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The double-channel recombination and separation of the photochemically created singlet radical pair is
investigated, taking into account the spin conversion in a zero magnetic field and the arbitrary initial distance
between the radicals. The quantum yields of the singlet and triplet products and the free radicals production
are found analytically, assuming that the recombination of the diffusing radicals occurs at contact. All the
yields are related to the singlet and triplet populations of the recombining radical pair, subjected to spin
conversion and contact exchange interaction. The general analytical expressions for the quantum yields are
specified for the particular limits of the weak and strong exchange. They are greatly simplified in the case of
polar solvents, especially at the contact start. A close similarity is obtained with the results of a previously
developed incoherent model of spin conversion, provided that the conversion rate is appropriately related to

the hyperfine coupling constant.

. Introduction in which kZ andk! are the contact recombination constants of
The singlet radical-ion pair (RIP) created by photoinduced the different channels, whil&\i(r) is the rate of ionization
forward electron transfer is subjected to spin conversion, which (forward electron transfer at distanckg and@ is the average
populates its triplet state as well. The backward electron transferquantum yield of the free ions.
in the singlet RIPs proceeds into the ground state of the neutral The difference between the products of recombination from
products (or into the nearest excited singlet), while the triplet the singlet and triplet states of the pair was also observed in
RIPs recombine into their excited triplet state. The appearancesome other systems. In particular, the minor T-channel contribu-
of the triplet excitation as a consequence of geminate RIP tjon was determined when the recombination from the S and T
recombination was first detected in the classical works of Weller gistes of the pair led to the formation of different isomers of
at all? and explained semiquantitatively by Schulten and the same molecul®?
Schulter? In their pioneering work, the rates of recombination The key question is, What is the mechanism of spin

through the singlet and triplet channels were assumed to be ion in the RIP? In th " | tai
equal, so that the recombination was “spin independent”. The conversion in the ¢ 1n the paramagnetic complexes contain-

presence of the triplet recombination channel in line with a N9 heavy atomis™ the mixing of the singlet and triplet states
singlet one was indirectly confirmed by the theoretical inter- ©f the RIPS in a zero magnetic field is stochastic, induced by
pretation of Mataga’s data on the kinetics of the accumulation SPin relaxation (hyperfine interaction (HFI) is negligibléere
and separation of RIPSLater on, the triplets were experimen- We turn to the HFI mechanism, which is common for organic
tally determined in the very same system in which excited radical pairs. There, the hyperfine coupling constants lie in the

perylene (Per) was quenched by some aromatic amines (D): range of 0.02:20 ns* (1-1000 G), thus they are much larger
than the relaxation rates, which are invers@irme T; ~ 1 us.

Per* + D —> [perfmy] — s Per— + Dt (I Assuming thatT; = T, = o, we will consider the double-
channel recombination of RIPs containing a single magnetic
v nucleus with spin 1/2 in the contact approximation for recom-
[Per... D] bination rates and exchange interaction. The yields of the free
To discriminate between the parallel singlet and triplet recom- radicals as well as the singlet and triplet products of recombina-
bination channels, this spinless reaction scheme was substitutedion will be calculated at any initial separation and arbitrary

by the following comprehensive analég: exchange integral. All the results are expressed via the Green
functions of the stochastic encounter motion of radicals. For
A"+ D* some types of this motion, there are exact analytical expressions
S9N or approximations. The rest can be easily calculated numerically.
4 +p & A-...DY = 3A~...DY (I The outline of this paper is as follows: In the next section,
L7 LES LA the yields of the singlet and triplet products of contact
recombinationgs and ¢, are related to the density matrix of
A [A...D] [34*...D]

the RIP and expressed via the efficiencies of recombination
through these channel&s and Zr. In section lll, the conven-
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of the radicals of the RIP and their spin evolution without with an external magnetic field. The rate operatd{r)
accounting for spin exchange interaction and recombination. represents the radicals recombination, &k accounts for the

In the contact approximation for the reaction rates and exchange interaction of their spins. Both of these operators
exchange interaction, this equation is reduced in section IV to depend on the distance between the radicalBhe recombina-
an algebraic one, and the quantum yields are expressed throughion occurs from either the singlet or triplet state of the RIP or
its solution at the contact distance. The important new relation- from them both. Thus one can specify the total recombination
ship between the quantum yields of the double-channel recom-operator in the following way:
bination is established here.

The simplest system with a single nucleus is considered in W(r) = Wi(r) + Wi (r) (2.3)
section V to calculate the Laplace transformation of operator . . o
Go and express the recombination efficiendggndZr through Here,Wg(r) andWr(r) are the operators of recombination from

its components. These efficiencies also obey the first establishedthe singlet and triplet states. Their action on the density matrix
general relationship, which allows for the expression of each p is defined by the following:
of them through the single total efficiency of recombinatibn W)

This parameter, calculated in section VI for the arbitrary initial A _ s\ A
separation of radicals, is a complex function of both reaction Ws(r)e = 2 (Pso + pPy) (2.4)
constants and the spin exchange parampteralculated in the
contact approximation. Considered separately are the opposite
limits when this parameter is either zero or infinitely large.

In the highly polar solvents studied in section VII, the
difference between these limits is not found to be considerable, where ws(r) and wq(r) are the recombination rates from the
at least in the spin-independent case when the recombinationsinglet and triplet states of the RIP, respectively, &acand
rates are equal. At infinitely high rates, the spin exchange doesPr are the projection operators onto the singlet and triplet states
not affect the recombination yields at all. Moreover, their Of the RIP, respectively. They can be specified through the spin
nontrivial diffusional dependence is very similar to that obtained operators of the radicals of the RI8, = (Si, Sy, Si7) and$
earlier within the incoherent (rate) model of spin conversion = (S Siy, Siz), in the following way:
provided, that the conversion rate is properly related to the HFI
constantA. The sharp features in this dependence at short p.=

n . we(r) . N
Wr(r)p = —5— (Prp + pPy) (2.5)

-S5 (2.6)

. . . . . . S
starting distances indicate that the theory, assuming recombina-
tion to be contact, is unsuitable for the closest starts and too
e LS .~ and
slow for diffusion where the recombination is actually static.
In section VIII, the greatly simplified analytic results are N E = -
obtained for the contact starts of RIPs in highly polar solvents. Pr=7155% (2.7)

