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A novel way of assembling the total potential for performing molecular dynamical studies of complex gas-
phase reactive chemical systems is introduced. The method breaks the calculation of the total potential and
gradients of the potential into time-dependent groups that are governed by spatial cutoffs. These groups evolve
during the course of the simulation and their number may increase or diminish as the dynamics of the system
determine. In an effort to extend the simulation time of these complex reactive processes and to use high
levels of theory when necessary, multiple levels of theory may be used over the groups for the calculation of
both the intragroup and intergroup interactions. Representative simulations are performed to illustrate the
method and a computationally facile method of obtaining the groups of a simulation are also discussed.

I. Introduction

The development of methods for the accurate description of
how a reactive chemical system changes in time is a very
important field of study, but one that regrettably seems to have
developed more slowly than methods for describing the station-
ary-state properties of chemical systems. This is unfortunate
because the ability to accurately describe the time evolution of
reactive chemical systems from first principles (ab initio)
qualifies as a necessary step for a complete understanding of
the chemical sciences. Having the ability to calculate average
values of experimental observables completely on the basis of
first principle molecular dynamic (MD) simulations has ex-
tremely significant possibilities. In fact, this is a necessary
development for a complete understanding of chemistrysbeing
able to follow the dynamics of reactive systems completely from
first principles without having to fit parameters or functional
forms to experimental data and by these simulations to obtain
average values of experimental observables. When the calcula-
tion of branching ratios, internal energy-state distributions of
product formation, rates of product formation, lifetimes of
chemical species, etc. are based completely on first principle
MD simulations, one may see the exciting potential that these
first principle studies hold. The ultimate goal is for the ab initio
dynamics of the system to yield the kinetics and all the details
of the reaction.

There is, however, much difficulty in accomplishing this goal
of MD simulations on ab initio potential energy surfaces (PESs).
Two of the primary difficulties are the number of internal
degrees of freedom of chemical systems (3N - 6, whereN is
the number of atoms)1 and the corresponding complexity and
computational costs of obtaining accurate ab initio potential
energy surface (PES) of reactive systems.2 Due to these
difficulties, the chemical systems often chosen for study by ab
initio MD simulations are small, often involving 6 or fewer
atoms.3-9 A sampling of previously studied reactive systems
by ab initio calculations may be found in ref 10.

The additional difficulty that the method introduced here
focuses upon is that of size and complexity of the chemical

system. Consider, for example, the complexity associated with
gas-phase combustion processes. These gas-phase processes
have very simple net reactions but often involve∼102 simul-
taneous elementary reactions and∼103 different chemical
species in leading from reactants to products.11-13 Certainly
complexity of this magnitude adds a completely new level of
difficulty when one desires to study combustion processes by
ab initio MD simulations. In fact, it is only recently that effort
has gone into performing MD simulations of combustion
processes.5,8,9This effort focuses on following the dynamics of
asinglestep (of the∼102 possible elementary steps) in isolation.
Indeed, there is much room for improvement for following the
dynamics of complex combustion processes. Another field in
which performing MD simulations is very valuable is the
chemistry of the atmosphere, where, similar to combustion
processes, many simultaneous reactions occur that involve a
large number of chemical species.

Part of the inherent difficulty in performing MD studies of
complex combustion processes is that many of the reactive
processes will involve species that require high levels of ab initio
theory (with explicit methods of calculating electron correlation)
to get their interactions correct (free radicals, excited electronic
states, etc.), whereas some nonreactive collisional processes may
involve chemical species for which much lower levels of theory
may be appropriate (force fields, semiempirical, or low-level
ab initio methods). Clearly, a one-size-fits-all approach to the
calculation of the total potential will encounter great difficulty,
falling into one of two extremes: (1) treating all the interactions
with high levels of theory with explicit methods of calculating
electron correlation that is sufficient to get the most demanding
of interactions correct and absorb an as-yet impassable com-
putational cost for the simplest of combustion systems or (2)
treating all the interactions with a very low level of theory and
very likely not capture the correct dynamics of these complex
reactive systems.

