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In this paper, the limiting performance of membrane systems with inhomogeneous composition is studied
within the class of fixed rate processes. The problem of maintaining a nonequilibrium state in such a system
using minimal power (separation problem) and the problem of extracting maximal power from such a system
(diffusion engine problem) are formulated and solved. Results are obtained for diffusion engines with constant
and periodic contact between the working body and the reservoirs.

1. Introduction as this determines the form of the chemical potentials and

The problem of extracting work from a thermodynamic therefore the driving forces of the processes. For near ideal gas
system that is not in equilibrium and its inverse problem of m!xturesé the chemical potential of théh component of the
maintaining a system in a nonequilibrium state are central in Mixtureé?is
thermodynamics. For a system that is not in equilibrium with . .
respect to temperature, the first problem is solved using heat w(T, P) = uig(T + RTIN P, i1=1,...k

engines and the second using heat pumps. For a system that is here P. is th ial f thigh Af
not in equilibrium with respect to composition the second WheréPi s the partial pressure of theh component. After

problem is solved using separation systems, where the first candenoting the ratio of the partial pressure to the full pressure as

be solved using diffusion engines. Membrane systems play a* We 9et
central role among separation systems and diffusion engines N.
and they performances depend strongly on membranes’ char- P,=Px = P—, i=1,..k
acteristics. N

A vast literature is devoted to the applications of membrane
systems as separation systems and as diffusion engifes
this paper, we will study these systems within the framework _ -
of finite-time thermodynamics (e.g., refs 19, 20, 21), which is (T P3) = py(T, P) + RTInx, =1,k (1)
concerned with finding limiting performance for nonequilibrium

. . . Hereuji(T, P) = uio(T) + RTIn P, N is the number of moles
thermodynamic systems, where processes have finite duratlonof mixture andN; is the number of moles of ifsh component.

End the av?tragst r_atej t?f quxestr?re gil\/ten. Storyqe of tgle besft For a liquid the chemical potential has the same form as (1),
nown resufts obtained here are the solutions to the probleém oty o potentiali:(T, P) is different. This is due to the fafét

maxim_izing the power of a heat engine V\.'ith given heat_transfer that the chemical potentiad(T, P, X) represents Gibbs molar
coefficients; gnd to th? problem of maximizing the efﬂuency energy of theith component, while its derivative with respect
.Of a hea; engine W'.th given power. System _drlven_ by d_|ffere_nce to pressure is the molar volume of this compongntnlike

in chemical potential have been also studied using finite-time the case for a gas, the molar volume for a liquid is practically

thermodynamicg® . :
- o independent of pressure and is only weakly dependent on
The problem of finding the limiting performance for a temperature. Since

diffusion engine was first formulated in its simplest form?.
In this paper, we present a comprehensive study of the limiting u; Iy,

and the chemical potential takes the form

performance for a diffusion engine within the class of fixed P U
rate processes, paying special attention to the following ques-
tions: . i we get
1. What is the minimal amount of energy necessary for the
separation of a mixture with a given composition into key w(T,Px)=uy (T +oP+RTInx, i=1,..k (2

products with given composition?

2. What is the maximal power and maximal efficiency of a  \ve assume in the sequel that all processes are isothermal
diffusion engine? . and that the temperatures of all subsystems are eqfalAd

The answers to these questions depend strongly on whethetroplems are first considered for gaseous and then for liquid
the input/feed mixture used by the engine is gaseous or liquid, mixtures. To make the results more specific, we consider liquid
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2. Limiting Performance of Gas Separation Using
Membrane Systems

Maximal Work in a Process with a Reservoir.Consider a
system that includes reservoir (source with infinite capacity)
with the temperaturd&, pressuré®®, and chemical potential®
and the working body with the same temperature, volyfre
0 and chemical potential.

The initial state of the working bodf(0), S0), N(0), and
V(0) is given.E and S are internal energy and entropy. The
working body’s variables are linked by the equation of state

E(0) = E(S(0). N(0), V(0))

The duration of the processand its entropyS(r) are given.
The combined volume of the source and working body is
constant.

The maximal work problem (maximization of the energy
extracted from the system) is equivalent to minimization of the
internal energy at = 7

A= [E(0) — E(z) + E%0) — E%z)] — max ©)
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Figure 1. Structure of a diffusion engine with continuous contact
between the working body and the reservoirs.

dependencieg(«) the condition that is convex holdsy* is
constant and is determined by the equation

TAS

0 _
ug(u ) = .

