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The double-channel recombination and separation of the photochemically created singlet radical pair is
investigated, taking into account the spin conversion in a zero magnetic field and the arbitrary initial distance
between the radicals. The quantum yields of the singlet and triplet products and the free radicals production
are found analytically, assuming that the recombination of the diffusing radicals occurs at contact. All the
yields are related to the singlet and triplet populations of the recombining radical pair, subjected to spin
conversion and contact exchange interaction. The general analytical expressions for the quantum yields are
specified for the particular limits of the weak and strong exchange. They are greatly simplified in the case of
polar solvents, especially at the contact start. A close similarity is obtained with the results of a previously
developed incoherent model of spin conversion, provided that the conversion rate is appropriately related to
the hyperfine coupling constant.

I. Introduction

The singlet radical-ion pair (RIP) created by photoinduced
forward electron transfer is subjected to spin conversion, which
populates its triplet state as well. The backward electron transfer
in the singlet RIPs proceeds into the ground state of the neutral
products (or into the nearest excited singlet), while the triplet
RIPs recombine into their excited triplet state. The appearance
of the triplet excitation as a consequence of geminate RIP
recombination was first detected in the classical works of Weller
at al.1,2 and explained semiquantitatively by Schulten and
Schulten.3 In their pioneering work, the rates of recombination
through the singlet and triplet channels were assumed to be
equal, so that the recombination was “spin independent”. The
presence of the triplet recombination channel in line with a
singlet one was indirectly confirmed by the theoretical inter-
pretation of Mataga’s data on the kinetics of the accumulation
and separation of RIPs.4 Later on, the triplets were experimen-
tally determined in the very same system in which excited
perylene (Per) was quenched by some aromatic amines (D):

To discriminate between the parallel singlet and triplet recom-
bination channels, this spinless reaction scheme was substituted
by the following comprehensive analog:5

in which kc
S andkc

T are the contact recombination constants of
the different channels, whileWI(r) is the rate of ionization
(forward electron transfer at distancer), andæj is the average
quantum yield of the free ions.

The difference between the products of recombination from
the singlet and triplet states of the pair was also observed in
some other systems. In particular, the minor T-channel contribu-
tion was determined when the recombination from the S and T
states of the pair led to the formation of different isomers of
the same molecule.6,7

The key question is, What is the mechanism of spin
conversion in the RIP? In the paramagnetic complexes contain-
ing heavy atoms8-11 the mixing of the singlet and triplet states
of the RIPs in a zero magnetic field is stochastic, induced by
spin relaxation (hyperfine interaction (HFI) is negligible).12 Here
we turn to the HFI mechanism, which is common for organic
radical pairs. There, the hyperfine coupling constants lie in the
range of 0.02-20 ns-1 (1-1000 G), thus they are much larger
than the relaxation rates, which are inverse inT2 ≈ T1 ∼ 1 µs.
Assuming thatT1 ) T2 ) ∞, we will consider the double-
channel recombination of RIPs containing a single magnetic
nucleus with spin 1/2 in the contact approximation for recom-
bination rates and exchange interaction. The yields of the free
radicals as well as the singlet and triplet products of recombina-
tion will be calculated at any initial separation and arbitrary
exchange integral. All the results are expressed via the Green
functions of the stochastic encounter motion of radicals. For
some types of this motion, there are exact analytical expressions
or approximations. The rest can be easily calculated numerically.

The outline of this paper is as follows: In the next section,
the yields of the singlet and triplet products of contact
recombination,æS andæT, are related to the density matrix of
the RIP and expressed via the efficiencies of recombination
through these channels,ZS andZT. In section III, the conven-
tional equation of motion for the density matrix is replaced by
the integral equation for its Laplace transformation, with a kernel
containing the Green functionĜ0 that represents the free motion
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of the radicals of the RIP and their spin evolution without
accounting for spin exchange interaction and recombination.

In the contact approximation for the reaction rates and
exchange interaction, this equation is reduced in section IV to
an algebraic one, and the quantum yields are expressed through
its solution at the contact distance. The important new relation-
ship between the quantum yields of the double-channel recom-
bination is established here.

The simplest system with a single nucleus is considered in
section V to calculate the Laplace transformation of operator
Ĝ0 and express the recombination efficienciesZS andZT through
its components. These efficiencies also obey the first established
general relationship, which allows for the expression of each
of them through the single total efficiency of recombinationZ.

This parameter, calculated in section VI for the arbitrary initial
separation of radicals, is a complex function of both reaction
constants and the spin exchange parameter,jc, calculated in the
contact approximation. Considered separately are the opposite
limits when this parameter is either zero or infinitely large.

In the highly polar solvents studied in section VII, the
difference between these limits is not found to be considerable,
at least in the spin-independent case when the recombination
rates are equal. At infinitely high rates, the spin exchange does
not affect the recombination yields at all. Moreover, their
nontrivial diffusional dependence is very similar to that obtained
earlier within the incoherent (rate) model of spin conversion
provided, that the conversion rate is properly related to the HFI
constantA. The sharp features in this dependence at short
starting distances indicate that the theory, assuming recombina-
tion to be contact, is unsuitable for the closest starts and too
slow for diffusion where the recombination is actually static.

In section VIII, the greatly simplified analytic results are
obtained for the contact starts of RIPs in highly polar solvents.
These general results reproduce all the particular cases studied
under such assumptions earlier: single-channel recombination
from either the singlet or triplet state, as well as double-channel
recombination at equal rates (spin-independent total recombina-
tion). This is done in all cases for zero and infinitely large spin
exchange, and the results are compared with their incoherent
analogues if available. The difference is not qualitative and is
rather weakly pronounced if the rate of spin conversion is
properly related to the hyperfine splitting in the electron
paramagnetic resonance (EPR) spectra.

II. Singlet and Triplet Products of RIP Recombination

The density matrix of the radical pair, depending on the inter-
radical distancer and time t, obeys the following evolution
equation:13,14

with a reflective boundary condition at the contact distancer
) σ, whereσ equals the sum of the van der Waals radii of the
radicals:

Here,L̂ is the operator, diagonal in the Liouville space, which
describes the relative stochastic motion of the radicals, whileL̂
is a Liouville operator describing the distance-independent part
of the spin interactions, andĵ is a flux operator. In general, the
operatorL̂ includes the paramagnetic relaxation of the radical
spins, the HFIs of the unpaired electron spins with nucleus spins
(given by a known HamiltonianĤ), and the Zeeman interactions

with an external magnetic field. The rate operatorŴ(r)
represents the radicals recombination, andiĴ(r) accounts for the
exchange interaction of their spins. Both of these operators
depend on the distance between the radicals,r. The recombina-
tion occurs from either the singlet or triplet state of the RIP or
from them both. Thus one can specify the total recombination
operator in the following way:

Here,ŴS(r) andŴT(r) are the operators of recombination from
the singlet and triplet states. Their action on the density matrix
F is defined by the following:

where wS(r) and wT(r) are the recombination rates from the
singlet and triplet states of the RIP, respectively, andP̂S and
P̂T are the projection operators onto the singlet and triplet states
of the RIP, respectively. They can be specified through the spin
operators of the radicals of the RIP,SB1 ) (S1x, S1y, S1z) andSB2

) (S1x, S1y, S1z), in the following way:

and

in which Ê is the unity matrix. Obviously the quantum yield of
the singlet productsæS can be defined as follows:

Here, FSS(r,t) is the singlet state population of the RIP. The
quantum yield of the triplet productsæT is defined in a similar
way:

in which FT0T0(r,t), FT+T+(r,t), andFT-T-(r,t) are the populations
of the T0, T+ and T- states, respectively.