To surpass this difficulty of treating the whole chemical
system at too high or too low a level of theory, a combination
of ab initio theory with low level force fields has been introduced
and applied by others.14-16 These QM/MM methods are
extremely powerful and have been utilized in studying very
important systems. A modification of these QM/MM methods
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has been introduced by combining differing levels of ab initio
theory.17-20 In fact, recently integrated QCISD(T), MP4, and
MP2 methods in the IMOMO methods have proven to be very
accurate when studying barrier heights and reaction energy
differences of systems relevant to combustion.21 Specific
reaction parameters (SRPs) are another method that has been
formulated to use multiple levels of ab initio theory.22-27

Although these IMOMO and SRPs methods are similar to the
method described in this paper, they differ in that the method
of this paper is seeking to take the idea of multiple levels of
theory to study thedynamicsof chemical processes. IMOMO
and SRPs have been formulated to obtain accurate calculations
of stationary-state properties, such as transition states, barrier
heights, and vibrational frequencies. Using multiple levels of
theory in studying dynamical processes has its own unique
difficulties.

Ab initio quantum chemistry has made significant contribu-
tions to the study of combustion processes by the employment
of stationary-state methodologies. Kinetic mechanisms for these
very complex reactions are often postulated, reduced to the
smallest number of steps believed to be possible, and experi-
mental rate coefficients are obtained by parameter estima-
tion.11-13,28 Sometimes, though, instead of fitting all the rate
coefficients, the kinetics of some of the elementary steps of the
postulated∼102 may be studied in isolation by cleverly devised
experiments.29-33 In the absence of experimental data, quantum
chemistry is a significant help in calculating rate constants by
finding and characterizing transition states of the elementary
steps. Transition-state theory is then employed to obtain the rate
coefficient.13,29,34 Unfortunately, the essential veracity of the
whole scheme depends on the initial postulated mechanism and
ab initio methods can shed no light upon this question. Methods
must be developed that can follow the dynamics of these
complex reactions from reactants through to products (where
the dynamics may, indeed, be spread over∼102 simultaneous
reactions and∼103chemical species) by means of ab initio MD
simulations. Even small progress in this area would qualify as
a momentous improvement and have ubiquitous application
potential.

The goal of the method developed in this manuscript is to
move away from a one-size-fits-all approach to calculating the
total potential energy and gradients of the potential when
modeling the dynamics of gas-phase reactive systems and to
move toward an approach that makes the compromise of
truncating higher-order multibody terms rather than the level
of theory. This approach allows the use of higher levels of ab
initio theory when appropriate and lower levels of ab initio
theory or force fields when appropriate. In section II discussion
is given on the assembly of the total potential into these time-
dependent groups over which multiple levels of theory may be
employed. Discussion is also given of one of the immediate
results of this formulation (discontinuity of the total potential)
and illustrative simulations are given to highlight how this does
not introduce problems in the simulations. This section is
concluded with a discussion of the effect of van der Waals wells
near where the groups change definitions. In section III the
implementation of assembling the time-dependent groups in a
computationally feasible way is given. In section IV the
conclusions are given.

II. Methodology

a. Assembly of the Total Potential.Perhaps, the greatest
difficulty in performing MD simulations of complex reactive
systems involves the assembly of the total potential of the system

and the gradients of the total potential. This difficulty is well-
known for the modeling of small systems (3-5 atoms) involving
only one reactive channel; for the modeling of systems involving
∼102 reactions and∼103 species the difficulty is greatly
exacerbated. Again, the difficulty lies in two primary causes:
the number of degrees of freedom and the computational
expense associated with calculating the potential for reactive
systems. An alternative approach to the assembly of the total
potential involves breaking the total potential into time-
dependent groups that reside inside some predetermined spatial
cutoff and the group-group interactions, viz.,

The total potential is assembled by calculating the total
intragroup potential (the first set of sums in eq 1 overi andRi)
and the total intergroup potential (the second set of sums in eq
1 overi, j, Ri, andâj). The sums overRi andâj in eq 1 are over
the members of the particular groups, i.e., the total number of
type i groups that are throughout the whole simulation cell at
the particular time of the simulation. The total number of groups,
N, will vary during the course of the simulation as bonds are
broken and formed and as chemical species evolve within the
spatial cutoff of one another. Equation 1 only considers group
pairwise interactions, ignoring all higher order terms and, thus,
is not exact. This is deemed acceptable because the method is
based on asymptotic spatial cutoffs of gas-phase systems.