These general results reproduce all the particular cases studied

under such assumptions earlier: single-channel recombinationin which E is the unity matrix. Obviously the quantum yield of

from either the singlet or triplet state, as well as double-channel the singlet productss can be defined as follows:

recombination at equal rates (spin-independent total recombina-

. O . L . " o ~ 5

tion). This is done in all cases for zero and |n_f|n|tely Ia_lrge spin o = Tr(fo dt j; Wy(n)p(r,tyd’r) =

exchange, and the results are compared with their incoherent

analogues if available. The difference is not qualitative and is f°° dt f°° we(r)psdr)d’r (2.8)

rather weakly pronounced if the rate of spin conversion is 0 ¢

properly related to the hyperfine splitting in the electron pere psqr t) is the singlet state population of the RIP. The

paramagnetic resonance (EPR) spectra. quantum yield of the triplet productsr is defined in a similar

way:

Il. Singlet and Triplet Products of RIP Recombination y
The density matrix of the radical pair, depending on the inter- ¢, = Tr(J;w dt f°° W (r)p(r,t)d’r) =

radical distance and timet, obeys the following evolution 7

equation:314 Jo7dt [T W) (or 1 (10) + pr 7. (10) + pr 1 (1) o
(2.9)
ap(r,t) in which prgro(r.t), pr.7.(r.t), andpr 1 (r.t) are the populations

- I:p(r,t) +:f’p(r,t) N [W(r) + ij(r)]p(r,t) 2.1) of the To, T+ and T- states, respectively.

The quantum yields of the recombination products expressed

with a reflective boundary condition at the contact distance through the Laplace transform of the density matjif,s) =
= 0, whereo equals the sum of the van der Waals radii of the >, t) exp(~stdt, can be presented as follows:

radicals:

ot

P(r)_, =0 @22)  ¢s=Tr([ Wenp(r,0fr) = [ wy(npsdr.0)dr, (2.10)

Here, L is the operator, diagonal in the Liouville space, which for the singlet products, and

describes the relative stochastic motion of the radicals, while " .

is a Liouville operator describing the distance-independent part ¢ = Tr(j; WT(r)b(r,O)d3r) =

of the spin interactions, arjds a flux operator. In general, the -

operator/” includes the paramagnetic relaxation of the radical ~_f,, Wr(\)[prr,(r.0)+ pr 1 (r.0)+ pr ¢ (r,0)] dr (2.11)
spins, the HFIs of the unpaired electron spins with nucleus spins

(given by a known HamiltoniaH), and the Zeeman interactions ~ for the products in the excited triplet state. The rest are the free
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radicals that escape from the cage with the yield reaction and spin exchange. It obeys the following equation with
displayed initial and boundary conditions:
p=1-@s— @1 (2.12) .
G o(

A A A A A r—ra
It is common to use their efficiencies instead of the yields, Tto =LG,+ /G, at Gyr,r',0)= —2)E'
which are introduced by the following definitiof4? . At
7Go(r,r',H)l,=, =0 (3.6
L 2.1 24D 1Go(r,r'n)l, (3.6)

*“1xzp "1+ %" 1+ 2D (2.13) The Laplace transformation of this equation yields
in which the total efficiency of the recombination is " x N A X orr—r"
LGy(r,r',9) + (/" — sBGy(r.r'.s) = — (3.7)
Z=2Zs+2; (2.14) Amr

Using this Green function, eq 3.5 can be formally resolved with

The efficiency parametez was introduced in the spinless - . :
respect too(r, ro, S) in the following way:

theory!® instead of the recombination rate in a cadees,
used in the old “exponential modé#1718(see ref 12, sections . x o % N 3
l1I(D) and V(B)). However, the separation @ into two spin (110 = Go(r1eS)po = f, Golr.r',9)U(r)p(r'ro,s)d’r
components was introduced rather recently, when the double- (3.8
channel recombination was subjected to theoretical investiga-

tions IV. Contact Approximation for the Recombination and

Spin Exchange

[ll. Distant Start Assuming that the recombination, as well as the exchange
It is convenient to introduce the operator interaction, takes place only in a very narrow strip around the
contacto < r < o + A, where the strip width\ < ¢, one can
O(r)=W(r) + i J(r) (3.1) estimate in the contact approximation the integral in the right-
hand side of eq 3.8:
which assembles together the rate and exchange operators. Then

eq 2.1 can be rewritten as follows: j;°° éo(r,r',s)U(r’)b(r’,ro,s)dsr' ~ éo(r,gys)ép(o',ro's) (4.1)
ap(r,t) A, - . .
% =Lo(rt) + Yor) — O(Mp(r)  (3.2)  inwhich

The Laplace transformation of this equation takes the following Q = 47T02A'U(0) (4.2)

form: Because of contact simplification, the integral eq 3.8 reduces

sa(r,s) — p(r,0) = IA_,T)(I’,S)-F:/’ﬁ(I’,S) — U(r)f)(r,s) (3.3) to the algebraic matrix equation f@(a, ro, 9):

in which p(r,0) is the distribution of the density matrix over B(0.10,9) = Gy(0.r0:8)po — Gy(0,0,9)-Q(0)p(0,r ) (4.3)
the initial separation of the radicals in a pair. If the RIPs are
created at a fixed distancg, then the normalized initial distri-  Resolving eq 4.3 with respect to the density matrix, one finally
bution of them in the spherically symmetric case (no anisotropy obtains
of recombination and exchange interaction) is given by: s s

(0109 = [E + Gy(0,0,9)Q 'Gy(are9p,  (4.4)

o(r —ry)
p(r,0)= donr? Po o= 1S>< S (3-4) This important result was obtained by Purtov and Doktdfov.
It provides the exclusively convenient formal procedure for the
Taking this into account, we can recast eq 3.3 as follows: calculation of the quantum vyields.
. . . In the contact approximation, the quantum yields of the singlet
Lo(r,re,s) + (= sBp(rres) = and triplet products of recombination are expressed through the
S(r—ry) R Laplace transformation of the density matrix at conta@ét,
~ 7 Pt R Te9) 35) 1o O)

Here, the argumenty in the Laplace transformation of the @s(fo) = T"L Ws(r)[)(r,ro,O)oBr =
density matrixp(r, ro, ) is added just to stress the parametric o0 - 3. . 1S~
dependence of the density matrix on the initial starting distance L We(r)Pse{r Mo, 0)r ~ kfpss(o,ro,O) (4.5)
ro. There are two solution methods available to solve eq 3.5.
One of them employs the adjoint (or conjugated) Liouville and
equation (see eq 3.218 in ref 15, and refs 154 and 155 therein). o~
This method was generalized and also extended to spin-@(rg) = Tr L W, (N)p(r F,0)dPr ~
dependent problems by Pedersen and Christelisén.the T~ - -
prepsent worIE), we use another onrghe direct Green’s function ke [pToTo(o’rO’O) + Pr,T. (0,r,0) + Pr_T_ (0,r5,0)] (4.6)
method.
Let us introduce the matrix Green function (without reaction where
and spin exchangelzo(r, r', t), which takes into account the ) T )
system motion in the coordinate and spin state but without kcsz 4o A-wy(0), k; = 40" A-w(0) (4.7)
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The lower indexc indicates that these estimates are obtained wheregs(ro) andg(ro) are given in eqgs 4.5 and 4.6, and their

in the contact approximation of the recombination rates.