The quantum yields of the recombination products expressed
through the Laplace transform of the density matrix,F̃(r,s) )
∫0

∞ F(r,t) exp(-st)dt, can be presented as follows:

for the singlet products, and

for the products in the excited triplet state. The rest are the free

∂F(r,t)
∂t

) L̂F(r,t) + L̂ F(r,t) - [Ŵ(r) + iĴ(r)]F(r,t) (2.1)

ĵF(r,t)|r)σ ) 0 (2.2)

Ŵ(r) ) ŴS(r) + ŴT(r) (2.3)

ŴS(r)F )
wS(r)

2
(P̂SF + FP̂S) (2.4)

ŴT(r)F )
wT(r)

2
(P̂TF + FP̂T) (2.5)

P̂S ) Ê
4

- SB1SB2 (2.6)

P̂T ) 3Ê
4

+ SB1SB2 (2.7)

æS ) Tr(∫0

∞
dt ∫σ

∞
ŴS(r)F(r,t)d3r) )

∫0

∞
dt ∫σ

∞
wS(r)FSS(r,t)d

3r (2.8)

æT ) Tr(∫0

∞
dt ∫σ

∞
ŴT(r)F(r,t)d3r) )

∫0

∞
dt ∫σ

∞
ŴT(r)(FT0T0

(r,t) + FT+T+
(r,t) + FT-T-

(r,t)) d3r

(2.9)

æS ) Tr(∫σ

∞
ŴS(r)F̃(r,0)d3r) ) ∫σ

∞
wS(r)F̃SS(r,0)d3r, (2.10)

æT ) Tr(∫σ

∞
ŴT(r)F̃(r,0)d3r) )

∫σ

∞
wT(r)[F̃T0T0

(r,0) + F̃T+T+
(r,0) + F̃T-T-

(r,0)] d3r (2.11)
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radicals that escape from the cage with the yield

It is common to use their efficiencies instead of the yields,
which are introduced by the following definitions:5,15

in which the total efficiency of the recombination is

The efficiency parameterZ was introduced in the spinless
theory16 instead of the recombination rate in a cage,k-et,
used in the old “exponential model”12,17,18(see ref 12, sections
III(D) and V(B)). However, the separation ofZ into two spin
components was introduced rather recently, when the double-
channel recombination was subjected to theoretical investiga-
tion.5

III. Distant Start

It is convenient to introduce the operator

which assembles together the rate and exchange operators. Then
eq 2.1 can be rewritten as follows:

The Laplace transformation of this equation takes the following
form:

in which F(r,0) is the distribution of the density matrix over
the initial separation of the radicals in a pair. If the RIPs are
created at a fixed distancer0, then the normalized initial distri-
bution of them in the spherically symmetric case (no anisotropy
of recombination and exchange interaction) is given by:

Taking this into account, we can recast eq 3.3 as follows:

Here, the argumentr0 in the Laplace transformation of the
density matrixF̃(r, r0, s) is added just to stress the parametric
dependence of the density matrix on the initial starting distance
r0. There are two solution methods available to solve eq 3.5.
One of them employs the adjoint (or conjugated) Liouville
equation (see eq 3.218 in ref 15, and refs 154 and 155 therein).
This method was generalized and also extended to spin-
dependent problems by Pedersen and Christensen.19 In the
present work, we use another one- the direct Green’s function
method.

Let us introduce the matrix Green function (without reaction
and spin exchange),Ĝ0(r, r′, t), which takes into account the
system motion in the coordinate and spin state but without

reaction and spin exchange. It obeys the following equation with
displayed initial and boundary conditions:

The Laplace transformation of this equation yields

Using this Green function, eq 3.5 can be formally resolved with
respect toF̃(r, r0, s) in the following way:

IV. Contact Approximation for the Recombination and
Spin Exchange

Assuming that the recombination, as well as the exchange
interaction, takes place only in a very narrow strip around the
contact,σ e r e σ + ∆, where the strip width∆ , σ, one can
estimate in the contact approximation the integral in the right-
hand side of eq 3.8:

in which

Because of contact simplification, the integral eq 3.8 reduces
to the algebraic matrix equation forF̃(σ, r0, s):

Resolving eq 4.3 with respect to the density matrix, one finally
obtains

This important result was obtained by Purtov and Doktorov.20

It provides the exclusively convenient formal procedure for the
calculation of the quantum yields.

In the contact approximation, the quantum yields of the singlet
and triplet products of recombination are expressed through the
Laplace transformation of the density matrix at contact,F̃(σ,
r0, 0):

and

where

æ ) 1 - æS - æT (2.12)

æ ) 1
1 + Z/D

, æT )
ZT/D

1 + Z/D
, æS )

ZS/D

1 + Z/D
(2.13)

Z ) ZS + ZT (2.14)

Û(r)) Ŵ(r) + i Ĵ(r) (3.1)

∂F(r,t)
∂t

) L̂F(r,t) + L̂ F(r,t) - Û(r)F(r,t) (3.2)

sF̃(r,s) - F(r,0) ) L̂F̃(r,s)+ L̂ F̃(r,s) - Û(r)F̃(r,s) (3.3)

F(r,0) )
δ(r - r0)

4πr2
F0, F0 ) |S>< S| (3.4)

L̂F̃(r,r0,s) + (L̂ - sÊ)F̃(r,r0,s) )

-
δ(r - r0)

4πr2
F0 + Û(r)F̃(r,r0,s) (3.5)

∂Ĝ0

∂t
) L̂Ĝ0 + L̂ Ĝ0, at Ĝ0(r,r′,0) )

δ(r - r′)
4πr2

Ê,

ĵ Ĝ0(r,r′,t)|r)σ ) 0 (3.6)

L̂Ĝ̃0(r,r′,s) + (L̂ - sÊ)Ĝ̃0(r,r′,s) ) -
δ(r - r′)

4πr2
(3.7)

F̃(r,r0,s) ) Ĝ̃0(r,r0,s)F0 - ∫σ

∞
Ĝ̃0(r,r′,s)Û(r′)F̃(r′r0,s)d

3r′
(3.8)

∫σ

∞
Ĝ̃0(r,r′,s)Û(r′)F̃(r′,r0,s)d

3r′ ≈ Ĝ̃0(r,σ,s)Q̂F(σ,r0,s) (4.1)

Q̂ ) 4πσ2∆‚Û(σ) (4.2)

F̃(σ,r0,s) ) Ĝ̃0(σ,r0,s)F0 - Ĝ̃0(σ,σ,s)‚Q̂(σ)F̃(σ,r0,s) (4.3)

F̃(σ,r0,s) ) [Ê + Ĝ̃0(σ,σ,s)‚Q̂]-1Ĝ̃0(σ,r0,s)F0 (4.4)

æS(r0) ) Tr ∫σ

∞
ŴS(r)F̃(r,r0,0)d3r )

∫σ

∞
wS(r)F̃SS(r,r0,0)d3r ≈ kc

SF̃SS(σ,r0,0) (4.5)

æT(r0) ) Tr ∫σ

∞
ŴT(r)F̃(r,r0,0)d3r ≈

kc
T [F̃T0T0

(σ,r0,0) + F̃T+T+
(σ,r0,0) + F̃T-T-

(σ,r0,0)] (4.6)

kc
S ) 4πσ2∆‚ws(σ), kc

T ) 4πσ2∆‚wT(σ) (4.7)
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The lower indexc indicates that these estimates are obtained
in the contact approximation of the recombination rates.

