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We present a brief description of a valence-universal multireference coupled cluster (VU-MRCC) theory that
can handle completely general incomplete model spaces, remaining close to the intermediate normalization
(IN) condition for Q as much as possible without violating extensivity and without the use of a post facto
correction. In this formalism, the connectedness of the cluster operators as well as effective Hamiltonian and
hence the extensivity of the corresponding roots is achieved by invelgpgopriate decoupling conditions

on the special type of wave operaf@r= {expS + Xa)} satisfying the Bloch equations in the Fock-space

Sin an excitation operator and is a closed operator (denoted by cl). This special type of wave-operator
leads to a unique partition of the excitations from the model space into those generated by the cluster operators
(open and quasi-open) and those generated by the effective Hamiltonian (closed). In this formulation, for
everyXq, there is a counterterm frofrexp@©)} « canceling each other. This leads to a connected expressions

for cluster amplitudes, using the constrai2y = 1. The new form of the effective Hamiltonian preserves the
extensivity of the target energies. Our analysis implies that INXds a valid size-extensive normalization

for certain special IMS such as the quasi-complete model space and the isolated incomplete model space.

I. Introduction As emphasized above, the two main classes of effective
) ) Hamiltonian-based multireference coupled cluster (MRCC)
Prompted by the conspicuous success of the single-referencenethods are designed to address different aspects of the
coupled cluster (SRCC) methéd: its generalization to en-  cqrelation problem for quasi-degenerate systems The state-
compass open-shell and quas_|-degenerate cases has been gjversal (SU) multireference coupled cluster (SU-MRCC)
tempted by several authors. Diverse methodologies have beerypnroacks focuses on the description of a system with a fixed
put forward, which emphasize different physical aspects of nymper of electrons, making it the method of choice for states
electron correlation in the quasi-degenerate situations. Thisyith 5 fixed number of electrons, and in the study of potential
difference in emphasis is reflected in the use of different ansatzesgnergy surfaces (PES). The valence-universal (VU) multiref-
for the wave-operator(2, and/or in the span of the model  grence coupled cluster (VU-MRCC) approdét?2 on the other
functions in the quasi-degenerate space, which can involve hanq, targets states with varying numbers of valence electrons
model spaces with varying numbers of active electrons or a fixed through the use of a single wave operator, akin to the single-
number of active electrons. Most of the earlier formalisms were yeference (SR) case, such that it correlates not only the reference
built on the concept of effective Hamiltonians and used a fynctions of interest with a definite valence occupancy but also
complete model space (also called a complete active space)yeference functions of all the lower valence (subduced) sectors,
Using the customary and convenient intermediate normalization gpiained by deleting the occupancies systematically. Thus to
(IN) for Q, all these developments arrived at connected (size- gefine this operator uniquely, one needs to simultaneously
extensive) cluster-operators, which led to a connected effective consider not only the system of interest but also the correspond-
Hamiltonian. The target energies were obtained via the diago- jng jons that result from the successive removal of the electrons
nalization of the effective Hamiltonian defined over the complete occupying the active orbitals. The method thus becomes the
model space (CMS). Size-extensivity of the energies thus natyral method of choice for computing energy differences of
obtained were guaranteed by the completeness of the activespectroscopic interest such as ionization potential, electron
space. Another approach is to abandon the concept of theaffinjty, double ionization potential and excitation enefgy??
effective Hamiltonian altogether and either focus on only one Tne increased computational requirements for VU-MRCC is
state of interest (usually termed as state-specific appfodch  qtfset by the increased information content of the formalism,
or target only those roots that are of interest (the intermediate allowing one to take care of the differential correlation energy