sum is equal to - ¢(rg). Combining now eqgs 4.16 and 4.11,

Let us show that, between these yields, the following general We arrive at eq 4.8.

relationship exists, in addition to eq 2.12:

Prro)
a =

@s(ro) +

ke

in which ¢(rro,9) is the Laplace transformation of the scalar
function ¢(r,ro,t) which obeys the following equation:

$(0.0,0) = $(0,0,0)[1 — @(ry)] (4.8)

ap(r,ro,t) .
M = Lo(r,ro,t), whereg(r,r,,0) =

ot
o(r —ry)

T andjo(r.rot)l—, =0 (4.9)

It is obvious that its Laplace transformatiap(r, ro, 0), obeys
the equation

. or —rp)
L(rrg,0)= ——— (4.10)
e
As follows from eqgs 4.5 and 4.6,
@s(ro) | @r(ro) .
% + TTTO = Tr{p(0.1,0)} (4.11)

To prove the relationship in eq 4.8, let us find the trace in

the right-hand side of the last equation in another way. Rewriting

eq 3.3 after taking eq 3.4 into account, one has =at0,

La(r,r,0) =
o(r —ry)

_:,;()ﬁ(r!r()io) + O(r)f’(rer*O) - ﬂrz

P (4.12)

V. Spin Dynamics in a Zero Magnetic Field

The quantum yields of the singlet and triplet products are
expressed through the density maffix, ro, S) atr = o ands
= 0. Generallyp(r, ro, S) can be expressed, as in eq 4.4, via
the Green functionﬁo(r, ro, S), which is the Laplace transfor-
mation of

Go(r.rot) = €”'p(r rot) (5.1)

Thus, the time-dependent Green functiGe(r, ro, t) is the
product of¢(r, ro, t) defined in eq 4.9, which depends solely
on the relative motion of radicals and their separation, and the
matrix e”!, which is distance independent and determined by
the spin interactions only.

The Laplace transformation of eq 5.1 yields

Golrrod) = [ & ¥ g(r rot)ct (5.2)

The Liouville matrix,f/’ can be reduced to a diagonal form:

A A A

P=TAT" (5.3)

in which A is the diagonal matrix with elementfs, s, **-.
Then obviously,

Gyrre9 =TT (5.4)
where matrix?’ is given by the following expression:
_ [rres—29) 0 0
g =|0 o(rros—424, 0 (5.5)
O o ces

Thus we see that all the results can finally be expressed through

The general solution of this equation can be expressed throughipe functiong(r, ro, s). Moreover, for the yield calculations,

the Green function of eq 4.1Qr, ro, 0):

p(r16,0) = ¢(r,16,0)0 + [ &(r,r 07 (r)p(r' ro,0)dV —
S B(rr OWrB(r 1o, 0)V —
=i [ (r.r",00(r")p(r' ro,0)V' (4.13)
It follows from this solution that
Te{p(r.ro,0 =
B(r.re,0) = [ (r.r OT{W(r)p(r' 1o, 0 d’r' (4.14)

because of the following identities:

TrH{Z()p(r 1o, 0 = Tr{3()p(r" ro,0) = 0, Tr(pp) = 1
(4.15)

Taking into account thadV = Ws + Wy and setting = o,
one obtains in the contact approximation from eq 4.14

Tr{p(0.r6,0)} = ¢(0.r4,0) — ¢(0,0,0)[@g(r) + @+(rg)] (4.16)

very often one needs only its particular value at the contact
argumentst = ro = o. At continuous diffusion in the Coulomb
attraction potential, a nice analytical approximation for
é(0,0, 5) obtained in ref 21 is given in Appendix A.

For the particular case of continuous diffusion in a highly
polar solvent (no Coulomb attraction/repulsion in the RIP), this
function is well known??

L o ex;{—\/é(ro —0)
4noD 1, 2
10D

Here,D is the encounter diffusion coefficient, which equals the
sum of the diffusion coefficients &~ andD™. (The Laplacian
operator of the encounter diffusion in this casé iss E-DA.)

At the start of contact, this expression reduces to the simplest
one:

H(ory9) = (5.6)

(?)(a,o,s) —_ 1 1

4moD
14,/
D

(5.7)
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A. One-Nucleus RIP.Now let us consider the RIP containing  while the total spin basis of the RIP with, = 1/2 is the
only one nucleus with spin 1/2, located on the radical named 1. following:
The HamiltoniarH of the HFI between the electron and nuclear
spins at this radical is given by Souys Tty T4Bn (5.10)

_1)

_él (5.8) The projection operatoré’s and Py in this basis have the
simplest matrix form:

in which A is the hyperflne coupllng constant, andls the

nucleus spin operatorl = (I, Iy, 1,). The spin basis of the A 100 A 000
RIP consists of eight wave functions. Letand 5 represent Ps= 8 8 8 Pr= 8 (1) (1) (5.11)

the wave functions of spin directed along or opposite tozhe
axis, respectively. Then the direct product of three individual
spin functions constitutes the single wave function of the In the same basis, the Hamiltonian eq 5.1 has the following
RIP, and there are eight independent combinations of suchform:

sort:

0 N4 —(A2V2)
OO0y aeaeBN! aeﬁeaw ﬂeaeaw aeﬂeﬁw ﬁeaeﬁNv }:| = A4 0 A/2\/§ (5.12)

B BPPn —(A/Z«/E) A2J/2 —(A4)

Here, the subindex “e” relates to the electron spin functions,
However, to make use of eq 4.4, we have to pass to the

and “N” relates to the nuclear ones. The first spin functiag ( Liouvill Th el f the Liouvil
or ) corresponds to the electron spin of the first radical, while 5'0UV!'€ Space. the matrix elements of the Liouville operator

the following one corresponds to the second radical. The lastis7 &€ expressed through the Hamiltonian matrix elements as

the spin function of the nucleus belonging to the first of the follows:
two radicals in apalr The spin Hamiltoni&hand the projection Ay s N
operatords andPr in eq 2.4 commute with the operator of the <ikpg = _'Hipakq + 'qu‘sip (5.13)

summaryz projections of the spins, ] .
where i, k, p, and g enumerate all the states of the basis eq

iz = glz + gzz + iz 5.10, andj, anddyq are Kroneker symbols. The dimensionality
of the Liouville operator of ensemble 2 is:9 9.
This allows us to subdivide the whole spin system into four ~ The Hamiltonian of the contact exchange interaction is
ensembles that differ from each other by #y@ojection of the

total spin: J(o):éfS2 =H (5.14)
1. 000, z,=3/2 Then the corresponding part of the Liouville operdibcan be
2. 0 0By OBty Bty =, = 112 represented as follows:
3. BBy BetPrs BBty == —1/2 —iJypq = —IHi0q + IHE 0 (5.15)
4. BB 2, =32 According to eq 2.4, the Liouville operator of the contact