Let us show that, between these yields, the following general
relationship exists, in addition to eq 2.12:

in which φ̃(r,r0,s) is the Laplace transformation of the scalar
function φ(r,r0,t) which obeys the following equation:

It is obvious that its Laplace transformation,φ̃(r, r0, 0), obeys
the equation

As follows from eqs 4.5 and 4.6,

To prove the relationship in eq 4.8, let us find the trace in
the right-hand side of the last equation in another way. Rewriting
eq 3.3 after taking eq 3.4 into account, one has, ats ) 0,

The general solution of this equation can be expressed through
the Green function of eq 4.10,φ̃(r, r0, 0):

It follows from this solution that

because of the following identities:

Taking into account thatŴ ) ŴS + ŴT and settingr ) σ,
one obtains in the contact approximation from eq 4.14

whereæS(r0) andæT(r0) are given in eqs 4.5 and 4.6, and their
sum is equal to 1- æ(r0). Combining now eqs 4.16 and 4.11,
we arrive at eq 4.8.

V. Spin Dynamics in a Zero Magnetic Field

The quantum yields of the singlet and triplet products are
expressed through the density matrixF̃(r, r0, s) at r ) σ ands
) 0. Generally,F̃(r, r0, s) can be expressed, as in eq 4.4, via
the Green functionĜ̃0(r, r0, s), which is the Laplace transfor-
mation of

Thus, the time-dependent Green functionĜ0(r, r0, t) is the
product ofφ(r, r0, t) defined in eq 4.9, which depends solely
on the relative motion of radicals and their separation, and the
matrix eL̂ t, which is distance independent and determined by
the spin interactions only.

The Laplace transformation of eq 5.1 yields

The Liouville matrix L̂ can be reduced to a diagonal form:

in which Λ̂ is the diagonal matrix with elementsλ1, λ2, ‚‚‚.
Then obviously,

where matrixĜ̃ is given by the following expression:

Thus we see that all the results can finally be expressed through
the functionφ̃(r, r0, s). Moreover, for the yield calculations,
very often one needs only its particular value at the contact
arguments,r ) r0 ) σ. At continuous diffusion in the Coulomb
attraction potential, a nice analytical approximation for
φ̃(σ,σ, s) obtained in ref 21 is given in Appendix A.

For the particular case of continuous diffusion in a highly
polar solvent (no Coulomb attraction/repulsion in the RIP), this
function is well known:22

Here,D is the encounter diffusion coefficient, which equals the
sum of the diffusion coefficients ofA- andD+. (The Laplacian
operator of the encounter diffusion in this case isL̂ ) Ê‚D∆.)
At the start of contact, this expression reduces to the simplest
one:

æS(r0)

kc
S

+
æT(r0)

kc
T

) φ̃(σ,r0,0) - φ̃(σ,σ,0)[1 - æ(r0)] (4.8)

∂φ(r,r0,t)

∂t
) L̂φ(r,r0,t), whereφ(r,r0,0) )

δ(r - r0)

4πr2
and ĵφ(r,r0,t)|r)σ ) 0 (4.9)

L̂φ̃(r,r0,0) ) -
δ(r - r0)

4πr2
(4.10)

æS(r0)

kc
S

+
æT(r0)

kc
T

) Tr{F̃(σ,r0,0)} (4.11)

L̂F̃(r,r0,0) )

-L̂ F̃(r,r0,0) + Û(r)F̃(r,r0,0) -
δ(r - r0)

4πr2
F0 (4.12)

F̃(r,r0,0) ) φ̃(r,r0,0)F0 + ∫ φ̃(r,r′,0)L̂ (r′)F̃(r′,r0,0)dV′ -

∫ φ̃(r,r′,0)Ŵ(r′)F̃(r′,r0,0)dV′ -

-i ∫ φ̃(r,r′,0)Ĵ(r′)F̃(r′,r0,0)dV′ (4.13)

Tr{F̃(r,r0,0)} )

φ(r,r0,0) - ∫ φ(r,r′,0)Tr{Ŵ(r′)F̃(r′,r0,0)}d3r′ (4.14)

Tr{L̂ (r′)F̃(r′,r0,0)} ) Tr{Ĵ(r′)F̃(r′,r0,0)} ) 0, Tr(F0) ) 1
(4.15)

Tr{F̃(σ,r0,0)} ) φ(σ,r0,0) - φ(σ,σ,0)[æS(r0) + æT(r0)] (4.16)

Ĝ0(r,r0,t) ) eL̂ t
φ(r,r0,t) (5.1)

Ĝ̃0(r,r0,s) ) ∫0

∞
e-steL̂ t

φ(r,r0,t)dt (5.2)

L̂ ) T̂Λ̂T̂-1 (5.3)

Ĝ̃0(r,r0,s) ) T̂ Ĝ̃ T̂-1 (5.4)

Ĝ̃ ) (φ̃(r,r0,s - λ1) 0 0
0 φ̃(r,r0,s - λ2) 0
0 0 ‚‚‚ ) (5.5)

φ̃(σ,r0,s) ) 1
4πσD

‚σ
r0

‚
exp(-x s

D
(r0 - σ))

1 + xsσ2

D

(5.6)

φ̃(σ,σ,s) ) 1
4πσD

1

1 + xsσ2

D

(5.7)
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A. One-Nucleus RIP.Now let us consider the RIP containing
only one nucleus with spin 1/2, located on the radical named 1.
The HamiltonianĤ of the HFI between the electron and nuclear
spins at this radical is given by

in which A is the hyperfine coupling constant, andÎB is the
nucleus spin operator:ÎB ) (Îx, Îy, Îz). The spin basis of the
RIP consists of eight wave functions. LetR and â represent
the wave functions of spin directed along or opposite to thez
axis, respectively. Then the direct product of three individual
spin functions constitutes the single wave function of the
RIP, and there are eight independent combinations of such
sort:

Here, the subindex “e” relates to the electron spin functions,
and “N” relates to the nuclear ones. The first spin function (Re

or âe) corresponds to the electron spin of the first radical, while
the following one corresponds to the second radical. The last is
the spin function of the nucleus belonging to the first of the
two radicals in a pair. The spin HamiltonianĤ and the projection
operatorsP̂S andP̂T in eq 2.4 commute with the operator of the
summaryz projections of the spins,

This allows us to subdivide the whole spin system into four
ensembles that differ from each other by thez projection of the
total spin:

Since we restrict our consideration to the RIP born in the
singlet state, the triplet statesReReRe and âeâeâe are not
populated initially and will not be because they do not mix with
the other states. The ensembles 2 and 3 also do not mix with
the others, but evolve independently. Thus, it turns out that,
for the quantum yield calculation, one needs to specify only
the evolution of ensemble 2. The results for the quantum yield
obtained from ensemble 3 should be the same because en-
sembles 2 and 3 differ only by the sign of the total spin
projection. Therefore, from this point forward, we will confine
our discussion to ensemble 2.