Hamiltonian approach*4). attendant upon deletion or addition of electrons or excitations,
which is needed for a balanced description of energy differences.
"'Part of the special issue "Jack Simons Festschrift’. Despite their rigor and elegance, applicability of the MRCC
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string mixing of some low-lying virtual functions with some be exactly canceled at the same order of perturbation stemming
high-lying model functions spanning the complete model space. from a direct disconnected term, which necessarily involves only
One may imagine that the problem of intruders can be avoided the sum over the model functions in the IMS. If, on the other
using incomplete model space (IMS) instead of CMS, where hand, an intermediate state generated does not belong to the
the offending model functions mixing strongly with the virtual IMS (this will always happen for some terms, when the model
functions are deliberately kept out of the model space. Generally,space is incomplete), then such disconnected normalization
the reference functions that dominate the wave functions terms will never get canceled by the analogous disconnected
corresponding to the low-lying excited states spainaomplete counterterms from the direct term, simply because there is no
model spacebecause in most chemically interesting systems, such intermediate state in this term. This is the real reason
these low-lying excited states are likely to be associated with behind the appearance of disconnected terms at each order of
single and double excitations from the ground state instead of perturbation while following the diagonalization procedure in
attributing a given number of active electrons and active orbitals an IMS as an infinite order perturbation theory. It should be
to all possible excitations. If one shifts the high-lying functions mentioned here that there is another set of normalization term
of the CMS to the virtual space (thereby making the model space where there are common orbitals in the two factors. These so-
incomplete in nature), this seems like a natural starting point called EPV (exclusion principle violating) terms are thus
from the physical point of view, where one may avoid intruders algebraically connected and, hence are harmless as far as size-
and at the same time target the low-lying states of interest.  extensivity is concerned. Because in a CMS, excitation on any

Such a straightforward development, however, is fraught with model function to another involves only active orbitals, they
the theoretical difficulty of ensuring extensivity of the computed lead only to excitations involving the functions in the CMS itself,
target energies. All the standard versions of MR theories with and hence, all the disconnected terms from the normalization
effective Hamiltonians exploit the use of CMS to maintain the term get canceled by a corresponding direct term. In contrast,
connectedness of the effective Hamiltonian, which automatically although the excitations from the starting model function to
ensures the extensivity of energies. Such, unfortunately, is notanother model function in a perturbation still involves only
the case in an IMS-based theory. Even if it were possible to active orbitals, the intermediate states generated come from the
get a connected effective Hamiltonian in an IMS, the computed action of these excitations on model functions other than the
state energies on diagonalization would still have been inex- starting one, and these may belong to the complementary active
tensive, just as in a Cl in an IMS. The theoretical constraints space which, together with the starting IMS, span the CMS.
on the effective Hamiltonian, which would guarantee the size- Because the intermediate states appearing in the direct term
extensivity of the energies, is obviously somewhat more nhever involve the functions of the complementary active space,
intricate. these disconnected normalization terms never get canceled by
fany of the direct terms. This analysis holds as much for a

even a connected operator in an IMS can be traced by |ookingdiagonalization on a connected effective Hamiltonian in an IMS

at the diagonalization problem as an infinite order perturbation &S fora Clin an IMS.

theory, thereby monitoring all the connected and disconnected From what has been discussed above, it is clear that if one
terms that are generated at each order of perturb2tibet us could ensure that excitation from the starting model function
briefly recapitulate the analysis here, because this forms thecould be confined to only those whose action on other model
starting point of generating a size-extensive MRCC theory in functions restrict the excitation also only within the IMS, then
an IMS. If we start from one of the model functions as the there would not have been any disconnected term in the
unperturbed function for one of the target energies, and take Perturbation involving intermediates lying outside the IMS, and
care of other model functions in an IMS, interacting via the the problem of inextensivity would go away for the perturbative
matrix elements of a connected operator by a Rayteigh diagonalization of the matrix of the connected operator in an
Schralinger (RS) perturbation, then at each order there will be IMS. Because one can start with any model function as the
two kinds of terms: (i) the so-called direct term, which involves starting unperturbed function, it follows that it is necessary that
a sum over states involving transitions from the starting model the effective operator should be such that any excitation
function to all the other model functions, eventually returning involving this operator should not lead to excitations outside
to the starting model function itself, and (ii) the so-called the IMS by its action on any model function. Following the
normalization term, which involves a product of a norm- earlier works of Mukherjeé$ we want to call such types of
correction involving the perturbation correction of the wave €xcitations connecting the model functions as “closed”. In
function and energy shifts with various orders of perturbation, contrast, types of excitations where their action on some
with a negative sign. The normalization term gives rise to two functions in the IMS generates functions in the IMS, but their
distinct types of entities. In one, there are no common orbitals action on some other model function takes them to the
among the norm factor and the energy shift factor. They are, cOmplementary active space, are called “quasi-open”. As we
therefore, algebraically disconnected, and size-inextensive. Byhave just now emphasized, the effective Hamiltonian should
adding certain sets of similar such terms together and by usingb€ both connected and “closed” for ensuring extensivity of the
what is known as the FrarMills identity,2> we can rewrite  target energies on diagonalization in an IMS.