To illustrate the calculation of eq 1, consider a nonreactive
gas-phase chemical system (such as He) contained in a simula-
tion cell that has been divided into all the various groups on
the basis of spatial cutoffs. In other words, the inner-nucleus
distance between all atoms in the simulation cell are calculated
and those below a pre-defined spatial cutoff are grouped
together. Those atoms outside the spatial cutoff from all other
atoms are, therefore, monomers; those atoms within the spatial
cutoff of one other atom form dimers, etc., until the group size
is truncated. For more complex reactive systems the individual
groups are defined according to the identification of the chemical
species that reside inside the spatial cutoff. These groups will
each be unique and may widely vary in their chemical
composition. At each time step during the simulation, each of
these groups may have multiple members and the members of
each group will each have unique nuclear arrangements. Thus,
the sum overRi in this first term is a sum over the unique
members of theith group whereViRi is the intragroup interaction
potential at the unique nuclear positions of this member at a
particular time in the simulation. Consider a combustion reaction
that, for illustrative purposes, is limited to only involving A,
radical A (Ra), and O2 inside a simulation cell. The total number
of groups and members of the groups are formed: the A and
Ra monomers (each of these monomers are isolated and the
atoms lie outside the spatial cutoff from all other atoms in the
simulation cell), the number of A2, O2, Ra2, and ARa dimers
(each of the atoms of these dimers are within the spatial cutoff
from one another and outside the spatial cutoff of all other atoms
in the simulation cell), the total number of A3, Ra3, A2Ra, ARa2,
AO2, and RaO2 trimers, etc., until the approximation is made
by truncating higher order groups. Once these groups are
formed, the intragroup interactions are calculated and the level
of theory employed may be adapted to whatever is appropriate
for the various groups. Suppose the A2, O2, AO2, and A3 groups
involve only collisional, nonreactive processes where a much
lower level of theory may be employed than the remaining
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groups where reactive processes may take place and higher
levels of theory will need to be employed. The computational
cost of the intergroup calculation should be very small relative
to that for the intragroup interactions. Thus, the level of theory
may change with the first sum over the groups,i in eq 1, but
not with the sum over the members of a particular group,Ri.

b. Discontinuity of the Total Potential. Breaking the total
potential into time-dependent groups as given in eq 1, will yield
the changing of the number of groups and the number of group
members as the simulations proceed. Furthermore, as explained
earlier, the interactions of the different groups may be described
by varying levels of theory. The result of each of these will be
discontinuities in the total potential, eq 1, as the simulation
proceeds. Fortunately, for classical molecular dynamics simula-
tions, the motion of the atoms is governed by the gradients of
the potential rather than the potential itself. Because the groups
are defined according to spatial cutoffs, the gradients of the
potentials of the various groups will allapproachthesamevalue
when the groups change identification; namely, the gradients
will all approach zero. The fact that gradients approach zero at
the spatial cutoff does not depend on the level of theory being
employed, but, simply, that the spatial cutoffs are sufficiently
large that the asymptotic region is approached regardless of the
level of theory. Thus, at the spatial cutoff, the potential across
the cutoff may not be continuous, but the gradients of the
potential will besprovided the spatial cutoff is large enough to
be near the asymptotic region. Nearness to the asymptotic region
is a relative term and thus “tight” and “loose” criteria may be
employed in the definition of the spatial cutoff that would reduce
and increase the computational load of the simulation, respec-
tively.

To demonstrate the principle of continuity of the gradients
of eq 1 and the smooth, continuous time evolution of the atoms
when the total potential undergoes significant discontinuities,
a very simple grazing collision between O2 and N2 molecules
was considered with analytic Morse potentials used to describe
the O-O, N-N, and O-N interactions. This very simple test
is only used to illustrate the principle of smooth and continuous
forces (and the resulting smooth motion of the atoms) when
the potential undergoes significant discontinuities. The point of
the method is not that it will only work with, or be employed
with, analytic potentials; the Morse potentials were used because
they are qualitatively correct and, thus, are sufficient torepresent
what would happen when higher levels of theory are used, i.e.,
to illustrate the principle of the discontinuity of the potential
and continuity of the kinetic energy at the spatial cutoff. Two
different potential functions were used for the system: one
outside the spatial cutoff where the O-N interactions are
neglected and the system is two independent diatomics:

and one inside the spatial cutoff, where the O-N interactions
are accounted for and the system is an N2-O2 supermolecule:

The Morse potential parameters for eqs 2 and 3 are given in
Table 1.35 Theγ parameter in eq 3 was inserted to approximate

the fact that when the groups switch definitions different levels
of theory may be used and, thus, the intramolecular interactions
of particular chemical species may not match when the groups
switch. As seen in eq 3, this change inγ affects both the well
depths of the O2 and N2 molecules and the curvature of their
interaction potentials. Shown in Figure 1 is diagram illustrating
the grazing collision between N2 and O2 being considered as
well as plots of the Morse potentials. For this N2 and O2 system,
the spatial cutoff was defined such that if any N-O distance
was below 5 bohr, then the supermolecule potential of eq 3
was used to describe the total potential and if all N-O distances
were 5 bohr or above, then isolated diatomic potentials of eq 2
were used to describe the total potential. Thus, eq 1 went from
being calculated as two dimers to one quadrimer at the spatial
cutoff. This value of 5 bohr for the spatial cutoff was chosen to
represent a rather poor choice and not quite in the asymptotic
region. Thus, difficulties with the method will be more evident
with this poor choice of a spatial cutoff. Furthermore, other ways
exist to describe the spatial cutoff and this definition was used
so that switching from inside and outside the spatial cutoff could
depend on the vibrational motion of the N2 and O2 diatomics.
This was desired to illustrate the principle that a smooth
continuous simulation is still obtained even when the groups
change definitions more than once during a single collision
event. As illustrated in Figure 1, the N2 and O2 began at a large
distance from one another and the total potential was given by
eq 2 as two isolated diatomics. As the entities approached, an
NO distance became less than the spatial cutoff and the
supermolecule potential was used as given by eq 3. As the
diatomics continued past one another, they, again, eventually
became two isolated diatomics described by eq 2. Two separate
simulations were performed: one withγ ) 1.0 in the super-
molecule region, as given by eq 3, and one withγ ) 0.8.

Shown in Figure 2 is the time evolution of the internuclear
coordinates for the grazing collision between O2 and N2. The
N-N, O-O, and the center of mass (COM) between the N2

and O2 distances are shown in Figure 2 as the black solid, blue
dashed, and red dotted lines, respectively, for the wasγ ) 1
simulation, whereas these distances are given as the red dashed,
the green solid, and black dashed-dot lines, respectively, for
theγ ) 0.8 simulation. For theγ ) 0.8 simulation, each of the
distances were increased by a fixed value of 1.0 bohr to separate
the coordinates from theγ ) 1 simulation. As seen in Figure
2, the two simulations are exactly the same up untilt ∼ 0.125
ps, at which time there is a change in the groups. After this
time there were multiple changes in the groups; however, the
coordinates for both simulations evolve in a smooth manner.

The discontinuity in the total energy for each of the grazing
collisions displayed in Figure 2 is shown in Figure 3. In this
figure, the difference in the total energy at every time minus
the initial total energy is plotted against the time. This difference
is given as the solid line for theγ ) 1 simulation and as the
dashed line for theγ ) 0.8 simulation. From this figure it can
be seen that there were six changes in the definition of the
groups for both theγ ) 1 andγ ) 0.8 simulations: from two
isolated diatomics described by eq 2 to an N2-O2 supermolecule
described by eq 3 and back and forth for both of the simulations
displayed in Figure 2. All six changes happened between times
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TABLE 1: Morse Potential Parameters for the Interactions
of Eqs 2 and 3

diatoms D (eV) â (Å-1) re (Å)

N2 9.756 2.711 1.094
O2 5.080 2.689 1.207
NO 6.490 2.769 1.150
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0.125 and 0.180 ps when N2 and O2 are the closest and the
changes correlate with the individual N2 and O2 vibrational
motions. As can be seen in Figure 3, the potential changes by
∼0.008 Hartrees during this time of switching group definitions
for theγ ) 1 simulation, which causes the total energy to have
a discontinuity of this same amount. For theγ ) 0.8 simulation
displayed in Figure 2, there were many more dramatic discon-
tinuities in the total potential, up to a discontinuity of∼0.025
Hartrees. For both simulations, the total energy only changed

when the group identification changed; i.e., when the group
definition remains constant, the total energy also remained
constant. For theγ ) 1 simulation (solid line in Figure 3), the
potential changes by nearly the same amount during each change
of the groups because the N-O bond lengths do not undergo
drastic changes in their distances during this time window.