N¥(7) = Ng + g’ ") T

AE® = g’ ¥ @)

Its substitution into (3) yield#\*. For a separation problem,
this value corresponds to the minimum of work and is always

Since the increments of working body’s entropy and temperature Negative.

are given,AE = TAS is fixed and the problem is reduced to
maximization

AE’ = E0) ~ () = f; 1’0’ ) dt—max  (4)
u(®)
subject to

Jo #O9E p) dt=TAS

This is an averaged nonlinear programming probfénits
optimal solutionu*(t) is either a time-independent or a piece-

©)

wise constant function of time that takes not more values than

the number of constraints (eq 5) plus one. These values this 0
function takes are calledasicvalues. In our case there is no #* =u 2+
more than two basic values. They are determined from the

following condition on the Lagrange function of the problem
(egs 4 and 5)

TA .
L= {g(uoyﬂ)(ﬂo —Au)+ A= minmax - (6)

After one or two basic values gf* are found using (6), we
then calculateN*(t) using the following equation:

dN

i 9(’u), N(O)is fixed

N*(t) is either a linear or a piecewise linear function. In the
former case its slope ig(u®*) and in the latter the slope is
gulu3) on the interval Q;r and isg(u®u3) outside of this
interval. y is to be found from the condition

Y@’ uy) + (L — y)iso’us) = TAST
If the Lagrange functior. is convex onu, that is, if

&g

dg
> 21—
d? du

then only the one basic value exists.

One can show that solution has physical meaning if and only

if A > 0 and @&/du < 0. Therefore, for the majority of real

Supposeg(u®u) = aw®(u® — u). The Lagrange function
then takes the form

TAS

L= a@’) @’ — w) @’ — Au) + =

It is convex onu and has a single minimum at = x%2).
From (7), we get

TAS
T

@)@’ — u)ur =
and
TAS
To(u
g = a(/to)(uO/Z — 1A -

,u02/4 -

ra(,uo)

The optimal rate of change of the composition of the working
body is constant and equal .

Maximal Power of Diffusion-Mechanical Cycle.Consider
a system that includes working body and two reservoirs with
different chemical potentialg;, andu— (for definitenessyu
> u-) (Figure 1). The system’s objective is to extract the
maximal amount of work. The system operates cyclically and
the increments of entropy, internal energy, and mass of the
working body over the cycle are all equal to 0, over the cycle.
The temperatures of all subsystems are the same.

Contact with Resewirs in Turn First, we consider the case
when the working contacts each of two reservoirs in turn.
denotes the cycle's period ang(t) — reservoir's chemical
potential, which takes two values, andu—. Then the problem
of obtaining the maximal world in the given periodr takes
the form

TAS)

0
A= Eq0) ~ Eo(®) = [ udluou) dt—max  (8)
subject to constraints the cyclic condition
0
AN= [~ g(ugu) dt=0 9)
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The fractions of the cycle when there are contact with corre-
sponding reservoir are determined by the condition (eq 9)

z

L L, OVt

\_\ i a_\/a_+ + a+\/0L__
B A* Ky A OL+«/0‘_—

Figure 2. Characteristic dependence bof the maximum with respect v-= o /a+ +a, o
to u of the Lagrange function fato = u+ anduo = u-.

The maximal work is

This is again an average nonlinear programming problem whose _ _ _
solution is determined by the basic valuesuoénd uo. They A1) = oy g0 (g — pg) +ypp0 (up = 1)l
are determined by the conditions of maximum of the Lagrange ]

minimum onA substituted into it. The maximal power is
= — — i A*(7)
L= {9ou)(u = A)} — maxmin o = [y = ) +y a0 (= )]
There are two basic values @§. One corresponds f@ = Continuous Contact with Resairs. It is possible that there
and the other tgio = u-. If the Lagrange function is strictly s a uninterrupted, continuous contact between the working body
convex onu, then the basic values obey the conditions of a heat engine and its reservoirs (a turbine). In this case, the

parameters of the working body are distributed, and if they are
driven by convective flux then they can be approximately

described as reversible. Similarly in a system that is not
homogeneous with respect to concentration (eg separation

ob_9dg, _
G = e = D)+ Qo) =0

or system or diffusion engine) it is possible to have a separation
system/diffusion engine with continuous contact between the
(1D 39(tont) working body and reservoirs.
-7 = P The maximal power problem then is reduced to a nonlinear
s H programming problem

