same way:; there is no particular molecule there is no reason not to consider these minima in

terms of Cartesian and difference coordinates that refer implicitly
T Part of the special issue “Jack Simons Festschrift”. to or are compatible with the overall collection of atofns.
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This approach specifically considers the displacement of the The normalized one-dimensional Cartesian wave functions
hydrogen atom with reference to an equilibrium point of that satisfy the Scfidinger equation for the harmonic oscillator
reference in the molecule. Indeed, this general approach allowsmodel potential are

one to choose a point of reference to be a variational parameter,

should one wish. Ja
— —(1/2)ax?
The matrix elements of the kinetic and potential energy $r(Vax) =, [ ———=H (Vaye @ (2.1)
2"mivr

operators for anharmonic hydrogen are evaluated in terms of

basis functions, each function of which is a product of three The Hermite polynomials are
one-dimensional Cartesian harmonic oscillator basis functions.

The coordinate origin of the wave function is also the point of 2]

I

(mechanical) equilibrium. Thus, the wave function depends on Hm(«/;x) = 20(_ 1)3L(2\/;X)mfzs 2.2)

the displacement vectar = ry — ra wherer, is the vector = (m— 2s)4!

location of the point of equilibrium,rﬂ, or arbitrary point o .

expansior. where as usualn/2] implies the integer nearest /2. The
A particular matrix element of the potential operator, eq 1.2, Normalized eigenfunctions may be written as

is [m2]

) fu(Vax) = EOA“,S(JQxW‘ZSe“W (2.3)
m|V|nC= Bydp, + Z 24, nje P |nrH &
1=1,2

#=1N with the coefficientsAns defined by
Z 8, [n|ePir b n [ (1.6)
. 2"m! (-1y
Ans = > (2.4)
, - : : Vr 2%(m— 2s).l
Because of the contraction properties of Gaussian basis func- 7 :

tions, the second bond-bond interaction term can be expressed

- . . Given an operatof(x), a general matrix element in terms of
as an effective one-bond term. This property affords considerable P ). ag

this representation of the wave functions is

simplification.
It is clear from the expression for the matrix elements, eq [m2][n/2]
1.6, that one can extract the value of the harmonic force constantiin|F(x)|nC= Z)Am A X
for the CN bond by direct differentiation with respectrig. S
Both the coefficients in the potential, eq 1.2, and the matrix o mn—2(s+t) (—1/2)
elements of the Gaussian terms depend on this variable. As a ffoo dx (“/;X) F()e (2.5)

consequence, the harmonic vibrations of CN will be influenced )
by the quantum mechanical character of the anharmoricH [N the sense suggested by Moshinsky ef &,

and H-N bonds.
The next section presents the one-dimensional variant of the 2p=m+n=2(s+1Y (2.6)

Brody—Jacob-Moshinsky (BJM) coefficients for the Cartesian  The maximum value op is
harmonic oscillator basis functions. These coefficients find use

in the evaluation of matrix elements of operators such as eq
1.2. The evaluation of the Talmi integrélhat naturally arise

from the BJM analysis is presented next. A closed form for the
Talmi integral follows easily from common Gaussian integral and
forms, but it is demonstrated that a much more efficient
evaluation of a set of integrals follows with the use of recursion min(p) = max@) — [m/2] — [n/2] (2.8)
relations. Finally, the results of a calculation of the HEN .
stretch modes an the+CN angle bend are presented. The The indext can be replaced by= "/o(m+ n) — p — s. Thus}*
results point the way to more complex analyses of the behavior (m2]

of hydrogen in more complicated molecular settings. B(m, n, p) = I'(p + 1/2) ZOAmsAn (2.9)
y T - .S N, (1/2)(mn)—p—s '
S=

2. Evaluation of Matrix Elements

max(@) = %(m +n) 2.7)

