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GTI-simplex is a new methodology that combines the generalized topological indices and the down hill
simplex optimization procedure to search for optimized quantitative structure-property relationship models
(Chem. Phys. Lett.2005, 410, 343). In this study, the fundamental role of the graph topological distance
inducing a local shell structure on vertexes and a detailed derivation of the GTI-decomposition in terms of
the so-called “geodesic-brackets” , i.e., functions that mix the local shell structure for different vertexes are
presented. Applications of the GTI-simplex to a set of physicochemical properties covering those depending
on intramolecular and/or intermolecular interactions are included. GTI-simplex has showed to be a very
effective methodology for the description of different properties from a unified point of view. No ad hoc
definition for topological index is required to each property as in the traditional use of topological indices or
other molecular descriptors to QSAR/QSPR studies.

1. Introduction

The central role that graph-theoretical invariants play in the
study of quantitative structure-property relationships (QSPR)
and quantitative structure-activity relationships (QSAR) is well-
known.1 Far from the days on which graph-based methods were
considered as a numerical curiosity only, topological indices
have become nowadays a vigorous branch of computational
chemistry.2 However, the myriad of descriptors and the apparent
disconnection among them make a claim for an underlying
general theory. Previously, serious efforts have been devoted
to construct new topological indices. One of these strategies
has been the empirical and semiempirical modification of
topological indices, such as the molecular connectivity indices,
to account for more structural information.3-8 On the other hand,
an approach that allows the optimization of topological indices
to improve their performance in QSAR/QSPR studies has also
been developed.9-14 A generalized approach that unifies many
of the “classical” topological indices into one theoretical
framework permitting the development of optimal QSPR and
QSAR models, and a better understanding of their meaning has
been recently introduced.15-18

Any QSPR/QSAR based on graph-theoretical descriptors
assumes the existence of a correlation between a (molecular or
molar) property/activity and the molecular structure described
at a topological level. Although a formal demonstration does
not exist for the above assumption, regression process had shown
during decades the validity of it through building analytical
models, where the linear model is the simplest representative.19,20

Basically, within graph-based QSPR/QSAR studies, the
essential information contained in the molecular-graphs must
be coded using numerical invariants. Of course, the adequate
definition of these invariants is a critical point of the method.

The introduction of topological indices for the study of each
particular property remains as a heuristic way and each property
requires an ad hoc graph-invariant definition.

We have developed a general methodology for obtaining
optimized topological indices21 that combines thesimplex
optimization method22-25 and the so-called generalized topo-
logical index (GTI).15 The main objective of this approach is
to obtain optimized invariants for each property under study.
The great merit of this methodology is that it permits to study
different properties from a unified point of view deriving
molecular descriptors, which are optimal to describe the studied
properties and not by using an ad hoc series of descriptors that
could not be optimized for describing such properties.

In this paper, we report the theoretical aspects about the GTI-
decomposition in terms of the so-called “geodesic-brackets” and
the fundamental role of the graph topological distance inducing
a local shell structure on vertexes. This local structure on
vertexes is the responsible for coding into any GTI the specific
features of the molecular topology present in the molecules.
Finally, we discuss the application of the simplex method to
the optimization of GTIs, permitting us to model four physi-
cochemical properties with a very good accuracy. The properties
have been chosen in such a way that they account for
intramolecular and/or intermolecular forces.

2. Generalized Topological Index (GTI)

In this section, the theoretical aspects concerning with the
generalized topological indices (GTI) introduced in previous
works15-18,21 are discussed. LetG(V,E) be a molecular-graph
with |V| ) n vertexes and|E| ) m edges. LetD ) (dij)n×n be
the topological distance matrix of the graphG(V,E). Using the
kth order geodesic (shortest path) matrix of the graphG, whose
entries are defined as follows
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∆ij
(k)[G] ) [0, if dij * k in graphG,

1, if dij ) k in graphG, (1)
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the generalized topological index (GTI) associated with the
graphG(V,E) can be written as follows:

where

and each “geodesic-bracket” 〈i,j〉G is defined by

where

and

The scalarsx0, x1, x2, p0, p1, p2, wj ) (w1, w2, ..., wn), andsj )
(s1, s2, ..., sn), form a (2n + 6)-dimension real space of
parameters. The first six parametersx0, x1, x2, p0, p1, andp2 are
free parameters whereas the parameterswj andsj are predefined
quantities that could permit one to introduce a priori nonequiva-
lency of the atoms in the molecule (i.e., the presence of
heteroatoms in the molecule). The quantityδi[G] is the classic
degree of theith vertex in the graphG, whereas the quantity
Ni