these disconnected terms as a sum over states expression just It was shown by Mukherje#, that this can be ensured by
like as in the direct term. The intermediate states entering theincluding in cluster operators in the wave-operadnot only
sum in this expression are generated by the same excitationexcitations leading to virtual functions (via excitations which
from the unperturbed functions as are involved in each factor we will call “open”) but also all the quasi-open excitations. The
of the disconnected normalization term, but the intermediate latter involves excitations only active orbitals but, in contrast
states are produced by the action of these excitations on someo the closed operators, may or may not lead to excitations to
other model function generated by these excitations, rather thanthe complementary active space. The cluster amplitudes for the
on the starting unperturbed function itself. If these intermediate quasi-open operators should be determined from the “decoupling
functions thus generated belong to the IMS, then they would conditions” that the matrix elements of all the quasi-open

The reason size-inextensivity appears in a diagonalization o
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components of the transformed operato= Q~1HQ should
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on Q via the use of additional internal cluster operators was

vanish. This can be accomplished in a straightforward mannerimposed disregarding the attendant inextensivity of the target

via the use of Bloch equatiéhin an IMS. Mukherjee showed
that, if one includes 2 only open and quasi-open operators
(which is the minimal decoupling conditions), then it can

energies! It was shown, however, that with choice of the
product separable IMS, such energies are additively separable
in the limit of noninteracting subsystems, and the theory is size

generally so happen that the customary intermediate normaliza-consistent. Our major concern in this paper is, however, to
tion for Q would have to be abandoned. This comes about ensure size-extensivity and we want size consistency to naturally
because the quasi-open operators can lead to excitations withirfollow for a product separable IMS.

the IMS and also because products of quasi-open cluster

We present in this paper precisely such a formulation via

operators can be closed as well. By including only open and the use of an alternative cluster ansatz @rwhich imposes

quasi-open operators R, extensive MRCC formalisms have
been developed both for \AY26.28 and for SUY°3° MRCC

the conditionQ. = 1, through the inclusion of additional
“closed” cluster operators. We develop a VU-MRCC theory for

formalisms. Using the same idea, state-specific MRCC theory IMS using this new ansatz.

has also been developéd.

The paper is organized as follows. In section 2 we will present

It should be recognized at this stage that the decoupling the theoretical developments of our VU-MRCC theory for an

conditions implicit in the Bloch equation for an IMS impose

arbitrary model space. Section 3 summarizes the main contents

vanishing amplitudes for all the open and quasi-open operatorsof the paper and concluding remarks.

of the transformed Hamiltonidn Clearly, this still leaves open
the possibility of choosing the closed componenfopiviz Q.
The normalization that comes closest to the IN@would be
to choose = 1. The more desirable choi&2P = P would
be incompatible with the decoupling conditiohgo, = O,

II. Theoretical Developments

Before embarking on the theoretical developments of our new
VU-MRCC theory using IMS, it is pertinent to introduce certain
concepts and certain notations that will set the scenario.

because these conditions, rather than certain arbitrary conditions A. Preliminaries. In VU formulation of the MRCC theory

imposed ontq-op, determinef2g—op.