) o ] subject to
2.1. Brody—Jacob—Moshinsky Coefficients and Talmi

Integrals for 1D Oscillator Functions. The strength of the 0 < maxp) —p—s=[n2] (2.10)
original BJM analysi% of matrix elements (which applies to

the spherical oscillator basis functions) lies with the observation If F(X) is even, therm + n = even andp is an integer. On the
that one of the two summations involving the Laguerre other hand, ifF(x) is odd, thenm + n = odd, andp is /-
polynomials in a matrix element can be carried out once, for integer, as is also the case with the spherical oscillator functions.
all time, to define new coefficients. These new coefficients then ~ With the definition of the one-dimensional Talmi integrkft!>

can be used repeatedly for the evaluation of the remaining

summation for any legitimate operator. This situation also T Pt foo xS (x) 12K (2.11)
applies to the 1D oscillator whose matrix elements depend on —o )
the Hermite polynomials. As noted, for local vibrational and F(p + §)

related problems in molecular systems, the one-dimensional
BJM coefficients should usefaf. the matrix element of the operatb(x) is
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max()
[n|F(X)|nO= Z B(m, n, p)T,
p=min(p)

(2.12)

The use of thd function in eq 2.11 follows Moshinsky?g6
practice for the three-dimensional case and normalizes the
integral for the case of the unit operatefx) = 1.

It is not necessary to list these coefficients as they are easily
coded and compute quickly to high order.

2.2. 1D Talmi Integrals for the Operator e P If x in the
operatorF(x) = e ¢ is the same as the argument of the wave

function, the 1D Talmi integral is trivial: T, (al(a +
b))p+(1/2)_14

When the coordinate argument of the operator differs from
that of the wave function, the following analysis applies. For
example, letxy — Xa be the displacement of hydrogen (or an
appropriate atom) from a position of reference or equilibrium
Xa. The argumentxg of the operator &%’ now is the

J. Phys. Chem. A, Vol. 109, No. 50, 20061431

pHL2)
Toe ™ =T [ dxxiPexp(- ax,” — by’ =
F(p + —)
2
ap+(l/2) X 2p+1 o
1 2To+1eXp(_ - b))+
F(p + E)
2

55 T 1) B (@ b, — b, P

exp(— ax,” — bez)} (2.15)

The first term vanishes with the limits. Expansion of the
remaining integral develops into definitions of the Talmi integral
for the indicesp + 1 andp + %,. Thus,

b, I'(p+1)
3)Tp+(l/2) (2-16)

T —_ — 7
pHl \/EXBAF(p N

2

:a+b
a

T

instantaneous distance between the hydrogen and an external

source, such as the carbon or nitrogen atan; Xg [with, for
example, B— C or N]32 The Talmi integral is now slightly
more involved.

The matrix element of the operator®? is

[Enje ¢’ |n0= > B(m, n, p)T e (2.13)
5

Noting thatxa = x — Xa andxg = X — Xg, the Talmi integra®
is

pH(L/2)
Tfe ™} = B S dxy XPexp(-ax,? — bx?) =
r{p+-
)
ap+(1/2) ab )
exp — X X
r( +1) p( a+bBA)
P 2
ootenl-oofe- 2
dx exp|— (a+ b)|x, ——X =
f,w A Xa €XP|— ( )| Xa at b B
ap—O—(l/2) as )
exp|— X X
r( +1) p( a+bBA)
P 2,

.

(a + b)]+(l/2)

[l F(J +

2zl

)Z(PJ')
andXBA = Xg — Xa.

2.3. Recurrence Relations for the Talmi Integral for the
Operator e "> While the results of the last section are correct
and work, the summation oveiin eq 2.14 is not particularly
efficient. This is especially true when compared to the use of
the direct evaluation of the matrix elements following the lines
of earlier work?

The general one-dimensional Talmi integral is defined by eq
2.11. The particular Talmi integral, for which the recurrence
relation will be developed, is defined in the first line of eq 2.14.
Integrating by parts yields

b
a+b BA

which is trivially rearranged to

Vas

b» T atb

T'(p+1)
F(p + :—;)

One needs onlyfp and Ty, to start the recurrence relation. The
expression fofy is

_a
Torn =gy

XA Toran) (2.17)

_ a _( ab 2
Ty = 4 /a+bcxp( a+beA) (2.18)
and
Vb
o= p VaXeaTo (2.19)

Note that ifT-p, = O for all p, then onlyTy is required to start
the recursion a%$1, and all higher half-integef-quantities are
automatically defined; the recursion begins witlr — 1/2 and
the explicit expression fofy, eq 2.18.