(k)[G] is the number of vertexes at distancek from the ith
vertex. For simplicity, whenwj ) (0, 0, ..., 0)) 0h andsj ) (0,
0, ..., 0)) 0h, the following compact symbol

is used in order to abbreviate the notation. Now, by the
introduction of the following definition

eq 2 can be written in the following compact form:

Equation 10 shows that any GTI can be separated in terms of
the contributions of pair of vertexes at the same topological
distance in the graph. Eachη(k) term defines the contribution to
GTI of all those interactions due to the pairs of vertexes
separated at distancek in the graph. These contributions are
scaled by two real parameters through theCk coefficients. For

example, by simple inspection of Figure 1, theη(k) for the 2,4-
dimethylhexane molecule are

The diameter of the graph is a global descriptor and its
presence in definition (10) reveals the dependence of any GTI
on the “size” of the molecular-graph. On the other hand, the
molecular-connectivity relationship among atoms in the mol-
ecule defines the “shape” of the molecular graph. This “shape”
is coded by the so-calledgeodesic-brackets(see eqs 5 and 6).
The functionsu and V are the generalization of the “classic”
vertex degree notion. Through these functionsu andV and by
settling thex andp parameters, a pair of weights is assigned to
each vertex in the graph. On each vertex these weights code
the topological environment around it. From the previous
analysis, it is clear that the codification of the topological
complexity of any molecular-graph relies on theNi

(k)[G]
quantities, defined by eq 7. The currentx andp real parameters
are responsible for the connection of this topological graph-
complexity with the physicochemical property. From any
distance matrix, it is very easy to obtain theNi

(k)[G]. For
example, the process for the 2,4-dimethylhexane molecule (see
Figure 1) reads as follows:

Within the GTI method, theNi
(k)[G] quantities are the basic

units of information describing the graph-topology associated
with molecules. So, the distance matrix has a central role in
the present theoretical approach. For a given distancek, the set
of all Ni

(k)[G] defines ak-shell structure centered on theith
vertex. For example, thek-shell structure on the vertex 4 of the
molecular-graph for the 2,4-dimethylhexane (see Figure 1) is
shown in Figure 2. Every vertex in the graph has its shell
distance-induced coding locally the topological global features
of the graph.

3. GTI-Simplex Methodology

The methodology used here is the same reported in a previous
work.21 By the combination of the GTI approach and the simplex
optimization method, which is described below, a general
methodology for obtaining optimized GTI has been developed.
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Figure 1. Molecular graph labeling for the 2,4-dimethylhexane.

η(1) ) 〈1,2〉 + 〈2,3〉 + 〈2,4〉 + 〈4,5〉 + 〈5,6〉 + 〈5,7〉 + 〈7,8〉,
η(2) ) 〈1,3〉 + 〈1,4〉 + 〈2,5〉 + 〈3,4〉 + 〈4,6〉 + 〈4,7〉 + 〈5,8〉 + 〈6,7〉,
η(3) ) 〈1,5〉 + 〈2,6〉 + 〈2,7〉 + 〈3,5〉 + 〈4,8〉 + 〈6,8〉,
η(4) ) 〈1,6〉 + 〈1,7〉 + 〈2,8〉 + 〈3,6〉 + 〈3,7〉,
η(5) ) 〈1,8〉 + 〈3,8〉.

]
(11)
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Let Π ) {π1, π2, ..., πg} be a set of any physical-chemical
property data for a collection of molecules represented by the
setĜ ) {G1, G2, ..., Gg} of molecular-graphs. In this section,
the concept of GTI will be used for obtaining a general linear
regression procedure that fits the property data and the molecular
graph structures. In what follows, the study will be restricted
to the six-dimensional parameter subspace formed by all 6-tuples
(x0, x1, x2; p0, p1, p2); i.e., we will consider GTIs of the form
shown in (4) only.

Let Q be the following scalar function

where the symbol| ‚| means the absolute value andR(ATB)
denotes the linear correlation coefficient between dataA and
B. By hypothesis, it is assumed the existence of a 6-tuple that
minimizes the six-dimensional scalar functionQ. Now, to find
the minimum (local or global) of the functionQ, we used the
so-called downhill simplex method of optimization.22-25 The
main goodness of this method is that it requires only function
evaluations, not derivatives.