From now on, we refer to both open and quasi-open operators

generically as “external”, and label all such operator®\as

Similarly, both quasi-open and closed operators would hence-

forth be collectively termed as internal, labeled/as.

Of course, it is desirable to look for a size-extensive method

for IMS using IN for Q, because, for one, this would generate
a simpler expression fdfler just as in a corresponding theory

using CMS and, for other IN, allows a straightforward genera-

tion of the cluster amplitudes from a knowledge of the CI
coefficients for an exact functiott. However, the situation is

one defines a wave-operat@; which generates exact functions
W™ by its action on the starting MR functiofE$", given by

W = 3 S 0, @
u

where n, is the number of valence electrons of the model
functions ¢/(Anv). In a VU-MRCC theory, one simultaneously
considers model spaces with different numbers of valence
occupancies, so that runs over a range, = 0, m,, wherem,

is the number of valence electrons of our interest. Bec&ise

rather tricky. One may imagine that, once a size-extensive generates exact functions for all model space MR combinations

formalism is developed with a cluster ansatz $drcontaining

open and quasi-open operators, it is possible to introduce at theC

final stage of the formalism to impose the IN on the wave
operator via the transformation

Q=[PP ! 1)
which generates a new effective Hamiltonidgy, given by
Hey = PQPH[PQP] @)

Being a similarity-transformed operator of the origik&l and

Het produces the same roots. Such an approach was indeed

suggested long ago by Chaudhuri etalyho also pointed out

the attendant difficulties. Though this stratagem does produce

wi O is valence universal. Clearlf2 contains many more
luster operators than are needed to construct target states
wim),
In the traditional VU-MRCC formulations using an IMS, it
is customary to define both the actual IMS with active
electrons by the projectd®™) and the complementary active
space characterize by the projed®§®. The unionPURforms
the CMS.

The Bloch equation for the various, valence problems is
given by

4)

It is also useful to define valence rank of an operator as

HQP™ = QpHP

size-extensive energies, despite the use of IN for the wave-the number of valence destruction operators contained in it. To

operator, it is apost facto restorationof IN after having
generated a connectetly without the IN. A straightforward
generation of the modified wave-operat®@ without the
intermediary of theQ is not theoretically possible.

have enough flexibility to generate exact functions fromnall
valence model functions, it is imperative to include
excitation operators of various valence ramks= 0, m,. The
simplest set of CC equations for a VU-MRCC results if one

We pursue in this paper the idea that the only feasible direct uses anormal ordered exponential ansdiar 2 as

approach to generate an MRCC theory with IMS, which is
manifestly size-extensive and which uses a normalization
condition onQ that is as close as is possible to IN, is to impose

Qq = 1 as the natural choice of normalization. As it turns
out, the above condition of also leads to the same type of
simple expression foHes as for the CMS, though (unlike the

use of IN) it is not possible to generate the cluster coefficients

from the knowledge of CI coefficients from a FCI alone. There

Q= {exp®}
my S )

s=§ ™ 5
n; (5)

Sn) are the set ofy, valence cluster operators. The normal
ordering is done with respect to the zero valence SR model

have been attempts to generate a SU-MRCC theory where INfunctiongy, taken as the vacuum. Owing to the normal ordering,
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there is a hierarchical decoupling of the equations for the cluster both sides of the Bloch equation with a given valence rank,
amplitudes for various valence ranks in the following sense: one arrives at
for ann, valence Bloch equation no cluster operators of valence

rank greater than, can appear. Thus, one can start for the zero
valence problem upward all the way to timg valence problem {H{exp@™)}} IP™ = {{exp@™)} HIY} ™P™ O n,
where at each valence level the only unknowns are the cluster (12)

amplitudes of the same valence rank, with the frozen cluster ) . ) )
amplitudes of all the lower valence ranks. This has been termed ~ Eguation 11is valid for each external operator (open or quasi-

a subsystem embedding condition (SEC) by Mukherjee and OPen. s thg case may'be) of each patrticle rank of the cqmposites
otherst6.17.19We also define an operator in normal ordet! appearing in the equation, and for each valence rank. Similarly,
as equating the closed components of the Bloch equation, written

in normal order for each valence rank, and using generalized
Wick’s theorem, one obtains

n,
A[nv] — A(lv) (6)
= ndyy 1 (W) n [nJy () ()
{H{exp@™}} PP™ = {{exp@™)} HE} VP™ O n,
With this notation