2.4. Matrix Elements for Bond—Bond Terms in the
Potential. Matrix elements of the 2-bond many-body terms in
the potential are particularly simple to evaluate in the case that
the potential is represented as a series in Gaussian basis
functions. The Gaussian function contracts to

—Abir 12— bor 2
@ Abure*—ubare®

j‘bl /’th 2 2
ex;{— mrm exp(— (Ab; + uby)ry?) (2.20)
with
Abyrc + ubyr
I b b, @2

Thus, for thex-component of the appropriate Talmi integral one
finds

TP{ e*/lblxlzfﬂbzxzz} —
F( b
exmg —

7, + b 2xCNZ)Tp{e‘(ﬂwbﬂxpl} (2.22)

Note,b — Ab; + ub, and B— P in the definition of the Talmi
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integral, eq 2.11. It is worth noting that the manipulations TABLE 1: Summary of Gaussian 037 Calculations

indicated are general and are not restricted to the example of Optimization (Bond Distances)
HCN. If one makes use of multiple points of reference for the Ruc[A] Ren[A]
wave function basis set, it is still possible to reduce reasonably MP2 1.0706 1.1985
complicated individual matrix elements to simpler forms. Thus, MP4 1.0749 1.1941
a relatively small collection of integral subroutines suffices for CCSD 1.0736 1.1817
the entire analysis. Harmonic Frequencies (crf)
MP2 681.7x 2 1907.6 3475.8
3. Example: HCN MP4 660.2x 2 1932.3 3426.7
CCSD 689.2« 2 2075.3 3441.6
HCN is both a good example and a difficult one to use to expeo 727.0x 2 2129.1 3442.3
test any scheme of analysis that attempts to handle vibrational Energy Scan (1,728 points) in the Half-Space
anharmonic character. The following paragraphs deal, first, with Ruc 1.0A—1.364 A
the fitting of the Gaussian model potential, eq 1.1, to an ab Ren 0.8A—1.296 A
initio-generated potential energy surface. Next, a straightforward Orcn 180 — 123

guantum mechanical analysis of the motion of the hydrogen
atom in the field of the fixed atoms C and N is given. Finally,

the Discussion suggests some reasonable directions for furthe
work. In particular, drawing a parallel to the molecular electronic

problent and the development of modern techniques to handle
such systems, a similar approach should, in time, yield practical
analyses of the dynamics of hydrogen in a number of settings.
To be useful, however, it is necessary that some generally

Numerical Recipepackage?? was modified by replacing the
Gaussian elimination routine by a singular value decomposition.
The use of large basis sets of simple Gaussian functions seems
to lead to instability about pivot points that cause the Gaussian
elimination routine to crash due to accidental degeneracies.
Although the LevenbergMarquardt routine can, in principle,
also handle linear least squares components in a model potential,

applicable entities be developed: i.e., basis sets for light atoms't Was found that the use of a separate singular value decom-
and small molecular fragments in various environments with position-least-squares fit, after t_he initial application of the
stable, optimized sets of orbital exponents much as is the Casé_evenblerg-Marquardt m(?tthd’l yielded much be_tter results.”
with Slater function¥ and the large collection of Gaussian basis S€Veral separate runs of the least-squares routine eventually

functions that are available for modern electronic state calcula- resulteq in a stable minimum root mean square error with no
tions 18.19 appreciable further improvement or change in the set of

coefficients. In general, modeling potential energy functions with
Gaussian basis functions seems to be slightly more tempera-
mental than with other kinds of functions, e.g., basis sets of
Morse functions of the king(r) = 1 — exp[— a(r — ro)].%*
Quantum mechanical calculations were carried out using a
basis set constructed as a product of three one-dimensional
Cartesian basis functions referred to the point of equilibrium
for H as the coordinate origin. Thus, the argument of the wave
function was x4 — x; with similar terms for the other
Cartesian coordinates. The axis of the molecule was chosen to
be collinear with thex-Cartesian axis. The motion of hydrogen
predominately along thg-axis therefore corresponded to the
H—CN linear stretch. Motions of H in thayxzplanes cor-
responded to the HCN angle bend modes. The state function

The fitting of HCN to a Gaussian model potential was also
considered in a previous papefThere the potential was
essentially the same as eq 1.1, but the manipulation was slightly
different. Moreover, the potential of ref 7 was fit to data derived
from the Murrell et aP° potential for HCN.