. . . ) ) recombination from the singlet state is
Since we restrict our consideration to the RIP born in the

singlet state, the triplet statescoe0e and fefs8e are not (0)
populated initially and will not be because they do not mix with Ws(o)ik = W [(Ps)|p5kq + (PS)qkalp] (5.16)
the other states. The ensembles 2 and 3 also do not mix with ’

the others, but evolve independently. Thus, it turns out that, R
for the quantum yield calculation, one needs to specify only 1he OperatoMi(o) is defined in the same way. We have to

the evolution of ensemble 2. The results for the quantum yield YS€ bothWis(0) andWr(0), as well as), in eq 3.1, specifying
obtained from ensemble 3 should be the same because enV(0) and therQ from eq 4.2, which appears in the final matrix
sembles 2 and 3 differ only by the sign of the total spin Solution (eq 4.4).
projection. Therefore, from this point forward, we will confine To find the operatoGO(o ro, S) from eq 5.4, one needs to
our discussion to ensemble 2. have the diagonal operatoV (o, ro, 9) specified via the
One can also use another set of wave functions that are the€igenvaluesl; of operatordefined in eq 5.3. These eigen-
orthogonal linear combinations of those included in set 2. For Values expressed through the three eigenvalues of the Hamil-
instance, the projection operators have a simpler form in the tonian eq 5.12F;, = —(3/4)A, E; = Es = (1/4)A) are equal to
singlet-triplet basis of the electron spins supplemented with a their pair differencest — E; (i, = 1 2 3). Correspondingly,
nuclear one. The electron spin basis consists of one singlet andhere are nine eigenvalues of the Liouville operatar

three triplet wave functions:
M=A=A=Ag=4=0;1, =1, =A A, =1;=—A

1 5.17
|SC= T(Qaﬁe - ﬁeo‘e)1 |T+D= OO * ( )
2 Therefore, the elements of the operatéoand, consequently,

i(a Bet By, |T_0=BSe (5.9) those of operato(r, ro, S), are expressed through only three

[Tol= ) L
\/5 functions: ¢(r, ro, S), ¢(r, ro, s — iA), and ¢(r, ro, s + iA).



Radical Pair Geminate Recombination J. Phys. Chem. A, Vol. 109, No. 51, 20061919

From this point forward, instead of these three functions, we Here,Z = z/D is given by the following expression:
will use the following quantities:

< A

~ ~ ~ = —_— T -——

P = Red(0,14iA), Q = Im d(a,rpiA), F = $(0,1,0) (5.18) 2=ICTH (K~ k)5 (6.4)
and Here, ¢ and ¢3, given in Appendix B, are expressed via the

~ . ~ . - recombination constants in eq 4.7 and the exchange parameter
p=Red(0,0,A), = Im ¢(0,0,iA), f=¢(0,0,0) (5.19)  estimated in the contact approximation eq 4.2:

The quantum yields depend on these quantities, which is in
line with the recombination and spin exchange parameters at
contact.

B. Recombination Efficiencies With these notations and the
definitions given in eq 2.13, and the result of eq 4.8 can be
represented now in another form:

Zs Z: 7=ICf (6.5)
S+ =F+2F-1 (5.20) <

kc kc As follows from eqgs 5.18 and 5.19, in this ca®s q= 0 and

P =F = ¢(o, ro, 0), butp = f = ¢(0,0, 0). For the Coulomb
interaction with the Onsager radiug these quantities can be
found from the well-known relationship

jo = 4n10”AJ()

A. Reduction to the Spinless Theory.For the hyperfine
coupling constanf = 0O (in the absence of spin conversion), it
can be shown that¢ vanishes and

in which Z = Z/D, Zs = Z¢/D, andZ; = Z¢/D. Accounting for
eq 2.14, we obtain from here

, kF — Z[1 + k)(f — F)] ; ;
Zs=k3 i (5.21) P(0,1,,0) = 471 B exp( )[1 - exp(— i)] (6.6)
5 HSF = Z[1 + K(f — F)] Therefore z reduces to the simplest expression
=k, —— (5.22)
ke~ ke IS
. .. 7=— ("~ 1) (6.7)
These formulas express bath andZy via Z and the Green 4nr D
functions £ andf) in all cases except the very special one, the
“spin-independent recombination”, thﬁ: kI In this case, Substituted in eq 6.3, in line with the relationship
the numerators in the above formulas turn to zero, allowing the
determination of the single quantity: F_1—exp(rdry 6.8)
KF f  1—exp@rdo) '
z= atk§ (523 . _ _ o
1+ kc(f it gives Z of the spinless theory first obtained in ref 16.
B. Yields of the Double-Channel RecombinationThe result
VI. Recombination of Radicals Started Away from of eq 6.5 follows from eq 6.4 at ang = 0 if kf = kI Being
Contact substituted into eq 6.3, it leads to eq 5.23. As was noted long
According to eq 2.12, the total yield of recombination, to g0 the spin conversion in this case does not modulate the
the singlet and triplet products, is recombination, and therefore the resultsdor= 1 — ¢ do not
differ from those valid for the spinless theory.
D(ry) = gy + @r(re) =1 — @(ry) (6.1) A different situation arises with partial quantum yields from
eq 2.13 that can be represented as follows:
in which the partial yields are defined in eqs 4.5 and 4.6. Let 5 L
us represent the total yield (eq 6.1) through the recombination Zr Z— 7y
efficiency Z related toD:12:15 TTIF2PsT 1+ (6.9)
O = _Z_ (6.2) We need onlyZr along withZ to have both of them. Moreover,
1+7 using eq 6.3 in eq 5.22, we obtain the universal expression for
To calculate® from eq 6.1, one needs to find from eq 4.4 the Zrviaz
matrix p(o, ro, 0), the components of which determige(ro) kfF ey
and ¢+(ro) in egs 4.5 and 4.6, respectively. N ZT — kI (6.10)
This has to be done by insertirgy(o,0, s) and Go(, ro, S) (S — kD1 + %1 — F/f)
into eq 4.4, deduced from eq 5 and expressed throtiiho,
s) and.>’(o, ro, S) from eq 5.5. In this very way we obtainebl in which Z is expressed in eq 6.4 via the ratio.of to %. The

using the analytical calculations system Mathematica, but it expressions for both of them are given in Appendix B. In the
appears that the form ob is too cumbersome. Fortunately, limits of the weak and strong exchange interaction, these
being substituted into eq 6.2, it leads to the much simpler expressions are greatly simplified, as shown below.