From Figure 2 it can also be seen that the coordinates for
both simulations all evolve in time in a smooth manner even
over the region where the potential is changing by as much as
0.008 and 0.025 Hartrees for theγ ) 1 and 0.8 simulations,
respectively. Thus, these large and repeated discontinuities in
the potential do not yield the gain or loss of kinetic energy of
the atoms. Further proof of this may be seen in Figure 4, where
the total kinetic energy is plotted in the time window where
there is a change in groups for both of the collisions displayed

Figure 1. Illustration of the N2/O2 grazing collision: (left) N2 (s), O2 (---), and NO (-‚-) Morse potentials withγ ) 1, which effects only the
O2 and N2 potentials; (right) N2 (s), O2 (---), and NO (-‚-) Morse potentials withγ ) 0.8.

Figure 2. Time dependence of the O2 and N2 distances and the O2-
N2 center-of-mass distances for the grazing collision in which there
were six changes in the group definitions for theγ ) 1 and 0.8
simulations. The N-N, O-O, and center-of-mass distances are shown
as the black solid, blue dashed, and red dotted lines for theγ ) 1
simulation and as the red dashed, green solid, and black dashed-dotted
lines for theγ ) 0.8 simulation, where these distances were increased
by 1.0 bohr.

Figure 3. Conservation of the total energy for the grazing collision
displayed in Figure 2: (s) γ ) 1 simulation; (---)γ ) 0.8 simulation.
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in Figure 2. In Figure 4, the solid and the dashed lines are the
total kinetic energy for theγ ) 1 andγ ) 0.8 simulations,
respectively. As can be seen from this figure, although there
are large discontinuities in the total potential, the total kinetic
energy is smooth because the gradients of the potential along
the coordinates defined by the spatial cutoff all approach the
same value.

In summary, these two simulations simply illustrate the point
of being able to define the total potential (and gradients of the
potential) by time-dependent groups with levels of theory that
may change at the spatial cutoff.

c. Effect of van der Waals Wells.The nature of the didactic
Morse potentials employed in this paper ignore the possible
effects of shallow van der Waals wells at the asymptote. If the
chemical system had a van der Waals well and the spatial cutoff
were placed in the region of the well, it could be that a lower
level of theory outside the spatial cutoff would not capture the
well, whereas the well was obtained with a higher level of theory
inside the cutoff. The net effect could be a more significant
discontinuity in the gradients than if both levels of theory
captured the well or neglected the well. However, it is because
of this possibility that the spatial cutoff is not a static entity but
will naturally change with the chemical nature of the various
groups. Thus, one could always increase the size of the cutoff
so that the van der Waals well is captured with the higher level
of theory. Of course this will increase the computational load
of the simulation. It should also be noted that the gradients will
neverexactlymatch at the spatial cutoff (this was the case in
both theγ ) 1.0 andγ ) 0.8 simulations discussed above).
The gradients approach the same value at the spatial cutoff.
Nevertheless, a van der Waals well will exacerbate the
discontinuity of the gradients and could result in gradients at
the cutoff with differing signs. However, when one examines
the discontinuity in the kinetic energy that will result in a
discontinuity in the gradient, it is found to go as

where∆t is the time step of the simulation and∆∇E is the
discontinuity in the gradient. Using a large time step of 0.25 fs
and a small mass of 1.0 amu, one sees that under these difficult
conditions, the discontinuity of the kinetic energy is proportional
to the square of the discontinuity of the gradient divided by
about 40, which greatly dampens the effect of the discontinuous

gradients. Finally, given the scale of the chemical systems the
methodology is designed to simulate (ab initio dynamics of∼102

simultaneous reactions with∼103 species), compromise will be
necessary. Thus, the user may either decide to increase the
computational cost of the simulations and move the spatial cutoff
to a distance so that the van der Waals wells are captured by
the higher level of theory or abide what may be a more
significant gradient discontinuity at the spatial cutoff because
it will likely have a small effect on the dynamics of the ensuing
reactive event.

III. Implementation

The assembly of the total potential as given in eq 1 will
require the division of the chemical system into unique groups
based on spatial cutoffs in a nonredundant way that is compu-
tationally efficient. The computational load for this step is
overhead to the MD simulation and it is possible that the making
of groups may have to be done at each time step of the
simulation. Although the remaking of groups at each time step
is unlikely, this step in the MD simulation must be extremely
efficient. Dividing the simulation cell into subcells of much
greater size than the spatial cutoff, while these subcells have
linked-listed neighboring subcells, provides a computationally
facile way of making the various groups and members of the
groups. To form all the groups and members of the groups
within the simulation cell, the subcells are looped over and for
those that contain atoms within them, all the monomers, dimers,
trimers, up to the truncated group size are made and the
neighboring subcells are also searched to add, delete, or amend
the groups of the searched subcell. After all the subcells are
searched, then the total number of groups (monomers, dimers,
trimers, etc.) and the members of each of these groups will have
been obtained and can then be used in the calculation of the
total potential from eq 1. This method of subcell division has
been shown to have a computational scaling factor that is linear
in the number of atoms in the simulation cell,O(Natoms).36 The
MakeGroupsmodule has been written in the C programming
language to perform these operations. The author may be
contacted to obtain the source code.