(12)
Q = {expE@™)} 7 which definesHes of various valence ranks.
. . In more compact form, using2(™ for {exp@™)}, the
We also note that, owing to normal ordering working equations for determining the cluster amplitudes are
given by
Qp(nv) = Q[nv]P(nv) — {exp(§“v])} P(nv) (8)
which is a compact representation of SEC. {HQM} sztlp(m) = {QL?X] H.[er;rV]}[nV]P(m) 13)

If one starts from amm, valence CMS, deletes one electron
from each model functiorq’)f,m') in all possible manners and
collects all the distinctrfy, — 1) valence model functions thus [ — | —
generated; the resultirgubducednodel space is also a CMS {HQIM IMpM) = ¢ oI iR Inp() (14)
for the (m, — 1) valence problems. One can go all the way
down to the zero valence problem by successive deletion of Equations 11 and 13 are entirely equivalent to the decoupling
electrons, thereby generating all the lower valence CMS in the conditions on the transformed Hamiltonian with minimal
process. For an IMS, however, the model spaces generated byrormalization constrains imposed €hensuring the following
the subduction process depend on the actual starting?fMS. property ofL:

Thus, for anm, valence IMS deletion of one electron from all

and the effective Hamiltonians are found from the expression

model functions of IMS and collection of distinamn{ — 1) Lf)nﬁ) =00n,=0,m,
valence model functions will generate the corresponding sub- ™)
duced IMS with (n, — 1) valence electrons. Again, the process Lgtop=00nN,=0,m, (15)

can be repeated all the way down to the zero valence levels, . .
producing successively IMS of the lower valence ranks. By S m‘:]s shown by Mukherjee, the above choicetbfeads to

construction, the one valence subduced model space is alway@n Her'» as the closed part df.

complete, and so also is the MS for the zero valence problem, ()

which is spanned by just the model functigg, the vacuum. Heri' = Lo (16)
In the original size-extensive formulation of Mukhefétor

an IMS © was chosen to be of the form which is equivalent to its implicit definition via eq 12 or (14).

Equation 12 or 14 indicates th&te is both connected and
y ' closed which ensures the size-extensivity of the computed
Q = {expO} = {expE} + M)} ©) energies.

. . . . . . .. Because a large class of chemically interesting states are
As discussed in section |, t_hls ch0|_ce guarantees S'Ze'eXtenS'V'tyquaIitativer well-described by model functions spanning a set
of the target state energies, which is predicated both to the 4t \/5riousm-hole—n-particle excited functions generated from
connectedness of th and to its closed nature. Owing to the ' hecomes useful at this stage to generalize the concept of
appearance of the quasi-open cluster operato,ithere is  4ciive orbitals to encompass both holes and particles and use
no intermediate normalization, aR2P = P as well a2 = g herscriptsrp, n) to indicate in an operatoh the hole and
1C|_|n general. Sub_stltutlng eq 7 in eq 4, and using the generalized particle valence ranks separately, as, for exampléyBy. With
Wick’s theorem? it follows that this generalized notation, the working equations stemming from

Bloch equation would look like

{Hexp©) exp@}P™ = {exp© exp©H.P™ O n [ — [

P P P P et v (10) {HQUIM Dk — oIkl lkily (D)
" —

where the symbol§A exp©)} and{exp©B} stand respectively ~ and

for all connected composites obtained by joining all possible — —

powers ofSwith A andB, excluding contractions among the {HQ[k,I]} (le,l)p(k,l) - {QET'” Hg?fll}(k,l)p(k,l)

variousS. Using SEC, proceeding upward in valence ranks from

the valence rank zero, and equating the external operators of Ok, 1)=(0,0)— (m,n)