expression for the relative recombination efficiency: 1. Zero Exchange Interactionc(= J = 0). The efficiency of
the total recombinatiorZ is expressed in eq 6.3 through
5_5 Ff (6.3) Z defined in eq 6.4, which, in turn, depends on the ratio

1+ 71— F/) to ¢. In the case of zero exchange, these quantities given in
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Appendix B take the following form:

A= —6f(2+ (€ + KDN{[2 + (€ + KDpIP + (K +
kDAQH (L + k) — {(1+ Kp)[2 + (K + k))p] + k(K +
kD)o}F) (6.11)

%6 =6( — KD{[2 + (K + K)pIP +
(kS + kDAQH[2 + (k5 + KD — 2{[2 + (k5 + KDp]* +
(kS + kD)%PH[8 + (3kS + BK)TF (6.12)

2. The Strongest Exchange € J = «). The total efficiency
(eq 6.4) is now expressed via a rather simple ratio:

(—A( = [3FF(p + k3p? + K — (PP + qQ)(1 + K]V

[3(k — k) (PP + qQF — {2(0° + o) + [p(6 + 3kp +
5kep) + (3ks + 5ki)a7] f F]

The triplet quantum yield also becomes much simpler:

@1 = [BKIF(p + k3p? + kSaP) — (PP + qQ)(1 + kS H]I/
[2(p° + o) + f{p[6 + 5 (K + k.")p] + 5 (k + ko’ +
[3kIp + kp(3 + 8Kp) + 8kekiq?] f}]

VII. Polar Solvents

In high polarity solvents, the Coulomb interaction is absent
(rc = 0). Therefore, substituting eq 5.6 into tReandf from
egs 5.18 and 5.19, we have

1o 1

Ko
in which kp = 470D is the diffusional rate constant. Because
of this, all the results are greatly simplified.

Specifically, when eitheA = 0 or kf = kI the quantityz
reduces to the expression

ke

Ko

The substitution of eq 7.2 and the ratif = o/rg = y into
eq 6.3 yields

3= (7.2)

K

S o1+ Kk (1) (79

This is again the result of the spinless theory obtained in ref

16. The limiting cases of diffusion and kinetic control of the
reaction are seen from the following equation:

7=
%VD diffusional geminate recombinatior) < (1 — y)z
yz kinetic geminate recombination, D> (1—y)z
(7.4)

The spin-dependent effects will be considered below in the

limiting cases of zero and strong exchange.

Lukzen et al.

A. Zero Exchange Interaction (. = J = 0). In high polarity
solvents, the general expressions of eqs 6.11 and 6.12 take the
form

A= =3(2+ ks + k){2(1 + k){ kpQ(ks + k)q —
koP[2 + ko + k + (4 + k + k)0 + 467} +
2y[(1 + k)2 + k,+ k) + (4 + 3k, + k)0 + 467} (7.5)
B=—6(k— k)2 + Kk + k}{ —kpQ(ks + k)0 +
koP[2 + k + k + (44 k+ k)0 + 467} + 2(8 + 3k +
Bk)[(2 + ks + k)* + 4(2+ k,+ k)0 + 867 (7.6)

Here, the new notations have been used:

ks = k7o, ki = kl/ks (7.7)
Additionally,
1 o evetd
P_ER":r01+ 0(1 + i)]’
1 o e Vi) _ o
Q_E'm{rolJr oL+ i)]’ andy =1

in which the spin dependent parameters

_ A _[Arg— 0)?
0= 5 andw = —2D

determine the extent of spin conversion during the encounter
time and the time of approaching contact from the remote start
atro > o.

1. Spin-Independent Recombinatiop=kk; = k). Let us turn
to the very useful example, first analyzed in ref 3 and
reconsidered in ref 5, using the incoherent model of spin
conversion. Here, we are doing the same, but we are using
the HFI model of coherent spin conversion in a zero magnetic
field.

As was already noted, in the case of equal recombination
constants, the total recombination yield and its efficiehgjven
by eq 6.3 are independent of the spin conversion. Unlike the
total yield, the individual yields of triplet and singlet products
are affected by spin conversion. In particular, the triplet guantum
yield is

(p=§yk 1 e 0 siny — (1 + k+ 0) cosy
T8 |1+k 1+ K+ 2k(1 + 6) + 20(1 + 6)
- ke

in whichk=— (7.8)
Ko

As was expected in the absence of spin conversfor=(0),
this yield is zero:

¢;=0,sinced =y =0
Otherwise gt = 0 is spin-dependent, as well as = ¢ — ¢r.

In the important particular case of diffusion-controlled recom-
bination, one obtains

#r= gy(l —e Y cosy), atk =
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01 02 03 04 05
D1l2
Figure 2. The linear relationship (eq 7.15) between the starting

distanceso and positions of the maxima, on the scal® that the
curves Of(pT(\/B) in Figure 1A pass through.

in which K is the rate of incoherent transitions. However, there
is a peculiarity appearing in the coherent case at the top of all
the curves: the maximum shifting to the right with increasing
ro. Under diffusional control, this is the maximum seen in eq
7.9. This is the only peculiarity that manifests about the dynamic

D'IIZ
Figure 1. The triplet quantum yield as a function of diffusion at the (coherent) mechanism of the spin conversion, which is periodic

‘(:;n;égtlszﬁ;t;tfe(g"’f? é‘;rg% ?Q;j ETge;ﬁgazgnfsgci)%t,a?ﬁgséé}]mon in time. The maximum of the triplet yield is reached, provided

parameters for coherent (A) and incoherent (B) spin conversion are that the radicals born a come into contact at time/A, when
the samek = 800 A2 nsL, o = 7 A. At the same time, the HFI constant  the triplet RIPs population is maximal. This condition, repre-
A = 0.176 ns?, while the rate of incoherent conversiéia = A/8 = sented by eq 7.10, leads to the linear relationship

0.022 ns. D is measured in Ans.