One can also use another set of wave functions that are the
orthogonal linear combinations of those included in set 2. For
instance, the projection operators have a simpler form in the
singlet-triplet basis of the electron spins supplemented with a
nuclear one. The electron spin basis consists of one singlet and
three triplet wave functions:

while the total spin basis of the RIP withΣz ) 1/2 is the
following:

The projection operatorsP̂S and P̂T in this basis have the
simplest matrix form:

In the same basis, the Hamiltonian eq 5.1 has the following
form:

However, to make use of eq 4.4, we have to pass to the
Liouville space. The matrix elements of the Liouville operator
L̂ are expressed through the Hamiltonian matrix elements as
follows:

where i, k, p, and q enumerate all the states of the basis eq
5.10, andδip andδkq are Kroneker symbols. The dimensionality
of the Liouville operator of ensemble 2 is 9× 9.

The Hamiltonian of the contact exchange interaction is

Then the corresponding part of the Liouville operatorÛ can be
represented as follows:

According to eq 2.4, the Liouville operator of the contact
recombination from the singlet state is

The operatorŴT(σ) is defined in the same way. We have to
use bothŴS(σ) andŴT(σ), as well asiĴ, in eq 3.1, specifying
Û(σ) and thenQ̂ from eq 4.2, which appears in the final matrix
solution (eq 4.4).

To find the operatorĜ̃0(σ, r0, s) from eq 5.4, one needs to
have the diagonal operatorĜ̃ (σ, r0, s) specified via the
eigenvaluesλi of operatorL̂ defined in eq 5.3. These eigen-
values expressed through the three eigenvalues of the Hamil-
tonian eq 5.12 (E1 ) -(3/4)A, E2 ) E3 ) (1/4)A) are equal to
their pair differences,Ei - Ej (i, j ) 1, 2, 3). Correspondingly,
there are nine eigenvalues of the Liouville operatorL̂ :

Therefore, the elements of the operatorĜ̃ and, consequently,
those of operatorĜ̃(r, r0, s), are expressed through only three
functions: φ̃(r, r0, s), φ̃(r, r0, s - iA), and φ̃(r, r0, s + iA).

Ĥ ) A‚ ÎB‚ŜB1 (5.8)

ReReRN, ReReâN, ReâeRN, âeReRN, ReâeâN, âeReâN,
âeâeRN, âeâeâN

Σ̂z ) Ŝ1z + Ŝ2z + Î z

1. ReReRN, Σz ) 3/2

2. ReReâN, ReâeRN, âeReRN, Σz ) 1/2

3. ReâeâN, âeReâN, âeâeRN, Σz ) -1/2

4. âeâeâN, Σz ) -3/2

|S〉 ) 1

x2
(Reâe - âeRe), |T+〉 ) ReRe

|T0〉 ) 1

x2
(Reâe + âeRe), |T-〉 ) âeâe (5.9)

SRN, T0RN, T+âN (5.10)

P̂S ) (1 0 0
0 0 0
0 0 0) P̂T ) (0 0 0

0 1 0
0 0 1) (5.11)

Ĥ ) (0 A/4 -(A/2x2)

A/4 0 A/2x2

-(A/2x2) A/2x2 -(A/4) ) (5.12)

L̂ik,pq ) -iĤ ipδkq + iĤqkδip (5.13)

J(σ)ŜB1ŜB2 ) Ĥ′ (5.14)

-iĴik,pq ) -iĤ′ipδkq + iĤ′qkδip (5.15)

ŴS(σ)ik,pq )
wS(σ)

2
[(P̂S)ipδkq + (P̂S)qkδip] (5.16)

λ1 ) λ5 ) λ6 ) λ8 ) λ9 ) 0; λ4 ) λ7 ) A; λ2 ) λ3 ) -A
(5.17)
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From this point forward, instead of these three functions, we
will use the following quantities:

and

The quantum yields depend on these quantities, which is in
line with the recombination and spin exchange parameters at
contact.

B. Recombination Efficiencies.With these notations and the
definitions given in eq 2.13, and the result of eq 4.8 can be
represented now in another form:

in which Z̃ ) Z/D, Z̃S ) ZS/D, andZ̃T ) ZT/D. Accounting for
eq 2.14, we obtain from here

These formulas express bothZ̃S andZ̃T via Z̃ and the Green
functions (F andf) in all cases except the very special one, the
“spin-independent recombination”, whenkc

S ) kc
T. In this case,

the numerators in the above formulas turn to zero, allowing the
determination of the single quantity:

VI. Recombination of Radicals Started Away from
Contact

According to eq 2.12, the total yield of recombination, to
the singlet and triplet products, is

in which the partial yields are defined in eqs 4.5 and 4.6. Let
us represent the total yield (eq 6.1) through the recombination
efficiency Z related toD:12,15

To calculateΦ from eq 6.1, one needs to find from eq 4.4 the
matrix F̃(σ, r0, 0), the components of which determineæS(r0)
andæT(r0) in eqs 4.5 and 4.6, respectively.

This has to be done by insertingĜ̃0(σ,σ, s) and Ĝ̃0(σ, r0, s)
into eq 4.4, deduced from eq 5 and expressed throughĜ̃ (σ,σ,
s) andĜ̃ (σ, r0, s) from eq 5.5. In this very way we obtainedΦ
using the analytical calculations system Mathematica, but it
appears that the form ofΦ is too cumbersome. Fortunately,
being substituted into eq 6.2, it leads to the much simpler
expression for the relative recombination efficiency:

Here, z̃ ) z/D is given by the following expression:

Here,A and B, given in Appendix B, are expressed via the
recombination constants in eq 4.7 and the exchange parameter
estimated in the contact approximation eq 4.2:

A. Reduction to the Spinless Theory.For the hyperfine
coupling constantA ) 0 (in the absence of spin conversion), it
can be shown thatA vanishes and

As follows from eqs 5.18 and 5.19, in this case,Q ) q ) 0 and
P ) F ) φ(σ, r0, 0), butp ) f ) φ(σ,σ, 0). For the Coulomb
interaction with the Onsager radiusrc, these quantities can be
found from the well-known relationship

Therefore,z reduces to the simplest expression

Substituted in eq 6.3, in line with the relationship

it gives Z̃ of the spinless theory first obtained in ref 16.
B. Yields of the Double-Channel Recombination.The result

of eq 6.5 follows from eq 6.4 at anyA * 0 if kc
S ) kc

T. Being
substituted into eq 6.3, it leads to eq 5.23. As was noted long
ago,3 the spin conversion in this case does not modulate the
recombination, and therefore the results forΦ ) 1 - æ do not
differ from those valid for the spinless theory.

A different situation arises with partial quantum yields from
eq 2.13 that can be represented as follows:

We need onlyZ̃T along withZ̃ to have both of them. Moreover,
using eq 6.3 in eq 5.22, we obtain the universal expression for
Z̃T via z̃:

in which z̃ is expressed in eq 6.4 via the ratio ofA to B. The
expressions for both of them are given in Appendix B. In the
limits of the weak and strong exchange interaction, these
expressions are greatly simplified, as shown below.