We denote the root of this equation fes = x— asu; and for _ _ .
o = u+ asuz. Sincel is maximal at the basic values P= [0ty = GoluazieJu] Tﬁx
L(upuq,A) = Lu_,upA) (20) subject to

which determinest. Oy(441) — Golttot) =0 (13)
Let us specify the obtained dependencies for

9(uott) = aug) (g — 1)

Its condition of optimality yields

_ Gyluat-) _ Oy (141

— U, = 14
From (10) we get Hi— i 09,/0u, 90,/0u, (14)
U+ u_+2 which, jointly with (13), determines the problem’s unknowns.
Uy = 5 M = 2 (11) Supposey; and g, are proportional to the difference of the
chemical potentials
Substitution ofu; andu, into L for each basic value gives the . .
L dependence on Oy = oy —uy), G = 0(u, — 1)
o, Then eq 14 takes the form
2
Ly =Luyp) = T(/h —4)
Yy~ = (up — p ) + (g — py)
o_
Lo=Lu_u) = T(.M— - /1)2 or
The minimum onl of the maximum ofL on uo, « is attained Y o v (15)
here atl* (Figure 2) Ham it 2
/_a+u+ + Jo_ 1 From the conditiorg; = gy, we get

LLA=L.A)=i*=

12)
JJo + /o Oyity T O, = auu, + o (16)
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Figure 3. Structure of saline diffusion engine with constant contact
between the working body and reservoirs.

The solution of (15) and (16) is

" 1

Uy = 20, + OLZ)['qual + p_(ay + 2a,)]
* 1

M= m[/u(az + 200) + p_0u)

The maximal power which corresponds to this solution is
_a 2
Pmax = Z(lu+ )

where the equivalent mass transfer coefficient is

_ a0,
a=—
o+ o,

3. Limiting Performance for Membrane Separation of
Liquid Mixtures

Tsirlin et al.

the dissolved substance in it@sThe pressure in this chamber

is p2. We assume that the solution is ideal. In equilibrium, when

the flow through the right chamber is equal zero, the pressure

which sets in this chamber excequisby the osmotic pressure

7. This osmotic pressure is linked to the concentrations in this

chamber and temperature via van't Hoff equation. If the mixture

in the right chamber is replenished, then the presppre po

+ 7. This drives the flow of solvert, through the membrane.

The usual assumption is that this diffusive flow is proportional

to the difference between the actual and equilibrium pressures
9o = a(py t 7 — p,) = a7 — Ap) (18)

whereAp = p2 — po.

We denote the power of the pump that supplies feed mixture
as n, its rate asg; and the concentration of the dissolved
substance in the feed &5. Assuming that the pump has 100%
efficiency, we get

n=Apg,

The flow through the membrane increases the volume in the
right chamber, which drives the turbine and generates pbiver

N= (g, + go)Ap
The power and efficiency of the saline diffusion engine are
N —n=gyAp = o — Ap)Ap

No _o(7 — Ap)Ap
O 9

Ny =

The efficiency is defined as work per concentrated solution’s
unit volume. We assume is independent ofAp. In this case

Consider a system that consists of two liquids with the same the power is maximal and equal to

temperatures separated by a semipermeable membrane. One of
the liquids is a pure solvent and the second is a solvent mixed

with a second liquid with the molar concentrati@ The

membrane is permeable only for the solvent. The system is in

2
T _a 2
N = 07 = 5(CRT)

equilibrium when the chemical potentials calculated using (2) @t Ap = 7/2. SinceC < Cy, this power is always lower than

are the same, that is, when

voPy — v,P, = —RTIn X,

N*o = Z(CRT)? (19)

The subscript 0 here corresponds to the pure solvent andWhich gives an upper bound on the maximal power.

subscriptr to the dilute solutiony, is the molar fraction of the
solvent in the mixture and; is the molar fraction of the

substance that is dissolved in the solvent. The pressure differenc

on two sides on the membrane is denotedradVe assume
that molar concentrations are small and molar volumgs
and vy are equal. We assume thet is small and Infg) =
In(1 — x1) & —x1. Then

Xy
7=RT—=RTC
Yo

17)
whereC is the concentration of the dissolved substancés
the osmotic pressur@,is the temperature, arillis the universal
gas constant.