3t /2
Obviously, this function passes through the first maximum at =0+ \/%\/5 (7.14)
Alrg— 0)? 37 From this equality, one can get the value Bfwhere the
Y= ~— o0 4 (7.9) maximum is located for giveny. Figure 2 precisely confirms

this expectation: the slope calculated from eq 7.145t0.176

There is a very transparent way to obtain eq 7.9 in the case nslis 7.87, whereas the slope obtained from the figure is equal
of diffusion control, when the radical pair recombines at the t08.26. o
very first contact. The number of RIPs recombining from their 3. The Price for Contact Recombinatidtaving the general
triplet state is proportional to the product of the triplet state formula of eq 7.8 forpr in line with the total recombination
populationprr at instantt and the probabiliy(t) to simulta-  efficiency Z from eq 7.3, we can easily find two other
neously find the radical pair at the contact. The total population efficiencies:
of the triplet stateorr = pr,1, + p1o1, + pr_1_, @nd the triplet

product yield is Zr=9i(1+2),2s5=72—7; (7.15)

- The diffusional dependence of all of them is depicted in Figure
Pr=Jf, Pr(OQO (7.10) 3. Unlike theZr curves, which are smooth and weakly dependent
on the starting distance, the ascending (diffusional) branches
The density probablllty function of the first contact is well of Z in Figure 3B are affected much more by an increa%.in
known: However,Zs is the most sensitive to very small variations in
the starting distance. Its diffusional dependence is qualitatively
o) = o(ro — O)t—s/z ox F{— (ro— 0)2) (7.11) different for the contact start and for the start insignificantly
ZrO\/E 4Dt larger than it. This physically unreasonable difference is the
main weakness of the contact approximation for recombination.
whereas the triplet population evolving because of the Liou- ThiS approximation ignores the exponential space dependence
villian ~isl?.23 of the normal recombination rate, which cannot be narrower
- than the tunneling distandte~ 1 + 2 A. Moreover, the contact
approximation ignores the static electron transfer (which remains
even atD = 0) and therefore is not applicable to the region of
small D (see Chapter V-D in ref 12). Therefore, the reliable
Equation 7.9 follows once again from the last three expressions.fitting of the experimental data obtained in ref 5 should be done
2. Coherentversus Incoherent Spin Coersion. The diffu- numerically, using the real space dependence of the electron
sional dependencies of the triplet quantum vyield at different transfer rates.
starting points are compared in Figure 1 with their incoherent  B. Infinite Exchange Interaction (jo = J = ). In the case
analogues calculated according to ref 5 and presented there irof the largest exchange integral, all the results are greatly
Figure 7. Qualitatively, they are very similar, provided that the simplified, and we get

incoherent parameter from refd = 4/4Ko?/D = 6, that is (. Oy~ kL k)P PO~ QF)

K= A8 (7.13) B “3ky(k — k)(P + PO — QO) — (8 + 3k, + 5k, + 60)y

prrlt) = :—;(1 ~ CosAl) (7.12)
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These efficiencies determine the quantum yields of eq 2.13:

&
@ 1+2'§0T 1+Z’¢S (a2

The expression in eq 7.9 fgry is reproduced under diffusional
control of the geminate recombination when

= ~ —aV
Z= l—_y—yandZT = g}/lf‘_;o&ﬁ ask — oo

0.0

The last results are valid at any exchange integrptovided

0 jc is negligible compared thf = kI

VIII. Contact Start in Polar Solvents

The general expressions fa@r(ro) and ¢+(ro) have to be
averaged over the initial distribution of starting distanf{eg
d a-70 created by the preceding bimolecular ionizattéistead, it is
4] b-7.01 B often presumed that the reactants start from the contgct (
c-7.1 0), that is,f(ro) = d(ro—o)l4arq?. This particular case is easier
2] d-75 to study as an example because the initial stage when the
reactants approach each other is eliminated.

However, this is not only a model, but also a real physical
situation when the radicals are born because of short-range
D" proton or atom transfer or bond cleavage. The same is true for
chemiluminescence resulting from the backward electron trans-
fer considered in a few recent works:2° The spin conversion
in the contact-born radical pair, constituted from the adaman-
tanone anion radicad~ and methylm-oxybenzoate radica¥l,

a-70 proceeds between sequential recontacts. The initial singlet state
b-7.01 c of this RIP changes to a triplet and thus opens the way for
c-741 electron transfer to a triplet product. This becomes possible
d-75 parallel to the allowed RIP recombination through a singlet
channel, to both the excited singlet and ground states. In this
particular example, the Coulomb interaction is absent in
principle ¢. = 0), while, for the oppositely charged ion-radicals,
this is the case only in highly polar solvents. Here, we address
either of these cases, while the general formulas that are valid
for arbitrary polarity (wherr. = 0) are presented in Appendix

15 20 25 30

oo
[S)
o
o
-
[S)

O = N W h OO N O O
P A T S S D A

o
-
N
PRy
~
(4]

D1I2
Figure 3. The diffusional dependencies of the recombination efficien-
cies from different starting distancas (A) through the triplet channel,

B) total, and (C) through the singlet ch Ikat= KT = 800 A¥/ns. ' .
(B) total, and (C) through the singlet ¢ annek% ke ns If the radicals start from contact, then

Using this result and the relationships of eq 7.1 in eq 6.4, one
getsZ as well asZ andZr from eq 6.3 and 6.10, respectively.
HavingZ andZ, it is easy to find any other quantum yields as
well. For instance,

_3 A+ k,+ 0)y — ko(1+ kJ(P + PO — Q)
PR A k) + 32t ko KO 2 =% (8.2b)

F=f=1k,, y =1, sincer,=0 (8.1)
Hence, according to egs 6.3 and 6.10

72=3% (8.2a)

This result is the same as that which follows from the earlier

work of Salikhov?* Moreover, it was generalized there for in which

arbitrary nuclear spihand any statistics of recontacts. However, )

such statistics are known for only the diffusional encounter of 7=k + (k — K)M (8.3)
neutral radicals, whereas, in our theory, we are using the Green a8

functions, which can be easily calculated, for charged radicals

as well, either analytically or numerically. The quantities ¢ and % are expressed throughandq in eq
1. Spin-Independent Recombinati&@specially simple are the 5.18, the values of which with regard to eq 5.6 are in turn equal
results in the special case = k; = k, when to
1 1 1 146
5 _ 4 5 p= —Re[ - ] = (8.4a)
Z_k1+|<(1—y)ZT_ ko 11+6(1+0)] ko + 6)>+ 62

[(A+k+0)—e Y(1+K) cosy) _1 1 _ 1 0
2[1+ k(1 — y)](4 + 4k + 36) 1%k [1 + 61 + i)] ~ Ko(1+ )2+ 62

(8.4b)
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Finally, we have two quantities that have to be used in eq 8.3: 0.8+
Z o7\
ko (= —30[> + (2 + k,+ k)(2 + k. + k + 46)] M T Incoherent
t 0.6
B=81+KI*+ @2+ ks + k)T +2[3°+ 81+ k) + 051
(2+ ks + k)(16 + 3k, + 13k)]0 + 8(8+ 3k, + 5I<{)02 047
! Coherent
034 /
in whichj = jJ/kp. The results are given below for three cases, {
ks = 0, ks = k;, andk; = O (from top to bottom): 0'2'/
0.14;
~ .2 f
2=[3kO[]°+ 2+ k)(2+ k + 40)]/ 00