The potential energy surface for HCN was generated with
the Gaussian 03 suite of quantum chemical progt&misthe
MP2 level of approximation using the 6-31G basis set. For the
whole molecule, including hydrogen isocyanide, HENCNH,
3456 points were generated in thg-plane to sample the
positions of equilibrium as well as the transition state. The
subsequent fitting of this surface to the model potential function
yielded a less-than-impressive minimum root mean square error
of 150 cn1?l, a result that probably reflects more a limited
sample point density than the intrinsic accuracy of the fitting
function. On the other hand, fitting the model potential only to
the species HCN with 1728 points yielded an ultimate root mean w(r) = ZCHCDH(r) (3.1)
square error of 7.3 cm. The subsequent analysis of local "
anharmonicity was carried out using a Gaussian potential fit to
this smaller, local set of points. As will be seen, the anharmonic
analysis is faithful to the model potential that, in turn, is faithful @ (r) = o (q) (3.2)
to the potential energy surface generated from the ab initio n Mg '
guantum chemical routine.

Harmonic-limit frequencies at single optimum equilibrium The maximum quantum numb&t used for an individual
configurations were also found at the MP2, MP4, and CCSD component of the wave function was 9. For the state function,
levels of approximation. In all cases, agreement with experi- no product of basis functions,, exceeded the conditiam +
mental frequencié$ was not as good as one would like, but n, + n, < N = 9. Lower values ofN were tried, but the
this difference belongs to the quantum chemical program, not frequency associated primarily with the+€N stretch seemed
the Gaussian model potential, eq 1.1. Nevertheless, for thereasonably to stabilize with = 9 as the maximum order.
purpose of illustration, the subsequent analysis makes use of In terms of the component basis functions, each transition
the potential surface obtained. The results of the ab initio from the ground statey = 0, looked like a mixture of individual
calculations using Gaussian 03 are presented in Table 1. basis-transitions along the three Cartesian coordinates. That is,

The fitting of the model potential to the ab initio H-potential a stretch showed elements of bend, and the converse. This
energy surface data employed both the Levenb&tgrquardt situation, of course, is consistent with the normal mode for an
nonlinear least squares routine and a straight linear least-squareangular bend at (nearly) constaRt The generation of matrix
analysis??2 The Levenberg-Marquardt routine, available in the  elements and the subsequent variational calculation to determine

wheren = (ny, ny, n;) and

g=Xxy,Z
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TABLE 2: Frequencies, Transition Character, and
Transition Moments for the Minimum Stretch Frequency vs
Orbital Exponent

orbital exponentsx y, 2): 97.50 A2
equivalent harmonic frequencies: 3794.33¢m
ground-state energy: 1.23020 eV

MmO WO MmO Hy

0.01 055 265 0.00 0.00
0.01 265 055 0.00 0.52
0.01 255 255 0.00 0.08
0.01 255 255 0.00 0.05
0.01 2.87 0.84 0.00 0.13
0.01 0.84 2.87 0.00 0.03
1.00 0.74 0.74 0.14 0.00

!

5

(]

674.50

674.50
2840.87
2840.87
3517.60
3517.60
3820.88

Uz

[cNolololoNoNolNo]

1
2
6
7
8
9
0

1 0.00 0.14
optimum values of the elements of the ved®in eq 3.1 was
straightforward to carry out. In addition, two separate orbital
exponential quantities, cf. eq 2.1 were tried, one for the
x-coordinateay and the other for thg, z-coordinatesa, = a,.