Equation 17 is called the van’'t Hoff equation for osmotic
pressure.

Consider the system shown in Figure 3.

The pure solvent is in the left chamber. The pressure there is

the same external pressupg. The mixture is in the right
chamber. Its volume is denoted ¥sand the concentration of

The bound (19) can be made more accurate if we take into
account thag, Ap andC obey (18) as well as the mass balance

Qith respect to the dissolved component

(9, + 99C=0g,C,

After expressingC andAp in terms ofgp (from (18), and (20))
and their substitution intdlp andz, we get

(20)

9:.C; %
=——"  Ap=CRT-= 21
0+ 9 P a D)
RTCO:0, 9%
0 gO p g]_ + go a ( )
— Ap)Ap RT 2
77:cx(zr pAp_RTGY  J% (23)

01 0,t09 g

Both functions ofgp in (22) and (23) are concave and have
maxima at the same poirgf, which can be found from the
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maximum condition for any of them. We use the maximum of
No to find this optimalgg. We get

, ORTZC,
@(do) = 9o(01 + 9)" = Y (24)
It can be rewritten as
3 2
9%, 90 aRTG
—+2—+g,=—7— 25
gzl gl gO 2 ( )

we denote the expression in its right-hand sideVasnd its
root asgg. It is clear that it obeys

0<gy<M

The first approximation forgy can be calculated using the
chord method#

. M
= VI, + Mg, + 1

(26)

Since the expression in the left-hand side of (25) is congigx,
< g
If the difference betweeM andgy is not small enough, then

J. Phys. Chem. A, Vol. 109, No. 44, 20080001
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Figure 4. Structure of saline diffusion engine where the working body
contacts reservoirs in turn.

The estimate (upper bound) on the diffusion engine’s power
given by (19) is

N* ;= 0.000287x 10" W/(s'n’)
Since C < Cy, this estimate is not accurate and should be
corrected using formulas 2£27. We getM = 3.39 x 1074
Then the first approximation given by (26) is

8, = 1.67 x 10 °m/s

this solution can be made more accurate suing tangent formula

352 3
Fo, B,y

g 27)
1

~3 2
~ g g ~
910:90+(M_g_20_2_0_90)

The correction term is always positive arg@j > g5 The

Since the distance betwedn and gy is large, one needs to
calculate the second approximatigjpusing 27)

g, =3.53x 10 °m/s

This g(l) is sufficiently close togs which maximizes the power

accuracy of this solution can be checked by substituting it into 5 efficiency of the diffusion engine.

(24).
It is worth noting that the assumption about ideal solution

leads to the constraint on the concentration of the working

solution

01
9, + 9o

From (22) and (23), we find
N*, = 1.03 J/(sm’)
7* = 0.129x 10° J/n?

4. Saline Diffusion Engine Where the Working Body
Contacts Reservoirs in Turn

This concentration cannot be too high otherwise the molecules The diffusion engine considered in the previous section
of the dissolved substance will interact with each other and (17) operated stationary and uses the working body, which always

will not hold.

Example. Let us find the maximal powely, and maximal
efficiency# of diffusion engine with the following parameters:
g1 = 0.000008 m/s,T = 298 K, R = 8.31 J/(molK), and

stays in contact with both sources. One source supplied
concentrated solution and the other supplied pure solvent. An
alternative structure for a diffusive engine is shown in Figure
4. Here the working body contacts two reservoirs in turn,

concentration of the dissolved substance (salt) in the input receiving solvent through one membrane and rejecting it into

solutionC; = 40 kgire. Solt's molecular weight ig = 0.05843
kg/mol, and its molar concentration &; = 684.57 mol/m.

the concentrated solution through the other membrane. The
pressure and the rate of the working body here change

The membrane which separates compartments with concentrategheriodically. Pressure increases when the rate is lower (power
and weak solutions is a standard industrial low adsorption acetaten is spent) and decreases when the rate is higher (pbsr

membrane filter with the pore size Qu2n, the average water
flow rate is 4 x 1077 m/s, and the pressure difference i 10

generated).
We assume that no energy is drive the flow through the lower

Pa. The membrane’s mass transfer coefficient can be found usingchamber, the concentration of the dissolved substance igpthe

the water rate’s dependence on pressure
g=a-Ap

From this equation, it follows that

:i: 1078
a Ap 4-10 "m/(sN)

flow is equal 1 and the external pressures
The power of this engine is

No=N—n=(g; + 9)AP,; — 91AP,; = AP,
where

Apy; =P, — Py
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Figure 5. Cycle of the diffusion engine’s working body.