17)
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We emphasize again here that, owing to the lack of
intermediate normalization, the customary expressiorHigr = -
no longer remains valid, and one must use eq 12 to iteratively

solve for it. Thus, it makes sense to look for an alternative

normalization of the operat@®, which makedc take the same Figure 1. Diagrammatic depiction of cancelation of products of quasi-
simple expression gHQ} ¢, as in a CMS, but maintaining the ~ OPeN &-op) Operators producing a closed composite by a term
size-extensivity of the target energies. We show in the next containing close operators.

subsection that such a choice is indeed possible by the inclusion
of additional closed operators .
B. Imposition of Q¢ = 1y in a Size-Extensive VU-MRCC + - 0
Formulation with IMS. As indicated in the Introduction and
the subsection above, we now present a formulation where we
(@)

impose the normalization condition

®)
Figure 2. Diagrammatic depiction of mutual elimination of all those
diagrams in the working equation of VU-MRCC when, for aly

. . . M operators (Figure 1a) appearing in a connected term, there is counterterm
on Q, to arrive at the much simpler expressidgs = {HQ} (Figure 1b) produced byproducts &, operators that are closed.

even for an IMS, while ensuring the size-extensivity of the target The filled circles denote the vertexes for the cluster operators, and the
energies. We will achieve this, following the earlier ideas of open circle denotes aH vertex.
Chaudhuri et al# by including in Q certain closed cluster

operatorsX of various valence rank(1). Thus we introduce @t the working equations for the various cluster amplitudes of

1
Q={expS+X)} ={exp@™ +X"M}  (19)  [H{exps+ X)) K KIpK) =

The cluster amplitudes of these operators would be determined
from the condition that, for each hetgarticle valence rank
(k, I, the closed component @ would satisfy eq 18:

ch = 1c| (18)

{{Iexp(s+ X)}[k,I]H[el(ffJ]i(k,l)P(k,|) 23)

ext

Because there are always creation as well as destruction
Kl) _ 1k operators in each, for every composite on either side of eq 23
{Q™ =1 (20) containing anXy of a given valence rank, there are always
powers ofS;—op operators forming a closed entity of the same
or, valence rank, joined from right or left of, respectively,and
Hesr. From now on, for brevity, we drop the subscript “g-op”
{expS+ X)}Sf") =1, (22) for Sand also refer to the powers &, that are closed as
“closed powers”. Owing to the imposition of the normalization
This leads to condition, eq 20 0182, all such closed powers &would cancel
the corresponding, via eq 22. In the final working equations,
Xt = —{exp@} & Ok, | (22) there would thus not remain an§operators at all! Also, there
would not be any closed powers $bperators connected té
Because we are imposing a normalization condition on just OF Her. Figures 1 and 2 indicate such cancelations.
the closed portion of2, leaving its external (open and, in The final form of the working equations then become
particular, quasi-open) components to be determined by the
decoupling conditions eq 17, there is no conflict between them,
and onpe Wgould expect sige-extensivity of the computed energies  {H{exp&} Iy EDPED = {{exp@} MTHE S0P

: S 24)
would remain unaffected. As we show below, such is indeed . L (
the case, though a demonstration of this for any arbitrary model The expression foHer is given by
space (which can involve valence holes as well as valence R "
particles) requires a careful exposition and analysis of the {H{expO)}'l '1}g,'>= H(ef'f) (25)
structure of the Bloch equation in the VU-MRCC theory using
IMS. where the prime ofiexp(®)} indicates that all the closed powers