1. Zero Exchange Interaction (jc ) J ) 0). The efficiency of
the total recombinationZ̃ is expressed in eq 6.3 through
z̃ defined in eq 6.4, which, in turn, depends on the ratioA
to B. In the case of zero exchange, these quantities given in

P ) Reφ̃(σ,r0,iA), Q ) Im φ̃(σ,r0,iA), F ) φ̃(σ,r0,0) (5.18)

p ) Reφ̃(σ,σ,iA), q ) Im φ̃(σ,σ,iA), f ) φ̃(σ,σ,0) (5.19)

Z̃S

kc
S

+
Z̃T

kc
T

) F + Z̃(F - f) (5.20)

Z̃S ) kc
S
kc

TF - Z̃[1 + kc
T(f - F)]

kc
T - kc

S
(5.21)

Z̃T ) kc
T
kc

SF - Z̃[1 + kc
S(f - F)]

kc
S - kc

T
(5.22)

Z̃ )
kcF

1 + kc(f - F)
atkc

S ) kc
T ) kc (5.23)

Φ(r0) ) æS(r0) + æT(r0) ) 1 - æ(r0) (6.1)

Φ ) Z̃
1 + Z̃

(6.2)

Z̃ ) z̃
F/f

1 + z̃(1 - F/f)
(6.3)

z̃ ) kc
S f + (kc

S - kc
T)‚A

B
(6.4)

jc ) 4πσ2∆J(s)

z̃ ) kc
S f (6.5)

φ(σ,r0,0) ) 1
4πrcD

exp(rc

σ)[1 - exp(-
rc

r0
)] (6.6)

z̃ )
kc

S

4πrcD
(erc/σ - 1) (6.7)

F
f

)
1 - exp(-rc/r0)

1 - exp(-rc/σ)
(6.8)

æT )
Z̃T

1 + Z̃
, æS )

Z̃ - Z̃T

1 + Z̃
(6.9)

Z̃T ) kc
T

kc
SF - z̃‚F/f

(kc
S - kc

T)[1 + z̃(1 - F/f)]
(6.10)
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Appendix B take the following form:

2. The Strongest Exchange (jc ) J ) ∞). The total efficiency
(eq 6.4) is now expressed via a rather simple ratio:

The triplet quantum yield also becomes much simpler:

VII. Polar Solvents

In high polarity solvents, the Coulomb interaction is absent
(rc ) 0). Therefore, substituting eq 5.6 into theF and f from
eqs 5.18 and 5.19, we have

in which kD ) 4πσD is the diffusional rate constant. Because
of this, all the results are greatly simplified.

Specifically, when eitherA ) 0 or kc
S ) kc

T, the quantityz̃
reduces to the expression

The substitution of eq 7.2 and the ratioF/f ) σ/r0 ) γ into
eq 6.3 yields

This is again the result of the spinless theory obtained in ref
16. The limiting cases of diffusion and kinetic control of the
reaction are seen from the following equation:

The spin-dependent effects will be considered below in the
limiting cases of zero and strong exchange.

A. Zero Exchange Interaction (jc ) J ) 0). In high polarity
solvents, the general expressions of eqs 6.11 and 6.12 take the
form

Here, the new notations have been used:

Additionally,

in which the spin dependent parameters

determine the extent of spin conversion during the encounter
time and the time of approaching contact from the remote start
at r0 > σ.

1. Spin-Independent Recombination (ks ) kt ) k). Let us turn
to the very useful example, first analyzed in ref 3 and
reconsidered in ref 5, using the incoherent model of spin
conversion. Here, we are doing the same, but we are using
the HFI model of coherent spin conversion in a zero magnetic
field.

As was already noted, in the case of equal recombination
constants, the total recombination yield and its efficiencyZ̃ given
by eq 6.3 are independent of the spin conversion. Unlike the
total yield, the individual yields of triplet and singlet products
are affected by spin conversion. In particular, the triplet quantum
yield is

As was expected in the absence of spin conversion (A ) 0),
this yield is zero:

Otherwise,æT * 0 is spin-dependent, as well asæS ) æ - æT.
In the important particular case of diffusion-controlled recom-
bination, one obtains

A ) -6f(2 + (kc
S + kc

T)f)({[2 + (kc
S + kc

T)p]P + (kc
S +

kc
T)qQ}(1 + kc

Sf) - {(1 + kc
Sp)[2 + (kc

S + kc
T)p] + kc

S(kc
S +

kc
T)q2}F) (6.11)

B ) 6(kc
S - kc

T){[2 + (kc
S + kc

T)p]P +

(kc
S + kc

T)qQ}f[2 + (kc
S + kc

T)f] - 2 {[2 + (kc
S + kc

T)p]2 +

(kc
S + kc

T)2q2}[8 + (3kc
S + 5kc

T)f]F (6.12)

A
B

) [3f2[F(p + kc
Sp2 + kc

Sq2) - (pP + qQ)(1 + kc
Sf)]]/

[3(kc
S - kc

T)(pP + qQ)f2 - {2(p2 + q2) + [p(6 + 3kc
Sp +

5kc
Tp) + (3kc

S + 5kc
T)q2] f}F]

æT ) [3kc
Tf[F(p + kc

Sp2 + kc
Sq2) - (pP + qQ)(1 + kc

S f)]]/

[2(p2 + q2) + f{p[6 + 5 (kc
S + kc

T)p] + 5 (kc
S + kc

T)q2 +

[3kc
Tp + kc

Sp(3 + 8kc
Tp) + 8kc

Skc
Tq2] f}]

F ) 1
kD

σ
r0

, f ) 1
kD

(7.1)

z̃ )
kc

S

kD
(7.2)

Z̃ )
kc

S

kD

γ
1 + kc

S/kD (1 - γ)
(7.3)

Z )

{ γ
1 - γ

D diffusional geminate recombination,D , (1 - γ)z

γz kinetic geminate recombination, D . (1 - γ)z

(7.4)

A ) -3(2 + ks + kt){2(1 + ks){kDQ(ks + kt)q -

kDP[2 + ks + kt + (4 + ks + kt)θ + 4θ2]} +

2γ[(1 + ks)(2 + ks + kt) + (4 + 3ks + kt)θ + 4θ2]} (7.5)

B ) -6(ks - kt)(2 + ks + kt){-kDQ(ks + kt)θ +

kDP[2 + ks + kt + (4 + ks + kt)θ + 4θ2]} + 2γ(8 + 3ks +

5kt)[(2 + ks + kt)
2 + 4(2 + ks + kt)θ + 8θ2] (7.6)

ks ) kc
S/kD, kt ) kc

T/kD (7.7)

P ) 1
kD

Re{σ
r0

· e-ψ(1+i)

1 + θ(1 + i)},

Q ) 1
kD

Im{σ
r0

· e-ψ(1+i)

1 + θ (1 + i)}, andγ ) σ
r0

θ ) xAσ2

2D
andψ ) xA(r0 - σ)2

2D

æT ) 3
8

γk[ 1
1 + k

+ e-ψ‚
θ sin ψ - (1 + k + θ) cosψ

1 + k2 + 2k(1 + θ) + 2θ(1 + θ)]
in whichk )

kc

kD
(7.8)

æT ) 0, sinceθ ) ψ ) 0

æT ) 3
8

γ(1 - e-ψ cosψ), atk ) ∞
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Obviously, this function passes through the first maximum at

There is a very transparent way to obtain eq 7.9 in the case
of diffusion control, when the radical pair recombines at the
very first contact. The number of RIPs recombining from their
triplet state is proportional to the product of the triplet state
populationFTT at instantt and the probabilityΩ(t) to simulta-
neously find the radical pair at the contact. The total population
of the triplet stateFTT ) FT+T+ + FT0T0 + FT-T-, and the triplet
product yield is