A simplexis a geometrical object consisting ofn + 1 points
and all their interconnecting line segments, wheren is the
number of parameter to be optimized. The downhill simplex
method starts from an initial simplex. Then, by successive
reflection, expansion, and contraction operations, the algorithm
moves the simplex in the direction of the best point (minimum).
Several different starting simplexes are required in order to study
the local or global nature of any minimum. A detailed exposition
about this method and its implementation on computers can be
found elsewhere.26

All the previous ideas (generalized topological indexes, linear
correlation function and downhill simplex method), have been
coded in a computer program termed GTI-simplex where each
simplex involves seven 6-tuples of the form (x0, x1, x2; p0, p1,
p2). Each 6-tuple defines a GTI response point and GTI-simplex
explores the GTI space to find a minimum of function.21

Two important constrains on the simplex optimization
procedure should be imposed for negative values of the
parameters:x0, x1, x2. First, for x0 < 0 the real parameterp0

only adopts the discrete values 0,(1, (2, .... The second
constraint is less restrictive than the first. From eqs 5 and 6,
some continuum intervals of negative values for the parameters
x1 and x2 are compatible with noninteger values of the
parametersp1 andp2. By a trial and error process, these intervals
are easily found. Then, the simplex algorithm works within these
intervals under the boundary conditionQ ) 1 for pathological
cases (fractional power of a negative number).

4. Results and Discussions

In this section, we apply the GTI-simplex methodology to
a set of four properties for the eighteen octane isomers: standard
heat of formation in gas phase (propertyP1), molar refraction
(propertyP2), standard heat of vaporization (propertyP3), and
normal boiling point (propertyP4). Table 1 shows the values
used as the input data in the present work. Data were taken
from Kier and Hall,19 except one taken from CRC Handbook.27

The goal to chose the above properties consist of covering
properties depending on the intramolecular forces (the first two)
and properties depending on the intermolecular forces (the last
two). On the other hand, octane isomers represent a challenging
data set for QSPR models using topological descriptors.28,29 In
this case the descriptors cannot account for the effect of
molecular weight on the physicochemical properties studied and
the QSPR models are not “falsified” by this effect. At last but
not least we have selected this set of molecules as the simplest
representative of organic molecules. It is straightforward to
realize that the results obtained for these data set can be extended
to other series of molecules in a similar way as the topological
indices, first tested for alkanes, have been extended to the whole
chemistry.

After optimization process and using the notation in (4), any
GTI-simplex model can be written in the following standard
form:

whereA and B are linear correlation constants that connects
the graph-theoretic approach with the physicochemical property
under study. Table 2 shows the results obtained for the four
selected properties of the octane isomers. For comparative
purposes, Table 3 shows the use of the well-known Wiener
index30 and Randic´ index31 to model the same four properties.
The stability of the models was studied by cross validation
experiments using the leave-one-out approach. Every time the
GTI parameters were reoptimized for every new data in which
one structure was hidden, and this hidden datum was predicted
using these new parameters.

Figure 2. Distancek-shell structure on vertex 4 of the molecular graph
for the 2,4-dimethylhexane.

Q ) 1 - |R(GTI[G] T Π)| (12)

TABLE 1: Selected Properties of Octane Isomersa

octane isomersa
CAS

registry no. P1 P2 P3 P4

1 8 111-65-9 -208.4 39.194 41.48 398.8
2 2M7 592-27-8 -215.5 39.234 39.68 390.8
3 3M7 589-81-1 -212.6 39.102 39.84 392.1
4 4M7 589-53-7 -212.1 39.119 39.68 390.9
5 3E6 619-99-8 -210.9 38.946 39.65 391.7
6 22MM6 590-73-8 -224.7 39.255 37.30 380.0
7 23MM6 584-94-1 -213.9 38.983 38.79 388.8
8 24MM6 589-43-5 -219.4 39.132 37.78 382.6
9 25MM6 592-13-2 -222.6 39.261 37.87 382.3
10 33MM6 563-16-6 -220.1 39.011 37.54 385.1
11 34MM6 583-48-2 -213.0 38.864 38.98 390.9
12 23ME5 584-94-1 -211.2 38.838 38.53 388.8
13 33ME5 563-16-6 -215.0 38.719 37.99 391.4
14 223MMM5 564-02-3 -220.1 38.927 36.93 383.0
15 224MMM5 540-84-1 -224.1 39.264 35.15 372.4
16 233MMM5 560-21-4 -216.4 38.764 37.23 387.9
17 234MMM5 565-75-3 -217.4 38.870 37.71 386.6
18 2233MMMM4 594-82-1 -225.9 38.634c 35.19 379.4

a P1: standard heat of formation in the gas phase (kJ/mol).P2: molar
refraction (cm3/mol). P3: standard heat of vaporization (kJ/mol).P4:
normal boiling point (K). Data were mainly taken from ref 19.b M:
methyl. E: ethyl.c From ref 27.