To make our presentation clear, we proceed in two steps, byof Sare to be excluded from eqs 24 and 25.
taking first the set of IMS covering most of the common choices ~ One should note that the counterterms coming from the closed
(where the proof of size-extensivity of the energies in more or powers ofS cancelingX is possible only because all tt&
less straightforward), and take up the second set of IMS where operators forming a closed power can appear in the connected
the proof becomes somewhat more involved. The proof used composites on either side of eq 23. In the case of the vacuum,
in the second set of IMS is the more general, which subsumesgy itself is not a part of the model space, it is essential to include
the first set of IMS, so ultimately the proof for the second would in Ssome de-excitation operators as shown in Figure 3, which
have been enough. But, as we just indicated above, we proceedave no lines to the left, indicating that there are no hole
stepwise for the ease of following the proofs. particle creation operators in su&h In such situations, it is

Let us first consider such IMS where the valence universal entirely possible that there are some composites in eq 23
Q has always some creation operators in$h&his is always containingX for which a counterterm stemming from closed
the case either when the vacuuf itself is contained in the powers ofSdoes not exist simply because such closed powers
IMS or when the IMS contains electrons differing in the number cannot exist in the connected composites on either the right or
of electrons as compared ¢®. For such IMS, one can arrive left sides of the equatio#t. Figure 4 indicates such a situation
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< § X operators in the portion gfexp@+ X)} present on both sides

via eq 22, we have

(a) (b)

! ! =
Figure 3. Pure de-excitation operators & op when it is possible to {H{expS+X)}' expS }{e)étl)jp(&’ expS+ X, H. 3P (27)
reach a function with fewer valence occupancy. ext "eff

where all the primed quantities indicate that all the closed
> < > < powers ofShave been canceled by the counterterm containing
X. Because we are considering the most general IMS, where

@ (b ©

not all X operators connected kbor Heif may have a counterpart
from some closed power of cluster operat&sq, someX
operators in the connected parts will remain uncanceled.
+ = 0 If we now introduce a new composite obtained by bringing
/ in some quasi-open powers &f-op operators alongside the
connected terms in the Bloch equation (eq 26) such that the
missing closed counterpart wit&,—o, for each X can be

generated, then the proof of the connectivity of the oper&ors
and consequentlifles can be accomplished. We denote com-
% posites thus generated from two mutually disconnected quantities
A andB as{AB}. To illustrate this procedure of generating the
(e ®

composite, let us consider the diagram in Figure 4f. The entity
Figure 4. (a) A zero valence excitation operat&-op. (b) A containing twoS;-op Operators connected td is the analogue
de-excitation operator with no lines to the right. (c) The product of of the operatoA. The excitation operator requires a de-excitation
two proqlucing a closgd operators for one-hole one—particle IMS. (d) operator as another factor to generate a closed pova:r—@J.
Constraint orX canceling the closed product of t-opin (C). (€) A Thus the de-excitation operator unconnected ie the entity

typical term whereX appears. (f) The possible counterterm, which could .
have canceled (e), but cannot because the diagram is disconnected. Thi@’ and the two terms unconnected to each other but generating

is why the diagram in (e) remains uncancel if one uses eq 24. On the @ closed power ofS in the normal ordered product can be
other hand, using eq 29, the sum of (e) and (f) generate one of thedenoted a#\B. This disconnected composite of Figure 4f gets
entities of {H{expS+X)}} and the mutual cancelation can then be exactly canceled by the connected-looking counterterm contain-
effected. ing X, as appears in Figure 4e. Thus, generally speaking, we
can rewrite eq 27 in terms of the composites just defined as

(G

where the IMS consists of all one-hetene-particle excited
functions generated frorpo. The operators shown in Figure  ——————— ,
4a,b are each quasi-open in this case, because the excitatiorgH{ expS+ X)} exp&)'} e =

operator in Figure 4a leads to an excitation to a two-hoheo- '

particle excited state, which is outside the IMS, and the de- {expE expS+ X)He }exl (28)
excitation shown in Figure 4b leadsdgg, which is also outside
the IMS. Their product, however, is closed, as shown in Figure
4c, which can be eliminated by introducing a closed operétor

where we have brought in those quasi-open powers
of S on both sides of the equation, that generate the

satisfying the equation shown diagrammatically in Figure 4d composites which together with the _quasi-open powers

Although this does restore the normalization condition, eq 21, ofwected quantities such g{expStX)}} or

in the connected composites of eq 23 there is no such{exp@S + X).H.x}, to generate a closed term under the bar.

cancellation of the operatoX because the closed power of We note here that the terfrexp@®)}' gets regenerated in eqs

Figure 4c cannot appear in a composite entity as shown in Figure26 and 27 even after we have removed from it the powers of

4e f. Figure 4e is a valid diagram whereas Figure 4f is not and cluster operators that are quasi-open because of the exponential

it does not appear in eq 23. Hence, the term contaidiraf structure of the infinite serieexp@©)}'.