[8(1 + kt)[Jz + (2 + kt)z] + 2[3j2 + 8](1 + k{) 4 0 20 40 60 80 100 120 140

0
2
2+ k(16 + 13916 + 8(8+ 5k)6"] Figure 4. The spin-conversion dependence of the efficiency of

recombination through the triplet channel in the rate (incoherent) theory

z=katk,=k =k of conversion and in the present (coherent) theory (dependent on the
relationship between the recombination constants). Diffusional recom-
r=k — [3|<50[j2 + 2+ K)2+ k + 40)) bination of triplet pairs born at contadt; (= 10).
[g[jz + @2+ ks)z] + 2[(8 + 3j) + but, in the spin-independent case, the result is half as much as

that obtained in eq 8.5 with the model (incoherent) theory.
Under diffusion controll > 1), the efficiency of recombina-
tion from only the triplet channek{ = 0) does not differ too

(2 + k)(16 + 3k)]0 + 8(8+ 3k)6]

In the absence of spin conversiah < 0), we have eithet = much from that of the spin-independent case<( k), but under

0, if the recombination proceeds only through the triplet channel, \inetic control k < 1), the difference is even less.

orz= ks, if only the singlet recombination channel is working. 1. Single-Channel Recombinatidfione of the recombination

In the special intermediate case, whea = k = k the channels is switched off, then all the recombination is occurring

recombination efficiencg = k at any spin conversion parameter  ,rough the other one. Whég = 0, then we obtain
p ;

.A. Zero-Spin Exchange [ = J = 0). In some previous 7 =13k(2 + K)O(2 + k + 40/1S(1 + K)(2 + k)2 +
works, the spin exchange was ignored, and relatively simple T = 3k KO . VIB( K K

results were obtained for such an approximafiétiviaking use 2(2+ k)(16+ 3+ 13k)6 + 8(8+ 5k)67] = Z; Zs=0
of it here, we also get rather simple expressions for the
recombination efficiencies found in eq 8.2: instead of the rather primitive model formula in eq 3.4 from
~ ref 5. On the other hand, whels = 0, the recombination
Z=k,+ [3(k — k)(2+ k+ k)O(2 + k,+ k + 40)]/ efficiency is
2 ~
[B(1+ k)(2+ ks + k) + 2(2+ k,+ k)(16+ 3k, + i Zo=k —
13k)0 + 8(8+ 3k, + 5k)6] 3k(2 + k)02 + k,+ 46) B
7. = [3k(2 + k. + k)O(2 + k. + k + 40)]/ 8(2+ k)’ + 2(2+ k)(16 + 3k)6 + 8(8 + 3k)0°
[8(1+ k)(2+ ks + k) + 2(2+ k, + k)(16 + 3k, + Z,2:=0
13k)6 + 8(8 + 3k, + 5k)67]

instead of that obtained in eq 3.3 for the model theory.

The efficiency of recombination through the triplet channel
monotonically increases with the spin-conversion mtevhile
that for the singlet channel goes down. When one goes fom
=60 =0to A= 6 = o (at given D) the recombination
efficiencies change in the following limits:

- 2+ ~ 2+
02 <Hgrar k2o k-Hgr e @9)

in which k; andks are defined in eq 7.7.

Similar results for the rate (incoherent) theory of spin
conversion, represented in eq 3.2 of ref 5, are even more simple
In particular,Z in the incoherent theory depends only ko=

1NT:

- 3 ok 3
AT otk ahdeTe (8.5)

) ) o ) In Figure 5, the variation of the recombination efficiencies
This result is compared with its exact (coherent) analogue in patween the slow and fast conversion limits is shown, taking

Figure 4. In the absence of spin conversion< 6 = 0), the = ks = k < 1 (kinetic recombination of the contact-born RIP).
triplet efficiency turns to zero in both the coherent and | the |imit of the instantaneous spin conversidn— ) we
incoherent theories. In the opposite limit of full mixing & ¢ obtain from eq 8.6:
= ®), Z7 reaches its maximal value, which is in the present
(coherent) theory: T
3 ko 5 k s
=57 = <
4 24k+k 3 Max Z; 8 Ino Min Zg 8" Zmo’ at k., k? <ky
Max Z;y = h—————F —gkatk =k o .
8 2+ §ks+ §kI 8 Because of the dispersion of the times between recontacts, the
4 4 average costis zero at largé\. At such a fast conversion, the
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0.090 -
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0.085 % ]
0.080- o %87 ¢
s, i
N 0.075 £ 064
=)
0.070 T 044
©
0.065- =) ()
g o2- S
0.060 (pT
0 T T 7T T T
0 2 4 6 8 10 12 14 16
0.030 - D1/2
0.025 Figure 6. The diffusional variation of all the quantum yieldsAat=
10 G with the samé as that shown in the previous figures.
0.020
0.015 1.0
0.010- 0.8+
J )
0.005 o, 0.6
0.000 ; ; ; : ; . 041
0 5 10 15 20 25 30 0.2
A, ns” '
Figure 5. The retardation of singlet RIP recombination through the 0.0 : T 7 T
singlet channel (A) and the acceleration of that through the triplet one 00 02 04 06 08 10
(B) with accelerating the spin conversion. Solid lines areXer 0, ¢
W?”e the dashsed lines are fdr= co. Other parametersk; = 800 Figure 7. The dependence of the triplet quantum yiejd, on the
A3ns, D = 10 crr/s. free radicals yieldp = 1 — @ at different rates of spin conversign

) ) . ~ 1,10, 100, and 1000 G (from bottom to top)kat= 800 A¥ns.
weight of the populated triplet states according to eq 7.12 is

[prr= 3/8. Therefore, the maximal rate constant of recombina- tion yield ® = 1 — ¢ is represented by the diagonal of the
tion through the triplet channel is weighted in the last formula square displayed in Figure 7. Then the single cyrvg) shows

with 3/8, while the recombination through the singlet channel not only the triplet yield, but also the singlet yiejds = ® —

has the weight + 3/8 = 5/8. @7. The fourgr(¢p) curves shown in Figure 7 demonstrate how

Different results follow from the formulas in eq 8.6 in the the triplet yield grows whem\ increases with the sacrifice of

opposite limit of the diffusional recombination accomplished singlet products.

at the first recontact: B. Infinite Exchange Interaction (jc = J = »). This is the

easiest case for study, and the corresponding results are the

T .
3 k 1 K T simplest ones:
MaxZ —1—0 H Min ZS E 47'[_ at ,k§>>kD 3
- _ =0
Since they remain finite a® — 0, all Z = Z/D — « and ¢r, 7 = M 7 = 54—
, e o o . / Z=K+ Zr 8.7)
@s — 1 in the slow diffusion limit, as well as in the spinless 8 + 8k, + 60 2 1+k+ §0

theory.
2. Spin-Independent Recombinatiog kk; = k). At equal o ) - )
recombination constants, we obtain for all the quantum yields 't is interesting tha¥r is independent oks, as in the model
theory® Moreover, the model result is functionally the same:
Z=k—FL—— 3 a
1+k(1-— O %
@=» ATk Ta