In the end, one value of the wave function exponent was used
for all the Cartesian bases cf. Table 2 and Figures 1 and 2).
Variation of the energy with respect to these quantities yielded
a number of local (and sometimes an apparent) global minima.
For small values of the orbital exponeat,the energy minima,
however, proved to be unphysical in terms of the frequencies

associated with the transitions. The behavior of the HCN system &

with the variation of the orbital exponents is illustrated in Figures
1 and 2. In the neighborhood of a valueaf= 95 A2, the
stretch frequency was found to be virtually constant (varying
by a few tens of wavenumber) for a much wider range of values
for a, = &, It was ultimately found that a single value of the
orbital exponeng gave reasonable results. Indeed, it was found,
as shown in Figure 2, that the system was variationally
optimized with respect to the linear stretch frequency.

The analysis of the character of a particular transition was
carried out by evaluating two quantities. The first was the
effective transition dipole (it needed to be nonzero for a defined
difference in energy levels to correspond to a transition), and
the second was a transition character analysis that was carrie
out using the excited-state eigenvector together with the effective
guantum number labels taken from the basis functions associate
with the eigenvector components. Thus, the effectiebaracter
of a transition 8

m‘x[;lz Z n><Cl,nx2 (33)
n=1N

wherel is thelth eigenstate andll is the maximum value of
the wave function. Note, the upper valuengfis limited by the
conditionny + ny + n; = N and is not necessarili}{ in a
particular sum. There are similar quantitiésl] and [h,[l The
triplet of numbers @y [yl [,0) together with the Cartesian
components of the transition dipole gives a reasonable indication
of the character of the transition.

Table 2 presents a summary of the transitions founéfer

d
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Figure 1. Variation of the H-CN angle bend modes as a function of
the original exponeny=y,.

110

115

120

125

550

80 130

H-CN Linear Stretch Mode

3826

3825

3824
£

3823

Frequency, c

3822

3821

1I00 1:35

Orbital Exponent
Figure 2. Variation of the H-CN linear stretch mode as a function
of the original exponenty=y,.
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Although the linear stretch frequency is greater (by about
400 cntl) than the observed value, there may be a number of
xplanations for this disagreement. In the earlier wotke
aussian form of potential was fit to a larger set of points; such
a set was easier to generate using the original Murrell potéftial.
It is probably possible to improve these results greatly with a
larger and denser set of points for the potential energy surface
than was used. The set employed nevertheless illustrates the
assertion, namely that it is possible to get reasonable representa-
tions of the anharmonic character of the hydrogen atom in
particular in a molecular environment that otherwise behaves
as a collection of classical oscillators. The angbend frequen-
cies obtained with the original Gaussian 03 set of routihes
also do not agree with experiment. The anharmonic modes
analyzed here, however, are more in agreement with the
expected value, which should correspond essentially to the
harmonic frequency.
Finally, with respect to the illustrative example of HCN, even

97.5 A2 associated with the minimum value of the frequency though there is indeed a minimum in the linear stretch frequency
of the linear stretch. Apart from the easily identified lowest of H against CN, the range of values is quite small. Moreover,
angle-bend transition and the linear stretch, there are other the use of a single orbital exponent for both thand theyz
transitions essentially involving angular deformations. The modes is acceptable. This fact has two implications: one, it is
doubly degenerate transition at 2841 ¢nappears to have a  a considerable simplification of the analysis only to have to
very small transition probability. From the character of the deal with one orbital parameter in the wave function basis set;
transition, it involves both thg andz Cartesian components  two, it is much easier to make the transition to spherical
and may be a consequence of the analysis rather than a reflectiomscillator basis functions, if one wishes. All of this suggests, as
of reality. The next higher degenerate transition shows a purer mentioned earlier, that it ought to be possible to develop a set
character ofy or z of orbital exponents for the oscillator basis functions along lines
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used by Slater years ajdo specify adequate basis functions naturally involves two-center integrals. Such integrals have not
to use for calculations involving the electron(s) in molecules. been considered in section 3 for the HCN system, but they are
It seems reasonable to expect that classes of bonds ought taliscussed in the Appendix for completeness.