Figure 4e survives, becauXes negative of two disconnected Using the SEC as before, we then have

operators ofS, as shown in Figure 4 itself is disconnected

and hence the presence of &in eq 23 spells a breakdown of [kily (kD)) — [kl kil (kD k)

the connectivit)? of the working eqquatiopns. This is an unwar- {H{expS+ X} e P = {eXpE+ Xext Hetr Jex I?29)

ranted and awkward situation. To cover such cases, we suggest

a somewhat more involved proof, as delineated below. where we now show explicitly the hole-particle valence rank
We start from the original Bloch equation wig defined in (k, 1) for the first time, which we omitted earlier for brevity.

eq 19 and rewrite it in normal order using generalized Equation 29, unlike the eq 28, contains only the composites
Wick'stheorem. Equating the external components for each with bar, and no other factors such fexp@©)}'.

valence rank and excitation rank on both sides of the equation, Obviously, now we can cancel all the terms wifin eq 29

we have with the corresponding closed powers $fn the composites
— under the bar, and hence get
{H{expS+ X)} expS+ X)} P =
kil (k) (k) OO,
{[expS+ X)]ex €XPS+ X)He} P (26) [H{exp©} " N5IPY) = [exp(@e, “HE 15 PY (30)

where we have omitted the superscripts showing the valencewhere we have brought back the contracted quantities again,
rank of the associated operators for brevity. Canceling all the because all the closed entities under the bar Wi#ind powers
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of S have been canceled, leaving only connected terms. operatorsSin this expression that is closed. In this formalism
Similarly, the corresponding expression fag; is given by there is no need to determinéexplicitly, because all terms
containingX gets canceled by some powers&f o, that are
closed. We have also discussed two special IMS-QMS and
[IMS-where our choice of normalizatiolf2 automatically
implies IN.

The above analysis completes the proof of the connectivity
of the cluster operators i8 as well as of the closed operator Acknowledgment. We are grateful to K.R. Shamsundar for
Herr and hence of the computed energies. Because this proof iscritical comments on many of the issues discussed in this paper.
also trivially valid for first set of IMS where all th¥ operators NB and SG acknowledge the CSIR (India) for their Research
in a connected term do have the corresponding closed coun-Fellowships.
terpart coming from powers d§, this subsumes the situation . . .
involving the first set of IMS as well. Note Added in Pro.of. After t_he completlpn of this paper,

We conclude this section with the interesting observation that We found an alternative and simpler solution to the problem,
follows from our analysis for certain special class of IMSs as Where the closed powers of only those quasi-open valence
the quasi-complete model space (QMS} and isolated IMS operators are removed which can appear on both sides of eq 24
(IIMS).35 A QMS is where one classifies the active orbitals in Via SuitableXy. It leaves out the closed powers$?% and the
various groups, b, ¢, etc. and allocates specific numbers of de-excitation operators but leads agaln_to thq S|mpl_er expression,
electronsna, Ny, N, etc. in these groups in all possible manner. €4 25,_for tht_e valence part b’f.eff. A detailed _dlscussmn of this
An m-hole—n-particle IMS containing certain active holes and formalism will be presented in a forthcoming paper.
particles is an example of QMS. An IIMS is generated when

kD) — [kly (k)
He = {H{exp@}"™}¢ (31)

one starts with an IMS where one of the groaps completely
filled in with then required number of electrong and fills in
the groupb, c, etc. with suitable electrons, n;, etc. The union
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