[(1+k+ 6) — e (1 +K) cosy]

Zy = 3yk- ided is identified wi |
T Y 2[L+ k(L — 7)](4 + 4k + 30) provideda is identified with (3/49. To ensure such an equality,
one should take
Their dependence on the HFI constaft,as well as on the A 16
diffusion coefficient, is confined in the dimensionless parameter 8= EKS

0 = v Ao?I2D. At given A = 0.176 ns? (10 G) the diffusional
dependence of all the yields is presented in Figure 6. It is very This is almost the same condition that is given in eq 7.13.
similar to that obtained with the incoherent model of spin Because of this choice, thé from eq 8.7 relates to its model
conversion in Figure 5 of ref 5. The same dependencies mayanalogue as (1/2):(3/4).

be represented in another way, proposed in ref 3. The total yield 1. Single-Channel Recombinatiom the case of recom-
of free radicalsp, used as an argument, changes from 0 to 1 bination only through a triplet channets(= 0), we have, as
with increasing diffusion. Simultaneously, the total recombina- usual, Z = Zr defined in eq 8.7. Recombination through
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the solely singlet channel provides

8+ 360

These efficienciesZr andZs, are displayed by dashed lines in
Figure 5, in line with those related tb= 0. The difference is
rather insignificant at any spin-conversion rate.

Using eq 8.8, one can easily estimate the yield of pairs

recombined through the singlet channel:

7 k(8 + 30)
1+Z 8(1+k)+ 32+ k)

ps=1l—g@= (8.9)

This result coincides with that obtained by Purtov and Sa-
likhov.2431
2. Spin-Independent Recombinatiog£kk; = k). When the

spin exchange is infinitely fastl(= ), we obtain instead of
egs 8.7 the much simpler results

_1 30
PTIrR YT T 20 K4 + 4k T 36)
ps=1—¢ — ¢ (8.10)

Sinceg is the same for any, the whole difference between
the limits J = 0 andJ = « reduces to the difference in the
expressions forpr. Taking their ratio, we get the objective
measure of this difference:

_¢r=0) _ (1+k+20)(4+ 4k+30)
pr(3=0) 4[1+ KL+ k+ 20) + 267

(8.11)

It can be seen thd& changes in the very rigid limits £ R >
0.75 when the hyperfine coupling consténfand consequently
0) varies from 0 toeo. This is the scale of the effect of the
exchange interaction on the quantum vyield.

IX. Conclusions
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Appendix A: Green Function for Coulomb Attraction
Potential

In our notations the expression fgio,0,s) obtained in ref
21 and refined from misprints in pagétakes the form

1 1

¢(0,08) = 75— o) + K03 (A1)
where
_ k. sty t [9(0)/5(0)] /574
uo(o) = oxp(l) — 1 «(o,9) = Tt 20
Here,
c(0) = X exp(1K)[1 — exp(—1/x)]?
and

9(0) = [x[exp(1k) + exp1/x) — 2] — X/
%[Ei(l/x) — exp(1R)(x + 2 + 23] + %[El(llx) -

expl1X)(x — X + 23] + %xZ +x

wherex = odlr¢, g = 0%/D, andr. is the Onsager radius, while
Ei andE; are the integral exponential functions.

We have developed a general theory for the double-channeIAppendiX B: General Results

geminate recombination at any rate of HFI-induced spin

conversion and arbitrary spin exchange between the radicals in
a pair. The contact approximation for the spin exchange and
recombination through both the triplet and singlet channels is , _— 3f{

the only limitation of the theory.

It should be emphasized that the partial yields of singlet and

triplet products of recombination are studied in line with the
yield of free radicals, to which most of the previous investiga-

tions are confined. We established the important general

Generally,z is expressed in eq 6.4 via the quantities given
below:

P[4 + 2 ( + kDp — jd] + [icp+ 2( +
kDAIQ + k({2 (k¢ + k) + [i” + (kS + k)Ip} P +
{=ic+ i + (€ + k)G QF — {2(1+ Kp)[2 + (kS +
kDP] — joa + 2k(kE + KD} F + f[P[2k] + 3k + (i +

relationship between these yields (eq 4.8) and the analogous kI2p + K36+ 4klp — j.a)] + [i(—1+ Kp) +ia +

relationship between the partial recombination efficiencies (eq

5.20), which allows for the expression of both of them via the

total one and the Green functions of the free motion.
Qualitatively, our main results are very similar to those

obtained with the rate model of spin conversion in ref 5,

provided there is a definite relationship between the phenom-

(k3 + KD(3K + kDalQ — (1 + KpH{ 20k + k) + [i” +
(kS + k)P — jksa + ki + (kS + KD q)FT}

=3 — k)20 + K]) +[j> + (K + k) p} P +

enological rate and the HFI constant established in eq 7.13. {—j. + [i + (K + k)7t QF + 2(16+ p{16(S + k) +

Besides this, we estimated the effect of spin exchange and found

that, in polar solvents, the maximal difference in the quantum
yields between the limits of zero and infinitely fast exchange
is not more than 25%. The yield dependencies on diffusion,
recombination rates, and the HFI constant are specified.
Although our results are valid for a pair with a single nucleus,
it is pointed out in ref 24 how the effective hyperfine coupling

constant should be defined to extend the theory to the many-

nuclei radical pair.

[i2 + 40¢ + KD)pt — 8ja + [> + 4(< + kDAG)F +
=3k — ke{ P[4 + 20< + k)p — jedl + [ip + 20 +
KDAIQ} + (6i°p + 3Kk (p* + o) + KAp(12 + 11Kp) +
11k;q] + k{20 + Bpl4k; + (i + ke *)p] — 13j.q +
5(.° + ki) + k{12 + 32p + 13 H(p* + o) +
3id—a+j(p* + OIHF]
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Appendix C: Contact Start of the RIP
1.J=0

A= —=3[2+ (kK + KDI(—{pl2 + (kK + k)pl} —
(€ + k)™ + [2 + (K + K)plf)

B = 2(16+ p[10kS + 22k! + (k3 + k) (K + 7k])p] +
(S + kD (S + 7k’ + {kSIp(3 + 4k[p) + 4klo?] +
2kJ[3 + 8KIp + 4k (" + o) + K([10 + 13k[p +
AP+ P

A 3(p° + o — pf)
42"+ o+ [P+ k) + 4k
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