IV. Conclusions

In summary, a method of assembling the total potential for
gas-phase reactive chemical systems in which the dynamics may
be spread over many elementary steps in leading from reactants
to products has been introduced. Simple tests of a grazing
collision between O2 and N2 molecules demonstrate the principle
that the total potential can be defined by groups that change
definitions according to spatial cutoffs as the simulation
proceeds. Although only a simple grazing collision between
diatomics described by Morse potentials is illustrated here, the
principle illuminated by these simple tests goes well beyond
the tests and shows the direct application of the method to much
more complex reactive systems where the breaking and forming
of bonds will be inside the spatial cutoff and the gradient of
the potential will approach the same value at the spatial cutoff
just as in the examples used here. The changing of the groups
at the spatial cutoff will induce discontinuities in the total
potential, but the coordinates will evolve smoothly over these
areas because the gradients along the coordinates between the
molecular entities will approach the same value, namely zero.
Because the gradients approach zero at the spatial cutoff
regardless of the level of theory employed, varying levels of
theory may be employed on the basis of the nature of the
chemical species that define the group. The making and

Figure 4. Total kinetic energy for the grazing collision displayed in
Figure 2 forγ )1 (s) andγ ) 0.8 (---) during the time window where
the groups change definitions.

∆T )
∆t2(∆∇E)2

2m
(4)
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remaking of the groups during the course of an MD simulation
is purely computational overhead. Thus, an efficient way of
making groups has been given that uses link-listed subcells and
only requires a maximum search of neighboring subcells to make
the groups. Because the simulations will begin by performing
many computationally expensive ab initio calculations over the
various groups, very little simulation time will transpire for a
large expense of CPU time. This difficulty is also being worked
on by storing the group potential energy data to fast-access
databases and combining these databases with accurate and
computationally facile general methods of interpolation so that
eventually the computationally expensive calculation of the ab
initio intragroup interactions will yield to fast methods of
interpolation. Interpolants similar to previous work37-43 are
being generalized for any dimensionality, and studies are being
performed on methods of optimizing the interpolants so as to
obtain general, accurate, and fast methods of PES interpolation.

Acknowledgment. I thank Michael Johnson and Wendell
Duncan of CogniTech Corp. for valuable conversations regard-
ing this work. I also thank Union University for faculty startup
support for this research and matching funds support.

References and Notes

(1) Schatz, G. C.; Horst, M. T.; Takayanagi, T. InMethods for
Multidimensional Dynamics Computations in Chemistry; Thompson, D. L.,
Ed.; World Scientific: Singapore, 1998; p 1.

(2) Shatz, G. C. InReaction and Molecular Dynamics; Lecture Notes
in Chemistry, Vol. 14; Lagana, A., Riganelli, A.; Springer: Berlin, 2000;
p 15.

(3) Akiya, N.; Savage, P. E.J. Phys. Chem. A2000, 104, 4441.
(4) Skokov, S.; Wheeler, R. A.J. Phys. Chem. A2000, 104, 6314.
(5) Moriarty, N. W.; Frenklach, M.Proc. Combust. Inst.2000, 28, 2563.
(6) Kaledin, A. L.; Morokuma, K.J. Chem. Phys. 2000, 113, 5750.
(7) Tachikawa, H.; Igarashi, M.; Ishibashi, T.J. Phys. Chem. A2002,

106, 10977.
(8) Scheutz, C. A.; Frenklach, M.Proc. Combust. Inst.2002, 29, 2307.
(9) Brown, A.; McCoy, A. B.; Braams, B. J.; Jin, Z.; Bowman, J. M.

J. Chem. Phys. 2004, 121, 4105.
(10) Bolton, K.; Hase, W. H.; Peslherbe, G. H. InMethods for

Multidimensional Dynamics Computations in Chemistry; Thompson, D. L.,
Ed; World Scientific: Singapore, 1998; p 143.