P[G] ) A + B × 1
2(p0 p1 p2

x0 x1 x2
) (13)
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From Tables 2 and 3, we observe three remarkable facts. First,
GTI-simplex method is a very effective methodology for the
description of different properties from a unified point of view.
No ad hoc definition for topological index is required for each
property as in the traditional use of topological indices or other
molecular descriptors to QSAR/QSPR studies. Second, the
improvements in the correlation with respect to the “classical”
indices are quite remarkable. For instance, the relative percent-
age of improving inR for the propertiesP1, P2, P3, andP4 are,
respectively, 92%, 33%, 21%, and 83%, compared to those
correlations obtained using the Wiener index. On the other hand,
the relative percentage of improving inR for the propertiesP1,
P2, P3, and P4 are, respectively, 14%, 190%, 4%, and 20%,
compared to those correlations obtained using the Randic´ index.
Finally, the cross-validation experiment using the leave-one-
out technique shows that this regression models are very stable
to the inclusion-exclusion of data points, which is indicative
of the lack of overfitting for these models.

In the section 2, we discussed the central role of the graph
diameter and the distance-induced shell structure on vertexes
for defining the GTIs. Of course, the graph diameter is a relevant
descriptor for the molecular branching, i.e., any decrease in the
graph diameter means to pass from less starlike to more starlike
graphs. A star withN vertexes,S1,N-1, is a graph having one
central vertex with degreeN - 1 andN - 1 vertexes with degree
one. Examples are propane (S1,2), 2-methylpropane (S1,3), and
2,2-dimethylpropane (S1,4). However, the complexity in the

description of molecular branching relays on the “diversity” of
graphs with the same diameter. Therefore, topological indices
capable of describing very accurately this “diversity” are the
candidates for building a good theory about the application of
graph theory in chemistry.

The distance-induced shell structure on vertexes is given for
each graphG by the quantitiesNi

(k)[G], i.e., the number of
vertexes at distancek from the ith vertex inG. Every graph
defines a distributionNi

(k)[G] on its vertexes, intrinsic informa-
tion contained in the graph distance matrix. It is clear that within
the present theoretical framework these distributions of non-
negative integers on a sample of graphs are the responsiblity
of the “fine” graph-based description of any physicochemical
property.

Figure 3 shows the plots of each selected property for octane
isomers vs its optimized GTI (left-hand side) and the plots of
the average values of the current optimized GTI for graphs with
the same graph diameter vs the diameter (right-hand side). In
these plots, the dispersion on the average values has been
included with 95% of confidence (t-Student distribution).

The analysis of all plots in Figure 3 clearly shows a common
behavior, that is as follows: any increase in the graph diameter
produces an increase in the value of the property. However,
the plots of the dispersions of the average GTI vs diameter
exhibit a relevant difference between those properties depending
on the intramolecular forces from those depending on intermo-
lecular forces.

Let us concentrate our analysis on graphs with diameters 4,
5, and 6, which are the only subsets with any possibility of
“diversity” in the current sample. For all properties the
“diversity” in graph is the same but the relative dispersion on
the plots in Figure 3 vary from one case to another. On one
hand, the optimization process for the propertiesP3 and P4

reduces drastically the dispersion for graphs from diameter 4
through 6. On the other hand, the optimization process for
propertiesP1 andP2 maintains practically constant the dispersion
for graphs with diameter 4 through 6, this is particularly obvious
for the propertyP2. What do these dispersions try to tell us
about the discriminative power of any GTI for recognizing
molecular branching?

Having in mind that the number of octane isomers with
diameter 4 is 6, with diameter 5 is 7, and with diameter 6 is 3,
the intimate relationships between the dispersion on plots and
the molecular branching are obvious. In fact, propertyP1 is the
heat of formation, a property strongly bond-additive. Thus, for
this property, the particular topology is less relevant than the
number and type of bonds broken or formed from a reference
compound. PropertyP2 is the molar refraction, a property that
represents the volume occupied by the molecules per unit mole.
So, this is a property closest to the molecular “size” than to the
molecular “shape” . PropertiesP3 andP4, the heat of vaporiza-
tion and boiling point, respectively, are strongly dependent on
the intermolecular forces, i.e., they depend on the electric field
surrounding the molecule, where the lack of homogeneities in
the field are extremely relevant in defining the current value
on the property. Thence, the extreme increment in the dispersion
on plots when the “diversity” is high is a direct consequence of
the fact that during the optimization process, to obtain a good
fit between the property and the index, the GTI-simplex
algorithm recognizes the main role of the branching on the graph
sample for theseP3 andP4 properties. A more accurate analysis
for the case of propertyP1 indicates that the corresponding GTI
is sensitive to molecular branching too. This is because we are