We define the efficiency as the ration b to the rate ofg,

No %
—A
= % O Pat

The mass transfer kinetics is determined by the equations

G0 = y(Po + 7 — Po) = 04( — AP,y = a[(py + 75) —
(P + 7y)] = ax(Ary; + Apyg) (28)

Here Ap2o = p2 — Po, Amror = 2 — 11, and Apip = p1 — Po.

Equation 28 gives cyclic condition for the working body’s mass
corresponds to the condition that the mass of the working body’s N, = 90’ 1( Ci0,

mass.

Figure 5 shows the cycle of the working body of this diffusion

engine.

The powem is equal to the area of the rectangutadCp,
and the poweN to the area of,abp.. The engine’s poweNy
is equal to the area of the rectanguddcd

Tsirlin et al.

The maximum of this expression is

N = o — 7y + 71,)° _a(r+ A7,,)°
0 4 N 4
is achieved at
o(r —my + nz) o + Amy,)
g*O = 2 2

Now we take into account the dependence of the osmotic
pressures in chambers on concentration given by van't Hoff eq
17, Since these concentrations depend on 1giteg,, anddo,

we get

crT= ¢, 2RT
n = =
'9,+ g
9,Co0 1T 9oCy )
At C,—C)RT=|———-C,|RT
21 ( 2 1) ( g2 + gO 1

Then expression 30 takes the form

gzczo +9C C ) Yo
g+ go 91 % !

_ ’ T(92C20+ 9C: GG ) %
=0oR - —| — max

9, T 9o 0; 9 S %

First we assume that the osmotic pressures in the chamberg-or the efficiency
and rates are independent. Then the maximal power problem

for a diffusion engine takes the form

No = (P, — P1)go — max

P1.P2
subject to
P+ 7, —

ay(Po + 7 — Ppr) = 0Py — ) =0y (29)

From (29), we get

We define the equivalent transfer coefficient

_ a0,
o=—
o+ o,
and get
(¢
p, — plzﬂ_ﬂ1+”2_a
Then

go) ( go)
N, = (ﬂ—fr +ma,— =] =gy\7 + Am,, — —| — max
o= Yo 1 27 g % a7 o o

(30)

_% RT(gzczo +9C G ) %
9, %t 9 0,1t Gy @

Both criteria, (31) and (32), have the maximum gnat the
same point. Thus, we can use any one of them in the conditions

of optimality to find g5. The stationary nature dfly on go
yields the optimal flow

—max (32)
)

_ar1 (g Lot 208:C1+ CoCr| G0 +20)
72 G+ 9 (@t 9’
(33)

Substitution of (33) and solutiogy(gi, g2, C1) into Ng and#
yields the maximal poweN;(gi, g2, C1) and maximal ef-
ficiency n*(d1, g2, C1). SinceN; andz* are nonnegative, these
equations single out thermodynamically feasible rangesg{for
02, andC;.

Example. Consider a diffusion engine where the working
body contacts reservoirs in turgy, = 0.1 m/s, T = 298K, R=
8.31 J/(molK), the concentration of the dissolved substance
(salt) in the working body when it contacts concentrated solution
isC, =30 kg/n®, and the salt’s concentration in the input flow
g2 is Coo = 50 kg/n. Since the salt’'s molar weight jg =
0.05843 kg/mol, the molar concentrations @se= 513.43 mol/

m?3 and Cyo = 855.72 mol/m. Since the amount of salt in the
working body does not change over the cyge~= g1 = 0.1

m/s. The same membrane is used as was used in the first
example with mass transfer coefficients= o+ = o— = 4 x

1078 m/(sJ) for contacts with both reservoirs.
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; : 2 _ 7 3 _ 6 8, 141—171.
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