behave essentially the same such that one could construct a set In summary, the objective of this paper has been to show
of basis functions associated with the atoms and bonds involvedthat it ought to be possible to evolve analyses loal

in any arbitrary molecule. anharmonicity, in particular of hydrogen, in otherwise extended
_ _ and complicated molecular systems. The nature of the analysis
4. Discussion emphasizes the use dihear combinationsof orthonormal

he Cartesian harmonic oscillator basis functions together with
accurate local representations of the potential energy function
built as a power series in very simple Gaussian exponential
functions. The essential features of the oscillations of H against
the methods presented here can be useful for the treatment ofclassical) CN for both angiebend modes and the linear stretch.
a number of systems in which tunneling is possible. In addition, &S shown. The agreement W't,h experimental frequenples IS
the analysis adapts to the specific consideration of proton (Probably) as good as the potential energy surface to which the
transfer between local minima activated by fluctuations of a S@ussian model potential was fit. The transparency of the
polar environment (in a sense analogous to the Marcus electror@nalysis suggests a straightforward extension to handle the issue

transfer theorf). Although these issues are not treated in this of tunneling.
paper, they are the subject of continuing investigation. A brief
discussion now follows of the application of this kind of analysis
to problems of tunneling.

The simplest type of hydrogen/proton-transfer system has a
schematic representation:

This treatment of HCN does not include account of t
possible, but infrequent (and therefore unlikely because of the
high barrier) event of hydrogen tunneling from HCNCNH.
Nevertheless, tunneling in general is an important i3aad

Acknowledgment. This work was supported in part by the
Office of Naval Research. | wish to thank Stuart Carter for a
number of discussions of the general problem of fitting model
potentials to expansions in a variety of basis functions.

AH+B<=A + HB A. Two-Center Matrix Elements

The body of this paper dealt with the evaluation of matrix
It is trivial to demonstrate, for example, that the sum of two elements using wave functions referred to the same coordinate
Morse functions, one for AH and the other for HB yield two  origin; viz.
minima and a barrier on the line joining A and?B27 The A
and B species may be neutral or charged. The AB-distance may *
also be fixed, although not necessarily rigidly so, when the A MIFGIIA, nE= f o B Prl¥2X)r(Vax) FO) (A1)
species are atoms within a larger molecular framework. For free in which F(x) is an arbitrary function ok. As is well-known
species AH, B, HB, and A in solution, for example, the proton/ from the molecular electronic proble%ﬁ'the simple LCAO
hydrogen transfer is considered with reference to an instanta—rnethool yields two-center matrix element:5 of the following kind:
neous separatioRag. One eventually needs to average over '
the ensemble of reactant separations in order to define the
reaction rate constant. In any case, it is possible to define points
of reference for the proton/hydrogen atom with respect to the

two species A and B such that one schematically considers alnese matrix elements arise as a consequence of the use of a
transition linear combination of two primitive basis functions referred to

two separate coordinate origins:

A MIF(IBNT= [ dx, ¢,(vax,)e,(vVbxg) FO) - (A.2)

A—H:--B=AH--B=A--‘H—-B
D, = Apy(vax,) + B, (vVbxg) (A3)

for which the A-B distance is fixed. The hydrogen atom
migrates between positions of equilibrium in the space betweenHere,A andB are linear coefficients that are determined by the
A and B. In the simplest case, there is no intervening atom over standard variational method of quantum mechaffics.
or around which the hydrogen atom would need to move in If this approach is applied, for example, to the phenomenon
order to make a transition from an initial to a final state. of hydrogen migration within a molecule or between molecules,

In the case of HCN= CNH, however, the space between Cartesian oscillator functions can be used as primitive basis
the two minima for hydrogen is occupied by the CN-species. functions for the LCAO approximation, as has been done for
This is clearly a complicating factor. As the discussion of HCN HCN in section 3 above. Although the examples of HCN in
in the last section pointed out, with the use of Gaussian this paper did not make use of expansions about multiple centers
expansions of the potential energy surface, it is possible to fit (because tunneling to HNC was not considered), the following
an accurate local model potential for the initial and final states discussion of the appropriate manipulations is presented for
without considering the entire molecule. It is also possible to completeness.
fit a model potential that is referred to intermediate points of By adopting the Cartesian Gaussian basis functions, one can
expansion in order to be able to evaluate the two-center matrix make use of the Moshinsky-Smirnov transformatofi to
elements that will arise. The spirit of this approach is generally condense the product of the two functions into a sum of terms,
the same as is used in the density functional theory in which one of which is a new wave function with reference to a
exchange kernels are modeled and fit to Gaussian expansionsweighted point on the line between the original two points of
The fitting regions are typically those volumes in coordinate expansior.
space where the influence of the potential is the greatest. The The one-dimensional Talmi transformation operates on the
resulting density-functional-theory matrix elements with the Cartesian harmonic oscillator functions and uses of Smirnov’s
(Gaussian) basis functions are also essentially overlap integralsone-dimensional variaktof the Talmi/Moshinsky coefficients.
The evaluation of matrix elements associated with tunneling The basis functions are defined by egs 2.1 and 2.2. The one-
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dimensional Talmi transformation itselflfs