The density probability function of the first contact is well
known:

whereas the triplet population evolving because of the Liou-
villian L is17,23

Equation 7.9 follows once again from the last three expressions.
2. CoherentVersus Incoherent Spin ConVersion.The diffu-

sional dependencies of the triplet quantum yield at different
starting points are compared in Figure 1 with their incoherent
analogues calculated according to ref 5 and presented there in
Figure 7. Qualitatively, they are very similar, provided that the

incoherent parameter from ref 5R ) x4Ksσ
2/D ) θ, that is

in whichKs is the rate of incoherent transitions. However, there
is a peculiarity appearing in the coherent case at the top of all
the curves: the maximum shifting to the right with increasing
r0. Under diffusional control, this is the maximum seen in eq
7.9. This is the only peculiarity that manifests about the dynamic
(coherent) mechanism of the spin conversion, which is periodic
in time. The maximum of the triplet yield is reached, provided
that the radicals born atr0 come into contact at timeπ/A, when
the triplet RIPs population is maximal. This condition, repre-
sented by eq 7.10, leads to the linear relationship

From this equality, one can get the value ofD where the
maximum is located for givenr0. Figure 2 precisely confirms
this expectation: the slope calculated from eq 7.14 atA ) 0.176
ns-1 is 7.87, whereas the slope obtained from the figure is equal
to 8.26.

3. The Price for Contact Recombination.Having the general
formula of eq 7.8 foræT in line with the total recombination
efficiency Z̃ from eq 7.3, we can easily find two other
efficiencies:

The diffusional dependence of all of them is depicted in Figure
3. Unlike theZ̃T curves, which are smooth and weakly dependent
on the starting distance, the ascending (diffusional) branches
of Z̃ in Figure 3B are affected much more by an increase inr0.
However,Z̃S is the most sensitive to very small variations in
the starting distance. Its diffusional dependence is qualitatively
different for the contact start and for the start insignificantly
larger than it. This physically unreasonable difference is the
main weakness of the contact approximation for recombination.
This approximation ignores the exponential space dependence
of the normal recombination rate, which cannot be narrower
than the tunneling distanceL ≈ 1 ( 2 Å. Moreover, the contact
approximation ignores the static electron transfer (which remains
even atD ) 0) and therefore is not applicable to the region of
small D (see Chapter V-D in ref 12). Therefore, the reliable
fitting of the experimental data obtained in ref 5 should be done
numerically, using the real space dependence of the electron
transfer rates.

B. Infinite Exchange Interaction (jc ) J ) ∞). In the case
of the largest exchange integral, all the results are greatly
simplified, and we get

Figure 1. The triplet quantum yield as a function of diffusion at the
contact start (the lowest curve) and larger starting distances;r0 in Å:
(a) 7.01, (b) 7.1, (c) 7.5, (d) 8.0, (e) 11.0, and (f) 18.00. The common
parameters for coherent (A) and incoherent (B) spin conversion are
the same:k ) 800 Å3 ns-1, σ ) 7 Å. At the same time, the HFI constant
A ) 0.176 ns-1, while the rate of incoherent conversionKs ) A/8 )
0.022 ns-1. D is measured in Å2/ns.

ψ ) xA(r0 - σ)2

2D
) 3π

4
(7.9)

æT ) ∫0

∞
FTT(t)Ω(t)dt (7.10)

Ω(t) )
σ(r0 - σ)

2r0xπD
t-3/2 exp(-

(r0 - σ)2

4Dt ) (7.11)

FTT(t) ) 3
8
(1 - cosAt) (7.12)

Ks ) A/8 (7.13)

Figure 2. The linear relationship (eq 7.15) between the starting
distancesr0 and positions of the maxima, on the scalexD that the
curves ofæT(xD) in Figure 1A pass through.

r0 ) σ + 3π
4 x2

A
‚xD (7.14)

Z̃T ) æT(1 + Z̃), Z̃S ) Z̃ - Z̃T (7.15)

A
B

) 3
(1 + ks + θ)γ - kD(1 + ks)(P + Pθ - Qθ)

3kD(ks - kt)(P + Pθ - Qθ) - (8 + 3ks + 5kt + 6θ)γ
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Using this result and the relationships of eq 7.1 in eq 6.4, one
getsz̃ as well asZ̃ and Z̃T from eq 6.3 and 6.10, respectively.
Having Z̃ andZ̃T, it is easy to find any other quantum yields as
well. For instance,

This result is the same as that which follows from the earlier
work of Salikhov.24 Moreover, it was generalized there for
arbitrary nuclear spinI and any statistics of recontacts. However,
such statistics are known for only the diffusional encounter of
neutral radicals, whereas, in our theory, we are using the Green
functions, which can be easily calculated, for charged radicals
as well, either analytically or numerically.

1. Spin-Independent Recombination.Especially simple are the
results in the special caseks ) kt ) k, when

These efficiencies determine the quantum yields of eq 2.13:

The expression in eq 7.9 foræT is reproduced under diffusional
control of the geminate recombination when

The last results are valid at any exchange integralJ, provided
jc is negligible compared tokc

S ) kc
T.

VIII. Contact Start in Polar Solvents

The general expressions foræ(r0) and æT(r0) have to be
averaged over the initial distribution of starting distancesf(r0)
created by the preceding bimolecular ionization.15 Instead, it is
often presumed that the reactants start from the contact (r0 )
σ), that is,f(r0) ) δ(r0-σ)/4πr0

2. This particular case is easier
to study as an example because the initial stage when the
reactants approach each other is eliminated.

However, this is not only a model, but also a real physical
situation when the radicals are born because of short-range
proton or atom transfer or bond cleavage. The same is true for
chemiluminescence resulting from the backward electron trans-
fer considered in a few recent works.25-30 The spin conversion
in the contact-born radical pair, constituted from the adaman-
tanone anion radicalȦ- and methyl-m-oxybenzoate radicalṀ,
proceeds between sequential recontacts. The initial singlet state
of this RIP changes to a triplet and thus opens the way for
electron transfer to a triplet product. This becomes possible
parallel to the allowed RIP recombination through a singlet
channel, to both the excited singlet and ground states. In this
particular example, the Coulomb interaction is absent in
principle (rc ≡ 0), while, for the oppositely charged ion-radicals,
this is the case only in highly polar solvents. Here, we address
either of these cases, while the general formulas that are valid
for arbitrary polarity (whenrc * 0) are presented in Appendix
C.

If the radicals start from contact, then

Hence, according to eqs 6.3 and 6.10

in which

The quantitiesA andB are expressed throughp andq in eq
5.18, the values of which with regard to eq 5.6 are in turn equal
to

Figure 3. The diffusional dependencies of the recombination efficien-
cies from different starting distancesr0: (A) through the triplet channel,
(B) total, and (C) through the singlet channel, atkc

S ) kc
T ) 800 Å3/ns.