TABLE 2: Statistical and Linear Regression Results for the
Four Selected Properties of the Eighteen Octane Isomers
after the GTI -Simplex Optimization Process (Parameters
Shown Below)a

P1 P2 P3 P4

A 396.0 8.262 61.97 -36.52
B -3.855 0.3922 -0.00581 707.7
R -0.973 0.982 -0.995 0.990
S 1.242 0.038 0.170 0.891
CVR 0.965 0.945 0.991 0.987
CVS 1.357 0.062 0.224 1.009
x0 0.0577 0.0899 0.8111 -3.2223
x1 0.8110 1.0773 0.6919 0.7537
x2 1.2271 0.6130 -0.0643 0.7537
p0 0.7247 1.4349 0.7205 -1.0000
p1 1.2374 0.3031 1.6555 -0.4998
p2 -0.0379 0.7144 1.9503 -0.4998

a A: intercept.B: slope. R: correlation coefficient.S: standard
deviation. CVR: cross-validated correlation coefficient. CVS: cross-
validated standard deviation.

TABLE 3: Statistical and Linear Regression Results for the
Four Selected Properties of the Eighteen Octane Isomers
Using the Wiener Index (W) and the Randić Index (ø)a

P1 P2 P3 P4

W A -245.3 37.42 24.06 351.1
B 0.4094 0.0227 0.2031 0.5138
R 0.5066 0.7385 0.8200 0.5423
S 4.6501 0.1385 0.9462 5.3123
CVR 0.3335 0.6610 0.7798 0.3824
CVS 2.4299 0.1190 0.8320 2.9845

ø A -314.7 37.52 4.381 275.5
B 26.84 40.85 9.272 30.54
R 0.8502 0.3396 0.9581 0.8250
S 2.8394 0.1932 0.4734 3.5727
CVR 0.8195 -0.1234 0.9373 0.7480
CVS 2.6939 0.0660 0.5655 3.6744

a A: intercept.B: slope. R: correlation coefficient.S: standard
deviation. CVR: cross-validated correlation coefficient. CVS: cross-
validated standard deviation.
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Figure 3. Plot of each property vs its optimized GTI (left-hand side plots) and plot of the average values of the current GTI for graphs with the
same diameter vs the graph diameter (right-hand side plots). The 95% of confidence (t-Student distribution) has been included to show the dispersion
about each point due to the graph branching effect.
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considering heat of formation in the gas phase, and a vaporiza-
tion process is implicit.

5. Conclusions

We have developed a basic methodology for the optimal
development of QSPR/QSAR models using graph-theoretical
molecular descriptors. This approach, named GTI-simplex,
represents a unifying framework that avoids the ad hoc use of
topological indices in a nonoptimal way to describe physico-
chemical or biological properties. Instead, GTI-simplex finds
the optimal descriptor for each property by optimizing several
parameters that describe the global and local topology of a
molecule. The advantages of this approach are not only those
related to the practical results obtained by using it, i.e., the great
improvement of the quality of QSAR/QSPR models. This
approach encloses several of the most important topological
indices into one graph-theoretical invariant, which open new
possibilities to generalize and interpret this type of molecular
descriptors as a whole. As we have shown here, this approach
also permits a clear structural interpretation of the QSAR/QSPR
models developed using it by means of their decomposition into
the geodesic brackets. These results point to the direction that
a generalized approach to the topological description of mo-
lecular structure by using graph theory is a necessary step
forward the definition of amolecular complexity theorydue to
“networks are the prerequisite for describing any complex
system, indicating that complexity theory must ineVitably stand
on the shoulders of network theory.” 32 And network theory is
not anything other than graph theory.

It is obvious that the graph-theoretical approach to chemistry
is telling us nothing about the nature of the atoms and bonds
forming the molecule, characteristics which are well described
by quantum mechanics. GTI and other topological approaches
are mainly based on a description of the organization, i.e., the
topological structure, of atoms in a molecule. However, as Mark
Buchanan has written: “Some of the deepest truths of our world
may turn to be truth about organization, rather than about what
kinds of things make up the world and how those things behaVe
as indiViduals.” 32 This organization of atoms in a molecule,
which defines concepts such as those treated in this work, e.g.,
diameter, geodesics, branching, etc., is accounted for by a
graph-theoretical representation of a molecule. Because graph
theory “is the branch of mathematics that deals with questions
concerning theVarious ways that a group of things can be

connected together, and the theory applies no matter what these
“things” might be.” 33
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(28) Randic´, M.; Trinajstić, N. J. Mol. Struct. (THEOCHEM)1993, 284,
197.
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