(11) Susnow, R. G.; Dean, A. M.; Green, W. H.; Peczak, P.; Broadbelt,
L. J. J. Phys. Chem. A1997, 101, 3731.

(12) Gardiner, W. C. InCombustion Chemistry; Springer-Verlag: New
York, 1984.

(13) Oran, E. S.; Boris, J. P. InNumerical Approaches to Combustion
Modeling; Progress in Astronautics and Aeronautics Series, Vol. 135;
American Institute of Aeronautics and Astronautics: Washington, DC, 1991.

(14) Humbel, S.; Sieber, S.; Morokuma, K.J. Chem. Phys. 1996, 105,
1959.

(15) Vreven, T.; Morokuma, K.J. Chem. Phys. 1999, 111, 8799.
(16) Kerdcharoen, T.; Morokuma, K.J. Chem. Phys. 2003, 118, 8856.
(17) Maseras, F.; Morokuma, K.J. Comput. Chem.1995, 16, 1170.
(18) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber,

S.; Morokuma, K.J. Phys. Chem.1996, 100, 19357.
(19) Humbel, S.; Sieber, S.; Morokuma, K.J. Chem. Phys. 1996, 105,

1959.
(20) Svensson, M.; Humbel, S.; Morokuma, K.J. Chem. Phys.1996,

105, 3654.
(21) Li, Q. S.; Zhao, Q.; Zhang, S.J. Phys. Chem. A2004, 108, 6430.
(22) Gonzales-Lafont, A.; Truong, T. N.; Truhlar, D. G.J. Phys. Chem.

1991, 95, 4618.
(23) Rossi, I.; Truhlar, D. G.Chem. Phys. Lett. 1994, 233, 231.
(24) Corchado, J. C.; Espinosa-Garcia, J.; Hu, W.; Rossi, I.; Truhlar,

D. G. J. Phys. Chem. 1995, 99, 687.
(25) Peslherbe, G. H.; Wang, H.; Hase, W. L.J. Am. Chem. Soc. 1996,

118, 2257.
(26) Peslherbe, G. H.; Hase, W. L.J. Chem. Phys. 1996, 104, 7882.
(27) Doubleday, C.; Bolton, K.; Peslherbe, G. H.; Hase, W. L.J. Am.

Chem. Soc. 1996, 118, 9922.
(28) Matheu, D.; Dean, A. M.; Grenda, J. M.; Green, W. H.J. Phys.

Chem. A2003, 107, 8552.
(29) Stoliarov, S. I.; Knyazev, V. D.; Slagle, I. R.J. Phys. Chem. A

2002, 106, 6952.
(30) DeMore, W. B.; Bayes, K. D.J. Phys. Chem. A1999, 103, 2649.
(31) DeMore, W. B.; Wilson, E. W.J. Phys. Chem. A1999, 103, 573.
(32) Wilson, E. W.; Sawyer, A. A.; Sawyer, H. A.J. Phys. Chem. A

2001, 105, 1445.
(33) Wilson, E. W.; Jacoby, A. M.; Kukta, S.; Gilbert, L. E.; DeMore,

W. B. J. Phys. Chem. A2003, 107, 9357.
(34) Richter, H.; Howard, J. B.Phys. Chem. Chem. Phys. 2002, 4, 2038.
(35) Raff, L. M. In Principles of Physical Chemistry; Prentice Hall:

Englewood Cliffs, NJ, 2001; p 857.
(36) Rapaport, D. C. InThe Art of Molecular Dynamics Simulation,

2nd ed.; Cambridge University Press: Cambridge, U.K., 2004; p 49.
(37) Salazar, M. R.; Bell, R. L.J. Comput. Chem. 1998, 19, 1431.
(38) Salazar, M. R.; Simons, J.J. Chem. Phys.1996, 105, 10919.
(39) Bell, R.; Simons, J.J. Phys. Chem. 1999, 103, 539.
(40) Salazar, M. R.; Simons, J.J. Chem. Phys.1999, 110, 229.
(41) Salazar, M. R.Chem. Phys. Lett. 2002, 359, 460.
(42) Colavecchia, F. D.; Burke, J. P.; Stevens, W. J.; Salazar, M. R.;

Parker, G. A.; Pack, R. T.J. Chem. Phys. 2003, 118, 5484.
(43) Salazar, M. R.; Simons, J.J. Chem. Phys.2004, 121, 6874.

11520 J. Phys. Chem. A, Vol. 109, No. 50, 2005 Salazar