æT ) 3kt

(1 + ks + θ)γ - kD(1 + ks)(P + Pθ - Qθ)

8(1 + ks)(1 + kt) + 3(2 + ks + kt)θ

Z̃ ) k
γ

1 + k(1 - γ)
Z̃T )

3γk
[(1 + k + θ) - e-ψ(1 + k) cosψ)

2[1 + k(1 - γ)](4 + 4k + 3θ)

æ ) 1
1 + Z̃

, æT )
Z̃T

1 + Z̃
, æS ) æ - æT

Z̃ ) γ
1 - γ

andZ̃T ) 3
8

γ1 - e-ψ cosψ
1 - γ

ask f ∞

F ) f ) 1/kD, γ ) 1, sincer0 ) σ (8.1)

Z̃ ) z̃ (8.2a)

Z̃T )
kt(ks - z)

ks - kt
(8.2b)

z̃ ) ks + (ks - kt)
kDA

B
(8.3)

p ) 1
kD

Re[ 1
1 + θ(1 + i)] ) 1

kD

1 + θ
(1 + θ)2 + θ2

(8.4a)

q ) 1
kD

Im[ 1
1 + θ(1 + i)] ) - 1

kD

θ
(1 + θ)2 + θ2

(8.4b)
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Finally, we have two quantities that have to be used in eq 8.3:

in which j ) jc/kD. The results are given below for three cases,
ks ) 0, ks ) kt, andkt ) 0 (from top to bottom):

In the absence of spin conversion (θ ) 0), we have eitherz̃ )
0, if the recombination proceeds only through the triplet channel,
or z̃ ) ks, if only the singlet recombination channel is working.
In the special intermediate case, whenks ) kt ) k, the
recombination efficiencyz̃) k at any spin conversion parameter
θ.

A. Zero-Spin Exchange (j ) J ) 0). In some previous
works, the spin exchange was ignored, and relatively simple
results were obtained for such an approximation.5,15Making use
of it here, we also get rather simple expressions for the
recombination efficiencies found in eq 8.2:

in which kt andks are defined in eq 7.7.
Similar results for the rate (incoherent) theory of spin

conversion, represented in eq 3.2 of ref 5, are even more simple.
In particular,Z̃T in the incoherent theory depends only onkt ≡
1/yT:

This result is compared with its exact (coherent) analogue in
Figure 4. In the absence of spin conversion (R ) θ ) 0), the
triplet efficiency turns to zero in both the coherent and
incoherent theories. In the opposite limit of full mixing (R ) θ
) ∞), Z̃T reaches its maximal value, which is in the present
(coherent) theory:

but, in the spin-independent case, the result is half as much as
that obtained in eq 8.5 with the model (incoherent) theory.

Under diffusion control (kt . 1), the efficiency of recombina-
tion from only the triplet channel (ks ) 0) does not differ too
much from that of the spin-independent case (ks ) kt), but under
kinetic control (kt , 1), the difference is even less.

1. Single-Channel Recombination.If one of the recombination
channels is switched off, then all the recombination is occurring
through the other one. Whenks ) 0, then we obtain

instead of the rather primitive model formula in eq 3.4 from
ref 5. On the other hand, whenkt ) 0, the recombination
efficiency is

instead of that obtained in eq 3.3 for the model theory.5

The efficiency of recombination through the triplet channel
monotonically increases with the spin-conversion rateA, while
that for the singlet channel goes down. When one goes fromA
) θ ) 0 to A ) θ ) ∞ (at given D) the recombination
efficiencies change in the following limits:

In Figure 5, the variation of the recombination efficiencies
between the slow and fast conversion limits is shown, takingkt

) ks ) k , 1 (kinetic recombination of the contact-born RIP).
In the limit of the instantaneous spin conversion (A f ∞) we
obtain from eq 8.6:

Because of the dispersion of the times between recontacts, the
average cosAt is zero at largeA. At such a fast conversion, the

kDA ) -3θ[j2 + (2 + ks + kt)(2 + ks + kt + 4θ)]

B ) 8(1 + kt)[j
2 + (2 + ks + kt)

2] + 2[3j2 + 8j(1 + kt) +

(2 + ks + kt)(16 + 3ks + 13kt)]θ + 8(8 + 3ks + 5kt)θ
2

z̃ ) [3ktθ[j2 + (2 + kt)(2 + kt + 4θ)]]/

[8(1 + kt)[j
2 + (2 + kt)

2] + 2[3j2 + 8j(1 + kt) +

(2 + kt)(16 + 13kt)]θ + 8(8 + 5kt)θ
2]

z̃ ) k atks ) kt ) k

z̃ ) ks - [3ksθ[j2 + (2 + ks)(2 + ks + 4θ)]]/

[8[j2 + (2 + ks)
2] + 2[j(8 + 3j) +

(2 + ks)(16 + 3ks)]θ + 8(8 + 3ks)θ
2]

Z̃ ) ks + [3(kt - ks)(2 + ks + kt)θ(2 + ks + kt + 4θ)]/

[8(1 + kt)(2 + ks + kt)
2 + 2(2 + ks + kt)(16 + 3ks +

13kt)θ + 8(8 + 3ks + 5kt)θ
2]

Z̃T ) [3kt(2 + ks + kt)θ(2 + ks + kt + 4θ)]/

[8(1 + kt)(2 + ks + kt)
2 + 2(2 + ks + kt)(16 + 3ks +

13kt)θ + 8(8 + 3ks + 5kt)θ
2]

Z̃T ) 3
4

Rkt

1 + R + kt
f

3
4
kt at R f ∞ (8.5)

Max Z̃T ) 3
8
kt

2 + ks+ kt

2 + 3
4
ks+ 5

4
kt

f
3
8
kt atks ) kt

Figure 4. The spin-conversion dependence of the efficiency of
recombination through the triplet channel in the rate (incoherent) theory
of conversion and in the present (coherent) theory (dependent on the
relationship between the recombination constants). Diffusional recom-
bination of triplet pairs born at contact (kt ) 10).

Z̃T ) [3kt(2 + kt)θ(2 + kt + 4θ)]/[8(1 + kt)(2 + kt)
2 +

2(2 + kt)(16 + 3 + 13kt)θ + 8(8 + 5kt)θ
2] ) Z̃; Z̃S ) 0

Z̃S ) ks -

3ks(2 + ks)θ(2 + ks+ 4θ)

8(2 + ks)
2 + 2(2 + ks)(16 + 3ks)θ + 8(8 + 3ks)θ

2
)

Z̃; Z̃T ) 0

0 e Z̃T < 3
2
kt

2 + kt

8 + 5kt
ks g Z̃S > ks - 3

2
ks

2 + ks

8 + 3ks
(8.6)

Max ZT ) 3
8

‚
kc

T

4πσ
Min ZS ) 5

8
‚

kc
S

4πσ
, at kc

T, kc
S , kD
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weight of the populated triplet states according to eq 7.12 is
〈FTT〉 ) 3/8. Therefore, the maximal rate constant of recombina-
tion through the triplet channel is weighted in the last formula
with 3/8, while the recombination through the singlet channel
has the weight 1- 3/8 ) 5/8.

Different results follow from the formulas in eq 8.6 in the
opposite limit of the diffusional recombination accomplished
at the first recontact:

Since they remain finite asD f 0, all Z̃ ) Z/D f ∞ andæT,
æS f 1 in the slow diffusion limit, as well as in the spinless
theory.