Gn(Vax ), (Vioxg) =
1/2

b
NX T(Ny, Ny ny, ny)y (Va+b x)quz((;—b) x) (A.4)

subject ton; + n; = N; + N (conservation of energy) and

X=Xy — Xg
ax, + bxg
= Tatb (A5)
The formula
N, !N,!

1/2
a(nz— N1)/28(n—N1)/2 x

ZN (ﬂl)(ﬂz)ai(— B) (A.6)
=N\ L

defines the Talmi coefficienT(N, Ny; ni, np) with oo and
defined as

TNy, Nyj g, np) =
n,!n,!

_ . a

a=1-—"7 (A7)

B=1— b (A.8)
a+b '
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integral along lines parallel to the BJM analysis of the single
center integrals. In particular, using eqs 2.3 and 2.4, one has

/ ab X
a+b BA
[m2]

Z}AM’S(a +b)™2 S [T dx o x

X

A, MF(x)|B, n(= %T(MN; MmNy,

1 2
exp — E(a+ b)xo"[ F(X) =

ab max(p)
%T(MN; mn)gy mxBA Z DS (A.14)
) min(p)

The lowercase indep = m/2 — s. In eq A.13, minp) =
max@) — [m/2] and maxg) = m/2. The coefficienty, is
simply

Dp = TP+ 1Az (A.15)
Finally, the Talmi-like integralk, is
1 p+(1/2)
[E(a +b) ] .
= 7 xépexp{— la+ b)xpzl F)
1 © 2
(A.16)

Single species matrix elements depend on the transformationNote that in the limits ab — a andXp — Xa [Xga = 0], then

(eq A.4) through the following relationships. Given

Xy =X— Xy Xg =X — Xz (A.9)
with Xa andXg the locations of the points of expansion of the
basis functions, one has

Xgp = Xg — X, (A.10)
and
aX, +b
xpzx—gTbxszx—xp (A.11)

Thus, the one-dimensional Talmi transformation is

bn(Vax)g, (Vaxg) = 5 TN, Ny 1y )
- b \12
f, (Vat b xp)¢Nz((a—) xBA) (A.12)

a+b

S — T, and the BJM coefficient is

lim lim {%q&N(XBA)T(MN;mn)@M]p} =B(m,n,p) (A.17)
b—a Xga—0 -

Becausepon+1(0) = 0 [due toHan+1(0) = 0] only even terms
in the summation oveN survive.

In the case thaE(x) = exp(— cxf:), one derives a recurrence
relation forS, that reduces to the associated Talmi integral in
the limit a — b. From the definition ofS,, and integrating by
parts, one finds

_ a+b +«/2(a+b)cx I'(p+1)
1 atbr2c P atbtoc “r 3 P12
P+s

(A.18)
It is clearly the case that

lim lim §,=T, (A.19)

The two-particle matrix elements are not considered here, butThe quantitiesS and Sy, are easily found. The preceding

they have been discussed elsewHere.
For an arbitrary one-dimensional operaf), the use of
the Moshinsky-Smirnov transformation in eq A.2 yiékls

A, MFRIB, nT= [ dx dy(a),(Vbxg) F() =

ab
%T(MNJ mn)¢N(V mXBA

o % gu(Va+ bx)F() (A.13)

X

establishes a consistent treatment of integrals for the operator
F(x) = e o,
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