2. Spin-Independent Recombination (ks ) kt ) k). At equal
recombination constants, we obtain for all the quantum yields

Their dependence on the HFI constant,A, as well as on the
diffusion coefficient, is confined in the dimensionless parameter

θ ) xAσ2/2D. At givenA ) 0.176 ns-1 (10 G) the diffusional
dependence of all the yields is presented in Figure 6. It is very
similar to that obtained with the incoherent model of spin
conversion in Figure 5 of ref 5. The same dependencies may
be represented in another way, proposed in ref 3. The total yield
of free radicalsæ, used as an argument, changes from 0 to 1
with increasing diffusion. Simultaneously, the total recombina-

tion yield Φ ) 1 - æ is represented by the diagonal of the
square displayed in Figure 7. Then the single curveæT(æ) shows
not only the triplet yield, but also the singlet yieldæS ) Φ -
æT. The fouræT(æ) curves shown in Figure 7 demonstrate how
the triplet yield grows whenA increases with the sacrifice of
singlet products.

B. Infinite Exchange Interaction (jc ) J ) ∞). This is the
easiest case for study, and the corresponding results are the
simplest ones:

It is interesting thatZ̃T is independent ofks, as in the model
theory.5 Moreover, the model result is functionally the same:

providedR is identified with (3/4)θ. To ensure such an equality,
one should take

This is almost the same condition that is given in eq 7.13.
Because of this choice, theZ̃T from eq 8.7 relates to its model
analogue as (1/2):(3/4).

1. Single-Channel Recombination.In the case of recom-
bination only through a triplet channel (ks ) 0), we have, as
usual, Z̃ ) Z̃T defined in eq 8.7. Recombination through

Figure 5. The retardation of singlet RIP recombination through the
singlet channel (A) and the acceleration of that through the triplet one
(B) with accelerating the spin conversion. Solid lines are forJ ) 0,
while the dashed lines are forJ ) ∞. Other parameters:kc ) 800
Å3/ns,D ) 10-5cm2/s.
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‚
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‚
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Z̃T ) 3γk ‚
[(1 + k + θ) - e-ψ(1 + k) cosψ]

2[1 + k(1 - γ)](4 + 4k + 3θ)

Figure 6. The diffusional variation of all the quantum yields atA )
10 G with the samekc as that shown in the previous figures.

Figure 7. The dependence of the triplet quantum yield,æT, on the
free radicals yieldæ ) 1 - Φ at different rates of spin conversionA:
1, 10, 100, and 1000 G (from bottom to top) atkc ) 800 Å3/ns.
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the solely singlet channel provides

These efficiencies,Z̃T andZ̃S, are displayed by dashed lines in
Figure 5, in line with those related toJ ) 0. The difference is
rather insignificant at any spin-conversion rate.

Using eq 8.8, one can easily estimate the yield of pairs
recombined through the singlet channel:

This result coincides with that obtained by Purtov and Sa-
likhov.24,31

2. Spin-Independent Recombination (ks ) kt ) k). When the
spin exchange is infinitely fast (J ) ∞), we obtain instead of
eqs 8.7 the much simpler results

Sinceæ is the same for anyJ, the whole difference between
the limits J ) 0 andJ ) ∞ reduces to the difference in the
expressions foræT. Taking their ratio, we get the objective
measure of this difference:

It can be seen thatR changes in the very rigid limits 1g R g
0.75 when the hyperfine coupling constantA (and consequently
θ) varies from 0 to∞. This is the scale of the effect of the
exchange interaction on the quantum yield.

IX. Conclusions

We have developed a general theory for the double-channel
geminate recombination at any rate of HFI-induced spin
conversion and arbitrary spin exchange between the radicals in
a pair. The contact approximation for the spin exchange and
recombination through both the triplet and singlet channels is
the only limitation of the theory.

It should be emphasized that the partial yields of singlet and
triplet products of recombination are studied in line with the
yield of free radicals, to which most of the previous investiga-
tions are confined. We established the important general
relationship between these yields (eq 4.8) and the analogous
relationship between the partial recombination efficiencies (eq
5.20), which allows for the expression of both of them via the
total one and the Green functions of the free motion.

Qualitatively, our main results are very similar to those
obtained with the rate model of spin conversion in ref 5,
provided there is a definite relationship between the phenom-
enological rate and the HFI constant established in eq 7.13.
Besides this, we estimated the effect of spin exchange and found
that, in polar solvents, the maximal difference in the quantum
yields between the limits of zero and infinitely fast exchange
is not more than 25%. The yield dependencies on diffusion,
recombination rates, and the HFI constant are specified.

Although our results are valid for a pair with a single nucleus,
it is pointed out in ref 24 how the effective hyperfine coupling
constant should be defined to extend the theory to the many-
nuclei radical pair.
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Appendix A: Green Function for Coulomb Attraction
Potential

In our notations the expression foræ(σ,σ,s) obtained in ref
21 and refined from misprints in paper32 takes the form

where

Here,

and

wherex ) σ/rc, τd ) σ2/D, andrc is the Onsager radius, while
Ei andE1 are the integral exponential functions.

Appendix B: General Results
Generally,z̃ is expressed in eq 6.4 via the quantities given

below:

Z̃S ) ks
8 + 3θ
8 + 6θ

) Z̃ atkt ) 0 (8.8)

æs ) 1 - æ ) Z̃
1 + Z̃

)
ks(8 + 3θ)

8(1 + ks) + 3(2 + ks)θ
(8.9)

æ ) 1
1 + k

, æT ) 3kθ
2(1 + k)(4 + 4k + 3θ)

,

æS ) 1 - æ - æT (8.10)

R )
æT (J ) 0)

æT (J ) ∞)
)

(1 + k + 2θ)(4 + 4k + 3θ)

4[(1 + k)(1 + k + 2θ) + 2θ2]
(8.11)

æ(σ,σ,s) ) 1
4πDσ

‚ 1
µ0(σ) + κ(σ,s)

(A.1)

µ0(σ) ) 1/x
exp(1/x) - 1

; κ(σ, s) )
sτd + [ϑ(σ)/ς(σ)]xsτd

xsτd + ϑ(σ)

ς(σ) ) x2 exp(1/x)[1 - exp(-1/x)]2

ϑ(σ) ) [x3[exp(1/x) + exp(-1/x) - 2] - x]/

[16[Ei(1/x) - exp(1/x)(x + x2 + 2x3)] + 1
6
[E1(1/x) -

exp(-1/x)(x - x2 + 2x3)] + 2
3
x2 + x]

A ) 3f{P[4 + 2 (kc
S + kc

T)p - jcq] + [jc p + 2(kc
S +

kc
T)q]Q + kc

S({2 (kc
S + kc

T) + [jc
2 + (kc

S + kc
T)2]p}P +

{-jc + [jc
2 + (kc

S + kc
T)2]q}Q)f2 - {2(1 + kc

Sp)[2 + (kc
S +

kc
T)p] - jcq + 2kc

S(kc
S + kc

T)q2}F + f[P[2kc
T + 3kc

S2p + (jc
2 +

kc
T2)p + kc

S(6 + 4kc
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Sp) + jc
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T)2]p} - jckc
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T)2]q}Q)f2 + 2(16+ p{16(kc

S + kc
T) +

[jc
2 + 4(kc

S + kc
T)2]p} - 8jcq + [jc

2 + 4(kc
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T)2]q2)F +

f[-3(kc
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T){P[4 + 2(kc
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T)q]Q} + (6jc
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T{20 + 5p[4kc
T + (jc

2 + kc
T2)p] - 13 jcq +
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Appendix C: Contact Start of the RIP

1. J ) 0

2. J ) ∞
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